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Abstract: Considering measure theory in which the semifield of positive real numbers is
replaced by an idempotent semiring leads to the notion of idempotent measure introduced
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we give conditions under which an idempotent measure has a density and show by many
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Densités des mesures idempotentes et grandes déviations

Résumé : Si l’on considère la théorie de la mesure dans laquelle le demi-corps des réels posi-
tifs est remplacé par un demi-anneau idempotent, on obtient la notion de mesure idempotente
introduite par Maslov. Les mesures ou intégrales idempotentes à densité correspondent alors
à des supremums de fonctions pour la relation d’ordre partiel induite par la structure idem-
potente. Nous donnons ici des conditions pour qu’une mesure idempotente ait une densité et
montrons par de nombreux exemples qu’elles sont souvent verifiées. Ces conditions portent
à la fois sur la structure de treillis du demi-anneau et sur l’algèbre de Boole sur laquelle la
mesure est définie. On trouve alors un critère pour qu’une famille de probabilités satisfasse
au principe des grandes déviations tel qu’il est défini par Varadhan.

Mots-clé : Demi-anneau idempotent, Dioı̈de, Algèbre max-plus, Treillis continu, Mesure
idempotente, Optimisation, Grandes déviations.



Densities of idempotent measures and large deviations 3

Introduction

A probability or a positive measure is in some loose sense a continuous morphism from a
Boolean � -algebra

���������
	��
of subsets of some set 
 , to the semifield

�������
�������
. If we re-

place
��� � ���������

by an idempotent semiring (or dioid) [4]
�����
�������

, we obtain the notion
of idempotent measure. This notion has been introduced by Maslov in [12] where idem-
potent integrals were also constructed. In particular, if we consider the semifield

���! #"�$���%�'&)(+*-,)�
.0/213�
���
, measure or probability theory (resp. Wiener processes, linear second

order elliptic equations) is replaced by optimization theory (resp. Bellman processes, parti-
cular Bellman equations) and some of the notions may be transferred from the first domain
to the second one. Illustrations and utilizations of this correspondence may be found in Ma-
slov [12], Maslov and Samborski [13], Del Moral, Thuillet, Rigal and Salut [7], Del Moral
[6], Quadrat [14], Bellalouna [5], Akian, Quadrat and Viot [2, 3], and Akian [1].

Whereas Maslov tried to treat idempotent measures theory in general idempotent (or or-
dered) semiring

�
and measure space 
 , some improvements may be done : firstly, at least

for the construction of measures,
�

does not need to be a metric space but only a dually
continuous lattice which is an order property. Secondly, the existence of a density has not
been clarified. This point has been neglected in most of the studies on this domain, except in
[9, 10], where Kolokoltsov and Maslov prove the existence of a “density” for linear forms,
which in some particular cases implies the existence of a density for idempotent measures.
The present paper is essentially devoted to this last problem. In particular, using the technics
of continuous lattices theory, general conditions under which an idempotent measure has a
density are found.

Let us consider the dioid
�4�5 6"

with zero (neutral element for the “addition”
.7/21

) 8 $(+*
and unit (neutral element for the “multiplication”

�
) 9 $;:

. Addition corresponds to
finite maximization, then “integration” corresponds to taking infinite supremum. The equi-
valent of the Lebesgue measure on

� 
 �#��� where 
 $<�
and

�
is the Borel sets algebra,

is the “uniform idempotent measure” = �?>@��$ 9 for any
>BA 
 . Then, the “integral” of a

continuous function C is = � C �D$FE
GIHKJIL2M C �ONP� . Now, the function Q �?>@��$BE
GIHKJILSR�T��ONP�
defines an idempotent measure with density

T
with respect to the “Lebesgue measure”. Un-

der conditions on
T

and C the integral of a measurable function C with respect to the measureQ , as defined by Maslov, is Q � C �+$VUW M C �XNP�3� Q �?YZNP��$[E
GIHIJ\LSM C �ONP����T��ONP� . Then, the in-
tegral of a function with respect to a measure with density has a simple expression. We may
then ask if there exists, as in the classical measure theory, (interesting) measures which have
no density. As a first answer, let us note that most natural measures without density in the
classical measure theory have a density in

�4�! #"
. Indeed, the upper semi-continuous (u.s.c.)

function ]�^ �ONP��$ 9 if
N_$a`b� ]�^ �XNP��$ 8 otherwise

RR n ˚ 2534



4 Marianne Akian

is the density of the “Dirac measure” at point
`

:]�^ � C ��$ E
GIHJIL2M C �ONP� � ]�^ �ONP�5$ C � `�� �
However, we may exhibit the following measure without density :

Q �?>@�+$ ess supJILSM T��ONP� �

where
T

is a continuousfunction and the essential supremum is taken with respect to the (clas-
sical) Lebesgue measure. This measure satisfies the conditions of Definition 21 below on� 
 �#�4� . Q has no density since Q � & N+,S��$ 8 $ (+*

for any
N � 
 . However, the restriction

of Q to the algebra of open sets has
T

as density. Then
UW M C �ONP� � Q � Y2NP�+$ E
GIH JIL2M C �XNP� �T��ONP�

for any lower semi-continuous (l.s.c.) function C [12]. The non existence of a density
to Q on the entire algebra of Borel sets is in general not relevant and every measure seems
to have a density in a sufficiently large algebra of subsets.

From the previous examples, we see that the order relation � plays an important role
in the semiring

� �! #"
. More generally, if

��� �
� �
���
is an idempotent semiring, the idem-

potent law
�

defines a partial order relation � such that
��� � � � is a sup-semilattice. This

implies that properties of measures and integrals are related with lattice properties of
�

that
we will use throughout this paper. We thus begin by recalling and extending in section 1
definitions, properties of continuous lattices. We follow the presentation of Gierz, Hoffman,
Keimel, Lawson, Mislove and Scott [11], up to subsidiary extensions. Then idempotent mea-
sures are introduced in section 2. In section 3, we prove that any idempotent measure on a
suitable algebra

�
of subsets of a space 
 has necessarily a density. This includes Polish

spaces with the algebra
�

of their open sets. For the proof, we construct the maximal exten-
sion of the idempotent measure to the algebra of all subsets of 
 and prove that the value
of this extension on singletons is a density of the initial measure. In section 4, we recall in a
general context the theorem of Maslov which prove the uniqueness of idempotent integrals
of “semi-measurable” functions. This theorem is a consequence of the construction of the
idempotent integral of Maslov, that we generalize to semirings

�
which are continuous lat-

tices. Moreover, in order to relate our results on density of idempotent measures with the
existing ones on density of idempotent linear forms, we prove a “probabilistic” version of
Riesz representation theorem.

Our approach (the restriction of idempotent measures to open sets) was initially motiva-
ted by the large deviation principle of Varadhan [15]. In this theory, one essentially tries to
obtain asymptotics of probabilities families ��� of the form : Q �?>@�7$	��
 . �
����� ����� ��� � >�� ,
where Q � >���$;(�
���� JILSR�� �XNP�

with
�

a l.s.c. function. Thus Q is a
�4�! #"

-idempotent mea-
sure with density

( �
. Generalizing this concept of large deviation by using general idem-

INRIA



Densities of idempotent measures and large deviations 5

potent measures, we give (in section 5) necessary and sufficient conditions for the large de-
viation principle to be satisfied and prove that when it exists,

�
may be calculated by using

open sets only.

1 Continuous lattices

In this section, we give a short presentation of definitions, results and examples concerning
continuous lattices. Apart some minor extensions (on locally complete and locally conti-
nuous lattices), these results may be found in [11].

Let us first recall classical terminology. � denotes a set endowed with a partial order � .

Definition 1
�
�
� � � is a semilattice (resp. a sup-semilattice, resp. a lattice) if every non-

empty finite set admits a greatest lower bound or infimum (resp. a least upper bound or su-
premum, resp. an infimum and a supremum). It is said a complete lattice if every set (even
nonempty) admits an infimum (or equivalently if every set admits a supremum). � denotes
the top element or supremum of � and � the bottom element or infimum of � .

In previous definition, we use the conventionthat the greatest lower bound (resp. the least
upper bound) of the emptyset is the top element (resp. the bottom element) of the lattice � .
The least upper bound or supremum is denoted by

E
GIH
or � and the greatest lower bound or

infimum by

����

or � .
In the following sections we apply lattices formalism to dioids as follows.

Example 2 Let
�����
�7�

be a commutative idempotent monoid (that is
�

is associative com-
mutative and idempotent : �

�
�
$
� for any � � � ) with 8 as neutral element. We denote by

� the partial order relation associated with the idempotent
�

operation : � ���	�
� � � $ � .
Then �

�
� is the least upper bound of � and � and ��� 8 for any � � � . Thus

��� � � � is
sup-semilattice with bottom element 8 . Conversely, a partial order � such that

� � � � � is a
sup-semilattice with minimal element 8 defines an idempotent commutative, associative law�

with neutral element 8 on
�

.

In the sequel, we do not impose the completeness to the monoid dioid
�����
� �
�@�

, but
only the following property.

