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Densités des mesuresidempotenteset grandes déviations

Résumé: S I’ onconsiderelathéoriedelamesure danslaquelleledemi-corpsdesréel sposi-
tifs est remplacé par un demi-anneau idempotent, on obtient |anotion de mesureidempotente
introduitepar Maslov. Les mesures ou intégral esidempotentes & densité correspondent alors
ades supremums de fonctions pour larelation d’ ordre partiel induite par la structure idem-
potente. Nous donnonsici des conditions pour qu’ une mesure idempotenteait une densité et
montrons par de nombreux exemples qu’ elles sont souvent verifiées. Ces conditions portent
alafois sur lastructure de treillis du demi-anneau et sur I’ algebre de Boole sur laguelle la
mesure est définie. On trouve aors un critére pour qu’ une famille de probabilités satisfasse
au principe des grandes déviationstel qu’il est défini par Varadhan.

Mots-clé: Demi-anneau idempotent, Dioide, Algebre max-plus, Treillis continu, Mesure
idempotente, Optimisation, Grandes déviations.
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I ntroduction

A probability or a positive measure is in some loose sense a continuous morphism from a
Boolean o-algebra (A, U, N) of subsetsof someset €2, to the semifield (R T, +, x). If were-
place (R*, +, x) by an idempotent semiring (or dioid) [4] (D, &, ®), we obtain the notion
of idempotent measure. This notion has been introduced by Maslov in [12] where idem-
potent integrals were also constructed. In particular, if we consider the semifield R 0 =
(R U{—-o0}, max, +), measure or probability theory (resp. Wiener processes, linear second
order elliptic equations) is replaced by optimization theory (resp. Bellman processes, parti-
cular Bellman equations) and some of the notions may be transferred from the first domain
to the second one. Illustrationsand utilizationsof this correspondence may be foundin Ma
slov [12], Maslov and Samborski [13], Del Mord, Thuillet, Rigal and Salut [7], Del Moral
[6], Quadrat [14], Bellalouna[5], Akian, Quadrat and Viot [2, 3], and Akian [1].

Whereas Maslov tried to treat idempotent measures theory in general idempotent (or or-
dered) semiring D and measure space €2, some improvements may be done: firstly, at least
for the construction of measures, ID does not need to be a metric space but only a dualy
continuous lattice which is an order property. Secondly, the existence of a density has not
been clarified. This point has been neglected in most of the studies on thisdomain, except in
[9, 10], where Kolokoltsov and Maslov prove the existence of a“density” for linear forms,
which in some particul ar cases implies the existence of a density for idempotent measures.
The present paper isessentially devoted to thislast problem. In particul ar, using the technics
of continuous lattices theory, general conditions under which an idempotent measure has a
density are found.

Let us consider the dioid R . With zero (neutral element for the “addition” max) 0 =
—oo and unit (neutral element for the “multiplication” +) 1 = 0. Addition corresponds to
finite maximization, then “integration” corresponds to taking infinite supremum. The equi-
valent of the Lebesgue measure on (€2, .A) where Q@ = R and A is the Borel sets algebra,
is the “uniform idempotent measure” A\(A) = 1 forany A C Q. Then, the “integral” of a
continuous function f is A(f) = sup,cq f(w). Now, the function K(A4) = sup_ ¢4 ¢(w)
defines an idempotent measure with density ¢ with respect to the “ L ebesgue measure”. Un-
der conditionson ¢ and f theintegral of ameasurable function f with respect to the measure
K, asdefined by Maslov, isK(f) = ¢, f(w) @ K(dw) = sup,,cq f(w) +c(w). Then, thein-
tegral of afunction with respect to a measure with density has a simple expression. We may
then ask if there exists, asin the classical measure theory, (interesting) measureswhich have
no density. As afirst answer, let us note that most natural measures without density in the
classical measure theory have adensity in R ,,.«. Indeed, the upper semi-continuous (u.s.c.)
function

dp(w)=11if w=m, §,(w)= 0 otherwise
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4 Marianne Akian

isthe density of the“Dirac measure” at point m :

5a(f) = sup (&) + b () = f(m).

we

However, we may exhibit the following measure without density :

K(A) = esssupc(w),
weN
where c isacontinuousfunctionand the essential supremumistaken with respect tothe(clas-
sical) Lebesgue measure. This measure satisfies the conditions of Definition 21 below on
(€2, .A). K hasno density sinceK({w}) = 0 = —oo for any w € Q. However, therestriction
of K to the algebra of open sets has ¢ as density. Then ¢, f(w) @ K(dw) = sup,cq f(w) +
c(w) for any lower semi-continuous (I.s.c.) function f [12]. The non existence of a density
to K on the entire algebra of Borel setsisin general not relevant and every measure seems
to have a density in a sufficiently large algebra of subsets.

From the previous examples, we see that the order relation < plays an important role
in the semiring R ,.x. More generdlly, if (D, &, ®) is an idempotent semiring, the idem-
potent law & defines a partial order relation < such that (D, <) is a sup-semilattice. This
impliesthat properties of measures and integrals are related with | attice properties of D that
we will use throughout this paper. We thus begin by recalling and extending in section 1
definitions, properties of continuous|attices. We follow the presentation of Gierz, Hoffman,
Keimel, Lawson, Mislove and Scott [11], up to subsidiary extensions. Then idempotent mea-
sures are introduced in section 2. In section 3, we prove that any idempotent measure on a
suitable algebra A of subsets of a space 2 has necessarily a density. This includes Polish
spaces with the algebra.A of their open sets. For the proof, we construct the maximal exten-
sion of the idempotent measure to the algebra of all subsets of 2 and prove that the value
of thisextension on singletonsisadensity of the initial measure. In section 4, werecall ina
general context the theorem of Maslov which prove the uniqueness of idempotent integrals
of “semi-measurable’ functions. This theorem is a consequence of the construction of the
idempotent integral of Maslov, that we generalize to semiringsID which are continuous | at-
tices. Moreover, in order to relate our results on density of idempotent measures with the
existing ones on density of idempotent linear forms, we prove a “probabilistic” version of
Riesz representation theorem.

Our approach (the restriction of idempotent measures to open sets) wasinitially motiva
ted by the large deviation principle of Varadhan [15]. In this theory, one essentially tries to
obtain asymptotics of probabilitiesfamilies P. of theform : K(A) = lim._,o € log F.(A),
where K(A) = —inf,ec4 I(w) with I al.s.c. function. Thus K is aR ,,ax-idempotent mea-
sure with density — 7. Generalizing this concept of large deviation by using genera idem-
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Densities of idempotent measures and large deviations 5

potent measures, we give (in section 5) necessary and sufficient conditionsfor the large de-
viation principleto be satisfied and prove that when it exists, I may be calculated by using
open sets only.

1 Continuouslattices

In this section, we give a short presentation of definitions, results and examples concerning
continuous lattices. Apart some minor extensions (on locally complete and locally conti-
nuous | attices), these results may be found in [11].

Let usfirst recall classical terminology. 1. denotes a set endowed with apartia order <.

Definition 1 (L, <) is a semilattice (resp. a sup-semilattice, resp. a lattice) if every non-
empty finite set admitsa greatest lower bound or infimum (resp. a least upper bound or su-
premum, resp. an infimum and a supremum). It is said a complete lattice if every set (even
nonempty) admits an infimum (or equivalently if every set admits a supremum). T denotes
the top element or supremum of I and L the bottom element or infimumof L.

In previousdefinition, we usethe conventionthat the greatest lower bound (resp. theleast
upper bound) of the emptyset isthe top element (resp. the bottom element) of thelattice L.
The least upper bound or supremum is denoted by sup or v and the greatest |ower bound or
infimum by inf or A.

In the following sections we apply lattices formalism to dioids as follows.

Example2 Let (D, &) be acommutative idempotent monoid (that is isassociative com-
mutativeand idempotent : « & @ = a for any a € D) with 0 asneutral element. We denoteby
< the partial order relation associated with the idempotent ¢ operation:a < b < a ® b = b.
Then a & b isthe least upper bound of « and b and a > 0 for any ¢ € D. Thus (D, <) is
sup-semilattice with bottom element 0. Conversely, a partia order < such that (D, <) isa
sup-semil atticewith minimal element O defines an idempotent commutative, associ ativelaw
@ with neutral element 0 onD. [ |

In the sequel, we do not impose the completeness to the monoid dioid (D, &, ®), but
only thefollowing property.

