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Abstract: In this paper we describe our experience with a development environ-
ment for robot controllers, which provides the user with formal verification func-
tionalities. We study how to augment these functionalities by also allowing formal
verification of quantitative real-time properties. Our approach is based on the timed
extension of a synchronous language, named Timed-Argos, and on a symbolic model-
checking tool named Kronos for the real-time temporal logic TCTL. We illustrate
this approach by a real example taken from the area of autonomous vehicles, which
poses some challenges on the applicability of the theory and finally, we discuss some
possible solutions. This large-scale real application is also an opportunity to identify
new research directions in the area of formal verification.
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Vérifier des propriétés quantitatives temporelles dans
un environnement de développement d’applications
robotique

Résumé :

Nous décrivons dans ce rapport comment intégrer des méthodes de vérification
formelle de propriétés quantitatives temporelles & un environnement d’aide au dé-
veloppement d’applications robotique nommé ORCCAD. Notre approche est basée
sur 'utilisation d’une extension temporelle du langage synchrone Argos et d’un ou-
til de vérification symbolique nommé Kronos. Nous illustrons cette approche sur
un exemple réel de conduite autonome de véhicules. Cette expérimentation est pour
nous 'occasion de valider une approche formelle et de découvrir de nouveaux besoins
afin d’orienter les recherches menées dans le domaine de la vérification formelle des
systemes temps-réels.

Mots-clé : vérification formelle, systéemes temps-réels, langages synchrones, lo-
giques temporelles, robotique
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Introduction
Motivations

The aim of this paper is to show how formal methods of verification could be used
in a real application area such as in robotics, in order to check time dependent
properties. More precisely, we bring to the fore front some particular needs inside
a development environment for robot controllers named ORCCAD [SECK93], and
we show how to fulfil them by using a language named Timed Argos [JMO93] and
a symbolic verification tool named Kronos [HNSY92].

This experiment in a real application area is an opportunity of making a qua-
litative analysis — adequation of the approach to the needs, integration into the
existing environment, ... — and a quantitative one — Argos compiler and Kronos
tool performances — of both Argos and Kronos. This is also a good way to identify
possible new research directions in the area of formal verification.

Context

Robotic systems are hybrid systems operating in real-time and handling events as
well as “continuous computations”. Reliable and easy programming of these systems
requires a systematic method for the specification of robotic applications, formal
verification of their execution from a continuous and discrete-time point of view and
efficient implementation over the target architecture.

The ORCCAD system (Open Robot Controller Computer-Aided Design) pro-
poses a coherent approach from a high-level specification down to its implementation
by harmoniously integrating discrete and continuous aspects. It is based on auto-
matic control theory for the design and analysis of the control law, and on reactive
systems theory for the discrete events aspect.

In this paper, we are interested only on the discrete events aspects. More preci-
sely we address the problem of formal verification of discrete events robot controllers
inside ORCCAD. These controllers are currently represented as boolean automata,
which are obtained by translating ORCCAD specification formalisms into a subset
of the synchronous language Esterel [BG92], whose semantics are expressed in terms
of boolean automata. Thus, it is possible to use inside ORCCAD the verification tool
Auto [dSV89] which has a friendly interface with Esterel. This tool could be used to
build abstract views of the global controller which could be either directly observed
(if the resulting automaton is small) or compared to another automaton which ex-
presses the property. This approach is well-adapted to check global properties like
the absence of deadlock.
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4 Muriel Jourdan

However, this method does not allow to verify quantitative real-time properties
although a lot of explicit delays appear in the controller specification (durations,
timeouts). For instance, it would be interesting to be able to prove that the execution
of a robotic application is time-bounded or that the time-lag between the starting
points of two execution laws is bounded.

A way of proving such properties, consists in modeling robot controllers as
Timed-Graphs [AD90] — boolean automata extended with time counters — and
using a symbolic verification tool. The synchronous language Argos [Mar92] has been
first inspired from Statecharts [Har87]. Its semantics, like Esterel, was expressed in
terms of boolean automata. It has been recently extended with a time construct and
its semantics could now be expressed in terms of Timed-Graphs. The Kronos tool

which implements a symbolic model-checking algorithm for the real-time temporal
logic TCTL [ACDY0] is interfaced with Timed-Argos.

Outline of the paper

The remainder of the paper is organized as follows. In the first section we present
some needs of time dependent formal verifications inside ORCCAD through an over-
view of this system. The second section is devoted to the presentation of the Timed
Argos language and the Kronos symbolic verification tool. In the third section, we
describe how to integrate these formalisms and tools into ORCCAD in order to be
able to check time dependent properties. An example taken from the area of au-
tonomous vehicles is presented to illustrate the integration principles. Finally, in
the last section we discuss qualitative and quantitative analysis of the experiments
previously described.

1 An overview of ORCCAD

The basic entity in ORCCAD [SECK93] is the concept of Robot-Task (RT in the
sequel). Its function is to specify and implement simple robotic actions. Complex
actions are obtained by composing RTs using different kinds of “synchronization”
operators, the final result being called a Robot-Procedure (RP in the sequel). For
instance, suppose that the mission consists in automatically parking a car. First,
the car must search for a free parking space and then it should park itself. If these
two steps are not too complex, the mission could be specified by using two RTs
which are run in sequence in the nominal execution of the RP. We first present the
RT concept, then we present how to combinate these basic objects inside a RP in
order to specify and implement a robotic application.