Definition 3 The lattice
�
�
� � � is a locally complete if it satisfies one of the following equi-

valent conditions :

1. every nonempty set admits an infimum;

RR n ˚ 2534



6 Marianne Akian

2. every upper bounded set admits a supremum;

3. there exists a complete lattice denoted � with top element � , such that � is a sublattice
of � , �

$
�
�'&
�
,

and
E
GIH
�
$
� .

The following definition concerns the continuity of complete lattices.

Definition 4 � � A
� is a directed set if and only if any finite subset of

�
has an upper

bound in
�

.

� Let ����� be the opposite order of � : � ����� �	�
����� . If
�
�
� � � is a lattice, then �����

denotes the lattice
�
�
� � ��� � .

� � is a filtered set of � iff
�

is a directed set of �	��� .
� The “way below” 
 relation is defined by : ��
 � if and only if for all directed set

�
of � , such that ��� E
GIH � , there exists � � � such that � �
� .

� The complete lattice � is said continuous iff

� $[E
GIH &�� � � ��� 
�� , for any � � � � (1)

� � is said dually continuous iff �	��� is continuous.

� � is a basis of the continuous lattice � iff
�

is a sup-subsemilattice of � containing �
and such that

� $[E
GIH &�� � � ��� 
�� , for any � � � � (2)

Remark 5 In the definition of a basis we impose
�

to be a sup-subsemilattice of � containing
� , which is equivalent to the condition

� � �
�@�
is a submonoid of

�
�
�
�@�

if
�

is defined as in
Example 2.

Remark 6 Suppose that � is complete, ��� � is a directed set and that � is the supremum
of ��� � (this means that ��� � is locally complete and �

$
��� � ). Then, ���
 � and

��
 � in � implies � � ��� � . Moreover, if
�

is a basis of � , then
� � � is also a basis of

� : it is a sup-subsemilattice and � $ E
GIH & � � � � � � ��
�� , , for any � � � .

Example 7 In a totally ordered lattice � , �
� � or �
$
� implies ��
 � (by definition

�����	� �
� ��� and � �$ � � ). If �

$ �
with the order � , then ��
 � is equivalent to ( �"!��

or �
$ (+*

), and � is continuous(and dually continuous). If �
$ # $$#+��&)(+*[����*-,

, then

INRIA



Densities of idempotent measures and large deviations 7

��
 � is equivalent to ( � � � and � �$ ��*
) and � is continuous (and dually continuous).

Example 8 If � is a complete lattice, then � � with the componentwise order relation is a
complete lattice and �

$ �
��� � � � � � � � � 
 � $ �

��� � � � � � � � � in � � iff ��� 
 ��� for
� $
	�� � � ��� .

Therefore, � continuous implies � � continuous. In particular
�#� � � � � � � is a continuous and

dually continuous lattice.
Now, by eliminating the top element of

�
, we obtain �

$ � �� "�$ �_� &)(+*-,
which

is a locally complete lattice such that � is continuous and dually continuous. We can also
prove that � locally complete implies � � locally complete. However, � � $

 (+*[����*_� � �
&S��* def$F�?��*[� � � � �
��*_��, endowed with the term to term order relation � is a dually conti-
nuous but not a continuous lattice. Indeed, ��
 � iff �

$
�
$ � (+*[� � � � � (+*_� (because

for instance
��* $[E
GIH!�

�
�b&)(+*-, ���������b& (+*-,S�

). For the opposite order, however, all
behaves as in

� ��� �
.

The previous example shows that if we consider different complete sublattices of the
same complete lattice � , the way-below relation defined in these sublattices may be different
(
���D�5 6"
� �

is a sublattice of
� �+� �

). This comes from the fact that these sublattices are not
necessarily stable by infinite

E
GIH
of � . However, if we generalize the way below relation to

locally complete lattices in the following manner, this type of boundary effect disappears.

Definition 9 Let � be a locally complete lattice. The “way below” 
 relation is defined in
� by : � 
 � if and only if for all upper bounded directed sets

�
of � , such that ��� E
GIH � ,

there exists � � � such that � �
� .
Then ��
 � in � is equivalent to ��
 � in any complete sublattice of � containing �

and � and of the form


�
�
T��

with
T � � (or stable by infinite

E�GIH
of � ). Then, definitions of

continuous lattices and basis may be used without change. Locally complete lattices which
are continuous will be called locally continuous. Under this definition,

�����! #"#� �
becomes

a locally continuous lattice. Moreover, a locally complete lattice � is continuous iff every
complete sublattice of � of the form



�
��T��

(or stable by infinite
E�GIH

of � ) is continuous.
Let us note that if � is a locally complete lattice, we may extend the definition of the

way-below relation to � by taking � 
 � in � iff ( � 
 � in � or � � � and �
$
� ).

This relation is not equal to those defined directly in the complete lattice � . For instance, if
�
$ ������ "
� �

, this way below relation is the restriction of those of
� ��� �

. If � is continuous
and if

�
is a basis of � then (1) and (2) are still valid for � $ � .

Example 10 Another usual example of complete lattice is the set � ��� � of subsets of a set�
with the

A
order relation. The set of open sets � ��� � (resp. the set of closed sets � ��� � )

RR n ˚ 2534



8 Marianne Akian

of a topological space
�

(resp. the set of closed convex sets Con
��� �

of a topological vector
space

�
) is also a complete lattice with bottom element � and top element

�
, even if it is

not a sublattice of � ��� � .
In � ��� � , > 
 � iff

> $ � , thus � ��� � and Con
��� �

are not continuous and � � � � is
not dually continuous. In � � � � , > 
 � if

>BA � and
>

compact, which is often noted> A A � . If
�

is locally compact, the two conditions are equivalent and � � � � is continuous
and � ��� � dually continuous. Now, if � is a compact convex subset of a locally convex to-
pological vector space

�
, then Con

� � � is a dually continuous lattice.

The following characterization is the main ingredient of the proofs of section 3 on ex-
tensions and densities of idempotent measures.

Theorem 11 ([11, th. 2.3]) For a complete lattice � , the following conditions are equiva-
lent :

1. � is continuous.

2. Let
& � ���I� ��� ��� , be a family of directed sets of � . Let � be the set of all functions

C
	 �
� � def$ �
� L�� � ���K�
with C ���I� � � ���K� for all

� ��� . Then the following identity
holds : 
����� L�� E
GIH � ���I�!$ 
����� L�� E
GIH

� L���� ��� � $<E
GIH� L�� 
����� L�� C ���K� � (3)

3. Let
& � ���I� ��� ��� , be any family of subsets of � . Let � be the set of all functions

C
	 �
� fin
�

, the set of finite subsets of
� def$ � � L�� � ���I�

with C ���I� � fin
� ���K�

for all� ���
. Then the following identity holds :


 ���� L�� E
GIH � ���I�!$BE
GIH� L�� 
����� L�� E�GIH C ���I� � (4)

The previous theorem is still valid if � is only a locally complete lattice and if the sets� ���I�
considered in points 2 and 3 are supposed upper bounded (that is

E
GIH � ���I� � � ).
The classical definition of lower semi-continuous (l.s.c.) functions with values in

�
may

be generalized to functions with values in any lattice � .

Definition 12 A function C
	�
 � � is said l.s.c. iff

C � � � � ��
 . 
���� � � C ��� � def$ E
GIH! L#"%$ !%& � 
 ��� L ! C ���)� �

where ' is the set of open sets of the topological space 
 .

INRIA



Densities of idempotent measures and large deviations 9

The Scott topology defined below allows to characterize (in a locally continuous lattice)
the semi-continuity in terms of topology.

Definition 13 Let � be a (locally) complete lattice, we say that �
A
� is Scott open (open

for the Scott topology) if it satisfies the two following conditions :

1. �
$��

� def$ & � � � ����� � �
��� �
� , .

2.
E
GIH � � � implies

� 	 � �$ � for all directed sets
� A

� .

Proposition 14 Let � be a (locally) continuous lattice.
The Scott topology on � is the weakest topology such that the sets

& � � � � � 
 � , are
open.

A function C
	�
 � � is l.s.c. iff it is continuous for the Scott topology of � .

The Scott topology is clearly not separated (Hausdorff). If we want to define the conti-
nuity of a function with values in � in terms of topology, we have to consider the common
refinement of the two Scott topologies defined for � and � ��� partial orders on � . This topo-
logy will be called “bi-Scott” and works only on bi-continuous lattices (lattices which are
both continuous and dually continuous). The Lawson topology defined below is stronger
than the Scott and weaker than the bi-Scott topology and works well on lattices � which
are only continuous.

Definition 15 The Lawson topology denoted � � is defined as the common refinement of the
Scott topology and the lower topology, that is the topology generated by sets



�
�
�
���!$ & � �

�
�
� ��
� , .

Proposition 16 For a continuous lattice � , � � is a compact Hausdorff space.
Moreover, � has a countable basis iff � � is a compact metric space.

Remark 17 If � is a bi-continuous lattice, then the bi-Scott topology is equal to the bi-
Lawson topology that is the common refinement of the two Lawson topologies defined for
� and ����� partial orders on � . Then, if both � and �	��� have a countable basis, the bi-Scott
topology is metrizable (but not necessarily compact).

