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Abstract: A higher-order process calculus is a calculus for communicating systems which
contains higher-order constructs like communication of terms. We analyse the notion of
bisimulation in these calculi. We argue that both the standard definition of bisimulation
(i.e., the one for CCS and related calculi), as well as higher-order bisimulation [AGRS8S,
Bou89, Tho90] are in general unsatisfactory, because over-discriminating.

We propose and study a new form of bisimulation for such calculi, called context bisim-
ulation, which yields a more satisfactory discriminanting power. A drawback of context
bisimulation is the heavy use of universal quantification in its definition. A major goal of
the paper is to find characterisations which make bisimilarities easier to verify.

An important role in our theory is played by the factorisation theorem: When comparing
the behaviour of two processes, it allows us to “isolate” subcomponents which might cause
differences, so that the analysis can be concentrated on them.

Key-words: Bisimulation, higher-order process calculi
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Bisimulation pour les calculs de processus d’ordre
supérieur

Résumé : Un calcul de processus d’ordre supérieur est un calcul pour des systémes de
communication qui contient des opérateurs d’ordre supérieur comme communications des
termes. Nous analysons la notion de bisimulation pour ces calculs. Nous retenons que la
définition standard de bisimulation (c-a-d, celle pour CCS et les calculs s’y rapportant),
ainsi que celle de higher-order bisimulation [AGR88, Bou89, Tho90] sont en general non
satisfaisantes, car trop discriminantes.

Nous proposons et étudions une nouvelle forme de bisimulation pour de tels calculs,
appelée context bisimulation, qui offre un pouvoir de discrimination plus satisfaisant. Un
inconvénient a la context bisimulation est 1'utilisation massive de quantification universelle
dans sa définition. L’object principal de cet article est de trouver des caractérisations qui
facilitent la vérification des bisimulations.

Le théoreme de factorisation joue un réle important dans notre théorie. Lorsque 1’on
compare le comportement de deux processus, il permet d’ “isoler” des sous-compossants qui
peuvent provoquer des différences; I’analyse peut donc se concentrer sur eux.

Mots-clé : Bisimulation, calculs de processus d’ordre supérieur
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1 Introduction

Recently, various process calculi have been proposed which allow us to describe mobile
systems, i.e. concurrent systems whose communication topology may change dynamically.
We can categorise these calculi into first-order calculi like 7-calculus [MPW92], in which
only names (i.e., ports, or channels) can be communicated, and higher-order calculi like
CHOCS [Tho90], y-calculus [Bou89], Higher-Order 7-calculus [San92], in which agents (i.e.,
terms of the language) can be communicated. Higher-order calculi are formally closer to the
A-calculus, whose basic computational step — B-reduction — involves term instantiation.
This paper reports our study of the notion of bisimulation in higher-order calculi.

Bisimulation was originally introduced by Milner and Park [Mil80, Par81] for CCS-
like languages, in which mobility is not explicitly present, and since then it has become a
fundamental concept in the theory of concurrency. In mobility-free languages bisimulation
is defined on top of a labeled transition system, which describes the operational behaviour
of processes, by imposing the following circular requirement: Two processes are bisimilar if
any action by one of them can be matched by an equal action from the other in such a way
that the resulting derivatives are again bisimilar. Note that two matching actions must be
syntactically identical. This condition is generally too strong in calculi with mobility. For
instance, in name-passing calculi it does not respect alpha-conversion on names [MPW92].
But in higher-order calculi the damage goes well beyond alpha-conversion. We illustrate
the kind of problems which arise using the simple process-passing calculus described by the
following grammar (roughly, the language we shall use in the paper):

P:a(P)P, | a(X)P | PA|P, | vaP | X | !P | O

This calculus is similar to Thomsen’s Plain CHOCS [Tho93], and is a second-order fragment
of the Higher-Order m-calculus [San92]. Informally, process a@. (P )P, can perform an output
action at a emitting P; and then continues as P». Process a. (X) P can receive a process
at a, say @, and then continues as P{Q/X}. Symbol X represents a process variable, | is
parallel composition and 0 is inaction. A replication ! P stands, intuitively, for an infinite
number of copies of P in parallel. Finally, v a P is the restriction operator, which declares
a as a new name, different from all other names. Restriction is a static binder, as the ‘A’ of
the A-calculus. We shall abbreviate output and input prefixes as a@.P and a.P, respectively,
when the process received or emitted is not important.

In this calculus, the definition of bisimulation used for CCS or m-calculus breaks obvious
algebraic laws, such as the commutativity of parallel composition. For instance, in general
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we would distinguish processes @. (P | Q)0 and @. (Q | P)0, since the actions they perform
may have syntactically different object parts, namely P | Q and @ | P.

The approach taken by Thomsen [Tho90], following earlier ideas by Astesiano and Bou-
dol [AGRS88, Bou89], is to require bisimilarity rather than identity of the processes emit-
ted in a higher-order output action. This form of bisimulation, called higher-order bisi-
mulation, seems troublesome when restriction is a static binder, as in our setting. (By
contrast, higher-order bisimulation appears to work well in calculi using dynamic binding
as in [AGR88, AGR92, Boug9] or in the calculus CHOCS [Tho90]; the meaning of dynamic
binding for the restriction construct is explained in the concluding section; in this paper we
only deal with static binding.) For instance, take

PEa (00, Q% vm@a (m.0)0). (1)
Processes P and @ differ in the value carried by @, which is 0 in the former, and m.0 in the
latter. Moreover, since v is a static binder, the output by @ causes the extrusion of name
m, i.e., the scope of the restriction v m is enlarged to embrace the recipient of m.0. To see
an example, the interaction between @) and a. (X) R is (by alpha-conversion we can assume
that m does not occur in R):

(a.(X)R) | Q = (a.(X)R) |vm (@ (m.0)0) < vm (R{m.0/X}|0).

In the derivative, since m is restricted and does not occur in R, process m.0 will never find a
partner to communicate with. It is therefore a deadlocked process, and as such semantically
the same as 0. Indeed, in any context P and @ give rise to the same interactions and,
accordingly, should be considered equivalent. Unfortunately, they are not higher-order bisi-
milar. Higher-order bisimulation “forgets” restrictions which are extruded in an output, like
the restriction on m in @. For instance, P and @ are distinguished because the processes
they transmit, namely 0 and m.0, are not equivalent. One could think of adjusting this
example by imposing a different treatment of the extruded name m, thus comparing 0 with
v m (m.0) rather than m.0. But this approach is certainly wrong and can be disastrous in
other situations. For instance, if T is a deadlocked process with m free in it, like v n (n.m.0),
then this choice equates processes

vm (a. {m.R)m.0) and  vm(a. (T)ym.0) (2)

which by contrast have completely different possibilities of interactions (the former can
communicate at m with the recipient of m.R and thus activate a copy of R). This approach
would also yield the law

vm(a.(P)Q) =a.{vm P)Q

Yet in the first process all copies of P activated by its recipient share the name m, whereas
in the second one, the name m is private to each copy. Higher-order bisimulation appears
over-discriminanting even if the restriction operator is omitted. Consider, for instance,

def _

PLEa(0)!m0 P, LG (m.0)!mo. (3)

They are not equated according to higher-order bisimulation. This is unsatisfactory because
the replication !m.0 covers the difference between 0 and m.0, regardless of how many copies
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of them are used. These inconvenients of higher-order bisimulation have also been noted by
other people, including Roberto Amadio, Robin Milner and Eugenio Moggi.

The above counterintuitive equalities of higher-order bisimulation are due to the fact
that, in an output, the object part and the continuation are examined separately. Above
all, this prevents a satisfactory treatment of the channels private to the two. For the reader
familiar with non-interleaving process algebras, this should recall the problems of distributed
bisimulation [CH89] in presence of restriction. One might then try to follow the solution
for the latter proposed by Boudol et al. in [BCHK94] and based on the introduction of
locations. The idea is to keep the two components to analyse together but assign them
different locations, which can be detected when an observable action is produced. Thus
the observable actions of the two components can be distinguished and yet, there can be
private names and communications between them. An inconvenient of this approach is that
it requires an extension of the syntax of the language.