Definition 3 Thelattice (L, <) isalocally completeif it satisfies one of the following equi-
valent conditions:

1. every nonempty set admitsan infimum;
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6 Marianne Akian

2. every upper bounded set admits a supremum;

3. thereexistsa completelatticedenoted L with top element T, suchthat L isa sublattice
of [,L=Lu{T}andsupL =T.

The following definition concerns the continuity of compl ete lattices.

Definition 4 e D C Lisadirected setif and onlyif any finite subset of D hasan upper
boundin D.

e Let <°? betheoppositeorder of L : a <°? b < b < a. If (L, <) isalattice, then L
denotesthe lattice (L, <°7).

e Disafiltered set of L iff D isadirected set of L°F.

e The“way below” < relationisdefinedby: a < bif and onlyif for all directed set D
of L, suchthat b < sup D, thereexistsz € D suchthata < .

e The completelattice L is said continuousiff

z=sup{y € L, y<a} forany z€ L. (1)

e [ issaiddually continuousiff L°? is continuous.

e [ isabasisof the continuouslattice L iff I isa sup-subsemilatticeof L containing L
and such that
z=sup{yel,y<z} forany =z € L. 2

Remark 5 Inthedefinition of abasisweimpose I to be a sup-subsemilatticeof L containing
1, whichisequivaent to the condition (1, ) isasubmonoid of (L, &) if & isdefined asin
Example 2. [

Remark 6 Supposethat I iscomplete, I \ T isadirected set and that T is the supremum
of L\ T (thismeansthat L \ T islocaly completeand L = L\ T). Then, T &« T and
a < binLimpliese € L\ T.Moreover, if I isabasisof L, thenI \ T isaso abasisof
L :itisasup-subsemilatticeand « = sup{a € I\ T, e < z},forany z € L. [ ]

Example 7 In atotaly ordered lattice L, a < bora = L impliesa < b (by definition

a<bs (a<banda #b)).1f L =Rwiththeorder <,thena < bisequivaentto (¢ < b
ora = —o0), and L iscontinuous(and dually continuous). If L = Z = ZU{—o0, + o0}, then

INRIA



Densities of idempotent measures and large deviations 7

a < bisequivaentto (e < band a # +oo) and L is continuous (and dually continuous).
[ ]

Example 8 If L is acomplete lattice, then L™ with the componentwise order relation is a
completelatticeanda = (aq, ..., a,) < b= (by,...,b,)InL™iff a; < b;fori =1,...n.
Therefore, L continuousimplies L™ continuous. In particular ((R)", <) isacontinuousand
dually continuous | attice.

Now, by eliminating the top element of R, we obtain L = Rp,.x = RU {—o0} which
isalocaly complete lattice such that I is continuous and dually continuous. We can also
provethat L locally completeimplies L™ locally complete. However, L™ = [—o0, +00)" U

{+ o (400, ..., +0o0)} endowed with theterm to term order relation < isadual ly conti-

nuous but not a continuous lattice. Indeed, ¢ < biffa = L = (—o0,...,—00) (because
for instance +oo = sup(L X {—o0} X --- x {—00})). For the opposite order, however, ll
behaves asin (R)". n

The previous example shows that if we consider different complete sublattices of the
same completelattice L, the way-bel ow rel ation defined in these subl atticesmay bedifferent
((Rmax)™ is a sublattice of (R)™). This comes from the fact that these sublattices are not
necessarily stable by infinitesup of L. However, if we generalize theway below relation to
locally complete lattices in the following manner, thistype of boundary effect disappears.

Definition 9 Let I be alocally completelattice. The “ way below” <« relationisdefined in
Lby: a< bifandonlyif for all upper bounded directed sets D of I, suchthat b < sup D,
thereexistsz € D suchthata < z.

Thena < bin Lisequivalentto ¢ < b in any complete sublattice of L. containing a
and b and of theform [ L, ¢] with ¢ € L (or stableby infinitesup of L). Then, definitions of
continuous | attices and basis may be used without change. Locally compl ete lattices which
are continuous will be called locally continuous. Under this definition, (R,ax)” becomes
alocally continuous lattice. Moreover, alocally complete lattice L is continuous iff every
complete sublattice of L of theform [ L, ¢] (or stable by infinitesup of L) is continuous.

Let us note that if L isalocally complete |attice, we may extend the definition of the
way-below relationto L by takinga < bin L iff (¢ < binLora € Landb = T).
Thisrelation isnot equal to those defined directly in the complete lattice L. For instance, if

L = (Rmax)", thisway below relation istherestriction of those of (R)™. If L is continuous
andif I isabasisof L then (1) and (2) arestill validforz = T.

Example 10 Another usual example of complete latticeisthe set P (.X') of subsetsof a set
X with the C order relation. The set of open sets O(X) (resp. the set of closed setsC (X))
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8 Marianne Akian

of atopological space X (resp. the set of closed convex sets Con(X') of atopological vector
space X) is also a complete lattice with bottom element () and top element X, eveniif itis
not asublattice of P(X).

InC(X),A < Biff A= 0, thusC(X) and Con(X) are not continuousand O(X) is
not dually continuous. In O(X), A < Bif A Cc B and A compact, which is often noted
A CC B.If X islocally compact, thetwo conditionsare equivalent and O( X') iscontinuous
and C(X') dualy continuous. Now, if K isacompact convex subset of alocally convex to-
pological vector space X, then Con(K’) isadually continuous|attice. [

The following characterization is the main ingredient of the proofs of section 3 on ex-
tensions and densities of idempotent measures.

Theorem 11 ([11, th. 2.3]) For a complete lattice I, the following conditions are equiva-
lent :

1. L iscontinuous.

2. Let {D(j), j € J} beafamilyof directed setsof L. Let M be the set of all functions

f:J—=D dIerjEJD(j)VVith f(j) € D(j) for al j € J. Then thefollowing identity
holds:

inf sup D(j) = inf Sup @ = sup inf /(7). ©)

3. Let {D(y), j € J} beany family of subsetsof L. Let N be the set of all functions

f:J —finD, the set of finite subsets of D o U;esD(7) with f(5) € finD(y) for all
j € J. Then thefollowing identity holds :

inf sup D(j) = sup inf sup /(j) (4)

The previoustheorem is still valid if L isonly alocally complete lattice and if the sets
D(j) considered in points 2 and 3 are supposed upper bounded (that issup D(j) € L).

Theclassica definition of lower semi-continuous(l.s.c.) functionswith valuesin R may
be generalized to functionswith valuesin any lattice L.

Definition 12 Afunction f : Q@ — L issaidl.s.c. iff

def
< liminf f(y) = inf f(y),
J(@) liminf fly) = sup  inf /()

wheref isthe set of open sets of the topological space €.

INRIA



Densities of idempotent measures and large deviations 9

The Scott topol ogy defined below allowsto characterize (in alocally continuous|attice)
the semi-continuity in terms of topol ogy.

Definition 13 Let L bea (locally) complete lattice, we say that U C L is Scott open (open
for the Scott topology) if it satisfies the two following conditions:

1 U:TUd:ef{.rEL, dyeU, y =<z}
2. supD € UimpliesDNU # ( for all directed sets D C L.

Proposition 14 Let . be a (locally) continuous|attice.

The Scott topology on L isthe weakest topology such that the sets{z € L, a < z} are
open.

Afunction f : Q — Lisl.sc.iff itiscontinuousfor the Scott topology of L.

The Scott topology is clearly not separated (Hausdorff). If we want to define the conti-
nuity of afunction with valuesin L in terms of topology, we have to consider the common
refinement of the two Scott topol ogiesdefined for < and <°? partial orderson L. Thistopo-
logy will be called “bi-Scott” and works only on bi-continuous lattices (lattices which are
both continuous and dually continuous). The Lawson topology defined below is stronger
than the Scott and weaker than the bi-Scott topology and works well on lattices L. which
are only continuous.