INRIA
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1.1 The Robot-Task concept

RT consists of algorithmical aspects relating to the control law and logical aspects
relating to the local behavior associated with a set of events which may occur before
or during the control law execution. This local behavior is predefined. The execution
of the control law begins as soon as a set of preconditions is satisfied. The waiting
time for each precondition to be satisfied can be bounded. If it elapses, the RT
is stopped. The execution of the control law can be interrupted if “problems” are
detected. It ends normally either after the satisfaction of a set of postconditions or
because of the specified RT duration is exceeded.
In order to specify this local behavior, the user gives :

e a set of precondition events. A waiting time limit could be associated with
each event.

e a set of “exception” events. Three kinds of exceptions could be specified:

— global exception : it interrupts all the RTs used in the application.

— local exception : it interrupts only the RT. We will see later how local
exceptions are handled by RPs.

— local change : it does not interrupt a RT but indicates a modification of
parameters which appear in the control law.

e a set of postcondition events. A waiting time limit could be associated with
each event.

e a duration.

This specification is automatically translated into an Esterel program in which all
quantitative delays have been transformed into logical timeout events. This program
is compiled into a boolean automaton. It has been proved in [Kap94], that this
automatic translation guarantees two important properties:

o it satisfies a liveness property, i.e. a successful termination of the RT can be
reached from any state of its evolution;

o it satisfies a safety property, i.e. any global exception is appropriately handled
by emission of a specific event leaving the system in a safe situation.

RR n"2540



6 Muriel Jourdan

1.2 The Robot-Procedure formalism to combine Robot-Tasks

With the RP formalism one can specify in a structured way a logical and tempo-
ral arrangement of RTs in order to achieve an objective in a context dependent
and reliable way, providing predefined correction actions in the case of unsuccessful
executions of RTs.

The user specifies a similar behavior to the RT one.

e a set of precondition events. A waiting time limit could be associated with
each event.

e a set of “exception” events. Two kinds of exceptions could be specified:

— global exception : it interrupts all the RPs used in the application.
— local exception : it interrupts only the RP.

e a set of postcondition events. A waiting time limit could be associated with
each event.

The user also specifies a main program and a set of exzception programs. The main
program corresponds to the nominal execution of the robot and is started as soon
as the preconditions are satisfied. The exception programs are associated with local
exceptions handled in the RTs or RPs (the RP formalism is recursively defined) used
by the main program. These two kinds of programs are specified using composition
operators of RTs or RPs already defined. For instance, it is possible to express the
sequence of two RT's (or RPs) or their “parallel” execution: they are started at the
same instant, and the end of the construction occurred when the two operands end. It
is also possible to take into account external conditions with a kind of if_then_else
structure. The waiting time for the condition to be satisfied could be bounded.

The whole controller specified by a RP can be translated into an Esterel program
(delays are transformed into logical timeout events) in order to be represented by
a boolean automaton. As a consequence, it is possible to check some properties
like deadlock absence or conformity of the RP behavior with respect to mission
constraints. Contrary to the RT behavior, which is proved correct by construction,
the user is in charge of the RP behavior verification, which should be done with the
Auto tool. The properties he could express are not time-dependent. For instance, he
could not check that the execution time of a RP is always lower than a given value.

The aim of the work presented in this paper is precisely to withdraw this im-
possibility. The idea is to replace the translation into Esterel with a translation into
Timed Argos in order to keep the values of the delays in the program and to use the
symbolic verification tool Kronos on the resulting timed graph.

INRIA
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2 The Timed-Argos language and the Kronos tool

The Argos synchronous language [Mar92] was first inspired by Statecharts [Har87]. It
provides the user with a set of operators that can be applied to elementary automata
components to build more complex systems. These operators include parallel compo-
sition and hierarchic composition. The Argos semantics is expressed in terms of boo-
lean automata. Argos has been recently extended with a delay construction [JMO93]
which allows to express watchdogs and timeouts easily. The resulting language is na-
med Timed-Argos. Its semantics is expressed in terms of Timed-Graphs, which are
automata extended with real clocks. With this kind of program models, one can check
real-time quantitative properties, using symbolic verification tools such as Kronos.
Kronos is a tool which implements a symbolic model-checking algorithm [HNSY92]
for the real-time temporal logic TCTL of Timed-Graphs [ACD90].

In this section, we first present the Argos language. Next we present its temporal
extension. Finally, we present the Kronos verification tool.

2.1 The synchronous language Argos

A more detailed presentation of Argos could be found in [JM94].

In Argos, a simple system is described directly as an automaton by giving the
set of states and transitions explicitly. When it is more complex, it can be described
as a combination of several such components, using operators like the parallel com-
position, which express how they should be “connected” in order to communicate
and participate to the global behavior of the system.

In the parallel composition, for instance, two or more components evolve in
parallel. They can communicate with each other by exchanging signals: if an input
signal of a components and an output signal of another one have the same name,
the two components are forced to communicate in this way. The communication is
the synchronous broadcast. It is non blocking (unlike the rendez-vous mechanism, for
instance). A component can always output signals. The other ones can always react
to them because they are reactive, but some of them have a null reaction (they do
not change states nor output signals).

Figure 1 is an ARGOS program using five automata to describe a modulo-8 a-
counter with initialization and interruption facilities. It satisfies the following specifi-
cation: once start is received, emit mod8a every 8 a’s. Stop counting the occurrences
of a when either 6 time units have elapsed since the start signal, or stop has oc-
curred.