Instead, our choice has been to avoid the separation between object part and continuation
of an output action by explicitly taking into account the contexrt in which the emitted agent
is supposed to go. The resulting bisimulation, called context bisimulation, can be given an
elegant formulation using the syntactic constructs of abstraction and concretion, borrowed
from [Mil91, Hen93]. Abstractions and concretions are expressions of the form (X) Q@ and
v Z{R)Q, respectively. With these, input and output transitions can be written in the form

P-% (X)Q and P % vF(R)Q,

the former meaning “P is willing to receive an agent at a, say R, and continue as P{R/X}”,
and the latter meaning “by extruding names Z, process P can emit R at a and evolve to
Q. A pseudo application between an abstraction (X) P and a concretion v Z (R)@Q can be
defined thus:

(X)P)e (vZ(R)Q) = vZ(P{R/X}|Q)

(with possible renaming of Z to avoid capture of names in P). Now, using C, D for concre-
tions, F, G for abstractions, ¢y for context bisimulation, and using the weak arrow P =D
to abstract from silent steps, the bisimilarity clause of context bisimulation on the outputs
of two processes P and @ is:

whenever P -2 C, there exists D s.t. Q == D 4)
and F e C ~¢y F e D, for all abstractions F.

(here, F plays the role of a possible recipient of the process emitted by P and Q). We impose
the symmetric requirement on inputs:

whenever P — F, there exists G s.t. Q == G (5)

and C e F =gy C o G, for all concretions C.

Context bisimulation equates the processes in (1) and (3), and distinguishes those in (2), as
we wished to do. A drawback of context bisimulation is the universal quantifications over
abstractions in (4) and over concretions in (5), which can make it hard, in practice, to use
this equivalence. We shall therefore look for simpler characterisations, which do not require
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universal quantifications. Our best candidate for this will be normal bisimulation: It shows
that it is possible to reason fairly efficiently in a higher-order calculus, notwithstanding its
sophisticated transitional semantics.

A crucial role in our study is played by triggers and by the factorisation theorem. A
trigger is an elementary process whose only functionality is to activate a copy of another
process. We shall use triggers to perform process transformations which make the treatment
of higher-order constructs easier. The most important of such transformations is indeed
the factorisation theorem, which states that, by means of triggers, a subprocess of a given
process can be factorised out.

To prove that context bisimulation and normal bisimulation coincide, we shall go through
an intermediate characterisation, namely triggered bistmulation. This is a bisimilarity rela-
tion with extremely simple clauses on input and output actions. However, it is only defined
on the subclass of triggered agents, roughly, agents in which triggers only can be exchanged
in communications. Triggers agents will represent for us a sort of “normal form” for agents.
The factorisation theorem will be used to transform every agent into a triggered agent.

Related work. Very recently, a few studies of bisimulations similar to context bisimulation has
been conducted. Amadio [Ama93] — who has proposed it independently from us — uses it
to study the encoding of Plain CHOCS into w-calculus; Amadio and Dams [AD95] propose
an extension of Hennessy and Milner’s modal logics which characterises this behavioural
equivalence; Hansen and Kleist [HK94] have analysed a form of asynchronous higher-order
calculus and showed that late, early and open (this terminology is borrowed from the -
calculus literature) variants of (strong) context bisimulation coincide.

Several other studies of higher-order process calculi appear in the literature; without
claiming to be exhaustive, we can recall the works by Hennessy [Hen93], who considered
the denotational approach, and by Astesiano et al. [AGR92], in the setting of generalised
algebraic specifications (we shall comment on these two works in the concluding section);
by Nielson [Nie89], who has mainly focused on types as a means of ensuring more reliable
programs; by Nierstrasz [Nie], who has tried to combine 7-calculus and A-calculus with the
purpose of defining a uniform framework for the semantics of concurrent object-oriented
languages; by Kennaway and Sleep [KS85], Strom and Yemini [SY85], Holmstrom [Hol83],
Leth [Let92], Giacalone, Mishra, and Prasad [GMP&89], whose emphasis, however, is more
on programming language and implementation issues.

Structure of the paper. In Section 2 we give the formal syntax and the transitional se-
mantics of the higher-order calculus used as test-calculus in the paper. In Section 3 we put
forward context bisimulation, probably the most intuitive adjustment of higher-order bisi-
mulation for eliminating its drawbacks discussed above. In Section 4 we introduce triggers
and we prove the factorisation theorem. This is used in Section 5, to define a mapping 7
which transforms every agent into a triggered agent, that is an agent in which every higher-
order communication is the communication of a trigger. In Sections 6 and 7, by exploiting
T, we are able to prove simpler characterisations of context bisimulation, namely triggered
bisimulation and normal bisimulation; the former is even simpler than the latter, but is only
defined on the subclass of triggered agents. In Section 8, we discuss the extension of the
theory presented to a richer calculus, namely the Higher-Order w-calculus [San92]; this —
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using the terminology in [San92] — is a w-order calculus, whereas the calculus of Section 2
or Plain CHOCS are second-order calculi.

Acknowledgements. I am most grateful to Robin Milner, for encouragement and many tech-
nical discussions, and to Egidio Astesiano, for comments on an early draft of the paper.

2 The language and its transition semantics

The calculus we use is similar to Thomsen’s Plain CHOCS [Tho93]; hence, processes can be
passed around. The main differences from Plain CHOCS are: The use of abstractions and
concretions to represent input and output prefixes; the presence of first-order names, i.e.,
names which carry nothing. These are opposed to higher-order names, i.e., names used to
exchange processes. For the theory we shall develop, the presence of first-order names is not
necessary, but makes the presentation of various results easier.

Thus, let F be the infinite set of first-order names, and H the infinite set of higher-order
names. Then, ?d:mc{m : m € F}, ﬁdzaf{ﬁ P a€ H},Ndzefo’H and N %' 7 UH. The
special symbol 7, which does not occur in AV or A/, denotes a silent step. We let y range over
N UN U{r}, and £ range over F U F U {7} (the set of CCS-like actions). By convention, if
{ # T then 7= 0. We use symbols z, ¥, z for names in N'; symbols m,n for names in F; and
symbols a, b, ¢ for names in H. We also assume an infinite set of process variables, ranged
over by XY, Z.

Definition 2.1 The syntactic categories of our language and their grammar are:

Processes P a. F | a.C | LpP | P | P | vaP | X | 'P|O

Abstractions F := (X)P
Concretions C := vzC | (P1) P2
Agents A := P | F | C

P,Q, R and T will range over processes, F' and G over abstractions, C and D over concretions,
A and B over agents.

An abstraction (X) P binds all free occurrences of X in P; similarly a restriction v x P
binds the free occurrences of x in P. These binders give rise in the expected way to the
definitions of alpha conversion, free variables and free names of an agent A, respectively
fv(A) and fn(A).

An agent is closed if it has no free variable. Ag is the set of all agents; Ag° is the set
of all closed agents. Similarly, Pr and Pr° are the sets of all processes and of all closed
processes. P{Q/X} denotes the componentwise and simultaneous substitution of variables
X with processes Q (where it is assumed that the members of X are distinct). We often
abbreviate vz, ...vz, Aasvzy,...,z, A. In a statement, we shall say that a name is fresh
to mean that it is different from any other name occurring in agents of the statement. In a
prefix pu.A we call p the subject.