2 Idempotent measures

Let
�

be a Boolean algebra or a Boolean � -algebra of subsets of a set 
 . A probability � on� 
 �#�4� is such that

RR n ˚ 2534



10 Marianne Akian

i) � �?>_� � ��$ � � >�� � � � � � if
> 	 � $ � and � � � ��$ :

.

In addition, � � >�	 � �P$ � �?>�� � � � � � if
>

and � are independent. Thus a probability may
be compared to a morphism from the “complemented” (in the sense that

> � � implies that> � � � ) semiring
���������
	��

to the symetrizable semifield
��� � �
��� ���

(such that � � 
 � $	
). Since the field structure of

�
allows to write � � > � �7$ 	D( � �?>@� , the continuity of a

probability can be equivalently defined by one of the two properties :

ii) � � > � ���
� � ��� �

�?>@�
if
> � �

� � ���
>

with
> � and

>
in
�

,

iii) � �?> � ���
� � ��� �

�?>��
if
> � �

� � ���
>

with
> � and

>
in
�

.

If we replace
��� � ���������

by an idempotent semiring
�����
� �
�@�

, we loose “opposites”
for the additive law

�
and as a consequence : a) the entire structure of Boolean algebra is

no longer needed in order to get a “morphism”, b) properties ii) and iii) are not equivalent,
moreover iii) is rarely satisfied and is not preserved after extension of a probability � to a
larger algebra (see Examples 18 and 20 below).

Example 18 Let us consider
�

the set of Borel sets of 
 $B�
and let consider � �?>@�7$E
GIH\JIL2R4T��ONP�

with
T

an upper semi continuous (u.s.c.) function from
�

to
� �5 6"

. Then, �
satisfies property i) where addition is replaced by the

.7/Z1
operator and property ii). Indeed,

we will see in section 3 that the restriction to open sets of any idempotent
���! #"

-probability
on
� 
 �6�4� has this form. If � satisfies also property iii) on

�
, then � �#� � ( 	�� � � � � 	�� � � �&

�
,S�

and � � 
 ( � � � � � � decrease towards � � � ��$ 8 $ (+*
. This implies that the set

& � �� �+T�� � �	� � , is finite for all � � � and thus
T

has countable support (as atomic classical
probabilities).

Definition 19 A set
�

of subsets of a given set 
 is called a Boolean semi-algebra if it is a
sublattice of

� � � 
 � � A+� , that is if it contains 
 and � and is stable by the finite union and
intersection operations. It is called a semi- � -algebra if in addition it is stable by countable
union operation.

Example 20 Let us consider the compact metric space 
 $

 :\��	��
. The set

�
of closed sets

is a Boolean semi-algebra. Now, if � is as in Example 18, then � satisfies condition iii) on�
. However, the semi- � -algebra generated by

�
contains open sets for which property iii)

is false in general.

Let us consider
� � �����
�@�

an idempotent semiring with 8 and 9 as neutral elements for
the

�
and

�
operations respectively. We denote by � the partial order relation associated

INRIA



Densities of idempotent measures and large deviations 11

with the idempotent
�

operation (see Example 2). We denote also by “
E
GIH

” or
�

(resp. by
“

����

” or � ) the supremum (resp. the infimum) operation. In all this paper, we suppose that�
is locally complete. Note that, if the top element � of

�
does not belong to

�
, the law�

may be extended to
�

so that
� ���
�D�
���

becomes a semiring ( �
�
�
$
�
�
�
$
� if

� �$ 8 and �
� 8 $ 8 � � $ 8 ). Examples of such idempotent semirings are

� �� "b$���%�'&)(+*-,)�
.0/213�
���
,
��� � ��.7/21I�����

,
�������P$ ��� �'&S��*-,)��.�
�� �
���

, (with
��*

, resp.
��*

,
resp.

(+*
, as upper bounds), and also

�D�! #" �
,
� ����� �

,. . .

Definition 21 An idempotent
�

-measure on a Boolean semi-algebra
�

of subsets of 
 is a
mapping Q from

�
to
�

such that :

1. Q � � �+$ 8 ,

2. Q �?>[� � � $ Q �?>@�3� Q � � � for any
> � � in

�
,

3. Q �?> � ���
� � ��� Q

�?>@�
if
> � �

� � ���
>

,
> � � ��� � ��� and

> � � ( � -additivity).

An idempotent
�

-measure Q is said finite if Q � 
 � � � and is called an idempotent proba-
bility if Q � 
 �+$ 9 .
Remark 22 It follows immediately from the definition, that any idempotent measure Q is
monotone : Q �?>@� � Q � � � if

> A � . Then, if Q is a probability, it takes its values in the
subset


 8 � 9 � $ & � � � � 8 �
� �[9 ,�$ & � � ��� � �[9 , of
�

.

By the idempotency, we have

Proposition 23 A mapping Q from
�

to
�

is an idempotent
�

-measure on
�

iff

Q �?� � L
	 > � ��$ �
� L
	 Q

� > � �

for any finite or countable family
&S> � � � � � , of elements of

�
.

Remark 24 Note that the second law
�

or
�

is only necessary in the construction of integrals
or the definition of independency but not in the construction of measures. In particular the
results of the following section depend only on the first law, thus on the lattice structure of�

.

An idempotent measure with values in
�D�� "

(resp.
�������

) will be called a gain (resp.
cost) measure. It is finite if and only if Q � 
 � ! ��*

(resp. Q � 
 ��� (+*
) and it is a gain

(resp. cost) probability if Q � 
 � $ :
. Note that the order relation associated to the “

.�
��
”
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12 Marianne Akian

law is the opposite of the classical order � of
�

. Therefore, even if we are more interested
with cost measures, that is with minimization problems, it is easier to consider gain measures
since monotony properties and extensions constructions coincide with those of the classical
Probability theory.

An idempotent
�

-probability space (also called a decision space)
� 
 �#� � Q � is composed

of a nonempty set 
 , a semi- � -algebra
�

of subsets of 
 and an idempotent
�

-probabilityQ .
Let us introduce the notion of density of an idempotent

�
-measure. Consider a functionT

from 
 into
�

and define for any subset
>

of 
 ,

Q �?>�� $[E
GIH &2T��ONP� � N � >�, � (5)

It is easy to check that Q is an idempotent
�

-measure on � � 
 � .
Definition 25 An idempotent measure Q is said to have a density if (5) holds for some func-
tion

T
. In this case, any function

T
satisfying (5) is called a density of Q .

3 Idempotent measures extensions and densities

In [12] Maslov shows that there might be several extensions of the same idempotent mea-
sure from a Boolean algebra to the least � -algebra containing it. For instance, the “Lebesgue
measure” on

� 
 �#��� with values in
�4�5 6"

, where 
 $ � and
�

is the algebra of finite unions
of any intervals with rational bounds :

Q � >��+$ :
if
> �$ � � Q � � �+$ (+*

may be extended to the Borel sets � -algebra as follows :

Q � >��+$ E
GIH� LSR T�� � �

with 1)
T�� � ��� :

(which leads to the maximal extension) or 2)
T�� � ��$ :

when � is rational
and

T�� � ��$ (+*
(or any number less that

:
) when � is irrational, and clearly densities 1) and

2) do not lead to the same value of Q . Indeed nonempty elements of
�

necessarily contain
rationals.

However, the maximal extension always exists and plays an important role (see sec-
tion 4). Here we recall the definition of the maximal extension which only involves the Boo-
lean semi-algebra structure of the initial set

�
of subsets of 
 . Although this construction

seems natural (it is equivalent to those of classical measure theory), it implicitly uses the

INRIA



Densities of idempotent measures and large deviations 13

dual continuity of the complete lattice
�

or at least of the sublattice

 8 � Q � 
 � � . This same

property will still be necessary to prove that Q has a density.
Let us consider Q an idempotent measure on a Boolean semi-algebra

�
of subsets of 
 .

We denote by
�

the set of countable unions of elements of
�

,
�

is then the least semi- � -
algebra containing

�
. We define on

�
the extension Q � of Q :

Q � ���4�!$[E
GIH� Q �?> � � if
� $��

� L��
> � with

> � � � �
This definition is well posed, as by the � -additivity of Q and the stability of

�
by finite

intersections and unions, the supremum is independent of the sets
> � and Q � is the unique

extension of Q to
�

.
Now, for any subset

>
of 
 we define :

Q �3�?>@��$ 
����� L	� $ ��
 R Q � ����� �
Proposition 26 ([12]) Suppose that

� 
 8 � Q � 
 � � � � � is a dually continuous lattice. Then Q �

is the maximal extension of Q to the set of all subsets of 
 .

Proof. We recall the proof in order to point out the use of dual continuity. Let us first prove
that Q �

is maximal. For any semi- � -algebra � containing
�

and any extension Q�
 of Q to �
we have ��� � and Q 
 $ Q � on

�
. Then, for any � � � and

� � � such that
� � � we

have Q 
 � � � �[Q 
 ���4��$ Q � ���4� , thus Q 
 � � � �[Q � � � � .
In order to prove that Q �

is an idempotent measure on � � 
 � we only have to prove that
for any finite or countable family

&S> � � � � � ,
of subsets of 
 , Q � �?� � > � ��$ E
GIH � Q � �?> � � .