Definition 15 The Lawson topology denoted A L isdefined as the common refinement of the
Scott topology and the lower topol ogy, that isthe topol ogy generated by sets[a, T]¢ = {z €

L, a £z}

Proposition 16 For a continuouslattice L, AL is a compact Hausdor ff space.
Moreover, L has a countable basisiff AL isa compact metric space.

Remark 17 If L is a bi-continuous lattice, then the bi-Scott topology is equal to the bi-
Lawson topology that is the common refinement of the two Lawson topol ogies defined for
< and <°P partial orderson L. Then, if both L. and L°? have a countabl e basis, the bi-Scott
topology is metrizable (but not necessarily compact). [

2 |ldempotent measures

Let A be aBoolean agebraor aBoolean o-algebraof subsetsof aset 2. A probability P on
(€2, .A) issuch that

RR n° 2534



10 Marianne Akian

i) P(AU B) = P(A) + P(B) if AN B = § and P(0) = 0.

Inaddition, P(ANB) = P(A) x P(B) if A and B areindependent. Thusa probability may
be compared to a morphism from the “ complemented” (in the sensethat A € A impliesthat
A¢ € A) semiring (A, U, N) to the symetrizable semifield (R, +, x) (such that P(Q2) =
1). Since the field structure of R alowsto write P(A°) = 1 — P(A), the continuity of a
probability can be equivalently defined by one of the two properties:

i) P(A,) / P(A)IfA, / AwithA, andAinA,
n—+00 n—+00
i) P(A,) N\« P(A)IfA, \, AwithA, and Ain A.
n—+4o0o n—-+400
If we replace (R, +, x) by an idempotent semiring (D, &, ®), we loose “opposites’
for the additive law & and as a consequence : @) the entire structure of Boolean agebrais
no longer needed in order to get a“morphism”, b) propertiesii) and iii) are not equivalent,
moreover iii) israrely satisfied and is not preserved after extension of a probability P to a
larger algebra (see Examples 18 and 20 below).

Example 18 Let us consider A the set of Borel setsof 2 = R and let consider P(A) =
sup,,c 4 ¢(w) with ¢ an upper semi continuous (u.s.c.) function from R t0 R ax. Then, P
satisfies property i) where additionisreplaced by the max operator and property ii). Indeed,
we will seein section 3 that the restriction to open sets of any idempotent R ,,,.x-probability
on (2, A) hasthisform. If P satisfiesalso property iii) on.A, then P((a¢ — 1/n,a+ 1/n)\
{a}) and P([—n, n]°) decrease towards P(()) = 0 = —oco. Thisimpliesthat the set {z €
R, ¢(z) > b} isfinitefor al b € R and thus ¢ has countable support (as atomic classical
probabilities). [

Definition 19 A set A of subsetsof a given set 2 is called a Boolean semi-algebraifitisa
sublattice of (P(€2), C), that isif it contains 2 and () and is stable by the finite union and
inter section operations. It is called a semi-c-algebraif in additionit is stable by countable
union operation.

Example 20 Let us consider the compact metric space 2 = [0, 1]. The set A of closed sets
isaBoolean semi-algebra. Now, if P isasin Example 18, then P satisfies conditioniii) on
A. However, the semi-o-algebra generated by .A contains open sets for which property iii)
isfasein general. [

Let us consider (D, &, ®) an idempotent semiring with 0 and 1 as neutral elements for
the @ and ® operations respectively. We denote by < the partial order relation associated

INRIA



Densities of idempotent measures and large deviations 1

with the idempotent ¢ operation (see Example 2). We denote also by “sup” or & (resp. by
“inf” or A) the supremum (resp. the infimum) operation. In all this paper, we suppose that
D islocally complete. Note that, if the top element T of D does not belong to D, the law
® may be extended to D so that (D, &, ®) becomes asemiring (T ®a = a®@ T = T if
a # 0and TR0 = 0@ T = 0). Examples of such idempotent semirings are Ryax =
(RU{—o0}, max, +), (R*, max, X), Ryin = (RU {400}, min, +), (with4o0, resp. + oo,
resp. —oo, as upper bounds), and al'so R max”™, Rumin” - -

Definition 21 An idempotent D-measure on a Boolean semi-algebra A of subsetsof Q2 isa
mapping K from .4 toD such that :

1. K() =0,
2. K(AUB) = K(A) @ K(B) forany A, BinA,
3. K(4,) ~ K(A)ifA, / A A, € AVneNandA e A (c-additivity).

n—+400 n—+4o0o
An idempotent D-measure K is said finiteif K(2) € D and is called an idempotent proba-
bility if K(©2) = 1.

Remark 22 It followsimmediately from the definition, that any idempotent measure K is
monotone: K(A4) < K(B) if A C B. Then, if K isaprobability, it takesits valuesin the
subset [0,1] ={z €D,0 Kz <1} ={z €D, z <1} of D. ]

By the idempotency, we have

Proposition 23 A mapping K from A to D is an idempotent D-measure on A iff

K(Ujer 4;) = _@gl K(A;)

for any finite or countablefamily { 4;, ¢ € I} of elementsof A.

Remark 24 Notethat thesecondlaw x or & isonly necessary intheconstruction of integrals
or the definition of independency but not in the construction of measures. In particular the
results of the following section depend only on the first law, thus on the lattice structure of
D. ]

An idempotent measure with values in R ., (resp. Runin) Will be called a gain (resp.

cost) measure. It isfiniteif and only if K(2) < +oo (resp. K(2) > —oo) anditisagan
(resp. cost) probability if K(£2) = 0. Note that the order relation associated to the “min”

RR n° 2534



12 Marianne Akian

law isthe opposite of the classical order < of R. Therefore, even if we are more interested
with cost measures, that iswith minimization problems, it iseasier to consider gain measures
since monotony properties and extensions constructions coincide with those of the classical
Probability theory.

AnidempotentD-probability space (also called adecisionspace) (€2, A, K) iscomposed
of anonempty set €2, a semi-c-algebra A of subsets of €2 and an idempotent D-probability
K.

Let usintroduce the notion of density of an idempotent D-measure. Consider afunction
¢ from © intoD and define for any subset A of €2,

K(A) = sup{c(w),w € A}. 5)
It iseasy to check that K is an idempotent D-measure on P (€2).

Definition 25 Anidempotent measure K issaid to have a densityif (5) holds for some func-
tion c. In this case, any function ¢ satisfying (5) is called a density of K.

3 Idempotent measuresextensions and densities

In [12] Maslov shows that there might be several extensions of the same idempotent mea-
surefrom a Boolean algebrato theleast o-algebracontaining it. For instance, the L ebesgue
measure” on (2, A) withvaluesinR .y, Where 2 = R and A isthealgebraof finite unions
of any intervalswith rational bounds:

K(4) =0 if A#£0, K(0) = —o0
may be extended to the Borel setso-algebraasfollows:

K(A) = sup c(z)
r€A
with 1) ¢(z) = 0 (which leads to the maximal extension) or 2) ¢(z) = 0 when z isrational
and c¢(z) = —oo (or any number lessthat 0) when z isirrational, and clearly densities1) and
2) do not lead to the same value of K. Indeed nonempty elements of .A necessarily contain
rationals.

However, the maximal extension always exists and plays an important role (see sec-
tion 4). Here werecall the definition of the maximal extension which only involvesthe Boo-
lean semi-algebra structure of the initial set A of subsets of 2. Although this construction
seems natura (it is equivalent to those of classical measure theory), it implicitly uses the
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Densities of idempotent measures and large deviations 13

dual continuity of the complete latticeD or at least of the sublattice [0, K(£2)]. This same
property will still be necessary to prove that K has a density.

Let usconsider K an idempotent measure on a Boolean semi-algebra. A of subsets of 2.
We denote by G the set of countable unions of elements of A, G is then the least semi-o-
algebra containing A. We define on G the extension Kt of K :

Kt (G) =supK(4,) if G=[] A, with 4, € A.
" neN

Thisdefinition iswell posed, as by the o-additivity of K and the stability of A by finite
intersections and unions, the supremum is independent of the sets A,, and KT is the unique
extensionof Kto G.

Now, for any subset A of 2 we define:

* _ : +
K*(4) = Geg,lcfbA K" (@).

Proposition 26 ([12]) Supposethat ([0, K(€2)], <) isa dually continuous lattice. Then K*
isthe maximal extension of K to the set of all subsets of €2.