We shall only admit standard concretions, i.e., expressions v T (P )P, where names in
Z are pairwise distinct and Z C fn(P;). Indeed, the remaining concretions have little signi-
ficance: In v 7 (Q) P, by alpha conversion, names Z can be assumed to be distinct; and if
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Alpha P and (@ alpha convertible

Q5 4 implies P £ A
Prefix A A
Parallelism P A implies Py | Py, 5 A|P
First-order communication P P

P, = P implies P, | P, —— P/ |P}
Higher-order communication P; —— F

P -5 C implies Pj|P, —— FeC
Restriction P L A g {7} implies vzP - vz A
Replication P|'P 5 4 implies P % 4

Table 1: The transition system

z ¢ fn(Q)U{z} then in v z,7 (Q) P name z can be pushed inwards, resulting in the standard
concretion v Z (Q) (v z P). In the following, we therefore assume that if z ¢ fn(Q)U{Z}, then
vz, T {(Q)P denotes v T (Q)(v x P).

We wish to extend restriction to operate on abstractions, and (a form of) parallel com-
position to operate on abstractions and concretions:

if F = (X)Q then
if X ¢ fv(P) then F | P denotes (X) (Q | P)
(and similarly for P | F),
and vz F denotes (X) vz F;
if C =vZ{Q)R then
ifzNm(P)=0 then C|P denotes vZ (Q)(R | P)
(and similarly for P | C).

We now present the operational semantics of the calculus. First, we define an operation
of pseudo-application between an abstraction F = (X) P and a concretion C = v 7 (Q)R.
By alpha conversion, we can assume that Z Nfn(F) = @ and then we set

CeF ¥ vi(R|P{Q/X})
and, simmetrically,
def

FeC = vZI(P{Q/X}|R).
Similarly, we define an operation of application between an abstraction F' = (X) P and a

process thus:
def

FoQ = P{Q/X}

INRIA
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The operational semantics of the calculus is reported in Table 1. We have omitted the
symmetric of the parallelism and communication rules. There are these forms of judgements:

P % F  (higher-order input transition at port a)
P % C (higher-order output transition at port a)

P-5Q (first-order transition)

where P,Q, F,C € Ag. In turn, a first-order transition can be a first-order input (if £ € F),
a first-order output (if £ € F), or an interaction (if £ = 7).

In the remainder of the paper we work up to alpha conversion; thus “=" denotes syntactic
equality up to alpha conversion. We shall normally put enough brackets in the expressions
so to avoid precedence ambiguities among the operators. However, to reduce the number
of brackets, in a few places we shall assume the following syntactic rules: Substitutions

1PN

and metanotations “e” and “o”

have the highest syntactic precedence; the abstraction and
concretion constructs the lowest; parallel composition has weaker precedence than the other
process constructs. For instance, (P) ! m.R|Q stands for (P)((!m.R)|Q), and FeC|Q{R/X}
stands for (F'e C) | (Q{R/X}).

If R is a relation on processes, we write P R @ to that (P,Q) € R . Moreover, R; R is
the composition of the two relations R, and Rs.

3 Context bisimulation

We shall study behavioural equivalences based on bisimulation for the language of the pre-
vious section. To overcome the counteintuitive equalities of higher-order bisimulation exa-
mined in Section 1, we propose the context bisimilarity relation below.

Definition 3.1 (strong context bisimulation) A relation R C Pr° x Pr° is a strong
context simulation if P R Q implies

1. whenever P - P’, there exists Q' s.t. Q 4, Q' and PP RQ',

2. whenever P - F, there exists G s.t. Q — G and C ¢ F R C o G, for all
concretions C.

3. whenever P - C, there exists D s.t. Q 2, Dand FeC R Fe D, for all
abstractions F.

A relation R is a strong context bisimulation, briefly ~ ci-bisimulation, if R and R~ are
strong context simulations. We say that P, Q are strongly context bisimilar, briefly P ~¢t Q,
if PR Q, for some ~ cy-bisimulation R. a

Relation ~¢ is generalised to abstractions, concretions and open agents as expected.

Definition 3.2

e For closed abstractions Fy and Fy, we set Fy ~¢y Fo if Ce Fy ~¢y C o Fy for all closed
concretions C.

RR n°RR-2508
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e For closed concretions Cy and Cs, we set C; ~¢y Cy if FeCy ~¢cy F e Cy for all closed
abstractions F.

e For open agents Ay and As with fv(A;, As) C {X’}, set Ay ~op Ay if Al{f’/)?} ~Cr
Ax{P/X} for all closed processes P.

Proposition 3.3 ~¢; is an equivalence relation. d

Example 3.4 Let

P Y .00

P Y vm@ (m.0)0)
We argued in Section 1 that P, and Py should be equated. We show that, indeed, Py ~¢y Ps.
The set of all pairs of the form

(vm (R{m.0/X}),R{0/X}) with m & fn(R)

contains the pair (Py, Py) and is a ~ cy-bisimulation. We sketch the argument.

Since m 1is restricted, process vm (R{m.0/X?}) cannot perform a wisible action at m;
moreover, since m occurs in R{m.0/X} only in input position, no interaction along m can
occur. Therefore, any transition for vm (R{m.0/X}) is of the form

vm (R{m.0/X}) - vm (A{m.0/X})

and we also have
R{0/X} £ A{0/X}.

Suppose A is a concretion, say v T {Q1)Q2 with X free in Q1 and Qo. Then, for all abstrac-
tions F = (Y) Qs we have:

Fevrm(A{m.0/X}) = vm(Qs{Q1/Y}{m.0/X}| Qg{m.g/X})
v ((Q:{Qi/Y} | Q2){m.0/X}) ¥ Qu,

def

FeA{0/X} (Qs{Q1/Y} | Q2){0/X} = Qs

and (Q4,Qs) are in R .
Some simple laws for ~¢y:

Lemma 3.5
1. P | Py ~ci P | Py
2. PL| (P, | P3) ~c (P | P2) | Ps;
3. P|0~c¢ P;
4. vevyA~cgvyvzA;

5. ifx & fn(Pa), then (wxPy) | Py ~crva(Pr|P);

>

P ~ey P| 1P, O

INRIA
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We shall use the up-to technique below for establishing bisimilarity results.

Definition 3.6 A relation R C Pr° x Pre° is a strong context simulation up-to ~cy if
P R Q implies

1. whenever P —%» P', there exists Q' s.t. Q N Q and P~ R ~ct Q'

2. whenever P - F, there erists G s.t. Q — G and C o F ~cz R ~¢cy C oG, for all
concretions C.

3. whenever P -2 C, there exists D s.t. Q 2 Dand FeC ~ct R ~ct FeoD, for
all abstractions F.

Proposition 3.7 If R is a strong context simulation up-to ~¢cy then R Crcy.

Proor: Use a diagram-chasing argument to show that ~ct R ~c¢ is a strong context
bisimulation. d

3.1 Congruence properties of context bisimulation

Context bisimulation is preserved by all operators of the language. As far as proofs are
concerned, the most difficult one is congruence for object constructor (i.e., P ~c¢ @ implies
a.{P)R ~¢t a.(Q)R); this case is specific of the higher-order setting to which our language
belongs. To derive this, we need to prove a congruence result w.r.t. substitutions:

Proposition 3.8 Let Py, P>, A € Ag; then Py ~¢y Py implies A{P, /| X} ~ct A{P>/X}.
PROOF: See Appendix A. O
Theorem 3.9 (congruence of ~ct) Let P;, A; € Ag.

1. Ay ~ct Ay implies: vz Ay ~givzAs,
w.o A ~crp. A

2. P~ct Py implies: P |Q~c P2 @,
Py ~ci! P,
(P1)Q ~ci (P2)Q,
(Q)Pl ~Ct <Q>P2}
(X) P, ~¢i (X) Ps.

ProoF: Each clause can either be derived from Proposition 3.8, or is straightforward on its
own. O

Corollary 3.10

1. F1 ~Ct Fz and Cl ~Ct Cz imply Fl L] Cl ~Ct F2 (] Cz,’

2. F1 ~Ct F2 and P1 ~Ct P2 zmply F10P1 ~Ct FQOPQ. O

RR n°RR-2508
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3.2 Weak context bisimulation

To introduce weak context bisimulation, we first define weak transitions, where 7 steps are
absorbed. Thus = is the reflexive and transitive closure of —— , and P == A holds if

there is P’ s.t. P = P’ and P’ %5 A.Finally, P =% AisP=—= Aify=7and P == A
otherwise.