The monotony of Q �

is evident from the definition. Then, Q � �?� � > � � � E
GIH � Q � � > � � . For
the other inequality, we have

E
GIH
� Q �I�?> � � $ E�GIH

�

 ���� L	� $ ��
 R�� Q � �����$ 
����� � L	� $ � � 
 R���� � L
	 E�GIH� Q � ��� � � (6)

$ 
����� � L	� $ � � 
 R���� � L
	 Q � � � � � � �
� Q � � � � > � � �

which leads to the requested equality. In (6), we have used an inversion formula of the
E
GIH

and

����

operations of the same type than (3) but for the opposite order � (
& Q � ���4� ��� �

� ��� � > � , is a filtered set), which holds in a dually continuous lattice only. As Q takes its
values in


 8 � Q � 
 � � , the dual continuity of this sublattice is only needed.
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14 Marianne Akian

Let us note that as 
 � � , Q �

is necessarily a probability if Q is so.

Example 27 If Q is the “Lebesgue measure” on
�

: Q �?>@��$ 9 for
> �$ � and Q � � ��$ 8 ,

then Q �

is the “Lebesgue measure” on � � 
 � : Q � � >���$ 9 for any non empty set
>

. The
function

T��ONP� � 9 is the density of Q �

and the maximal density of Q .

Example 28 If ' is the set of open sets of a topological space
�

, the lattice
� ' � A+� is not

dually continuous (see section 1). Let us consider the dioid
� $ � ' �����
	�� with neutral ele-

ments 8 $ � and 9 $ �
and take 
 $ �

,
� $ ' and Q �?>@�%$ >

for any
> � �

.
Clearly, Q is an idempotent

�
-probability,

� $ ' and thus Q �_$ Q . Now, for any subset
>

of 
 , Q � �?>@��$��>
, the interior of

>
. Then, Q �

is not an idempotent measure and is even not
additive.

Example 29 Consider now the dioid
� $ � � �
���
	�� , where � is the set of closed sets of

a compact subspace � of
�

and Q �?>@� $ >_	 � for all
> � � $ ' . Clearly, Q is an

idempotent
�

-probability (note that if
�

is a subset of � , then
E
GIH � $ ��� L����

) and as
� � � A�

is dually continuous, then Proposition 26 shows that Q �

is an idempotent measure. Indeed,

we find by calculation Q � �?>@��$ >_	 � . Moreover, the function
T � � � � def$ Q � � & � ,S�!$ & � ,I	� is the density of Q �

.

As Q �

is defined on all subsets of 
 , we find a good candidate to the density function ofQ :
T � �ONP��$ Q � � & N+,S�

. Let us denote

Q �?>@��$[E
GIH &2T � �ONP� � N � >�, �
Since Q �

is monotone, we have Q � >�� �[Q � �?>@�
for any subset

>
of 
 .

Proposition 30 If Q has a density on
�

, then
T �

is the maximal density of Q on
�

.

Proof. Let
T

be a density of Q . We have
T � �ONP��$ 
���� � L � $ �
& J Q � � �4��$ 
���� R�L
	 $ R & J Q � >�� �T��ONP�

. Thus Q �?>@� � Q � >�� �[Q � �?>���$ Q �?>@� for any
>

in
�

.

Example 31 Consider the dioid and idempotent measure of Example 28. Then Proposi-
tion 30 shows that Q has no density since

T � � � ��$ � $ 8 would have been its maximal
density and Q �� 8 .

Proposition 30 implies that if Q has a density
T
, then Q � has

T �

or
T

as density on
�

.
However, in order to prove that

T �

is a density of Q �

, we need the stability of
�

by any union

INRIA



Densities of idempotent measures and large deviations 15

operation (even not countable). This is the case if
�

is the set of open sets of a topological
space 
 . In this case, we have

Q �?>@� $ E
GIHJIL2R T �2�ONP�
$ E
GIHJIL2R 
 ���� L � $ �
& J Q � �����$ 
����� ��� L � � $ ��� & J �2JILSR � E
GIHJIL2R Q � ��� J � �

Note that this last equality is of the same type as (3) for the opposite order � ��� and thus re-
quires the dual continuity of the lattice


 8 � Q � 
 � � . Now, if Q � has a density and
� JIL2R � J �

�
, we deduce that

E
GIHKJILSR Q � ��� J ��$ Q � � � JIL2R � J � . Then, as
� J\LSR � J � > , we obtainQ � � � J\LSR � J � �;Q � �?>@�

and Q �?>�� � Q � �?>@�
. As the other inequality is always true, Q �

has
T �

as density.
In conclusion :

Proposition 32 If

 8 � Q � 
 � � is a dually continuous lattice, 
 is a topological space,

�
is the

set of open sets of 
 and Q has a density on
�

, then Q �

has
T �

as density on � � 
 � .
Remark 33 If Q is a gain (resp. cost) measure with density

T
on the set

�
of open sets

of a topological space 
 , then
T �

is the upper semi-continuous (u.s.c.) (resp. lower semi-
continuous (l.s.c.)) envelope of

T
. Indeed,

T � �ONP� $ 
���� R & J $ R�L
	 E
GIH  L2R4T���� � , which is the
definition of the u.s.c. (or l.s.c., if � corresponds to

�
) envelope.

We prove now, that under some conditions on the Boolean semi-algebra
�

, any idem-
potent measure has a density.

Theorem 34 Consider a Boolean semi-algebra
�

of subsets of 
 such that the following
property holds :

for any
> � �

and any cover
> A � � L 	 > � by elements of

�
, there exists a

countable subcover of
>

:
> A � � L�� > � ( � A �

and � countable).

Then, for any idempotent
�

-measure Q on
�

such that

 8 � Q � 
 � � is a dually continuous

lattice,
T �

is a density of Q in
�

(and a density of Q � in
�

).

Proof. As
�

is the set of countable unions of elements of
�

,
�

satisfies the same property as�
. Now we prove that

T �

is a density of Q � in
�

.
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16 Marianne Akian

We still have Q �����4��$ Q � � �4� � Q ����� for any
� � � . On the other hand, using again

property (3), we have for any
> � �

Q �?>���$ 
 ���� ��� L � � $ ��� & J �SJIL2R � E
GIHJIL2R Q � ��� J � �
We can extract from the cover

> A � JILSR � J
, with

>
and

� J
in
�

, a countable subco-
ver :

> A � � L 	 � J � . As
�

is countable,
� � L 	 � J	� � �

and Q ���?>�� �FQ ��� � � L 	 � J � � $E
GIH � L 	 Q � ��� J	� � � E
GIH JIL2R Q � ��� J � . Then Q � >�� �[Q � �?>�� for any
>

in
�

.

Corollary 35 Consider a topological space 
 such that the set of open sets
�

satisfies the
conditions of Theorem 34. Then any idempotent

�
-measure Q on

�
, such that


 8 � Q � 
 � � is
a dually continuous lattice, has

T �

as density on
�

, and Q �

has
T �

as density on � � 
 � .
Corollary 36 Consider a set 
 and a Boolean semi-algebra

�
of 
 . Suppose that there

exists a countable subset � of
�

, such that one of the following equivalent conditions holds :

� for any
N � > � �

, there exists � � � such that
N � � A >

( � is a “basis of
neighborhoods”),

� any set
> � � is an union of elements of � :

> $ � � L
	 � � .
Then,

�
is stable by any union operation and thus defines a topology on 
 with a countable

basis of neighborhoods. Moreover,
�

satisfies the assumptions of Theorem 34 and thus the
conclusion of Corollary 35 holds.

Example 37 A separable (that is with a dense countable subset) metrizable space, and then
a Polish space (complete separable and metrizable space) has a countable basis of neigh-
borhoods. Thus, the conclusion of Corollary 35 holds. This includes any separable Banach
space � endowed with the strong topology, thus almost all classical functional spaces : ��� � 
 �
for

	 ��� ! ��* and 
 an open set of
� �

, ���
$
� � 
 � ....

Example 38 Any Banach space � such that its dual space � 
 is separable has a countable
basis of neighborhoods for the weak topology, and any dual space � 
 of a separable Banach
space � has a countable basis of neighborhoods for the weak-* topology. Thus, the result
holds for � � � 
 � endowed with the weak topology if

	 !�� ! ��*
, for �

� � 
 � endowed
with the weak- � topology....

Example 39 If 
 is a topological space such that 
 $ � � L��	� � with
� � compact metri-

zable, then the set of open sets
�

satisfies the assumptions of Theorem 34 (any open set is the
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Densities of idempotent measures and large deviations 17

countable union of compact sets) and thus the conclusion of Corollary 35 holds. Example 38
may also be treated along these lines.

Example 40 We may found non-separable complete metric spaces in which the conclusion
of Theorem 34 is false. Let us consider 
 a non-separable normed vector space (such as
�
� �#�?:I��	 �#�

), and denote by � �ON����2� the open ball of center
N

and radius
�
. For any idem-

potent semiring
�

, we define on the set of open sets of 
 , the following idempotent
�

-mea-
sure :

Q � >�� $ 8 if
� �XN � � � 


�
such that

> A �
� L � �

�ON � ��	 � �
$ 9 otherwise.