Proof. We recall the proof in order to point out the use of dual continuity. Let usfirst prove
that K* ismaximal. For any semi-o-algebra3 containing.A and any extension K’ of K to B
wehave B D G and K’ = KT onG. Then, forany B € Band G € G suchthat G O B we
have K'(B) < K'(G) = K" (G), thusK'(B) < K*(B).

In order to provethat K* isan idempotent measure on P(2) we only haveto prove that
for any finite or countable family {A;, ¢ € I} of subsetsof 2, K* (U; A;) = sup; K* (A;).
The monotony of K* is evident from the definition. Then, K*(U; A;) > sup,; K*(A4;). For
the other inequality, we have

(A — : +
sng (A;) = sngeg{néinK (G)

inf K (G; 6
Gied, Gioa viel 3" (Gi) ©)

= inf K* (U:G5)
G,€G,G; DA; Viel

K* (UiAi)a

Y

which leads to the requested equality. In (6), we have used an inversion formula of thesup
and inf operations of the same type than (3) but for the opposite order = ({K* (G), G €
G, G D A;} isafiltered set), which holdsin adually continuouslattice only. As K takesits
valuesin [0, K(©2)], thedua continuity of this sublatticeis only needed. [
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14 Marianne Akian

Let usnotethat as? € A, K* isnecessarily aprobability if K is so.

Example 27 If K isthe “Lebesgue measure” on A : K(A) = 1 for A # () and K(§) = 0,
then K* isthe “Lebesgue measure” on P(2) : K*(A) = 1 for any non empty set A. The
function ¢(w) = 1 isthe density of K* and the maximal density of K. ]

Example 28 If I/ isthe set of open sets of atopological space X, thelattice (i, C) is not
dually continuous (see section 1). Let us consider the dioidD = (U4, U, N) with neutral ele-
ments0 = fand1l = X andtakeQ = X, A = Y and K(A) = Aforany A € A.
Clearly, K is an idempotent D-probability, G = ¢/ and thus Kt = K. Now, for any subset A
of Q,K*(A) = A, theinterior of A. Then, K* isnot an idempotent measure and is even not
additive. m

Example 29 Consider now the dioidD = (C,U,N), where C is the set of closed sets of
a compact subspace K of X and K(4) = AnK foral A € A = U. Clearly, Kisan
idempotentD-probability (notethat if 7 isasubsetof C, thensup F = UperF)andas(C, C
) isdually continuous, then Proposition 26 showsthat K* isan idempotent measure. Indeed,

wefind by calculationK*(A) = A N K. Moreover, thefunctionc*(z) © Kk ({z}) ={z}n
K isthedensity of K*. [

AsK* isdefined on all subsetsof €2, we find agood candidate to the density function of
K:¢*(w) = K*({w}). Let usdenote

K(A) = sup{e*(w),w € A).
Since K* is monotone, we have K(A) < K*(A) for any subset A of Q.
Proposition 30 If K hasa density on A, then ¢* isthe maximal density of K on .A.

Proof. Let ¢ beadensity of K. Wehavec*(w) = infgeg g3w KT (G) = infac 4,45, K(A) =
c(w). ThusK(A) < K(A) < K*(A) = K(A) forany Ain A. []

Example 31 Consider the dioid and idempotent measure of Example 28. Then Proposi-
tion 30 shows that K has no density since ¢*(z) = ) = 0 would have been its maximal
density and K # 0. [

Proposition 30 impliesthat if K has a density ¢, then KT has ¢* or ¢ as density on G.
However, in order to provethat ¢* isadensity of K*, weneed the stability of G by any union
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Densities of idempotent measures and large deviations 15

operation (even not countable). Thisisthe caseif A isthe set of open sets of atopological
gpace €. In this case, we have

K(A) = ilégc*(w)

= su inf  KH(G
wegGeg,Gaw (@)

= inf sup KT (G,,).
(G.€G4,Gudw YweA)weA
Note that thislast equality is of the same type as (3) for the opposite order <°P and thusre-
quiresthe dual continuity of thelattice [0, K(€2)]. Now, if K™ hasadensity and | J,,c 4 G.. €
G, we deduce that sup ¢ 4 Kt (G,) = Kt (Uyea Gu)- Then,as U e 4 G D A, weobtain
K (Upea Go) = K*(A) and K(A4) = K*(A). Asthe other inequality is always true, K*
has c* as density.
In conclusion :

Proposition 32 If [0, K(£2)] isadually continuouslattice, €2 isa topol ogical space, A isthe
set of open sets of 2 and K has a density on A, then K* has ¢* as density on P(£2).

Remark 33 If K isagain (resp. cost) measure with density ¢ on the set .A of open sets
of atopologica space €2, then ¢* is the upper semi-continuous (u.s.c.) (resp. lower semi-
continuous (I.s.c.)) envelope of c. Indeed, c*(w) = inf 450, 4c.4 8up,e4 c(y), whichisthe
definition of theu.s.c. (or I.s.c., if < correspondsto >) envelope. [

We prove now, that under some conditions on the Boolean semi-algebra A, any idem-
potent measure has a density.

Theorem 34 Consider a Boolean semi-algebra A of subsets of 2 such that the following
property holds:

forany A € A and any cover A C |J;c; 4; by elements of A, there exists a
countable subcover of A : A C |J;c; 4; (J C I and J countable).

Then, for any idempotent D-measure K on A such that [0, K(€2)] isa dually continuous
lattice, c* isa density of K in.A (and a density of Kt in G).

Proof. As @ isthe set of countable unionsof elementsof A, G satisfiesthe same property as
A. Now we provethat ¢* isadensity of KT ing.
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16 Marianne Akian

Wedtill have Kt (G) = K*(G) = K(G) forany G € G. Onthe other hand, using again
property (3), we haveforany A € G

K(A) = inf sup Kt (G,,).

(G.EQA,leaw YwEA) we A

We can extract from the cover A C |, 4 Gu, With A and GG, in G, a countable subco-
ver: A C Uijes Gu,- AsT iscountable, J;c; Go, € G and Kt (A4) < Kt (U;je; Guy) =
sup;e; K* (Go,) < supye s K (G,). ThenK(A) = K (A) forany Aing. |

Corollary 35 Consider a topological space 2 such that the set of open sets A satisfiesthe
conditions of Theorem 34. Then any idempotent D-measure K on .4, such that [0, K(€2)] is
adually continuouslattice, has c* as density on .A, and K* has ¢* as density on P(£2).

Corollary 36 Consider a set €2 and a Boolean semi-algebra .A of 2. Suppose that there
existsa countablesubset B of A, such that one of the following equivalent conditionsholds:

e foranyw € A € A, thereexists B € Bsuchthatw € B C A (Bisa"basisof
neighborhoods”),

e anyset A € Aisanunionof elementsof B: A = (J;¢; B;.

Then, G is stable by any union operation and thus defines a topology on €2 with a countable
basis of neighborhoods. Moreover, A satisfies the assumptions of Theorem 34 and thusthe
conclusion of Corollary 35 holds.

Example 37 A separable (that iswith a dense countabl e subset) metrizable space, and then
a Polish space (complete separable and metrizable space) has a countable basis of neigh-
borhoods. Thus, the conclusion of Corollary 35 holds. Thisincludes any separable Banach
space E endowed with thestrong topol ogy, thusalmost all classical functional spaces: L? (€2)
for 1 < p < +oo and 2 an open set of R”, W5?(Q).... u

Example 38 Any Banach space F' such that its dual space E’ is separable has a countable
basis of neighborhoodsfor the weak topology, and any dual space £’ of a separable Banach
space F has a countable basis of neighborhoods for the weak-* topology. Thus, the result
holds for L?(€2) endowed with the weak topology if 1 < p < +oo, for L*(€2) endowed
with the weak-« topology.... [

Example 39 If Q isatopological space such that Q = |J,, oy C With €, compact metri-
zable, then the set of open sets.A satisfiesthe assumptionsof Theorem 34 (any openset isthe
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Densities of idempotent measures and large deviations 17

countable union of compact sets) and thusthe conclusion of Corollary 35 holds. Example 38
may also be treated along these lines. [

Example 40 We may found non-separabl e compl ete metric spacesin which the conclusion
of Theorem 34 isfalse. Let us consider €2 a non-separable normed vector space (such as
L*((0,1))), and denote by B(w, r) the open ball of center w and radius r. For any idem-
potent semiring D, we define on the set of open setsof €2, the following idempotent D-mea-
sure:

K(A) = 0 if 3(w,) € Q¥ suchthat A C | J B(wy, 1),
neN
= 1 otherwise.