Definition 3.11 (weak context bisimulation) A relation R C Pr° x Pr° is a weak

context simulation if P R @ implies

1. whenever P -5 P’, there exists Q" s.t. Q £, Q' and PP R Q';

2. whenever P - F, there exists G s.t. Q == G and CeF R C oG, for all concretions
C;

3. whenever P — C, there exists D s.t. Q =2 D and FeC R FeD, for all abstractions
F.

A relation R is a weak context bisimulation, briefly ~ci-bisimulation, if R and R~ are
weak context simulations. We say that P,Q are weakly context bisimilar, briefly P ~c: Q,
if PR Q, for some = ¢y-bisimulation R.

Remark 3.12 (delay and late bisimulations) In the formulation of weak context bisi-
mulation above, agents are immediately tested after a visible action (recall that £ stands
for = 4 ). This treatment of weak transitions is characteristic of delay bisimulation,
studied in CCS-like languages in [Wei89]. Moreover, in the input and output clauses of De-
finition 3.11 the existential quantifier precedes the universal one. This is characteristic of
late bisimulation [MPW92], as opposed to early bisimulation, in which the order of the
quantifiers is exchanged. We shall show in Section 7.1 that, for weak context bisimulation,
the late and early versions coincide.

We think that the “late delay schema” fits well the machinery of abstractions and concre-
tions adopted. First, it well describes the complementarity between abstractions and concre-
tions. Secondly, it seems natural to require that abstractions and concretions do not evolve
on their own, but only after meeting a complementary agent. Another compelling motivation
for formulating a late bisimulation as a delay bisimulation is that otherwise the resulting
relation might not be an equivalence relation; this, for instance, happens in the w-calculus
[San93]. O

Weak context bisimulation is extended to concretions, abstractions and open agents in
the same way as the strong equivalence (Definition 3.2); thus, for concretions C; and Csy, we
have C1 ~¢t Co if C1 o F =y Cy o F for all closed abstractions F. The congruence results
for ~c¢ in Proposition 3.3 and Theorem 3.9 can be extended to ¢, with a completely
analogous proof (see also Remark A.5 in Appendix A).

Theorem 3.13 =¢; is an equivalence relation and is preserved by all operators of the lan-
guage. O
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We shall use the following up to technique to establish weak-context bisimilarity results.

Definition 3.14 A relation R C Pr° x Pr° is a weak context simulation up-to =¢y if
P R Q implies

1. whenever P == P', there exists Q' s.t. Q =N Q and Pl =y R =c: Q'

2. whenever P == F, there exists G s.t. Q = GandCeFx~R=~c,Ce G, for all
concretions C.

3. whenever P == C, there exists D s.t. @ =2 Dand FeC ot R=~ct FeD, for all
abstractions F'.

Proposition 3.15 If R is a weak context simulation up-to =¢¢ then R C =¢y.

PRrooOF: By showing that ~cy R =c¢ is a ~¢¢-bisimulation. O

Weak context bisimulation is the relation we are mostly interested in, since it abstracts
away from silent steps of processes. We shall look for characterisations of this behavioural
equivalence which do not use the heavy universal quantifications in its input clause (quan-
tification on concretions) and in its output clause (quantification on abstractions). We shall
use strong context bisimulation as an auxiliary relation.

4 The factorisation theorem

The main result of this section is the factorisation theorem. It allows us to factorise out
certain subagents of a given agent. Thus, a complex process can be decomposed into the
parallel composition of simpler processes.

The assertion of the factorisation theorem uses a special kind of agents called triggers
and the metanotation A{z := B}. We introduce this metanotation, and prove some algebraic
properties about it, in Section 4.1; we present triggers in Section 4.2.

4.1 Distributivity properties of private replications

We write A {z := B} as an abbreviation for v z (A | ! z. B), under the assumption that z
occurs free in A and B only in output subject position.

Intuitively, in A {z := B}, agent B represents a “local environment” for A and z is a
“pointer” that allows A to access this local environment; alternatively, we can think of B
as a resource with owner A and z as a trigger with which a copy of the resource may be
activated.

Remember that z is restricted, and hence not free, in A {z := B}, in the same way
as z is not free in the A-expression M{y/x}. Indeed, we chose curly brackets for the above
abbreviation because {z := B} behaves just like a substitution in A{z := B}. For instance, if
B is an abstraction and z a higher-order name, then A{z := B} behaves as the agent obtained
from A by substituting ‘BoR | @’ for any subexpressions ‘Z. (R)@ ’. This because, given the
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side condition on the use of z in A and B, the only possible effect of the prefix z. (R)Q is
to trigger a copy of B with argument R. For example, a little thinking should convince the
reader that if a is not free in R, R', P, F, then the visible behaviour of (6. (R)a. (R’ )P) {a:=
F'} is the same as that of FoR | FoR' | P.

The results in this and in the next section show that, indeed, the metanotation {z := B}
has algebraic properties similar to those of substitutions. We shall sometimes call {z := B}
an implicit substitution. We give {z := B} the same precedence as substitutions; thus
Q | P {z := B} stands for Q | (P {z := B}).

Theorem 4.2 shows that {z := B} distributes over all operators of the language. To
prove this, we first need to show that {z := B} distributes over process substitutions (in
the same way as in Section 3.1, to prove the congruence of ~¢¢, we first needed the result
on substitutions).

Proposition 4.1 Let A, P, B € Ag. Suppose that z & fn(B) and that z occurs free in A and
P only in output subject position. Then

A{P/X}{z:=B} ~ct A{z:= B{{P{z:= B}/X}.
PROOF: See Appendix B. O

Theorem 4.2 (distributivity of {z:= B}) Suppose that z ¢ fn(B) and that z occurs
free in A, P,Q and C only in output subject position. Then the following results on open
agents hold:

(vad){z:=B} ~cive(A{z:=B)), fa ¢ fn(B)U{z}.
(P|Q) {2 := B} ~c1 P {z:= B}| Q {= := B}.

8. (IP) {z:= B} ~i! (P{z := BY),
(1. A) {2 = BY ~erp (A{z:= BY), if p # 2.
(=.

C){z := B} ~¢t (1.C @ B) {z := B} (here z is a higher-order name and B an
abstraction,).

6. (2.P){z :== B} ~c: (1. (P|B)){z := B} (here z is a first-order name and B a process).
7. 0{z := B} ~¢; 0.

8. ((@)P){z:= B} ~c: (@ {2 := B})(P {2 := B}).

PRrROOF: Each case either can be derived using Proposition 4.1, or is straightforward on its
own. d

Remark 4.3 In the two results above, the requirement z ¢ fn(B) could be weakened to “z

free in B only in output subject position”, at the price of some more work in the proofs.
This extra power is not necessary for the our purposes. a
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4.2 Triggers

A trigger is a process of the form m.0; we write Tr,, to denote a trigger whose free name is
m.

The assertion of the factorisation theorem reads as follows. Take an agent A, and suppose
we can extract an expression ) from certain components of A, in form of an explicit substi-
tution; i.e., for some agent A’ and variable Y, it holds that A = A'{Q/Y}: Using a trigger
Tr,,, for some fresh m, the explicit substitution can be transformed into an implicit one,
obtaining (A'{Tr,,/Y}) {m := Q}. By contrast with A{Q/Y}, in (A'{Tr,,,/Y}) {m := Q}
each copy of @) is activated when it is needed using the trigger m.

Example 4.4 If P dzefQ |a.{Q)R, then P = (X |a. (X)R){Q/X} and, applying the facto-

risation theorem,

P = (X|a (X)R){Trm/X} {m:=Q}
= (Trm|a.{Trm)R) {m :=Q}
Lemma 4.5 For each P € Pr, it holds that T.P ~¢y P. O

We derive the factorisation theorem from Lemma 4.6, which shows us that the effect of
using a trigger is precisely to add a T-action on the head of the replaced expression.