By the definition, we obtain
T � �ONP� � Q � � �XN���	 �#� $ 8 , thus

T � �ONP�7$ 8 for any
N � 
 .

Nevertheless, Q � 
 �+$ 9 which implies that Q has no density (otherwise
T �

would have been
a density). Indeed, if 
 A � � � �ON � ��	 � , then, by linearity, we have for any positive integer`

, 
 A � � � �
J
�^ � �^ � , which implies that the countable set

& J �^ � ` ��� � � � � � , is
dense in 
 . This leads to a contradiction with the non-separability of 
 .

As the property imposed to the sets of
�

in Theorem 34 is satisfied by any countable
union of compact sets if

�
is composed of open sets, we have the following corollary of

Theorem 34.

Corollary 41 Let 
 be a topological space such that 
 is a countable union of compact
sets and

�
be the set of

���
open sets, defined as the open sets which are countable unions

of closed sets. Then,
�

is a semi- � -algebra and
�

satisfies the conditions of Theorem 34.
Then any idempotent

�
-measure such that


 8 � Q � 
 � � is a dually continuous lattice has
T �

as
density on

�
.

However,
�

is in general not stable by any infinite union operation, thus Q �

may not
have

T �

as density, as shown in the following example. Let us note that
�

plays the same
role as the Baire sets � -algebra in classical probability theory : this is the semi- � -algebra
making continuous functions semi-measurable (see section 4).

Example 42 Let 
 $ 
 :I��	 ����$ � ���7� 
 :\� 	��X�
be endowed with the product (simple conver-

gence) topology. Topological space 
 is compact but not metrizable. Thus even if in general
an idempotent measure has a density on the

� �
open sets semi- � -algebra

�
, it may not have

a density on the entire open sets � -algebra
� 
 and also its extension to all sets may not have a
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density. As an example, let us consider on
�

or
� 
 , the following idempotent

�
-probability :

Q �?>@� $ 8 if
� � � � � � �

�
such that

> A & C � 
 � 
����� C � � � � ! 	 ��� ,)�
$ 9 otherwise.

Then by calculation we find for both
�

and
� 
 semi- � -algebras the same value of

T �

on 
 :T � � C � $ 8 if
� � � � � such that C � � � � ! 	����

or equivalently

����� L � C � � � ! 	����I�

$ 9 otherwise.

Indeed
& C � 
 � C � � � ! 	 ��� ,

is a
���

open set for any � � � .
Consider now �

$ & C � 
 � 
���� � L � C � � � ! 	 ��� , $ � � L � & C � 
 � C � � � ! 	���� ,
. We

have
T � � C ��$ 8 for any C � � . � is an open set which is not a countable union of closed sets

and also which is not included in a countable union of sets of the form
& C � 
 � C � � � ! 	 ��� ,

.
Then, if we use the semi- � -algebra of open sets

� 
 , � � � 
 but Q � � �+$ 9��$[E�GIH � L ! T � � C � ,
then Q has no density in

� 
 . If this time we use the semi- � -algebra of
� �

open sets
�

, Q
has necessarily

T �

as density on
�

, but Q �

has no density on � � 
 � or even on
� 
 : Q � � � ��$9��$ E
GIH � L ! T � � C � .

4 Idempotent integration

In [12] Maslov gives a construction of idempotent integrals over semirings
�

that are me-
tric spaces with particular properties of the distance. In this context, he proves the following
theorem concerning the integration of semi-measurable functions.

Theorem 43 ([12]) Consider Q 
 an extension of a finite idempotent measure Q to the least� -algebra containing
�

. The idempotent integrals with respect to Q 
 and Q �

of any (boun-
ded) lower semi-measurable function taking its values in a separable subspace of

�
are

equal.

This result, which is a direct consequence of the construction of the integral, gives a
justification to consider only idempotent measures with densities. We generalize here the
construction of the idempotent integral to locally continuous lattices and then prove the Riesz
representation theorem.

Theorem 43 was set when
�

is a Boolean algebra, but the Boolean semi-algebra struc-
ture is only needed. Moreover,

�
is supposed to be a metric space and to have the following

property : for any ��� � � � , there exists
T � � such that ��� T � � . Then, a lower semi-

measurable function is a function C from 
 to
�

such that the sets 
 � � � $ & N � 
 � ���C �ONP��, are elements of
�

for any � � � .

INRIA



Densities of idempotent measures and large deviations 19

In order to generalize this result to any locally continuous lattice
�

, we have to replace
� by 
 (way below) in the definition of 
 � � � . In this case, the property “for all ��
 � � � ,
there exists

T � � such that ��
 T 
 � ” is a consequence of the continuity of the locally
complete lattice

�
[11]. Then, the separability can be replaced by the existence of a countable

basis to the lattice
�

. Note that, however the existence of a countable basis is equivalent, if
�

is a complete lattice, to the property that
�

endowed with the Lawson topology is a compact
metric space, the metric does not need to be explicitly described.

In the construction by Maslov of idempotent integrals,
�

was not necessarily an idem-
potent semiring but only an ordered semiring with the law

�
compatible with the order � ,

thus the classical measure theory and the idempotent measure theory may be treated together.
Here, we treat idempotent measures with semi-algebras (see section 2) and semi-measurable
functions, whereas classical probabilities or probabilities over symmetrizable ordered se-
mirings (such as

��� � ��������� �
) have to be treated with algebras and measurable functions.

We thus restrict ourselves to the idempotent measure theory and generalize the construction
of idempotent integrals to general locally continuous lattices, by using only properties of
this structure. The generalization of the previous theorem will then be a consequence of this
construction.

Remark 44 In a locally continuous lattice
�

, the lower semi-continuity (l.s.c.) is equivalent
to the continuity for the Scott topology generated by sets

& � � � � ��
 � , . Thus, semi-
measurability is a natural generalization of semi-continuity in the same way as measurability
is a generalization of continuity.

For a general lattice
�

, the set of l.s.c. functions from 
 to
�

is a sup-semilattice. It is a
lattice if

�
is locally continuous and it is a

�
-semimodule (a module over a semiring) if the

�
operation is distributive with respect to infinite

E
GIH
. If now continuous functions are defined

as functions which are both l.s.c. and upper semi-continuous (u.s.c.), the set of continuous
functions from 
 to

�
is a

�
-semimodule if

�
is dually continuous and if

�
is distributive

with respect to infinite
E
GIH

and filtered

����

. It is a lattice if in addition
�

is locally continuous.
A generalization of the classical integration in ordered symmetrizable semirings would

have consisted in defining measurable functions as functions C such that the sets
& N � 
 � �


 C �ONP� , and
& N � 
 � ��� C �ONP��, are measurable, for instance Borel sets. But this requires

both the local continuity of
�

and the dual continuity of
�

.

Proposition 45 Let
�

be a Boolean semi-algebra of subsets of 
 and
�

the semi- � -algebra
generated by

�
. We denote by �

� 
 �#��� the set of (finite)
�

-linear combinations of charac-
teristic functions 9 R of sets

> � � and by �
� 
 �6�4� the set of functions from 
 to

�
which

are nondecreasing limits of elements of �
� 
 �#��� .
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For a general semiring
�

, �
� 
 �#�4� is a

�
-semi-algebra (an algebra over a semiring).

If the
�

law is distributive with respect to upper bounded countable
E
GIH

, then �
� 
 �#����$

�
� 
 � � � is a

�
-semi-algebra stable by countable upper bounded (by any function) supre-

mum. If in addition
�

is a locally continuous lattice, then �
� 
 �#��� and �

� 
 �6�4� are lattices.

Proof. By construction, �
� 
 �6�4� is a semimodule thus a

E�GIH
-semilattice and it is a semi-

algebra since
�

is stable by finite intersection. Again by construction, �
� 
 �6�4� is stable by

countable upper bounded supremum and is equal to �
� 
 � � � since 9�� ����� R � $ � � L�� 9 R � .

The distributivity of
�

with respect to countable
�

implies that it is a semi-algebra.
In order to prove that �

� 
 �6�4� and �
� 
 �#��� are lattices, we need a formula of the form :�?� � = � � 9 R�� � � �?����� � � 9	��
 ��$ � � $ �Z� = � � ��� �3� 9 R��
� ��
 . This holds if

�
is locally conti-

nuous and the sums are directed and upper bounded. But any sum
� ��= � � 9 R�� may be repla-

ced by the sum of all terms
� � � L
	 = � � � 9 � � ��� R�� for

�
finite whose values in any point form

a directed set.

Proposition 46 Let us denote by � � 
 � � � the set of semi-measurable functions with respect
to
�

: � � 
 � � ��$ & C
	�
��� � � 
 � � � � � � � � � ��, where 
 � � � ��$ & N � 
 � � 
 C �ONP��, .
For any semi-measurable function C , we also denote by

� � C � the semi- � -algebra generated
by the sets 
 � � � � for � � � .