RR n"2540



8 Muriel Jourdan

Mainl (a, start, stop,u_time) (mod8a)

Counting

c/ mod8a

start

counting

end

Figure 1: Argos program for the modulo-8 a-counter

Rounded-corner boxes are automaton states; arrows are transitions; rectangular
boxes are used for unary operators (see below). A set of states and transitions which
are connected together constitutes an automaton. The five basic components of the
program have the following sets of states: {Counting, Not counting}, {AO, A1},
{B0, B1}, {c0, c1} {TO, T1, T2, T3, T4, T5).

In the automata, the input part and the output part of a transition label are se-
parated by a slash (example: ¢/end). Negation is denoted by overlining, and conjunc-
tion is denoted by a dot (example stop.end). When the output set is empty, it can
be omitted. The initial state is designated by an arrow without an associated source.
For example, the arrow connected on the right to CO. States are named, but names
should be considered only as labels to help the programmer.

INRIA
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An arrow can have several labels which stand for several transitions. The different
labels of a same arrow are separated by a comma. Some labels have to be considered
as abbreviations. For instance, the end label stands for both end.stop, end.stop.

The automaton whose states are Counting and Not counting is said to be
refined in its Counting state. The refining subprogram is built with the four other
automata, which are put in parallel (In figure 1 they are shown separated by dashed
lines). The outermost box, with an attached subbox which contains end, is the
graphical syntax for a unary local signal declaration operator. The box defines the
scope in which the signal end is known. This signal is used as input by the refined
automaton; it is used as output by the timer component (vertical automaton in the
refined state): a communication will take place between the two. Another such unary
operator is used in the program, in order to limit the scope of the signals b, c to
the program constituted by the three unrefined automata (drawn horizontally).

The interface of the global program is defined as follows: all signals which appear
in a left-hand (resp. right-hand) side of a label, and are not declared to be local to
some part of the program are global inputs (resp. global outputs).

We give here the intuitive semantics of the operators, by explaining the behavior
of the counter.

First, observe the three (horizontal) automata embedded in a parallel structure,
and the operator which defines the scope of b and c. This constitutes a subprogram
whose only input is a, and whose only output is mod8a. The global behavior of this
subprogram is defined by: the global initial state is CO,B0,A0; when it has reacted
to input a n times, the program is in state C;,B;,4;, where 7 4+ 25 + 4k = n mod 8;
mod8a is output every 8 a’s.

This behavior is achieved by connecting three one-bit counters. The first one (A)
reacts to external input a, and triggers the second one (B) with signal b, every two
a’s. The second one, reacting to b, triggers the third one (C) with c, every two b’s.
The third one outputs mod8a every two c’s. The communication being synchronous, a
reaction “in three steps”, to which the three bits participate, is indeed one transition
in the global behavior (reaction to a from €0,B1,A1 to C1,B0,A0).

Second, observe the timer component: it evolves apart from the three previous
automata, counting the occurrences of u_time. It outputs end 6 units of time after
its initialization.

Finally, these four automata in parallel refine the counting state of a two-state
automaton. The counting state is reached when start occurs. As a consequence,
the refining subprogram is started in its initial state. It is killed when stop occurs:

RR n"2540



10 Muriel Jourdan

it is an interruption. Leaving a refined state may also be done by self-termination
of the refining subprogram. This is the case in our example when end is output.

It is outside the scope of this paper to give the formal semantics of Argos [Mar92].
However, in order to understand the timed extension of Argos we have to present
how this semantics is defined. The Argos semantics is synlaz-directed. It describes
the behavior of a program by defining a function S such that S(automaton) =
automaton and S(P1 op P2) = F,,(S(P1),S(P2)).

An interesting characteristic of Argos semantics is that it is easy to rely model
information on source program. Indeed, a model state (resp. a model transition) is
a set of “active” states (resp. “fired” transitions) of the source program automata.
We will see later how to use this information in the verification process.

2.2 Timed-Argos to describe Timed-Graphs
2.2.1 A form of program models :Timed-Graphs

Timed Graphs are automata extended with a finite set of real-valued clocks. They
are of the form (@, q, T, F, X) where @ is a set of nodes, ¢y is the initial node, X
is a set of real variables called clocks, T C @ X C(X)x L x R(X) x @ is a set
of transitions. C(X) is a set of boolean conditions built from the variables in X
following the grammar ¢ ::= x op k, where k is a nonnegative integer constant and
op belongs to {<,>,<,>,=,#}. L is a set of labels. R(X) is a set of reset actions.
A reset action r € R(X) is a subset of X which contains the variables to be reset
when the transition is taken. The other variables are unchanged. F' : Q@ — C(X)
gives the labelling of nodes by invariant properties.

The semantics of Timed Graphs is defined in terms of Mealy Machines. States
are of the form (¢, ¥) where ¢ is a node of the given Timed Graph and @ is a valuation
of its clocks. Transitions are labelled either by an element of L or by a real value
which denotes the time passing. This semantics is based intuitively on the following
principles: a) The initial state is equal to (g,, 6) (618 the valuation which associates
0 with each clock); b) Transitions are instantaneous; c¢) Time elapses in nodes; d)
The node invariants have to be always satisfied.