Lemma 4.6 For every A,R € Ag with m & fn(A,R), it holds that
A{T.R/X} ~ct A{Trn,/ X} {m := R}.

PROOF: By induction on the structure of A. The basic case is when A = Y and is immediate
using Theorem 4.2. For the inductive cases, as an example we show the case of parallel
composition. We have:

(P | P){T.R/X} =
P{r.R/X}|P,{r.R/X} ~ct (induction twice)
P {Tr,,/X} {m := R} | Po{Tr,,/X}{m :=R} ~ct (Theorem 4.2(2))
(P{Trm/X}| Po{Trm/X}) {m =R} =
(P | Po){Trmm/X} {m := R} ]

Theorem 4.7 (factorisation theorem) For every A,Q € Ag withm & fn(A,Q), it holds
that

A{Q/X} =ct A{Tr,,/X}{m = Q}.

PROOF: From Lemma 4.6, A{Tr,,/X} {m = Q} ~cy A{r.Q/X}. Since, by Lemma 4.5,
T.Q =t @ and =y is a congruence relation, we can infer A{7.Q/X} ~cx A{Q/X}. O

In the remainder of the paper, for weak context bisimulation or other weak equivalences,
the adjective “weak” might be omitted.
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5 'Triggered agents

In this section we introduce the class of triggered agent. They represent a sort of “normal
form” for the agents of the calculus. Most important, there is a very simple characterisation
of context bisimulation on triggered agents, called triggered bisimulation. We shall exploit the
factorisation theorem to transform every agent into a triggered agent. The transformation
allows us to use the simpler theory of triggered agents to reason about the set of all agents.
The distinguishing feature of triggered agents is that every communication among them is
the exchange of a trigger.

Definition 5.1 (triggered agents) The grammar for triggered agents is obtained from
that of ordinary agents in Definition 2.1 by replacing the productions for concretion with the
production

Concretions C : = vZI{(Trn)P1){m := Py} withm & fn(Py, Py)U {Z}.

In other words, we place the additional requirement that all concretions be in the above
“triggered” form. Recall that v Z ({Try, ) P1) {m := Py} stands for v m (Tr,,,)v Z (P1| ! m. P»).
We write 7.Ag and 7 Ag° for the classes of triggered agents and of closed triggered agents,
respectively. 7Pr and 7Pr° are the subclasses of triggered processes and of closed triggered
processes.

We give a mapping 7 which transforms every agent A into the triggered agent 7[A].
The mapping is defined inductively on the structure of A; it acts as a homomorphism on all
constructs of the language except concretions, for which we have:

THQYP] = ((Trm)T[P]) {m :=T[Q]} where m is a fresh name
For instance, we have:

Tl(a.(X)X) |a.vz(Q)P] = Ea.(X)X;|E.ux(((TTm)T[[P]]){m::T[[Q]]}
= (a.(X)X)|avm(Trpva (T[P]| !m. T[Q]

Theorem 5.2 (correctness of 7) For each A € Ag:

1. TA] is a triggered agent;

2. T[A] ~c: A.

PROOF: Assertion (1) is straightforward. Assertion (2) can be proved by induction on the
structure of A. The only case in which 7 does not act as a homomorphism is when A is a
concretion of the form (R)P. If m ¢ fn(A), then we have:

(RYP =~¢¢ (Theorem 4.7)
((Tr,,)P) {m := R} =~¢:; (induction twice)
(Trp)TTP]) {m:=T[R]} = T[A] O

It is useful to see the operational correspondence between P and 7 [P]. Transformation
7T may expand the number of silent steps in a process. But the behaviour is otherwise the
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same. The expansion is due to the fact that if in P a process @ is transmitted and used n
times then, in 7[P], n interactions are required to activate the copies of @, as the following

example shows.
Example 5.3 Let P f (6. (Q)R) |a.(X) (X | X). Then
P RIQIQYP

In T[P] this is simulated using two additional interactions:

TP = a@. ((Trm)T[R]) {m = T[Q]} | a- (X) (X | X)
Tona (TR Trm | Trm) {m = TIQI}
= TIR] |m.0|m.0) {m := T[Q]}
= Do~a (TIR]| TIQY| TIQD) {m := TIQD}
~ct TIR] | TIQI I TIQ] = T[F]
Lemma 5.4 For all F and C, it holds that T[F ¢ C| ¢y T[F] ¢ T[C].

PrOOF: Let F < (X) P and C £ 17 (Q)R. We have:

TIF]eT[C] = ((X)T[P]) o v (((Trm)TIR]) {m := T[QI})
~oy vE (TP Trm/X} | TIR]) {m = T[Q]})
~oo vE(TIPUTIQI/X)|TIR])
= Tw#(P{Q/X}|R)]
= T[F (]

where the use of ~¢; is due to Theorem 4.7. O
Lemma 5.5 (operational correspondence for 7 on strong transitions)
1. (a) IfP £ A and p # 1, then T[P] -5 ~¢ T[A];
(b) if P - P', then T[P] — ~c: T[P'].
2. The converse of (1), i.e. :
(a) If T[P] £ A’ and pu # 7, then there is A s.t. P 5 A and T[A] ~cy A';

(b) if T[P] —— P" , then there is P’ s.t. P — P' and P" ~¢; T[P'].

PROOF: By transition induction. We only consider the rule for parallel composition for as-
sertion 1(a) in the case that u is a higher-order output, and the higher-order communication
rule for assertion 1(b).

Suppose P | Py -, C | Py, for some C s.t. Py -, C. By induction,
T[P] - ~c T[C].

Hence
TP | P] = T[P] | T[R:] -5 ~ci TICT | TIR:].
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Let C =vZ(Q)R. Then T[C] = vm (Trp,)vZ (R]| !m.Q) and
T[C] | TIP] = v m (Tenw & (R| 'm.Q) | T[P;]
and, assuming N (7 [P.]) = @, by Lemma 3.5,

~oy vm{(Tr,)wZ(R|T[P:]] !m.Q)
= Tz (Q)R|PR)]=T[C|P]

Now, the communication rule. Thus, suppose P; | P2 s Fe(, for some F and C s.t.
P, % Fand P, - C. By induction, T[Pi] - ~ct T[F] and T[Py] - ~ct T[C]-
Hence T[Py | P2] = T[P1]|T[P:] ——~ct T[F]eT[C] and, by Lemma 5.4, T[F]eT[C] ~ct
T[F o C]. O

6 Triggered bisimulation

We show that the class 7Pr° of triggered processes is amenable to an analysis in which only
triggers are exchanged with an external observer. We start by showing that the class 7Pr°
is closed with respect to the production of such actions (Lemma 6.2) and then we define a
bisimulation in which only this kind of actions is taken into account.

Lemma 6.1 If A € T Ag, then for every Tr,, we have A{Tr,,/X} € T Ag. O
Lemma 6.2 Suppose P € TPre°. It holds that:
1. IfP 4 P', then P' € TPre;

2. if P %+ F, then for all m, FoTr,, € TPr°;

3. if P 2, C, then then there is P' € TPr° s.t. C = vm (Tr,)P' and, moreover, for
some T, P" and R with m & fn(P",R)U {Z}, we have P' ~c, v T (P" | !m.R).