We have �
� 
 � � �bA � � 
 � � � and any function C of �

� 
 � � � is such that
� � C � has a

countable basis in
�

, that is a countable subset � of
�

(not necessarily included in
� � C � )

stable by finite intersection, such that the elements of
� � C � are unions of elements of � .

Let us suppose now that
�

is a locally continuous lattice and that
�

is distributive with
respect to upper bounded infinite

E�GIH
. Then, �

� 
 � � � is exactly the set of functions C �
� � 
 � � � such that

� � C � has a countable basis. If
�

has a countable basis or
�

has a coun-
table basis, then

�
� 
 � � �!$ � � 
 � � � �

Proof. Consider a function C $a� � = � � 9 R�� � � where the sum is countable and directed (as
in previous proof) and the sets

> � � � . Then, the set of
> � is stable by finite intersection and

the set of = � by finite addition. For any � � � , 
 � � � ��$a� � $�������� > � � � , thus C � � � 
 � � � .
In addition, 
 � � � �!	 
 � � � ��$ 
 � � � � � � , therefore

� � C � is the set of countable unions of
sets 
 � � � � and thus is included in the set of unions of sets

> � which forms a countable basis
of
� � C � .
Now, suppose that

�
is locally continuous and consider C � � � 
 � � � such that

� � C � has
a countable basis � in

�
. Then as C �ONP��$[E
GIH & � � � � � 
 C �XNP��, for any

N � 
 , we obtain

C $ �� L�� � � 9 M�� ��� �
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$ �� L�� � �7� �
� L�� $ ��� M � � � � 9 �

�
$ �

� L�� =
� � � � 9	�

with = � � �0$ E�GIH &
� � � � � A 
 � � � � , . Then, as � is countable, C � � � 
 �#�4� . In the

previous equalities, we have used the distributivity of the
�

law with respect to infinite
�

.
However, if

�
has a countable basis, the countable distributivity is only needed.

Now if
�

has a countable basis, for any C � � � 
 � � � , � � C � has a countable basis, thus
�
� 
 � � �!$ � � 
 � � � .

If this time
�

has a countable basis, then the Scott topology has a countable basis and
since

� � C � is the inverse image of the Scott topology by the function C ,
� � C � has also a

countable basis.

Let us note that in general � � 
 � � � is not a semi-algebra (it is not stable by addition) ex-
cept if

�
has a countable basis or if

�
is stable by any union operation. But this last property

implies that
�

is a topology and � � 
 � � � is in fact the set of l.s.c. functions.

Proposition 47 Let us consider a semiring
�

such that
�

is distributive with respect to up-
per bounded infinite

E�GIH
and let Q be an idempotent

�
-probability on

� 
 �#�4� with extensionQ � to
�

.
If
�

is a locally continuous lattice or
�

is a dually continuous lattice, then there exists
a unique

�
-linear form

�
on �

� 
 �#��� , continuous on converging nondecreasing sequences
(i.e. such that

� � C � � � � � ��� � � C � if C � � � � ��� C ) and extending Q , in the sense that that� � 9 R ��$ Q �?>@� for any
> � � .

In the two following cases, we have a general expression for
�

:

� If
�

is locally continuous, then

� � C ��$ �� L�� � � Q � � 
 � � � �#� �
� If


 8 � 9 � is dually continuous and
�

has a countable basis, or more generally if Q �
has a density

T �

, then � � C � $ �JIL2M C �ONP�3�bT � �ONP� �
Proof. Consider a

�
-linear form

�
on �

� 
 �6�4� , continuous on converging nondecreasing se-
quences and such that

� � 9 R ��$ Q �?>@� for any
>

in
�

. The continuity implies that
� � 9 R � $

RR n ˚ 2534



22 Marianne Akian

Q ���?>@� for any
> � � . Now if C � � � 
 �#��� , then C $ � � = � � 9 R�� where the sum is coun-

table and then
� � C ��$a� � = �?Q � > � � . If this expression only depends on C , that is if�

� L 	 = � � 9
R�� $ �� L�� ��� � 9	��
�� �

� L
	 = � � Q �?> � � $ �� L�� � � � Q � � �Z� (7)

for any countable sets
�

and � and for
> � and � � in

�
, then

�
may be defined in that way and

if
�

is distributive with respect to upper bounded countable
E�GIH

,
�

satisfies the properties
of the proposition. Before proving (7) for particular cases, let us note that it is equivalent to

� � 9	� � �
� L
	 = �

� 9 R�� � � � Q � � � � �
� L 	 = �

� Q �?> � � (8)

for any countable set
�
. Moreover, we only need to prove (8) for “directed” sums (indeed,

adding terms of the form
�?� � L�� = � � � 9 � 
 ��� R 
 with � finite to the first expression does not

change the second expression).
Let us suppose

�
distributive with respect to upper bounded infinite

E
GIH
and first prove

that (8) holds in a locally continuous lattice
�

. Note that in this case, for any C � � � 
 � � � ,� � C � has a countable basis denoted � and following the previous proof, we have

C $ �
� L � =

� � �3� 9	�
with = � � ��$[E
GIH & � � ��� � A 
 � � � � , . Thus

� � C � $ �
� L � = � � �3� Q � � �$ �� L�� � �7� �

� L�� $ � � M��#��� � Q
� � �6�

$ �� L�� � � Q � � 
 � � � �#� �
Suppose now that

� � 9 � � � � L 	 = � � 9 R�� , that is
� � � � L
	 $ JIL2R�� = � for any

N � � , with�
countable and the values of the sum directed. Then, for any ��
 �

, � A � � L 	 $���� ��� > � ,
and

�
� Q � � � � �

�7� �
� L
	 $�������� Q

�?> � �6�
� �

� L
	 $������ � = �
� Q �?> � �

� �
� L
	 = � � Q �?> � � �

Taking the supremum over � 
 �
and using the infinite distributivity of

�
, we obtain the

(8). Note that in previous proof, infinite distributivity of
�

may be replaced by countable
distributivity if

�
has a countable basis.
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Let us prove now that (8) holds if

 8 � 9 � is a dually continuous lattice. Let us suppose that� � 9	� � � � L
	 = � � 9 R�� , with

�
countable and the values of the sum directed. Denote by �

the set composed of sets
> � , � and

> � 	 � and by
� 
 the semi- � -algebra generated by � .

Then, � is countable basis of
� 
 and by the results of previous section, Q has a density

T �

on� 
 . Then using the infinite distributivity of
�

,
� � Q � � � $ �J\L � � � T � �ONP�

� �J\L �
� �
� L
	 $ J\LSR�� = �

� �bT � �ONP�
� �

� L
	 = � �7� �JIL2R�� � � T � �ONP�6�
� �

� L
	 = � � Q �?> � �
which proves (8). We may prove along the same lines

� � C � $ �JIL2M C �ONP� � T � �ONP� �
But as

T �

depends on the sets
> � , thus on C this does not lead to a general expression for� � C � except if

T �

is a density of Q � in the entire algebra
�

.

A semi-measurable function C is said integrable if
� � C � � � . The linear form

�
coin-

cides with the integral defined by Maslov. It will then be denoted by

� � C � $��� M C �ONP�3� Q �?YZNP� �
It can be defined for any Boolean semi-algebra or semi- � -algebra

�
. In particular, for any

extension Q�
 of Q to a larger semi- � -algebra
� 
 , we may define an integral

� 
 on the set of
semi-measurable functions with respect to

� 
 . By uniqueness,
� 
 coincides with

�
on the

set of semi-measurable functions with respect to
�

. This is the result of Theorem 43. If
� 


is the � -algebra generated by
�

and
� $ �D�! #"

, semi-measurable functions coincide with
classical measurable functions and there are at least as many integrals

� 
 as extensions Q 

of Q . If


 8 � 9 � is a dually continuous lattice, we can also consider the maximal continuous
linear form

� �

on the set of all functions, such that
� � � 9 R ��$ Q �?>@� for any

> � � . Then,� � � 9 R � �[Q � � >��
for any set

>
, where Q �

is the maximal extension of Q to � � 
 � . As C $� � L��
�
� 9 M � ��� � for any function C ,

� �

is lower than the integral associated with Q �

and
then coincides with it.

If Q has a density
T
, then for any C � � � 
 �#�4� :

� � C � $ �JIL2M C �ONP� � T��XNP� � (9)
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In this case, we will say that
�

has a density. Then, Theorem 43 or Propositions 47-46 toge-
ther with the results of the previous section imply that for any l.s.c. function C , the integral ofC with respect to a

�D�! #"
-probability Q defined on the open sets or Borel sets has the form :

� � C � $ E
GIHJIL2M C �ONP� � T �2�ONP�
(10)

with
T �

an u.s.c. function (
� �5 #"

is locally continuous with countable basis and

 (+*[��:��

is
dually continuous).