For instance, if we consider the Timed Graph given in figure 2,

(A,0) 22:(A,3.2) 2+(B,0) >=(B,5) ‘2+(A,5)
is a possible execution sequence.

The need for a high level language to describe Timed Graphs is obvious since we
could not manage to describe a complex system by a Timed Graph directly. Timed
Argos offers high level constructions to describe an interesting subclass of Timed
Graphs in a compositional way.

INRIA
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x <5 (x = 5) 12 true

Figure 2: An example of Timed Graph

2.2.2 Timed Argos : a temporal extension to Argos

Timed Argos [JMO93] provides a delay construction to express watchdogs and ti-
meouts. For instance, using this new construction the counter system could be des-
cribed by the program given in figure 3.

The timer component used by the program given in figure 1 has been replaced
by a one state automaton. This state is said to be temporized by the delay 6. It has
an outgoing transition whose label is replaced by a square box. This is the timeout
transition. The intuitive semantics is as follows : once a temporized state is entered,
it must be left before the indicated amount of time has elapsed. The program can
leave the temporized state by taking a “normal” transition (if such transitions exist),
or it has to take the special timeout transition, when the delay expires. Automata
with temporized states are called timed automata. They are the basic objects of
Timed Argos.

Temporized states in a Timed Argos program are translated into clocks in the
corresponding Timed Graph.

RR n"2540



12 Muriel Jourdan

Mainl (a, start, stop,u_time) (mod8a)

( ] )
Counting

c/ mod8a

start

counting

end

Figure 3: Timed Argos program for the modulo-8 a-counter

Figure 4: Translation of a timed automaton into a Timed Graph

The idea of the new semantics function §* [JMO93] (which translates all Ti-
med Argos programs into Timed Graphs) is the following: S*(timed automaton) =

INRIA
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timed graph and S'(P1 op P2) = F,,(S'(P1),5'(P2)). The transition labels of the
Timed Graphs built from Timed Argos and the transition labels of Argos automata
have the same form. We give in figure 4 an example of the translation of a timed
automaton into a Timed Graph.

2.3 The Kronos Verification tool

The Kronos tool implements a symbolic model-checking algorithm for TCTL [ACD90]
(areal-time extension of the branching-time logic CTL) on Timed Graphs [HNSY92].
It means that the property is expressed by a TCTL formula and that Kronos com-
putes the set of states of the Mealy Machines associated with the Timed Graph
which satisfy it. The property is satisfied if and only if the initial state belongs to
this set. The algorithm implemented by Kronos is symbolic, since the Mealy Ma-
chine associated with the Timed Graph is never computed, but rather represented
implicitly.
A TCTL formula ¢ is built following the grammar :

6 1= =G| A SV 8| IV e SV e8| T

# belongs to {<, <, >,>}. ¢ is an integer value. p is a property of states (i.e. nodes
and valuation of the clocks), and can be identified to the set of states where it is true.
The set can be given in extension, but it is usually described by using a function
which builds state properties out of transition properties. For instance, enable(!)
computes the set of states ¢ such that there exists at least one transition sourced
in ¢ and labelled by [. These functions are expressed in terms of the Timed-Graph
states or transitions. Given the fact that the Argos semantics is such that it is easy
to rely model information on source program, it is possible to use specific functions
more intuitively for the programmer. For instance, it is possible to characterize a
set of states in the model of a Timed Argos program with the following function:
InState(q) where ¢ is the name of an automaton state in the source program. The
Argos compiler keeps enough information for the Kronos tool to be able to evaluate
this function.

Let us illustrate the semantics of TCTL with the following example: 33.4{¢}. A
node ¢ satisfies this formula if and only if there exists one execution sequence from
¢’ such that a state satisfying ¢ is reached before 4 units of time. It expresses the
posstbility to reach ¢’ before 4 units of time. Some formulas do not have temporal
restrictions (given by the #c expression): V3¢ expresses that ¢ will be satisfied
eventually, i.e. for each execution sequence from ¢’ there exists a state satisfying ¢.

RR n"2540
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VYV ¢ expresses that ¢ is an invariant property and V¢ is satisfied if and only if there
exists one execution of the program on which ¢ is always satisfied.

3 Using Timed-Argos and Kronos inside ORCCAD
3.1 Principles

In this section we give only an intuitive idea of how we propose to integrate verifica-
tion methods of quantitative real-time properties into ORCCAD. These principles
will be illustrated below while describing an experiment in the area of autonomous
vehicles.

o PFirst, we translate RTs and RPs into Timed Argos, in order to represent the
controller behavior of the robotic application by a Timed-Graph (and not
by a boolean automaton). A minimization tool is used on the Timed-Graph
computed by the Argos compiler before using Kronos. This minimization is
effective since, first, the behaviors we specify are such that a lot of transitions
lead to the same state with different labels; and second, the properties we
consider could be easily expressed in terms of the Timed-Argos source program
states (see below). As a consequence, labels could be abstract since they are
not related to the properties. This reduction phase is achieved by using the
minimization tool named Aldebaran [Fer88].

e Second, we express the property in TCTL and use the Kronos tool to check it.

We are now going to illustrate this principle of integration with a real example
taken from the area of autonomous vehicles.