PROOF: A simple transition induction; for assertion (2), use Lemma 6.1. a

Definition 6.3 (triggered bisimulation) A relation R C TPr° x TPr° is a triggered
simulation if P R Q implies, for m & fn(P,Q):

1. whenever P -5 P', there erists Q' s.t. Q £ Q' and P’ R Q',

2. whenever P 5 F, there exists G s.t. Q == G and FoTry, R Go Trp,,

3. whenever P —%» vm {(Tr,,)P', there exists Q' s.t. Q =2 vm (Tr,,)Q" and P' R Q'.
R is a triggered bisimulation, briefly ~ g,-bisimulation, if R and R~ are triggered simula-

tions. We say that P and @ are triggered bisimilar, briefly P ~p. Q, if P R Q, for some
~-bistimulation R .
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Definition 6.3 is consistent for, by Lemma 6.2, P',Q’, FoTr,, and GoTr,, are triggered
processes. Note that for clauses (2) and (3) it is enough to take some m & fn(P, Q). Any other
choice of m — with m ¢ fn(P, )) — represents the same kind of test on the processes since,
intuitively, the difference between the two choices is expressed by an injective mapping on
names. This observation is to evidence the simplicity of the clauses of Definition 6.3 compared
to those in the definition of context bisimulation: In clause (3) of Definition 6.3, no universal
quantification and no check whatsoever on the agents emitted in the output is necessary;
similarly, in clause (2) a single (fresh) trigger is used, whereas in context bisimulation every
agent which can possibly be received in the input is taken into account.

Relation =, is extended to 7.Ag accordingly; in particular, in the case of open agents
free variables are instantiated with fresh triggers only.

Definition 6.4

o For closed triggered abstractions Fy and Fy, we set F| = Fy if F10Tr, 7. Fy0Tr,,
for some fresh name m.

o For closed triggered concretions v m {Trm,)P and v m (Try,)Q, we set vm (Tr,)P ~ 1.
vm {Tr,)Q if P =1 Q.

o For open triggered agents Ay and As with fu(A;, As) = {X1,..., X}, if {m1,...,my,}
is a set of distinct fresh names, then we set Ay = Ag if Ay{Trm,/X1,-.., Trm, [ X0} =10
AQ{TTml/Xl, ey T'rmn/Xn}

Definition 6.5 A relation R C TPr° x TPr° is a triggered bisimulation up-to ~p. if
P R Q implies, for m & fn(P,Q):

1. whenever P == P’, there exists Q' s.t. Q = Q and Pl =7 R ~7.Q',
2. whenever P == F, there exists G s.t. Q = G and FoTry, ~p R = Go Try,,

3. whenever P == vm (Tr,)P', there exists Q' s.t. Q = vm{Tr,)Q and P =,
R X Tr Ql'

Proposition 6.6 If R is a triggered bisimulation up-to =p., then R C = . O

6.1 Weak triggered and context bisimulations coincide

Next we prove that, on triggered processes, =T, and =t coincide. First, we need some
properties of .

Lemma 6.7 P x~p. Q implies:

lL. vePrpvrvzQ;

2. PR~ Q|R.

PRrOOF: We only examine (2). For this, we prove that
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R ={(vy(Pi|R),vy(P:|R)) : P,P,,R € TPr° and P, =1, P>}

is a ~r-bisimulation. Suppose (v 7 (P | R),v7 (P2 |R)) € R and v (P, | R) £ Q. We
proceed by case analysis on the rule used to infer this action. If the higher-order communi-
cation rule has been used with P; performing the output, then for some m, we have

P % vm(Tem)Pl, R -5 F, p=71, and Qi=vjm(P]|FoTry).
Since P, =1, P, assuming m not free in P, we have
Py =% vm (Tr,)P, with Pl m~n P,  and  v§(P|R) = vi,m (P, FoTry).

This is enough because by Lemma 6.2, we have P/, Py, FoTr,, € TPr°. All other cases are
similar. d

Proposition 6.8 Let P,Q) € TPr°; then P =¢y Q implies P =7, Q.
PRrROOF: We prove that
R :{(Pl,Pg) : Pl,Pz € TPr° and P1 Ot P2}

is a ~7,-bisimulation. Let (P;, P,) € R and suppose that P; £, A. The only non-trivial
case is when g is a higher-order output, so we only consider this case. Thus suppose p = @;
by Lemma 6.2, then A = vm (Tr,,)P|. By definition of ~¢; and Lemma 6.2, there exists
P} s.t. Py = vm (Tr,,)Pj and for every G (by alpha conversion we can assume that

m & fn(G):
vm (GoTr,, | P]) ~ct vm (GoTr,, | Py) . (6)

In order to close the bisimulation we have to show that P ~¢y Py. Lemma 6.2 tells us that
there exist 91, %2, R1, Re, P/, Py s.t.
Pl ~civin (P | 'm.Ry), Pj~civiya(Py | !m.Ry) (7

where m ¢ fn(Ry, Ra, P, Py') U {91} U {y2}. Suppose m' is a fresh name. Now, changing m
for m' does not affect the equivalence among processes, i.e. we have
v (P | 'm.Ry) =m¢cy vy (Py|!m.Ry) iff
vy (P |'m' R1) =ct vya (Py|!m'. Rs)
Therefore we get P| =t Py if we can prove the latter equivalence. The advantage with
this is that we shall be able to exploit (6). Since m is not free in v g7 (P’ | !m’. R;) and
vz (Py | !'m'. Ry), using the factorisation theorem (4.7) we have
v (P | !m'. Ry)
v (P 1m. Ten) fm = Ri})  ~e
vm (1m’ T |V (P | 'm.R1)) ~ce (by (7))
m (lm'. Tep | PY)

Ct

= Q1

and similarly,
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<1

vip (Py|!'m' . Ry) mci vm(Im'.Tr, | Py <Q,

Now @1 ~ct Q2 can be derived from (6), for G def X)('m'. X). O

Proposition 6.9 Let P,Q € TPr°; then P =g Q implies P =¢y Q.
Proor: We show that
R ={(P,Q) : P~y Q}

is a ~¢t-bisimulation up-to ~c¢. Let P R Q. The most interesting case is to see how higher-
order input actions of P are matched by @, and we consider this case only. Thus, suppose
P, == F;. Since P, ~q, Py, there is Fy s.t. P, == F, and, if m is fresh,

FloT‘rm T FZOT\rm- (8)
To close the bisimulation, we have to show that for all C,
F1 .CthRth F2 o (C (9)

Let C = v 7 {Q)R. We have

FireC=vy(FioQ|R) =c¢ (by the factorisation theorem)
vi((FioTr,,) {m:= Q}|R) w~ci (Theorem 5.2(2))

vi((FoTr,) {m=TQI | T[R) < P

and, similarly, Fy e C ~cy v §((FooTry,){m := T[Q]}| T[R]) & P). We have P!, P} € TPr°.

From (8), since =y is preserved by parallel composition and restriction, we infer P| =, Py,
thus concluding the proof of (9). O

Corollary 6.10 Relations =1, and ~¢¢ coincide on closed triggered processes. O

Using the factorisation theorem, Corollary 6.10 can be generalised to open agents.

7 Normal bisimulation

The mapping to triggered agents is a useful tool for reasoning with higher-order processes.
For instance, in [San92] we used the mapping as an intermediate step to define a compilation
from the Higher-Order m-calculus to the m-calculus and to prove its full abstraction. In this
section, we exploit the mapping to derive a characterisation of context bisimulation, called
normal bisimulation, which does not have universal quantifications in the clauses of its
definition. Normal bisimulation is not as simple as triggered bisimulation, but the former is
defined on the whole class of agents of the calculus, whereas the latter is only defined on
triggered agents.

The name “normal bisimulation” is to indicate that it is obtained by “normalising” the
clauses of context bisimulation. Let us present the definition first; then we shall comment
on it. In the following, Ab,, denotes the abstraction (X) !m. X.
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Definition 7.1 (normal bisimulation) A relation R C Pr°xPr° is a normal simulation
if PR Q implies, for m & fn(P,Q):

1. whenever P - P’ there exists Q" s.t. Q N Q' and PP R Q';
2. whenever P % F, there exists G s.t. Q = G and FoTr,, R GoTr,,;

3. whenever P —%» C, there exists D s.t. Q = DandCe Ab,, R D e Aby,.

A relation R is o normal bisimulation, briefly =~ y,-bisimulation, if R and R~ are normal
stmulations. We say that P and @ are normal bisimilar, briefly P =y, Q, if P R Q, for
some = npq-bisimulation R.