In [9, 10] Kolokoltsov and Maslov prove that any continuous (for the uniform conver-
gence topology) linear form from the set ��� � 
 � of continuous functions with compact sup-
port from 
 to

� $[�D�! #"
has the form (10). As from any (non necessarily bounded) measure

on
� 
 �#�4� , where

�
is the set of open sets, we can construct an integral which is a continuous

linear form on � � � 
 � , the existence of a density to this measure may have been deduced from
(10). Conversely, (10) can be deduced from the existence of the density of any idempotent
measure by using the Riesz representation theorem [12]. However, even if some generaliza-
tions of (10) may be done (see Kolokoltsov [8]), many restrictions on the semiring

�
and the

topological space 
 are necessary in order to get (10) or the Riesz representation theorem,
restrictions which are not needed to prove the existence of a density.

We give now a “probabilistic” version of the Riesz representation theorem. This approach
allows to consider general functional spaces, when the “integration” point of view adopted in
[9, 10, 8] imposes to the topological space 
 to be locally compact. We thus consider idem-
potent probabilities (or bounded measures) and linear forms on the set � � 
 � �P� of continuous
functions (or upper bounded continuous functions). Note that in general, � � 
 � �P� is not a

�
-

semimodule except if
�

dually continuous and
�

distributes with respect to infinite
E
GIH

and
filtered


����
. In the following result, 
 needs only to be normal with respect to

�
[12], where

we adopt the following definition of normality.

Definition 48 We say that the topological space is
�

-normal, if for any disjoint closed sets�
and

�
of 
 and for any � � � , there exists a continuous function C from 
 to


 8 � � � Ab�
such that C is equal to 8 on

�
and � on

�
.

A generalization of the classical definition of normality would have been to satisfy the
previous condition with �

$ 9 only. However, the proof of the Riesz theorem requires the
previous condition in its general form. On the other hand, we may deduce the general norma-
lity condition from the restricted normality, when the product

�
is continuous (for the good

topology) that is when
�

is distributive with respect to infinite
E
GIH

and filtered

����

. If
�

is a
connected by arcs topological space, in particular for

� $[�4�! #"
,
� �����

or
� ����.7/213��.�
��I�

, the�
-normality follows from the classical normality. For instance, 
 may be any metric space

and thus any functional space.
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Theorem 49 (“Riesz representation theorem”) Suppose that
�

is a non trivial ( �$ & 8 , )
locally continuous lattice with countable basis, such that

�
is distributive with respect to

upper bounded countable
E
GIH

and 
 is a
�

-normal topological space.
We suppose that � � 
 � �P� is a

�
-semimodule and denote by

�
the minimal semi- � -alge-

bra of subsets of 
 leading continuous functions to be semi-measurable with respect to
�

.
Then,

�
is the set of

���
open sets (where a

� �
set is defined as a countable union of closed

sets) and the set � � 
 � �P� of semi-measurable functions with respect to
�

is equal to the set
of functions from 
 to

�
which are nondecreasing limits of continuous functions.

Let
�

be a linear form on � � 
 �?�P� , continuous on converging nondecreasing sequences
and such that

� � 9 ��$ 9 . Then,
�

may be extended in a continuous linear form on � � 
 �?�+� .�
is exactly the idempotent integral

� � C � $��� M C �ONP� � Q �?YZNP� (11)

corresponding to the idempotent
�

-probability Q defined on
�

by

Q �?>@�+$ � � 9 R ��$ E
GIH� L�� � M $ � � $ � ��� � �
� C �

An idempotent probability Q such that (11) holds is unique. Thus, (11) sets up a bijective
correspondence between continuous linear forms on � � 
 �?�P� such that

� � 9 � $ 9 and idem-
potent

�
-probabilities on

� 
 �6�4� .
Moreover, if

�
is distributive with respect to infinite

�
then

�
has density in the sense

of (9) if and only if Q has a density.

Proof. Let us prove that
�

is the set of
� �

open sets. By definition,
�

is the semi- � -algebra
generated by sets 
 � � � � , with C continuous. If C is continuous, it is l.s.c. thus 
 � � � � is an
open set. If

�
is a countable basis of

�
, then for any ��
 � in

�
, there exists � � � such that

��
�� � � and the converse is also true. Then 
 � � � �+$ ��� L
	 $���� � � � � � � , where
� � � � �+$& N � 
 � ��� C �ONP��, . Since

� � � � � is a closed set for any � � � and
�

is countable, 
 � � � � is
a
� �

open set. The set of
���

open sets is a semi- � -algebra, then
�

is included in it.
Suppose now that � is a

� �
open set, i.e. � $ � � � � with

� � closed. From the
�

-
normality of 
 , there exist continuous functions C � from 
 into


 8 � 9 � , such that C � $ 9
on

� � and 8 on �
�
. Since 8 �$ 9 (

� �$ & 8 , ), there exists �$�$ 8 such that � 
 9 , then
 � � � � � � � � and 
 � � � � ��A � for any � . Thus, �
$ � � 
 � � � � � � � .

By construction, the set � � 
 � � � of semi-measurable functions with respect to
�

contains
continuous functions and then nondecreasing limits of continuous functions. Conversely, ifC � � � 
 �?�+� and � � � , then 
 � � � � is an open set such that there exist closed sets

� � $ �
with 
 � � � �0$ � � � � $ � . Then, there exists continuous functions C � $ � with values in


 8 � � � ,
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such that C � $ � $ � on
� � $ � and 8 on 
 � � � � � . This implies

� � C � $ � $ � � 9 M��#� � � . Now, if
�

is a countable basis, C $ � � L 	
�
� 9 M � ��� � $ � � L
	 $ � L�� C � $ � and then is the nondecreasing

limit of continuous functions.
Suppose that

�
is a linear form on � � 
 � �P� continuous on converging nondecreasing se-

quences, and consider C � � � 
 � �P� . If C � � � � ��� C with C � � � � 
 �?��� , then
� � C �0$��
 . � � ��� � � C � � . As � � 
 � �P� is stable by finite

�
(by assumption) and � (by the continuity

of
�

) and
�

is continuous on nondecreasing sequences, this formula is independent of the se-
quence

� C � � and thus define a
�

-linear form on � � 
 �?�+� which is continuous on converging
nondecreasing sequences. As a consequence,

� � C � $[E�GIH � � � $ � L�� � M $ � � � ���K� .
Now, if

> � � , then 9 R � � � 
 �?�+� , for 
 � � � � � $ & N��
� 
 9 R �ONP��,�$ 
 ,

>
or � .

Then, Q �?>@�+$ � � 9 R � defines an idempotent
�

-probability on
�

. By uniqueness of the inte-
gral (see Proposition 47),

�
is exactly the integral associated with Q . Moreover, (11) impliesQ � >��+$ � � 9 R � which implies the uniqueness of Q . By Proposition 47,

�
has a density if Q

has a density and
�

is distributive with respect to infinite
�

. Conversely, if
�

has a density
denoted by

T
, then clearly Q has

T
as density : Q � >��7$ � � 9 R ��$ � JIL2M 9 R �ONP� �bT��ONP��$� JILSR T��XNP�

.

If 
 is a metric space, every open set is an
� �

set. Then in a Polish space, every conti-
nuous (on converging nondecreasing sequences) linear form on � � 
 � � � admits the repre-
sentation (9) ((10) in

�D�� "
). In the other hand, by Proposition 47, the counter example of

section 3 leads to a counter example for linear forms. The following continuous linear form�
on � � 
 $ � ���?:I��	 � �6�+�� "
� does not have a representation of the form (10) :

� � C � $ E
GIH &
� � ��� � � �XN � � � 


� � & N��
��! C �ONP� , A � � � �XN � ��	 ��,$ 
����� J

�
� L2M � E
GIHJ $�� J��IJ

�
���
	 � � � C

�XNP� �
Moreover,

�
is continuous for the uniform convergence topology on � � 
 �6� �� "
� , defined by

the exponentialdistance
Y
, i.e.

Y � � � � � $���
 � (�
  �
;
Y � � � C � � � ���K�#� � E
GIH\JIL2M Y � C �ONP� ���5� NP�6� .

5 Application to Large Deviations

The purpose of Large Deviations is to find, for a given family of probabilities
� ��� � � 	 � (resp.� � � � � L�� ) on

� 
 �6�4� , the asymptotic rate of convergence of ��� when � tends to
:

(resp. �
tends to infinity). In practice, the limit is a Dirac measure at some point. For instance, if

� �
are independent random variables with same law, the law � � of ��� ������� � � �� tends to the Dirac
measure at the mean point � ��� � � . For almost all sets

>
, � � �?>@� tends to

:
exponentially fast

and for particular sets
>

,
( � ����� � � �?>@� has a limit which can be expressed as the minimum
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of a function
�

over the set
>

. In order to formalize this theory, Varadhan has introduced [15]
the following concept :

Definition 50 ([15]) Consider a probability space
� 
 �#��� , where 
 is a complete separable

metric space and
�

is the set of Borel sets of 
 , and a family
� ��� � � 	 � of probabilities on� 
 �#�4� . Then

� � � � obeys the large deviation principle if there exists a rate function
� 	�
 �


 :\�
��* �
such that

1.
�

is lower semi-continuous (l.s.c.) and 
 � $ & N � 
 � � �XNP� ��� , is a compact set for
any � ! ��* ,

2. for each closed set
� A 


��
 ._E
GIH
� ��� � � ��� � � � � � � ( 
����JIL�� � �ONP� �

3. for each open set �
A 


��
 . 
����
� ��� � ����� ��� � � � �a( 
����J\L ! � �ONP� �

Since the functions Q �?>@��$ (�
���� J\LSR � �ONP�
, with

�
as in point 1 are particular

� �5 6"
-

idempotent probabilities on
� 
 �#��� , we will consider the following weak form of the pre-

vious definition.