3.2 An experiment in the area of autonomous vehicles
3.2.1 Informal specification of the example

Our long-term objective is to specify, validate and implement a virtual “train” of
electric vehicles: each vehicle is expected to closely follow the previous one automa-
tically using dedicated sensors — a vision approach is used to locate the previous
vehicle in distance and angle — and a computerized control system. The first vehicle
would be the only one with a human driver. This work is part of the Prazitéle Project
(as in [PDDM94]), the ambitious program by the French government to develop a
self-service public transport system using small electric vehicles. We are currently
working with only two vehicles.

INRIA
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The application we described should respect the following specification. When
it is started, the driven car should signal when it is ready. Then, the undriven car,
which should be in the automatic mode, tries to catch the video signal to locate the
first car. When it is done, the nominal execution expected is that the undriven car
follows the driven car until the application is stopped. An exception program must
be started if the video signal is lost during this nominal execution. It has to stop the
undriven car as quick as possible. The driven car is supposed to come back and the
“train” reformed. A lot of problems could hamper this execution: physical damages
of crucial components, activation of the manual mode, mechanical stops, ...

The types of quantitative real time properties we would like to check on this
example is :

e the application is time bounded.

e the time-lag between the starting points of the wheel execution law and the
motor execution law is bounded.

o the time-lag between the detection of the signal loss detection and the complete
stopping of the car is bounded.

3.2.2 Translation into the Robot-Procedure formalism

We translate this informal specification into a RP. Its nominal execution consists of
an infinite loop whose body begins with the test of an external condition which indi-
cates that the driven car is ready. Whenever it is satisfied a RP named RP _guarded_move
is started. This second RP aims to control the second car when it follows the first
one and to handle the loss of the video signal between the two vehicles.

Before beginning this nominal execution, a set of three preconditions must be
satisfied. The initialization phase (motors, sensors, ...) must have been made without
detecting errors. The active mode must be activated and the “human” supervisor
has to give the start order. The nominal execution of this main RP is stopped in two
cases, either the supervisor gives a stop order or the manual mode is activated. In
the first car, the RP ends normally; in the second one it is interrupted by a global
exception.

The exact specification of this main RP is the following one :

Name : main

Preconditions :ok.nit [waiting time limit : 30 ms]
:auto_mode [waiting time limit : 30 ms]
: start [waiting time limit : 5 mn]

Postconditions : stop [waiting time limit : 60 mn |
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Global exceptions : auto2man
Local exceptions :none
Nominal execution
Loop
wait first_car_ready [waiting time limit : 5 mn]
start(RP_guarded_move)
endLoop
Exception treatments :none

RP _guarded_move is built from the parallel composition of three basic robotic ac-
tions specified as three independent RTs. The first two, RT _sens_loc and RT _sens_dir,
respectively control the electric motor and the wheel of the car according to sensors
information. The last one, named RT _brake, controls the foot-brake of the car. It is
not always active, since in most of the cases the engine_braking is sufficient to stop
the vehicle. The fistt two RT's detect a local exception when the video signal between
the two cars is lost. The RP RP_guarded_move handle this situation by starting an
“emergency” procedure named RP_parking.

The exact specification of RP_guarded_move is the following one.

Name : RP_guarded_move
Preconditions : none
Postconditions : none
Global exceptions : none
Local exceptions : none
Nominal execution

Parallel

start(RT sens_loc)

start(RT sens_dir)
L
Loop
if more_brake then start(RT _brake)

endLoop

endParallel

Exception treatments

if ( signallost_RT_sens_loc or signal lost_RT _sens_dir )

then start(RP _parking)

INRIA
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We could notice that the nominal execution of the RP RP_guarded_move never
ends, since it is built from three parallel components in which one is an infinite loop.
The only situation where RP_guarded_move ends is when a loss of signal video is
detected and when RP_parking ends.

We are now going to describe one RT. We choose RT sens_loc. We remind the
reader that a RT consists of algorithmical aspects relating to the control law (in our
example, it determines the speed of the vehicle according to some sensor information
which gives for instance the distance between the two vehicles) and logical ones which
describe the discrete control of the robotic actions. We are interested in our paper
only with the second aspects.

The control law of RT _sens_loc could be started if and only if the initializa-
tion phase has been made without detecting errors, and if the execution law which
controls the wheel of the car is already activated. The detection of a mechanical
problem in the motor of the car leads to a emergency stop of all the application.
Moreover, if the speed value computed by the control law is too high, some parame-
ters of this control law must be changed to compute a new speed value.

The exact specification of this RT is the following one:

Name : RT sens_loc
Preconditions :motor ok [waiting time limit : 5 ms]
: wheel started [waiting time limit : 5 ms]
Postconditions : none
Duration :undefined
Global exceptions : motor_pb
Local exceptions : signal lost
Local changes : speed_overload

RT _sens_dir is very similar to RT _sens_loc, the only difference is that it has no
equivalent to the precondition wheel_started (it has only one precondition which
indicates that the initialization phase was correctly done).

RT _brake and RP_Parking are defined in the appendix of the paper.

3.2.3 Translation into Timed-Argos

First, the Kronos verification tool handles only one time unit: each clock increases
at the same speed. We are thus obliged to translate each delay which appears in the
specification into milli-seconds.