As for triggered bisimulation, we should stress that in clauses (2) and (3) of Definition 7.1
it is enough to pick some fresh name m, since the specific choice of the fresh name does not
affect the equivalence of the resulting processes. The extension of =y, to abstractions and
open agents is defined as for triggered bisimulation, therefore only employing fresh triggers.

The idea of normal bisimulation comes from the results on the discriminanting power
given by triggers and shown in Sections 4 and 6. To test the equivalence between F Lef

a.(X)P and G L (X) @ we do not have to try every applications F ¢ C and G e C,

but it is enough to verify that P and @ are equivalent when X is instantiated with a single
(fresh) trigger Tr,,. In fact, by the congruence properties of = ¢,

FoTr, = P{Trn/X} =ci Q{Tr,/X} = GoTr,
implies that for any 7, R and T
v ((P{Trm/X}) {m = R} |T) ~cv v ((Q{Ttn/X}) {m =F}|T);  (10)
then, since by the factorisation theorem
(P{Trn/X}) {m:= R} moo P{R/X} and  (Q{Trn/X}){m = R} mc. Q{R/X},
from (10), if C = v §(R)T, we get
FeC=vj(P{R/X}|T) ~c: v§ (Q{R/X}|T)=GeC.

Similar reasoning can be used to justify the clause of normal bisimulation on output actions,
w.r.t. that of context bisimulation. It may be useful however to see why in the requirement

of this clause, namely
C e Ab,, =n: C ¢ Ab,,

the abstraction Ab,, cannot be made simpler without losing discriminanting power. We
recall that if C < v % (P})P, and D = v 7 (Q1)Q2, then C o Ab,, ~n; D e Ab,, means that

v%(P2|!m.P1)eru§(Q2|!m.Ql) (11)

We show that both the guard on m and the replication are necessary. First of all, we need
the guard m on P, and @: For, otherwise, if R is a process like !7.0, which can perform
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an unbounded number of identical visible actions, then the processes a.(R)0 and @.(0)R
would be made equivalent. But they are not context bisimilar; for instance they can be
distinguished when interacting with a process like a.(X)0 which discharges what it receives
at a.

Now, the use of replication. Suppose we eliminate it from (11). Then let R of n.n.p.0|7.0

and consider P ' v n (@.(R)0) and @ Lef @.(0)0. Again, P and ) would become equivalent

since vn (0| m.R) and 0|m.0 are indistinguishable. However P and () can be differentiated
when interacting with a process like a.(X)(X | X') which makes two copies of the input run
in parallel, since then the action ¢ of R can be observed. In fact, only in the linear calculus,
where in each expression a variable may occur free at most once, the replication in (11) can
be avoided.

We now prove formally that ¢y and =N, coincide. The inclusion =8¢y C &N, is obvious,
since the requirements in the definition of ~y, are a subset of those in the definition of ~cy.
To prove the opposite inclusion, we use Lemma 7.2 below, which relates weak transitions of
P and T[P]. Its proof is obtained using the operational correspondence on strong transitions
in Lemma 5.5.

Lemma 7.2

1. if P £ A, then T[P] = ~ 1. T[A];

2. The converse: If T[P] == A, then there is A s.t. P = A and A’ =4, T[A]. O
Lemma 7.3 For all concretions C, if m is fresh, then T[C] = vm (Tr,,)T[C o Ab,]. O
Theorem 7.4 Relations ~y, and ~¢; coincide on Pr° x Pre.

PROOF: We only have to prove the inclusion =y, C =¢;. For this, we show that
R ={(T[P].T[Q]) : P~n: Q}

is a m~7,-bisimulation up-to ~r, (Definition 6.5). This is enough, because on triggered pro-
cesses ~1y and ~cy coincide (Corollary 6.10), and 7 respects ~cy (Theorem 5.2(2)): Hence
from T[P] =1 T[Q], we can infer P ~¢y Q. Let (T[P],7[Q]) € R ; the only non-trivial
case is to show how higher-order output actions of 7 [P] are matched by 7[Q].

Suppose 7 [P] =%, C'. By Lemma 7.2(2), C exists s.t.
P =% C and C' ~q, T[C].
Since P =y, @, there exist D s.t. Q =% D and
DeAb,, ~x, CeAb,,. (12)

Further, by Lemma 7.2(1),
T[Q] = D' =~ T[D].
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By Lemma 7.3, 7[C] = v m (Tr,,)T[C e Ab,,] and T[D] = v m{Tr,,)7[D e Ab,,]. Sum-
marising, we have:
T[P] == ~7n vm(Tr,)T[C eAb,,]

T[Q] ==~ vm(Tr,,)T[D e Ab,,]

and, since by (12), C e Ab,, ~n, D e Ab,,, we have T[C e Ab,,] R T[D e Ab,,]. This is
enough, because R is a ~r.-bisimulation up-to ;. O

Theorem 7.4 can be extended to open agents, thus obtaining;:
Corollary 7.5 Relations =~p, and =¢: coincide on Ag X Ag. O

Remark 7.6 Now that we have proved that ~¢; and =y, coincide, one might wonder why
we did not introduce =, directly. The reason is that we would have needed =~¢¢ to prove
the congruence of =y, over parallel composition. Moreover, it is easier to convince ourselves
of the naturalness of context bisimulation; we can then accept normal bisimulation as a
simpler characterisation of the former. O

7.1 Late and early equivalences

As pointed out in Remark 3.12, the formulation of weak context bisimulation in Definition
3.11 is in the late style. In the early style, the order of quantifiers in the input and output
clauses is reversed. Thus, R is an weak early context bisimulation if PR @ implies:

1. whenever P —% P’ there exists Q' s.t. Q =N Q' and P' R Q’;

2. whenever P —%s F, then for all concretions C there exists G s.t. @ == G and
CeFRCeG,

3. whenever P —% C, then for all abstractions F' there exists D s.t. @ =% D and
FeCRFeD.

We denote the largest weak early context bisimulation by ~§,. Hansen and Kleist [HK94]
have proved that late and early strong context bisimulations coincide on an asynchronous
variant of Plain CHOCS. The theory developed in this paper yields a straightforward proof
of the result for the weak equivalences.

Corollary 7.7 Relations ~¢; and zgt coincide.

PROOF: Clearly, ~c; C ~&,: Every late bisimulation is an early bisimulation. On the other
hand, an early bisimulation is also a normal bisimulation: Hence, by Corollary 7.5, ~&, C
NCt- O

By contrast, late and early bisimulations are usually different in first-order calculi like
the m-calculus [MPW92, PS93]. Note also that in normal and triggered bisimulation the late
vs. early issue disappears, for the responsible quantifiers are absent.
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8 Extensions

In this section, we discuss the extension of the theory presented to a richer calculus, na-
mely the Higher-Order m-calculus, briefly HOm [San92]. We shall focus on the higher-order
fragment of HOm, thus ignoring first-order features like communication of names and abs-
traction over names. (This fragment of) HO7 can be thought of as an w-order extension of
the process-passing language in Section 2. Also, we shall stick to a monadic calculus (only
one agent can be transmitted at a time); polyadicity can be easily accommodated.

In the CHOCS-like language of Section 2, only processes can be passed around. In HOw,
besides processes, abstractions can be passed too. Moreover, abstractions can be of arbitrary
high order. We explain what the order of an abstraction is. All abstractions seen so far are
of the form (X) P, where X is a process variable which may appear in P. If * is taken to
be the type of all processes, then from a function-theoretic point of view, (X) P has type
x — x, for (X) P takes a process and returns a process. We shall say that (X) P is a second-
order abstraction (first-order abstractions being abstractions on names, as found in the full
HOr). The syntax of HO7 allows agent-variables, rather than just process-variables, and
an application construct A;oAs (sometimes written A;(As) in the literature); thus, one can
write meaningful abstractions of order greater than two. An example is

def
G=(Y)(Q]YoQ)
G takes an agent of type * — x and and yields back a process. Therefore G has type
(x* — %) — *. Abstraction G has order three, the order being determined by the level of
arrow-nesting in the type. If F is (X) (P | X), then GoF yields Q | FoQ =Q | P | Q.