Definition 51 Consider for any
> � � the quantities

Q � �?>@� def$ ��
 ._E
GIH
� ��� � ����� ��� �?>@� �

Q � �?>@� def$ ��
 . 
����
� ��� � ����� � � �?>�� �

We say that
� � � � obeys the weak large deviation principle if there exists a

���! #"
-idempotent

probability Q on
� 
 �6�4� such that

1. there exists a sequence
� 
 � � of compact sets such that Q � 
 �� � � � � ��� 8 $ (+*

(
� �

denotes the complementary set of
�

),

2. for each closed set
� A 
 , Q � � � � �[Q � � � ,

3. for each open set �
A 
 , Q � � � � � Q � � � .
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Then
� � � � obeys the large deviation principle iff

� � � � obeys the weak large deviation
principle with a measure Q having an upper semi-continuous (u.s.c.) density

T�$ ( �
(condi-

tion 1 of both definitions are equivalent in this case). But if
� ��� � obeys the weak large devia-

tion principle with a measure Q , the maximal extension Q �

of the restriction of Q to open
sets is also admissible ( Q � � � �+$ Q � � � � Q � � � � , Q � � � � � Q � � � � Q � � � � ). Now, the
theorems of section 3 give sufficient conditions on 
 for Q �

having a density and this den-
sity is necessarily an u.s.c. function. Conversely, if Q has an u.s.c. density then Q $ Q �

.
In particular if 
 is a complete separable metric space, we have shown in Example 37 thatQ �

has necessarily a density and thus Definitions 50 and 51 are equivalent. We suppose now
that 
 is a general topological space and search for conditions on

� ��� � in order to satisfy the
weak large deviation principle. For this we construct a measure Q which is a good candidate
for the large deviation principle.

Remark 52 Q � and Q � are nondecreasing functions on
�

and Q � � ��$ 8 , Q � 
 �4$ 9 forQ $ Q � or Q � . Moreover Q � �?>_� � �+$ Q � � >�� � Q � � � � for any
>

and � in
�

but this
is false for Q � . However, this last property is not useful, as one can construct the maximal
idempotent-measure lower than a nondecreasing function Q � , but not the minimal measure
greater than Q � .

Proposition 53 Denote by ' the set of open sets of 
 . The maximal
���5 #"

-idempotent mea-
sure on

� 
 � ' � lower than Q � is the following measure :

Q � � �+$ 
����� ! � L#" � � $ � � ! ��� ! E
GIH� Q � � � � � � � � ' �
Proof. By additivity and continuity, any

�4�5 6"
-idempotent measure lower than Q � is lower

than Q . Let us prove that Q is an idempotent measure. Firstly, Q � � � � Q � � � � $ 8 , thenQ � � ��$ 8 and as Q � is nondecreasing, Q is also nondecreasing.
Consider a sequence (possibly finite) of open sets

� � � � and � $ � � � � . Since Q is mo-
notone, Q � � � � E
GIH � Q � � � � . On the other hand

E
GIH
� Q � � � � $ E
GIH

�

����� ! ��� � L " � � $

��� ! ��� � � ! �
E
GIH^ Q � � � � $ ^ �

$ 
����� ! ��� � L " � ��� � $
� � ! ��� ��� ! � � �

E
GIH
� $ ^ Q � � � � $

^ �

� 
����� ! ��� � L#" � ��� � $
� ��� � ! ��� ��� !

E
GIH
� $ ^ Q � � � � $

^ �
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� Q � � � �
Then Q �?� � � � ��$[E
GIH � Q � � � � which implies both additivity and continuity properties.

Consider the maximal extension Q �

of the measure Q of Proposition 53 to the algebra
of all subsets of 
 . We have :

Q �3� >���$ 
����� ! � L#" � � $ � � ! � 
 R E
GIH� Q � � � � � �
It is the maximal measure on

�
(or � � 
 � ) satisfying condition 3 and it is a good candidate

to satisfy the weak large deviation principle. Indeed, suppose that Q 
 satisfies the weak large
deviation principle, then Q 
 � Q on open sets (by condition 3 and Proposition 53), thusQ 
 �[Q �

on
�

and Q �

satisfies condition 2.

Remark 54 In a metric space 
 , the restriction to open sets of a measure Q satisfying condi-
tions 2 and 3 of the weak large deviation principle, is unique and thus equal to Q �

. Indeed,
any open set � is the union of open sets � � such that � � A � ( � � $ & N � � ��Y �XN�� � �?� �	�� � , ). Then, for any measure Q and Q�
 satisfying the large deviation principle, we haveQ � � � � Q � � � � � Q � � � � � � Q � � � � � � Q 
 � � � � thus Q � � � �aE�GIH � Q 
 � � � �+$ Q 
 � � � .
By symmetry, we obtain the uniqueness.

Then, in a metric space, a measure Q satisfying the weak large deviation principle is
necessarily equal to Q �

on open sets and Q �

satisfies the weak large deviation principle. As
a consequence, the rate function

�
of Definition 50 is unique and equal to the opposite of the

density of Q �

.

We thus have the following result.

Theorem 55 1) If � � obeys the weak large deviation principle, then Q � � � � � Q � � � �
for

any closed subset
�

of 
 , that is

Q � � � � � 
����� ! � L#" � � $ � � � � ! � E
GIH� Q � � � � � � (12)

2) The following condition is sufficient in general and necessary in metric spaces for� � � � to obey the weak large deviation principle :

Inequality (12) holds and Q �

satisfies condition 1 of Definition 51.

3) In a metric space, Definitions 50 and 51 are equivalent. Indeed, if Q �

satisfies condition
1 of Definition 51, then Q �

has necessarily as u.s.c. density the function :T � �XNP��$ 
 ���! L#"%$ !%& J Q � � � � �
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Then (12) is equivalent to Q � � � � � E
GIHJIL�� T � �ONP� � (13)

Moreover, if the conditions of Definition 51 hold, the rate function
�

is unique and equal to(+T �

.

Proof. We only have to prove point 3. Suppose that 
 is a metric space and that Q �

satisfies
condition 1 of Definition 51. Then the non necessary complete subspace

�
 $a� � 
 � is such
that Q � � �
 � � � 
���� � Q � � 
 �� �P$ (+* $ 8 . Then, Q � �?>@��$ Q � �?>_	 �
 � for any subset

>
of
 . From Example 39, the restriction of Q �

to the open sets of
�
 has necessarily the densityT��ONP��$ 
 ��� ! L#"%$ ! � �M & J Q � � � 	 �
 ��$ 
���� ! L#"%$ !%& J Q � � � �'$ T � �ONP�

for
N � �
 , whereT � �ONP� def$ Q � � & N+,2�

for any
N � 
 . Therefore Q � �?>@��$ Q � �?>_	 �
 �+$ E
GIH JIL2R � �M T � �XNP�+$E
GIH\JIL2R4T � �ONP�

for any
> � ' . Thus Q �

has
T �

as density and (12) is equivalent to (13).
Moreover,

T � �ONP��$ Q � � & N+,S� $ 
���� � ! � L#" � � $#JIL � � ! � E
GIH � Q � � � � ��$ 
���� ! L "%$ !%& J Q � � � � .

Thus in a metric space, the unique rate function can be calculated by using open sets or
even a basis of neighborhoods only. Then, conditions 1 and 2 of Definition 50 or 51 have to
be verified. If 
 is not a metric space, the same result may be obtained when open sets are
replaced by

���
open sets (see Corollary 41). It is indeed the good notion in a general normal

topological space at least, since the large deviation principle has to be compared with the
weak convergence of probabilities. The weak convergence of a sequence of probabilities � �
towards � is by definition equivalent to the convergence of the expectations � � � C � towards
� � C � for all bounded continuous functions, thus is equivalent to i)

��
 . 
���� � � � � � � � � � � �
for all

���
open sets which is also equivalent to ii)

��
 ._E�GIH � � � � � � � � � � � for all
�

� closed
sets (where a

�
� set is by definition a countable intersection of open sets). Indeed, expecta-

tions of continuous functions only involves Baire sets. Then, a large deviation principle in
a general normal topological space should have been defined by Definitions 50 or 51 with
closed sets replaced by

�
� closed sets, and open sets replaced by

� �
open sets.

Let us note that condition 1 of Definitions 50 and 51 is exactly the tightness condition
for the idempotent probability Q defined in [1] or [3] and is related to the tightness condi-
tion of classical probabilities. Although classical probabilities over Polish spaces are always
tight, idempotent probabilities are in general not and this condition has to be imposed. Com-
pactness results may be proved as in classical probability using this condition [3]. The main
ingredient of this section was indeed that any tight idempotent probability on the set of

� �

open sets has a density. Thus, cases where weak and “strong” large deviation principles do
not coincide may only be obtained when the tightness condition 1 is relaxed.
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