We begin to show how to translate a RT into Timed-Argos.
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A Timed-Argos RT component has three states which correspond to the RT cur-
rent status: while waiting for the precondition to be satisfied, active (the execution
law is alive) and finished. The first state is refined by ¢4 1 automata in parallel where
¢ is the number of precondition specified in the RT. Indeed, one automaton is asso-
ciated with each precondition and one controller is added which detects that each
precondition is satisfied. If the RT has a duration, the “alive” state is temporized.
In all cases, it is refined by j+ &k + [+ m + 1 automata in parallel where:

e j is the number of local change exceptions;
e k is the number of local exceptions;
e [ is the number of global exceptions;

e m is the number of postconditions;

One controller is added which detects that each postcondition is satisfied.

For instance, the translation of the RT RT _sens_loc into Timed Argos leads to
the program given in the figure 5.

In order to show how a RP could be translated into Timed Argos, we used the
Argos procedure call mechanism. With this mechanism it is possible to re-use an
Argos component in a program with events renaming possibilities. Procedure calls
of an Argos program are expanded before the compilation process.

The figure 6 is the Timed Argos program associated with RP_guarded_move.
We could see that the nominal state is refined by a parallel composition of three
components: the two RT which respectively control the motor and the wheel of the
car; and a third component which handles the foot_brake when it is necessary.

3.2.4 Verification process

We are now going to show on this particular robotic application how to check time
dependent properties.

Our first example consists in proving that the maximum execution time of the
application is always lower than 70 minutes. This property seems to be true since
the specification of the main RP indicates that the maximum waiting time for the
preconditions to be satisfied (max_prec in the sequel) is equal to 5 minutes and that
the minimum waiting time for the postconditions to be satisfied (min_post in the
sequel) is equal to 60 minutes. Nevertheless, nothing indicates that the program
which implements this specification has been correctly constructed. Moreover, the
maximum execution time of a RP could be lower than a value T such as I’ <max_prec
+ min post. This is not the case in our example, but it could be true for other ones
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RT sens_loc (motor_ok, wheel_ok,speed_overload, motor_pb, signal lost)

(GExc_RT sens_loc, LExc_RT sens_loc, LC_speed_overload, signal lost_RT sens_loc)

\ Wait_Prec_RT sens_loc
(- )
: ; N\

/ errorG / errorG

wheel_started

. ok1,0k2

0k2.0k1

motor_ok /

ok2.0k1/ ok1.0k2 /

okprec O okprec

errorG/GExc_RT sens_loc

okprec

End_RT sens_loc

errorG/GExc_RT _sens_loc,
errorL./LExc_RT _sens_loc

Active_RT sens_loc

4 . .
speed _overload / motor_pb / signal_lost /
LC_speed_overload errorG errorL, signal_lost_RT sens_loc
&

errorG,errorL, okprec

Figure 5: the RT RT_sens_loc specification translated into Timed Argos
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RP _guarded _move(motor_ok,wheel started, ...,car_stopped)

(GExc_RP _guarded_mov

e, end RP_guarded_move)

\ Nominal _RP_guarded_move

RT sens_dir(wheel ok, wheel_mec_stop, wheel

RT sens_loc(motor_ok,wheel_started, speed_overload, motor_pb,signal_lost)

(GExc_RT _sens_loc, LExc_RT sens_loc,LC_speed_overload,signal_lost_RT _sens_loc)

_pb,signal_lost)

(GExc_RT _sens_dir, LExc_RT sens_dir,LC_wheel_mec_stop,signal_lost_RT sens_dir)

\ (

end_RT _brake

more_brake RT
|
L (GExc_RT_brake,end_RT _brake)

_brake(brake_ok,brake_pb,brake_done)

end_RT _brake |

signal_lost_RT sens_loc,

signal_lost_RT _sens_dir,

Exception_RP_guarded_move

GExc_RT_sensloc /| GExc_RP_guarded_move ,
GExc_RT sens_dir / GExc_RP_guarded_move,

GExc_RT _brake / GExc_RP_guarded_move

e
’LEnd_RP_guarded_move

GExc_RT cartloc / GExc_RP_guarded_move ,
GExc_RT _cart_dir / GExc_RP_guarded_move,

GExc_RT _brake / GExc_RP_guarded_move,
end_RP_Parking / end_RP_guarded_move

RP_Parking(motor_ok, ..

.,car_stopped)

(GExc_RT_cart loc, GExc_RT _cart_dir, GExc_RT _brake,end_RP_Parking)

signal_lost_RT _sens_loc,signal_lost_RT sens_dir,

GExc_RT _brake,end_RP_Parking, GExc_RT _cart loc,GExc_RT _cart_dir

GExc_RT sens_loc,GExc_RT _sens_dir

Figure 6: the RP RP _guarded_move specification translated into Timed Argos

INRIA




Integrating verification methods into a development environment for robot controllers 21

(for instance if the nominal execution is a parallel composition of two RTs such that
the sum of their execution time is lower than min_post).

The TCTL formula which expresses that a RP is time bounded is the following
one :
In State(Initial(RP)) = Vd<r In_State(End RP)

Initial (RP) gives the initial state of the Timed Argos program: either Wait_Prec_RP
or Nominal RP, according to the presence or absence of preconditions in the RP
specification. This formula must be interprated as follows: each execution sequence
issued from the initial state of the Timed Argos program is such that before T units
of time the “end state” has been reached.