By the definition, we obtain ¢*(w) < K(B(w, 1)) = 0, thusc¢*(w) = 0 forany w € Q.
Nevertheless, K(2) = 1 whichimpliesthat K hasno density (otherwise c* would have been
adensity). Indeed, if 2 C {,, B(wy, 1), then, by linearity, we have for any positiveinteger
m, Q C U, B(¥,1), whichimpliesthat the countable set {2, m € N*, n € N}is

densein 2. Thisleadsto a contradiction with the non-separability of €2. [

As the property imposed to the sets of .4 in Theorem 34 is satisfied by any countable
union of compact sets if A is composed of open sets, we have the following corollary of
Theorem 34.

Corollary 41 Let €2 be a topological space such that €2 is a countable union of compact
sets and A be the set of F,, open sets, defined as the open sets which are countable unions
of closed sets. Then, A isa semi-c-algebra and A satisfies the conditions of Theorem 34.
Then any idempotent D-measure such that [0, K(€2)] isa dually continuouslatticehas ¢* as
density on A.

However, A isin general not stable by any infinite union operation, thus K* may not
have ¢* as density, as shown in the following example. Let us note that .A plays the same
role as the Baire sets o-algebra in classica probability theory : thisis the semi-o-algebra
making continuous functions semi-measurabl e (see section 4).

Example42 Let Q = [0, 1]* = F(R, [0, 1]) be endowed with the product (simple conver-
gence) topology. Topological space €2 iscompact but not metrizable. Thuseven if in general
an idempotent measure has a density on the F,, open setssemi-o-algebra.A, it may not have
adensity ontheentire open setso-algebra.4’ and aso itsextensionto all setsmay not havea
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18 Marianne Akian

density. Asan example, let usconsider on.A or A’, thefollowingidempotent D-probability :
K(4) = 0 if 3(z,) € RV suchthat A C {f € Q, inf f(z,) < 1/2},
= 1 otherwise. '
Then by calculation we find for both .4 and .A’ semi-o-algebrasthe same value of ¢* on Q2 :
c*(f) = 0 ifdzge Rsuchthat f(zo) < 1/2 or equivalently ig%f(x) < 1/2,
= 1 otherwise.

Indeed {f € Q, f(z) < 1/2}isaF, opensetforany = € R.

Considernow U = {f € Q, inf er f(z) < 1/2} = Uzer{f € Q, f(z) < 1/2}. We
havec*(f) = 0forany f € U. U isanopen set whichisnot acountableunion of closed sets
and alsowhichisnotincludedinacountableunion of setsof theform { f € €, f(z) < 1/2}.
Then, if we usethe semi-o-algebraof opensets A, U € A" but K(U) = 1 # sup sy ¢*(f),
then K has no density in .A’. If thistime we use the semi-c-algebra of F, open sets A, K
has necessarily ¢* asdensity on A, but K* hasno density on P(€2) or evenon A’ : K*(U) =
1 # sup e (/). .

4 |dempotent integration

In [12] Maslov gives a construction of idempotent integrals over semiringsD that are me-
tric spaceswith particular properties of the distance. In this context, he provesthefollowing
theorem concerning the integration of semi-measurable functions.

Theorem 43 ([12]) Consider K’ an extension of a finite idempotent measure K to the least
o-algebra containing .A. The idempotent integralswith respect to K’ and K* of any (boun-
ded) lower semi-measurable function taking its values in a separable subspace of D are

equal.

This result, which is a direct consequence of the construction of the integral, gives a
justification to consider only idempotent measures with densities. We generalize here the
construction of theidempotent integral tolocally continuouslatticesand then provethe Riesz
representation theorem.

Theorem 43 was set when A is a Boolean algebra, but the Boolean semi-algebra struc-
tureisonly needed. Moreover, D is supposed to be ametric space and to have the following
property : for any a < b € D, thereexistsc € D such that ¢ < ¢ < b. Then, alower semi-
measurable function is afunction f from Q toDD such that the sets Q(a) = {w € Q,a <
f(w)} areelements of G for any a € D.
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In order to generalize thisresult to any locally continuouslatticeDD, we have to replace
< by < (way below) inthe definition of £2(«). In thiscase, the property “foral « < b € D,
thereexistsc € D suchthat ¢ < ¢ < b” isaconsequence of the continuity of the locally
completelatticeD [11]. Then, the separability can be replaced by the existence of acountable
basisto thelatticeD. Notethat, however the existence of acountablebasisisequivalent, if D
isacompletelattice, to the property that D endowed with the Lawson topology isacompact
metric space, the metric does not need to be explicitly described.

In the construction by Maslov of idempotent integrals, ID was not necessarily an idem-
potent semiring but only an ordered semiring with the law & compatible with the order <,
thusthe classical measuretheory and theidempotent measure theory may betreated together.
Here, wetreat idempotent measures with semi-al gebras (see section 2) and semi-measurable
functions, whereas classical probabilities or probabilities over symmetrizable ordered se-
mirings (such as (R*, +, x)") have to be treated with algebras and measurable functions.
We thusrestrict ourselvesto the idempotent measure theory and generalize the construction
of idempotent integrals to general locally continuous lattices, by using only properties of
thisstructure. The generalization of the previous theorem will then be a consequence of this
construction.

Remark 44 Inalocally continuouslatticelD, thelower semi-continuity (I.s.c.) isequivalent
to the continuity for the Scott topology generated by sets {z € D, a < z}. Thus, semi-
mesasurability isanatural generalization of semi-continuity in the sameway asmeasurability
isageneralization of continuity.

For ageneral latticeD, the set of |.s.c. functionsfrom 2 toD isa sup-semilattice. Itisa
latticeif D islocally continuousand it isalD-semimodul e (amodul e over asemiring) if the®
operation isdistributivewith respect to infinitesup. If now continuousfunctions are defined
as functions which are both |.s.c. and upper semi-continuous (u.s.c.), the set of continuous
functions from Q toD isaD-semimodule if D is dually continuous and if @ is distributive
with respect toinfinitesup andfilteredinf. Itisalatticeif in additionD islocally continuous.

A generadlization of the classical integration in ordered symmetrizable semirings would
have consisted in defining measurable functionsas functions f such that the sets{w € Q, a
< f(w)}and{w € Q, a>> f(w)} aremeasurable, for instance Borel sets. But thisrequires
both the local continuity of D and the dual continuity of D. ]

Proposition 45 Let A be a Boolean semi-algebra of subsets of €2 and G the semi-o-algebra
generated by A. We denote by £(£2,.A) the set of (finite) D-linear combinations of charac-
teristic functions1 4 of sets A € A and by Z(€2, .A) the set of functions from 2 toDD which
are nondecreasing limits of elements of £(€2, .A).
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For a general semiringD, £(€2,.A) isaD-semi-algebra (an algebra over a semiring).
If the @ law is distributive with respect to upper bounded countable sup, then Z (2, .A) =
Z(9,G) isaD-semi-algebra stable by countable upper bounded (by any function) supre-
mum. If in additionD isalocally continuouslattice, then £(2, .A) and Z(€2, .A) arelattices.

Proof. By construction, £(£2,.4) is a semimodule thus a sup-semilattice and it is a semi-
agebrasince A is stable by finite intersection. Again by construction, Z (€2, .A) is stable by
countable upper bounded supremum and is equal to Z(R2, G) since 1y, 4, = Pnen L4, -
The distributivity of @ with respect to countable & impliesthat it is asemi-algebra.

