Limit laws for large product-form networks : connections with the Central Limit Theorem

Abstract : We consider a closed product-form network with $n$ queues and $m$ clients. We are interested in its asymptotic behaviour when $m$ and $n$ become simultaneously large. Our method relies on Berry-Esseen type approximations of the Central Limit Theorem. This leads to simple and natural conditions applicable to general networks, whereas the purely analytical methods used previously imposed restrictions on the queues. In particular, we show that the «optimal» dependance of $m$ w.r.t. $n$ is not necessarily linear. An application of these results to a transportation network is presented. We show how some queues can act as bottlenecks, limiting thus the efficiency of the whole system.
Type de document :
Rapport
[Research Report] RR-2513, INRIA. 1995
Liste complète des métadonnées

https://hal.inria.fr/inria-00074165
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:39:15
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : mardi 12 avril 2011 - 15:39:19

Fichiers

Identifiants

  • HAL Id : inria-00074165, version 1

Collections

Citation

Guy Fayolle, Jean-Marc Lasgouttes. Limit laws for large product-form networks : connections with the Central Limit Theorem. [Research Report] RR-2513, INRIA. 1995. 〈inria-00074165〉

Partager

Métriques

Consultations de la notice

95

Téléchargements de fichiers

45