The second example we take to illustrate our method, consists in proving that

the time-lag between the starting point of the wheel execution law and the motor one
is bounded. The specification is such that the wheel is already controlled when the
execution law of the motor is started, but the reverse is not true. We could check that
the time lag between the two starting points is always lower than 6 milli-seconds,
due to the waiting time limit associated with the two RT _sens_loc preconditions.
In order to express this property, we have to use the following state predicates :
In State(Active RT_sens_loc) and In_State(Active RT_sens_dir). The appro-
priate TCTL formula should express that when the state Active RT_sens_dir is
active, it is not possible to stay in it for T milli-seconds and then to reach the state
Active RT sens loc, with T > 6. This is done by using a TCTL operator :¢p FU ¢’
which is not given in our definition of TCTL formulas because of its complexity for
a first approach of this logic. This formula is satisfied if and only if one execution
exists such that ¢ is satisfied on each state reached by the sequence before reaching
a state ¢ which satisfied ¢’. Finally, the TCTL formula we are looking for is the
following one :

not (InState(Active RT_sens dir) =

In State(Active RT_sens_dir) 3U_s In State(Active RT_sens_loc))

4 Qualitative and quantitative analysis of the Timed-
Argos language and environment and the Kronos tool

4.1 Quantitative analysis of both Argos compiler and Kronos tool

The time performances we give in this section have been obtained on a middle-size
workstation.

The first quantitative results of the experiments we performed concern the Argos
compiler performances. We give in the following table the information about the

RR n"2540



22 Muriel Jourdan

timed-graph computed: the number of transitions, states, internal events, clocks
and inputs — each of theses quantities is involved in the compilation time of a
Timed-Argos program.

The main program is the Timed-Argos program associated with the main PR
we previously described. The program named Reduced is slightly different from the
main one. It has been obtained by associating with each set of preconditions one
waiting time limit, instead of one waiting time limit with each precondition. We will
see below that this slight difference of the specification has significant consequences
on the performance of both Argos compiler and Kronos tool.

Example | Trans | States | Internal Events | Clocks | Inputs | Compilation Time

Main 31012 105 40 15 30 Oh 20

Reduced | 12978 105 40 11 30 0h 10

The first remark we can make is that despite the high number of internal events
used in these programs, which are known to be responsible for bad time performance
in synchronous languages compiler (since communications are statically computed),
time performance of the Argos compiler is quite good. This is due to the adaptation
of an algorithm used in the Esterel compiler whose complexity is linear in terms of
the number of internal events and not exponential as the first algorithms used in
the argos compiler.

The second remark is that the Argos compiler is very sensitive to the number of
clocks used in the source program. Roughly, each time we introduce a new clock in
the source program, we increase twofold the number of transitions of the computed
timed graph (in fact, this is exactly the case if the new clock is active in each global
state of the source program).

In the next table, we focus on the time performance of the kronos tool while
checking that the application is time-bounded.

Example Clocks | Trans | States | Verification Time
Main 15 31012 | 105 >3h00
Main minimized 15 4004 105 1 h 50
Main optimized 9 31012 105 >3 h 00
Main optimized & minimized 9 4004 105 0h 50
Reduced 11 12978 | 105 0h10
Reduced minimized 11 705 44 0 h o1
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The first time we try to prove the TCTL formula on the Timed-Graph computed
by the Argos compiler from the main program was a failure: after three hours we
stop the tool without having any result. The Timed-Graph size was too high for the
Kronos tool capacities. This first experiment leads us to find a way to reduce the
size of the Timed-Graph computed by the Argos compiler before using Kronos. We
experiment two methods. The first one is based on the fact that the property we
check do not depend on the Timed-Graph labels. As a consequence, it is possible to
abstract them and then to minimize the Timed-Graph. This minimization leads to
good results since the behaviors we specify are such that a lot of transitions lead to
the same “end” state. Indeed, if we study the specification formalism precisely, a lot
of controller reactions consist in reaching the end state. This is the case for the RT
when a local or global exception is detected, when a delay expires, ...

In order to achieve this reduction phase we use a tool named Aldebaran, whose
time performances are very good. The minimization of the Timed-Graph associated
with the main program takes less than 3 minutes. The number of transition decrease
by about 85 %. The Kronos tool takes less than 2 hours to give the result of the
verification process.

The second method we experiment is not as general as the fisrt one. In some sens
it optimized the number of clocks used in the Timed-Graph computed by the Argos
Compiler. This one generates a new clock for each delay encountered in the source
program. This is not a good idea since some clocks could be re-used for two different
delays because the structure of the source program is such that these two delays
could not be active in the same global state. For instance, this is obviously the case
when the two delays are associated with two states of the same automaton. We apply
this optimization phase on the Timed-Graph associated with the main program, we
reduce the number of clocks from 15 to 9. It was not sufficient to make possible the
use of the Kronos tool on the resulting Timed Graph but after minimization the
time performances benefit greatly from this clock optimization.

We also make the same tests for the reduced program (with global waiting time
limits). We could see that the Kronos performances are quite good without doing
anything on the Timed-Graph obtained by the Argos compiler. The minimization
phase of the Timed Graph allows to have better results.

From the quantitative point of view, we can make the following remarks:

o Although the example we implemented is not very complex for the domain
area, the size of the Timed-Graph which represents the controller is impor-
tant: 150 states, 30000 transitions and 15 clocks.
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4.2

The Timed-Argos compiler performances are quite good for this Timed-Graph
size.

However, this size of Timed Graph is beyond the capacities of Kronos. We
had therefore to find methods allowing to reduce this size before checking a

property.