In order to provethat £(£2,.4) and Z (€2, .A) arelattices, we need aformula of theform:
(@2‘ A ® ILAZ.) A (@]‘ ;@ ILB]) = @i,j(/\i A ,u]-) ® ﬂAiﬂBj . Thisholdsif D |sIocaIIy conti-
nuous and the sums are directed and upper bounded. But any sum &; A; @ 14, may berepla-
ced by the sum of all terms (e Ai) ® 1,4, for I finite whose valuesin any point form
adirected set. [

Proposition 46 Let usdenoteby S(€2, G) the set of semi-measurablefunctionswith respect
t0G:S(Q,6)={f:Q2—D, Qf(a) € GVa € D} whereQs(a) = {w € Q, a < f(w)}.
For any semi-measurablefunction f, we also denoteby G( f) the semi-o-algebragenerated
by the sets Q¢ (a) for a € D.

WehaveZ(Q2,G) C S(2,G) and any function f of Z(£2,G) is such that G(f) has a
countable basisin G, that is a countable subset B of G (not necessarily included in G( f))
stable by finite inter section, such that the elements of G( ) are unions of elements of 5.

Let us supposenow that D is a locally continuouslattice and that & isdistributivewith
respect to upper bounded infinite sup. Then, Z(£2, G) is exactly the set of functions f €
S(,G) suchthat G( f) hasa countable basis. If D has a countable basis or A has a coun-
table basis, then

7(92,6) = S(2,G).

Proof. Consider afunction f = &; A\; ® 14, € G wherethesumiscountableand directed (as
in previousproof) and thesets A; € A. Then, theset of A; isstableby finiteintersectionand
the set of A; by finiteaddition. For any a € D, Q¢(a) = U;, 4« Ai € G, thus f € S(Q,G).
In addition, Qs (a) N Qs (b) = Qs (a@b), therefore G( f) is the set of countable unions of
sets €24 (a) and thusisincluded in the set of unions of sets A; which forms a countable basis
of G(f).

Now, supposethat D islocally continuousand consider f € S(€, G) suchthat G(f) has
acountablebasisBinG. Thenas f(w) = sup{a € D,a < f(w)}foranyw € Q, weobtain

f - aegDa @ ﬂﬂf(a)
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= @& a® & 1B)

a€lD BeB, BCQg(a)
= & AMB)®@1p
BeB

with A(B) = sup{e € D, B C Qy(a)}. Then, as B is countable, f/ € Z(£2, A). Inthe
previous equalities, we have used the distributivity of the @ law with respect to infinite &.
However, if D has a countable basis, the countabl e distributivity is only needed.

Now if A has acountable basis, for any [ € S(2,G), G(f) has acountable basis, thus
7(2,6) = S(2,6).

If thistimeD has a countable basis, then the Scott topology has a countable basis and
since G(f) isthe inverse image of the Scott topology by the function f, G(f) has aso a
countable basis. [

Let usnotethat in general S(€2, G) isnot asemi-algebra (it is not stable by addition) ex-
cept if D hasacountablebasisor if A isstable by any union operation. But thislast property
impliesthat A isatopology and S(£2, G) isin fact the set of |.s.c. functions,

Proposition 47 Let usconsider a semiringD such that @ is distributivewith respect to up-
per bounded infinitesup and let K be an idempotentD-probability on (€2, .A) with extension
Kt tog.

If D is alocally continuous lattice or D is a dually continuous lattice, then there exists
auniqueD-linear formV on Z(£2, .A), continuous on converging nondecreasing sequences
(i.esuchthat V(f,) /oo V() if fr /o100 f) andextending K, inthe sensethat that
V(14) = K(A) forany A € A.

In the two following cases, we have a general expression for V :

¢ IfDislocally continuous, then

V()= aeEaDa@K* (Q(a)).

e If [0, 1] isdually continuous and .A has a countable basis, or more generally if K+
has a density ¢*, then
V()= & [flw)@c(w).
we
Proof. Consider aD-linear form V onZ(£2, .A), continuouson converging nondecreasing se-
quences and such that V(1 4) = K(A) for any A in.A. The continuity impliesthat V(1 4) =
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K* (A) forany A € G.Now if f € Z(Q2, A), then f = &; \; ® 14, where the sum is coun-
tableand then V(f) = &; M;K(A;). If thisexpression only dependson f, that isif

DAL = D p; 1 = & ARKA) = & py @K(B;)) )
el JEJ el JEJ

for any countablesets 7 and.J andfor A; and B; in A, then V may bedefined in that way and
if ® isdistributivewith respect to upper bounded countable sup, V satisfies the properties
of the proposition. Before proving (7) for particular cases, let us notethat it is equivalent to
plp < 2_669[/\2'@1& = u®K(B) < Z_EIGBI/\Z'(EQK(AZ') (8)
for any countable set /. Moreover, we only need to prove (8) for “directed” sums (indeed,
adding terms of theform (B;e7 A;) ® 1,4, With J finite to the first expression does not
change the second expression).
Let us suppose @ distributivewith respect to upper bounded infinitesup and first prove
that (8) holdsin alocally continuous|atticeD. Notethat in thiscase, for any f € Z(92,G),
G(f) has acountable basis denoted B and following the previous proof, we have

f= @ AMB)®1s
BeB
with A(B) = sup{a € D, B C Qy(a)}. Thus
Vi) = B MB)OKB)

- ses( ©  KB)
a€D BeB, BCQy(a)

= @ a®K"(Q(a)).
a€ll

SUppOSEﬂOW that LRI =X DBier A ® 1a;, that iSu < Dicr, wea; A; for anyw € B, with

I countable and the values of the sum directed. Then, for any ¢ < u, B C User, o<, Ai,

and

a®KB) < «@( & K4))

i€, a<\;
< &  MNOKA4;)
i€l a<\;
< 8 NeKA4;).
icl

Taking the supremum over ¢ < p and using the infinite distributivity of @, we obtain the
(8). Note that in previous proof, infinite distributivity of @ may be replaced by countable
distributivity if D has a countable basis.
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Let usprovenow that (8) holdsif [0, 1] isadually continuouslattice. L et us supposethat
p®1p < Ger A @ 14, with I countable and the values of the sum directed. Denote by 5B
the set composed of sets A;, B and A; N B and by G’ the semi-o-algebra generated by 5.
Then, B iscountable basis of G’ and by theresults of previoussection, K has adensity ¢* on
G'. Then using the infinite distributivity of @,

WOK(B) = & poc)
weB

N

A *

wGEBB 1€l, wEA; ) ©e (W)
A *

iee}I ®<we§enBC (w))

& A\ @ K(A;)

el

N

N

which proves (8). We may prove along the same lines

V()= & flw)@c(w).
weR
But as ¢* depends on the sets A;, thuson f this does not lead to a genera expression for
V(f) except if ¢* isadensity of Kt intheentirealgebrag. ]

A semi-measurable function f issaid integrableif V(f) € D. Thelinear form V coin-
cides with the integral defined by Maslov. It will then be denoted by

Wﬁzéﬂ@@&w)

It can be defined for any Boolean semi-algebra or semi-o-algebra A. In particular, for any
extension K of K to alarger semi-c-algebra.A’, we may define an integral V' on the set of
semi-measurabl e functions with respect to .A’. By uniqueness, V' coincides with V on the
set of semi-measurable functionswith respect to .A. Thisistheresult of Theorem 43. If A’
isthe o-algebra generated by A andD = R ,,ax, SeMi-measurable functions coincide with
classical measurable functions and there are at least as many integrals V' as extensions K/
of K. If [0, 1] isadualy continuous lattice, we can aso consider the maximal continuous
linear form V* on the set of all functions, suchthat V*(14) = K(A) forany A € A. Then,
V*(14) <= K*(A) for any set A, where K* isthe maximal extensionof K to P(Q2).As f =
Baep @ @ Lo, (a) for any function f, V* islower than the integral associated with K* and
then coincides with it.
If K hasadensity ¢, thenforany f € Z(Q2, A) :
V(f)= & flw)@c(w). (9)

we
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In thiscase, wewill say that V has a density. Then, Theorem 43 or Propositions47-46 toge-
ther with theresultsof the previous sectionimply that for any |.s.c. function f, theintegral of
f with respect to aR ,,,x-probability K defined on the open sets or Borel sets has theform:

V()= sup flw) + (W) (10)

with ¢* an u.s.c. function (R .y iS localy continuous with countable basis and [—oc, 0] is
dually continuous).