Qualitative analysis

The first outcomes of the experimentation leads us to express some qualitative is-

sues

The Timed Argos language is well-adapted to this application area, since the
translation of the Robot-Procedure formalism into a Timed Argos program is
quite simple.

The expressivity of the TCTL logic is sufficient for the properties we would
like to prove .

Nevertheless, it is not possible for an end user in robotics to directly express
his properties in TCTL. A more user-friendly formalism, which should take
the application specificities into account, has to be defined.

When a property is not satisfied the diagnosis given by Kronos does not al-
low to find easily (it is impossible for a non-expert user of Kronos) the error
in the program. Indeed, the diagnosis is expressed in terms of Timed-Graph
informations and not in terms of the source program. Given the fact that the
semantics of Argos is such that it is easy to rely the information model on the
source program, this drawback should be disappeared in the future.

5 Conclusion

We have shown in this paper how to use formal methods to check time dependent
properties inside an existing development environment for robot controllers. This
method is based on Timed Argos, a temporal extension of a synchronous language,
and on Kronos, a symbolic verification tool of the real time temporal logic TCTL. Its

principle consists in translating the specification formalisms used in the environment
in Timed Argos, translating the properties into TCTL formulas, and finally using
the Kronos tool to know whether the property is satisfied or not. We illustrate
our approach by a real example taken from the area of autonomous vehicles. This
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application has been implemented on a real time execution system, and experiments
on a “virtual train” of two vehicles have been made with success.

The first conclusion we can draw from our experiments is that the approach we
follow is well adapted in its principles to the needs of this application area. However
the performances of the used tools must be improved in order, on one hand, to handle
large-scale real application, and on the other hand, to be integrated within existing
development environments. Studying “on the fly” symbolic methods of verification
could be a way to fulfil these time requirements. Another possible solution to improve
the time performance of the verification process is to define a specific translation of
the RP formalism into Timed Graph, which takes in account some characteristics of
this formalism. For example, most of the delay expirations lead to the “end state”. If
we take this information in account while translating a RP into a Timed-Graph, it is
not necessary to detail the status of the other delays and the number of transitions
would be dramatically reduced.

We are currently testing a new algorithm which has been implemented in Kronos
to compute whether a global state is accessible or not. This algorithm is supposed to
have good time performance. It is possible to transform the Timed Argos program
associated with a RP by adding in parallel a “synchronous observer” as defined
in [HLR93], in such a way that the satisfaction of a property is equivalent to the
unreachability of a particular error state. The problem encountered when using this
method is the following: if a delay is present in the observer component (this is the
case if the property is time dependent) the number of transition number of the Timed
Graph associated with the program is increased twofold since this delay is always
active. Thus the compilation time of this Argos program is increased and the static
analysis of the Timed Graph performed by Kronos before evaluating the property
also takes more time and finally the results are less interesting than expected.

Moreover, an important work remains to be done in order to make easier both
property specification and diagnosis interpretation. It will be more interesting in
the future to express properties by using a formalism more intuitive than TCTL.
This one should take into account the application characteristics and should be
automatically translated into TCTL formulas. More precisely, our idea is to identify
a set of interesting generic properties that the programmer could easily use for
specific cases. For instance, a property which seems to be required most of the time
is that the robotic application is time-bounded. In the solution we propose, the user
has only to specify the time bound. An automatic translation into TCTL allows to
check whether the property is satisfied or not.
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We have already identified two other generic properties, with which we can check
that :

o the time-lag between the starting point of two sequential execution laws is

bounded,;

e the time-lag between the starting point of two overlapping execution laws is

bounded;

These two types of properties must be distinguished since their translation into
TCTL formulas are different.

Finally, these experiments also show us a new interesting research direction for
this kind of applications. The method we experiments here provides the user with a
way to verify if its program satisfies a time dependent constraint, but from the desi-
gner’s point of view nothing is done to help him to select the right delay values which
will necessarily satisfy this constraint. This complementary problem is indeed very
relevant for the application area. We are thus starting the evaluation of a candidate
method to address this problem It is based on another extension of Argos to hy-
brid systems and on a tool for synthesizing linear invariants named polka [HPR94].
The first tests we performed on a RT were successful. However, problems of time
performance should arise if the number of unvalued clock is too high.
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Appendix

RT _brake is defined by :

Name : RT_brake

Preconditions : brake ok [waiting time limit : 5 ms]
Postconditions : brake done [waiting time limit : 5s ]
Duration :undefined

Global exceptions : brake_pb

Local exceptions : none

Local changes : brake_mec_stop

In this specification:
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e brake_ ok indicates that the foot_brake initialization has been made without
detecting errors;

e brake_done occurs when the engine braking is able to satisfy the braking re-
quest without using the foot_brake.

brake_pb occurs when a mechanical problem is detected in the foot_brake;
e brake_mec_stop indicates that the foot_brake reaches a mechanical stop.

The RP RP _parking is defined by :
Name : RP_parking
Preconditions :none
Postconditions : carstopped [waiting time limit : 1 m]
Global exceptions : none
Local exceptions :none
Nominal execution
Parallel
start(RT _cart_loc)

start(RT _cart_dir)

I
start(RT _brake)

endParallel
Exception treatments :none

The RT named RT _cart_loc (resp. RT _cart_dir) controls the electric motor (resp.
the wheel ) of the car according to a well-suited trajectory, which has been already
computed. They are not detailed here.
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