In [9, 10] Kolokoltsov and Maslov prove that any continuous (for the uniform conver-
gence topology) linear form from the set Cx (2) of continuousfunctionswith compact sup-
port from 2 toD = R ,ax hastheform (10). Asfrom any (non necessarily bounded) measure
on (€, .A), where A istheset of open sets, we can construct an integral whichisacontinuous
linear formonCx (£2), theexistenceof adensity to thismeasure may have been deduced from
(10). Conversely, (10) can be deduced from the existence of the density of any idempotent
measure by using the Riesz representation theorem [12]. However, even if some generaliza-
tionsof (10) may be done (see Kolokoltsov [8]), many restrictionson the semiringD and the
topological space €2 are necessary in order to get (10) or the Riesz representation theorem,
restrictions which are not needed to prove the existence of adensity.

Wegivenow a“probabilistic” version of the Riesz representationtheorem. Thisapproach
allowsto consider general functional spaces, when the*“integration” point of view adoptedin
[9, 10, 8] imposesto the topological space 2 to be locally compact. We thus consider idem-
potent probabilities(or bounded measures) and linear formsontheset C (2, D) of continuous
functions (or upper bounded continuousfunctions). Notethat in general, C (2, D) isnot aD-
semimodule except if D dually continuousand @ distributeswith respect to infinitesup and
filtered inf. In the following result, 2 needs only to be normal with respect toD [12], where
we adopt the following definition of normality.

Definition 48 We say that the topological spaceisD-normal, if for any digjoint closed sets
F and GG of 2 and for any a € D, there exists a continuous function f fromQto [0,a] C D
such that f isequal to® on F' and a on (5.

A generdization of the classical definition of normality would have been to satisfy the
previous condition with « = 1 only. However, the proof of the Riesz theorem requires the
previous conditioninitsgeneral form. Onthe other hand, we may deducethe general norma-
lity condition from the restricted normality, when the product ® is continuous (for the good
topology) that iswhen @ isdistributivewith respect to infinitesup and filtered inf. If D isa
connected by arcstopological space, inparticular forD = R pax, Rumin OF (R, max, min), the
D-normality followsfrom the classical normality. For instance, €2 may be any metric space
and thus any functional space.
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Theorem 49 (“ Riesz representation theorem”) Suppose that D isa non trivial (= {0})
locally continuous lattice with countable basis, such that @ is distributive with respect to
upper bounded countablesup and €2 isaD-normal topological space.

We supposethat C (€2, D) isaD-semimodule and denote by .A the minimal semi-o-alge-
bra of subsets of 2 leading continuous functions to be semi-measurable with respect to .A.
Then, A isthe set of 7, open sets (where a F, set isdefined as a countable union of closed
sets) and the set S(£2,D) of semi-measurablefunctionswith respect to A is equal to the set
of functionsfrom €2 toID which are nondecreasing limits of continuous functions.

Let V bealinear formon C(£2,D), continuouson converging nondecreasing sequences
and such that V(1) = 1. Then, V may be extended in a continuouslinear formon S (2, D).
V isexactly the idempotent integral

V) = 1) O K(dw) 1
corresponding to the idempotent D-probability K defined on A by

K(A)= V()=  sip V()
feC(QD),f<14

An idempotent probability K such that (11) holds is unique. Thus, (11) sets up a bijective
correspondence between continuouslinear formsonC(€2,D) suchthat V(1) = 1 andidem-
potent D-probabilities on (€2, .A).

Moreover, if @ is distributive with respect to infinite @ then V has density in the sense
of (9) if and only if K hasa density.

Proof. Let usprovethat A isthe set of F,, open sets. By definition, A isthe semi-o-algebra
generated by sets Q¢ (a), with f continuous. If f is continuous, it isl.s.c. thus2¢(a) isan
open set. If I isacountablebasisof D, thenfor any z < y inD, thereexists z € I such that
r < z =< yandthe converseisaso true. Then Qs (a) = Uper, axbCr(b), Where C'¢(b) =
{weQ, b= f(w)}. SinceC(b) isaclosed set for any b € D and ! is countable, Q2 ¢(a) is
aF, open set. The set of F,, open setsis asemi-o-algebra, then A isincludedinit.

Suppose now that U isa F, open set, i.e. U = U, F, with F,, closed. From the D-
normality of €2, there exist continuous functions f,, from Q into [0, 1], such that f,, = 1
on F,, and 0 on U°. Since0 # 1 (D # {0}), thereexistsa # 0 suchthat ¢ < 1, then
an(a) D F, and an(a) c U for any n. Thus, U = Uann(a) € A.

By construction, theset S (€2, D) of semi-measurablefunctionswithrespect to.4 contains
continuous functions and then nondecreasing limits of continuousfunctions. Conversely, if
[ € S(2,D) anda € D, then Q(a) is an open set such that there exist closed sets F, ,
with Q¢ (a) = U, F, 4. Then, there exists continuous functions f,, , with valuesin [0, a],
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suchthat f,, =aonk,,and0 onQ¢(a)°. Thisimplies®,, f,, = a® 1o, (a)- Now, if I
isacountablebasis, f = B,crae® 1o, (a) = Bael, nel fna and then is the nondecreasing
[imit of continuousfunctions.

Supposethat V isalinear form on C(£2,D) continuous on converging nondecreasing se-
quences, and consider f € S(Q,D). If f, 7, .. fwith f, € C(Q,D), thenV(f) =
lim,, 400 V(f,). AsC(£2,D) isstableby finited (by assumption) and A (by the continuity
of D) and V iscontinuouson nondecreasing sequences, thisformulaisindependent of the se-
quence ( f,) and thus define aD-linear form on S(€2,ID) which is continuous on converging
nondecreasing sequences. As aconsequence, V (/) = sup,<; seciam V(9)-

Now, if A € A, thenly € S(Q,D), for Qy,(a) = {w, a € L4(w)} = Q, Aor{.
Then, K(A) = V(1 4) definesan idempotent D-probability on.A. By uniquenessof theinte-
gral (see Proposition47), V isexactly theintegral associated with K. Moreover, (11) implies
K(A) = V(1 4) whichimpliesthe uniquenessof K. By Proposition47, V hasadensity if K
has a density and ® is distributivewith respect to infinite . Conversaly, if V has adensity
denoted by ¢, then clearly K has c asdensity : K(4) = V(14) = Gueola(w)@c(w) =
Buea c(w). ]

If Q isametric space, every open set isan 7, set. Then in a Polish space, every conti-
nuous (on converging nondecreasing sequences) linear form on C(2,ID) admits the repre-
sentation (9) ((10) in R,ax)- In the other hand, by Proposition 47, the counter example of
section 3 leads to acounter example for linear forms. The following continuouslinear form
VonC(Q = L*(0,1), Ryayx) does not have arepresentation of the form (10) :

V(f) = sup{a€R, Bwn) € 2V, {w, a < f(w)} CUpB(wn, 1)}
= inf sup f(w).
(wn)eQm w, [lw—wn||leo>1 Vn ( )
Moreover, V is continuousfor theuniform convergencetopology onC (€2, Ruax), defined by
theexponential distanced, i.e. d(z,y) = |e"—e¥|; d(V(f), V(g)) < sup eq d(f(w), g(w)).

5 Application to Large Deviations

The purposeof Large Deviationsisto find, for agiven family of probabilities(P.).so (resp.
(Pn)nen) on (2, A), the asymptotic rate of convergence of P. when ¢ tendsto 0 (resp. n
tendsto infinity). In practice, the limit isaDirac measure at some point. For instance, if X,
areindependent random variableswith same law, thelaw P, of £13=+Xx tendsto the Dirac
measure at themean point E(X; ). For almost all sets A, P.(A) tendsto 0 exponentially fast
and for particular sets A, —¢ log P.(A) has alimit which can be expressed as the minimum
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of afunction I over theset A. In order to formalize thistheory, Varadhan hasintroduced [ 15]
the following concept :

Definition 50 ([15]) Consider a probability space (€2, .A), where (2 isa complete separable
metric space and A is the set of Borel sets of €2, and a family (P. ). of probabilitieson
(€2,.A). Then (F.) obeysthelarge deviation principleif there existsarate function / : 2 —
[0, +o0] such that

1. I islower semi-continuous(l.s.c.) and 2, = {w € Q, I(w) < a} isa compact set for
any a < +o0,

2. foreachclosedset C' ¢ Q

limsupelog P.(C') < — inf I(w),
e—=0 wed

3. for each openset U C {2

o S ‘
llrsn_gélfelog P.(U) > Jlelfgjf(w)

Since the functions K(A) = —inf,ec4 I(w), with I asin point 1 are particular R ,ax-
idempotent probabilities on (£2,.A), we will consider the following weak form of the pre-
vious definition.

Definition 51 Consider for any A € A the quantities

K" (A) ® Jim supelog P (A),

e—0
A def . .
K*(4) = hrsn_}élf elog P.(A).
We say that (F.) obeys the wesk large deviation principleif there exists a R j,,ax-idempotent
probability K on (€2, .A) such that

1. thereexistsa sequence (€2,,) of compact setssuch that K(€2;,) =, 4 0 = —00 (C°
denotes the complementary set of '),

2. for each closed set C' € ©, KY (C) < K(C),
3. foreachopenset U ¢ Q, K" (U) > K(U).
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Then (P.) obeys the large deviation principleiff (P.) obeys the weak large deviation
principlewith ameasure K having an upper semi-continuous(u.s.c.) density ¢ = — I (condi-
tion 1 of both definitionsare equivaent inthiscase). But if ( P.) obeystheweak large devia-
tion principle with a measure K, the maximal extension K* of the restriction of K to open
setsisaso admissible (K* (U) = K(U) < K*"(U), K*(C) > K(C) > KY(C)). Now, the
theorems of section 3 give sufficient conditionson 2 for K* having a density and this den-
Sity is necessarily an u.s.c. function. Conversely, if K has an u.s.c. density then K = K*.
In particular if 2 isa complete separable metric space, we have shown in Example 37 that
K> has necessarily adensity and thus Definitions 50 and 51 are equiva ent. We suppose now
that 2 isageneral topological space and search for conditionson ( P.) in order to satisfy the
weak |arge deviation principle. For thiswe construct ameasure K which isagood candidate
for the large deviation principle.

Remark 52 KY and K" are nondecreasing functionson .4 and K(0) = 0, K(Q2) = 1 for
K = K" or K*. Moreover K (A U B) = KY(A) ¢ K (B) for any A and B in A but this
isfalsefor K. However, thislast property is not useful, as one can construct the maximal
idempotent-measure lower than a nondecreasing function K*, but not the minimal measure
greater than KV . [ ]

Proposition 53 Denoteby i/ the set of open setsof €2. The maximal R ,,,-idempotent mea-
sureon (2, U) lower than K" is the following measure :

K(U) = inf KMNU,) YU € U.
) = vt ", SR K () VU €

Proof. By additivity and continuity, any R ,,.x-idempotent measure lower than K" islower
than K. Let us prove that K is an idempotent measure. Firstly, K(§) < K" (@) = 0, then
K(@) = 0 and as K" isnondecreasing, K is also nondecreasing.

Consider a sequence (possibly finite) of open sets (U,,) and U = U,,U,,. Since K ismo-
notone, K(U') > sup,, K(U,,). On the other hand

supK(U,) = sup inf sup K (Un.m)

n n (Un,meu)m , m

UmUn.m=Un
= inf sup K (Un,m)
(Un,meu)n,m , n,m
UmUnym:Un Vn
inf sup K" (Up.m)

(Unymeu)nym , n,m

Um,nUn,m=U

v
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> K(U).
Then K(U,,U,,) = sup,, K(U,, ) which implies both additivity and continuity properties. m

Consider the maximal extension K* of the measure K of Proposition 53 to the algebra
of all subsets of €2. We have:
* _ . A
K (4) = (UneL{)ylzI,lEnUnjA S%p K™ (Un).
It isthe maximal measure on A (or P(£2)) satisfying condition 3 and it is a good candidate
to satisfy theweak large deviation principle. Indeed, supposethat K’ satisfiestheweak large

deviation principle, then K < K on open sets (by condition 3 and Proposition 53), thus
K < K* on A and K* satisfies condition 2.

Remark 54 Inametric space(?, therestriction to open setsof ameasure K satisfying condi-
tions 2 and 3 of the weak large deviation principle, is unique and thus equal to K*. Indeed,
any open set U isthe union of open setsU,, suchthat U,, C U (U,, = {w € U, d(w,U®) >
1/n}). Then, for any measure K and K’ satisfying the large deviation principle, we have
K(U) > K(U,) > K (U,) > K\(U,) > K(U,) thusK(U) > sup, K'(U,) = K (U).
By symmetry, we obtain the uniqueness.

Then, in a metric space, a measure K satisfying the weak large deviation principle is
necessarily equal to K* on open sets and K* satisfies the weak large deviation principle. As
aconsequence, therate function I of Definition 50 is unique and equal to the opposite of the

density of K*. [
We thus have the following result.

Theorem 55 1) If P. obeys the weak large deviation principle, then K¥ (C') < K*(C') for
any closed subset C' of €2, that is

KY(C) < inf sup KM (U,). (12)

(Uneu)m CCUnUn i3

2) The following condition is sufficient in general and necessary in metric spaces for
(P.) to obey the weak large deviation principle:

Inequality (12) holdsand K* satisfies condition 1 of Definition 51.

3) In a metric space, Definitions 50 and 51 are equivalent. Indeed, if K* satisfies condition
1 of Definition 51, then K* has necessarily as u.s.c. density the function :

* _ : A
(@) = UEZ}fI}%SwK (U)-
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Then (12) isequivalent to
KY(C) < sup ¢*(w). (13)
wel

Moreover, if the conditions of Definition 51 hold, the rate function I is unique and egqual to

—c*.

Proof. We only have to prove point 3. Supposethat €2 is ametric space and that K* satisfies
condition 1 of Definition 51. Then the non necessary compl ete subspace Q2 = U,€2,, issuch

that K* (Q°) < inf,, K*(2%) = —o0 = 0. Then, K* (4) = K* (A N Q) for any subset A of

Q2. From Example 39, therestriction of K* to the open sets of €2 has necessarily the density
cw) = inf,, rgs, KU NQ) = infuey, v50K(U) = ¢*(w) forw € Q, where

c*(w) o K= ({w}) forany w € Q. Therefore K*(A) = K*(AN Q) = SUP_ 4 ¢ (W)
sup,ecq ¢ (w) forany A € U. Thus K* has ¢* as density and (12) is equivalent to (13).
Moreover, c*(w) = K* ({w}) = inf (1, cu),., weunv, SUP, KN (Un) = infrey, vz, KN (U).

|

Thusin ametric space, the unique rate function can be calculated by using open sets or
even abasis of neighborhoodsonly. Then, conditions1 and 2 of Definition 50 or 51 haveto
be verified. If © isnot a metric space, the same result may be obtained when open sets are
replaced by F, open sets (see Corollary 41). It isindeed the good notionin agenera normal
topological space at least, since the large deviation principle has to be compared with the
weak convergence of probabilities. Theweak convergence of a sequence of probabilities P,
towards P is by definition equivalent to the convergence of the expectations P, ( f) towards
P(f) for all bounded continuousfunctions, thusisequivalent to i) lim inf,, P,,(U) > P(U)
for al F, open setswhichisalsoequivalenttoii) lim sup,, P,,(C') < P(C) for all Gs closed
sets (where a G set is by definition a countable intersection of open sets). Indeed, expecta-
tions of continuous functions only involves Baire sets. Then, alarge deviation principlein
a general normal topologica space should have been defined by Definitions 50 or 51 with
closed sets replaced by Gs closed sets, and open sets replaced by F, open sets.

Let us note that condition 1 of Definitions 50 and 51 is exactly the tightness condition
for the idempotent probability K defined in [1] or [3] and is related to the tightness condi-
tion of classical probabilities. Although classical probabilitiesover Polish spacesare always
tight, idempotent probabilitiesare in genera not and thiscondition hasto beimposed. Com-
pactness results may be proved asin classical probability using thiscondition [3]. Themain
ingredient of this section was indeed that any tight idempotent probability on the set of F,,
open sets has a density. Thus, cases where weak and “ strong” large deviation principles do
not coincide may only be obtained when the tightness condition 1 is rel axed.
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