In the same way, we can construct fourth-order abstractions, fifth-order abstractions and
so forth. In this sense HO7 is a w-order calculus: There is no bound on the order of agents
which can be written and communicated. Abstractions can also be passed around, like in

P (@.(G)b. (F)0) | a.(2)b. (V) (ZoY)
where G and F are the abstractions above defined, and then we have (garbage-collecting 0

processes)
P 5 GoF=Q|P|Q.

There is also a type discipline on names, so to avoid disagreement on what is carried or
expected at a given name. For instance, in process P above name a would have type (x —
x) — x and name b type * — x. Types are extended to concretions in the expected way: If
G has type T, then (G)P has type T' — *. The pseudo-application e and the application o
are only allowed between agents of compatible types. Below, we write A : T if A has type
T.

The definition of context bisimulation can be easity extended to HOm — one just have
to take into account the type informations. More interesting is to see how to extend the
definitions of trigger bisimulation and normal bisimulation. We shall briefly consider the
latter. We first have to understand what is the appropriate notion of trigger in HO7w. A
trigger of type T'=S5 — *x at m is
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where X is a variable of type S. Thus a trigger takes an argument X and export it in the
action at m. The appearance and the use of the argument X is the new ingredient w.r.t.
the triggers of Section 4.2. Dually, for T' = (S — %) — x, the abstraction Ab,, used in the
output clause of normal bisimulation becomes

AbT E(Y) Im. (X) (YoX)

where Y has type S — % and X has type S. Note that Tr’ : 7 and Ab? : T.

Thus, the requirements of normal bisimulation over HOm processes are the following:
P =y, @ implies:

e Whenever P —% P’ there exists Q' s.t. Q £ Q' and P ~n: Q';

o for all types T' = S — x, whenever P - F with F : T, there exists G : T s.t.
Q == G and FoTr® ~y, GoTr . for some fresh m;

e for all T, whenever P 2, C with C : T, there exists D : T s.t. @ =% D and
C o Ab? ~y, D e AbT | for some fresh m.

In this way, normal bisimulation and context bisimulation coincide over HOx processes (for
details, see [San92]).

9 Conclusions and future work

In this paper we have considered a few bisimilarity equivalences for higher-order process
calculi, in particular context bisimulation and normal bisimulation. Normal bisimulation
specifies some minimum requirements, or tests, on higher-order actions and hence provides
us with a useful mathematical tool to verify agent equivalences; the characterisation in
terms of context bisimulation gives us a measure of the power of such tests and reinforces
the naturalness of the equivalence. We have isolated a subclass of agents, called triggered
agents, which represent some sort of “normal form” for agents. We have shown that on trig-
gered agents context and normal bisimulations coincide with a third one, namely triggered
bisimulation, which is the simplest of the bisimilarities examined.

In [San92] we also compare context bisimulation and normal bisimulation with barbed
congruence, introduced in [MS92] as a tool to uniformly define bisimulation-based equi-
valences in different calculi. It is shown in [San92] that under certain conditions on the
syntax of the calculus, barbed congruence coincides with the “early non-delay” version of
context bisimulation. In this paper, we have chosen the “late delay” schema because it seems
more appropriate with an operational semantics based on the abstraction and concretion
constructs.

At a first glance, it appears surprising that the bisimilarity clauses of normal bisimulation
and triggered bisimulation contain no form of universal quantifications on matching actions.
For instance, in normal bisimulation to see whether an input action P — F is matched
by the input action Q —— G, it suffices to examine the derivative abstractions F and
G on a single argument (a trigger): This guarantees that F' and G are equivalent on all
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possible arguments. This simplicity contrasts with what happens in first-order calculi like
the m-calculus, where the bisimilarity clauses require the examination of different arguments
(as in late and early bisimulations [MPW92, PS93]) or, at least, impose multiple name
instantiations (as in open bisimulation [San93]). But the extra complexity of first-order
calculi can be understood and justified with their greater expressiveness: See for instance
[San95], where it is shown that the expressiveness of a Plain CHOCS-like calculus is the
same as that of a sublanguage of the m-calculus obeying some strong syntactic constraints.

It would be interesting to know at which extent the results presented here depend upon
the choice of operators in our higher-order calculus. An important condition seems to be that
context bisimulation be a congruence relation — the factorisation theorem would fail other-
wise. Thus, for instance, adding summation in an unconstrained way would be dangerous;
guarded summation, however, would be acceptable [San92].

We hope that the results presented, e.g., the factorisation theorem and normal bisimu-
lation, can contribute to the development of a manageable and solid theory for higher-order
process calculi. In [San92], we used these results to prove the full abstraction of a com-
pilation from HO7 to w-calculus. As argued in [San92, Hen93], the possibility of encoding
higher-order calculi at first order does not mean that the former are superfluous: Higher-order
constructs arise in many applications, for instance operating systems, and it is advantageous
to be able to use them and to reason with them ezplicitly, i.e. not via an encoding.

The factorisation theorem and normal bisimulation might also be useful on first-order or
mobility-free calculi, to develop a theory of equality of contexts or of open terms. Progress
in this direction has been made by Peter Sewell [Sew95], using techniques related to ours.

We have compared the weak delay versions of context bisimulation, normal bisimulation
and triggered bisimulation. We believe that similar results can be obtained for the bran-
ching [GW89] versions of these bisimilarities. We do not know at present if they could be
established also for the strong versions of the equivalences, where 7-actions have the same
weight as visible actions. Indeed, some of our central technical results, like the factorisation
theorem and the full abstraction of the mapping to triggered agents, are only true in the
weak case.

We have carried out an operational study of higher-order process calculi. The denotatio-
nal approach has been investigated by Matthew Hennessy [Hen93], who has given a model
for (a slight variant of) Thomsen’s CHOCS [Tho90]. The model is constructed from a do-
main equation and is proved to be fully abstract w.r.t. a notion of may testing. The language
CHOCS differs from Plain CHOCS, and hence from the calculus used in this paper, in an
important aspect: in CHOCS the restriction operator is a dynamic binder, whereas in the
latter calculi it is a static binder. To see the difference, suppose b is a name which occurs
free in P and Q. Having static binding, an interaction between a. (X) X and v b (@. (P)Q) is

(a.(X)X) |vb(@ (P)Q) — vb(P|Q)

and a scope extrusion of v b accompanies the movement of process P. By contrast, having
dynamic binding we would get:

(a.(X)X) |vb(a.(P)Q) = P|vbQ.
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Note that the reduction has destroyed the privacy of the b-link between P and @: The
free occurrences of b in P have evaded the restriction which embraced them. The main
advantage of dynamic binding is an easier semantics (operationally and denotationally); but
static binding facilitates the analysis of a program from its text. Our and Hennessy’s works
are tailored to the specific discipline chosen for restriction. In both cases, it appears that
the theory developed would not support a different discipline.

It would be interesting to understand whether our formulations of bisimulation for higher-
order calculi can be expressed within the framework of generalised algebraic specifications of
Astesiano et al. [AGR92]. They introduce algebraic structures called observational structures
— roughly first-order signatures equipped with a notion of observation — where processes
can be treated as data. Most important, observational structures can be assigned a modal
logic to describe observational properties of terms of the structures. The comparison with
[AGR92] could shed lights on how to define modal logics for the bisimulations which we have
analysed.
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A Proof of Proposition 3.8

In this appendix we prove Proposition 3.8, that is that ~¢y is a congruence on substitutions.
To prove the general result, we first have to prove some instances of it (Lemma A.2).

Lemma A.1 If |P X5 A, then A ~¢y Ay | P, for some Ay s.t. P| P £ A
PROOF: By transition induction. d
Lemma A.2 For all P,,P;,R € Pr, P, ~¢¢ Py implies

1. ve P ~rva Py
2. P]_|RNCtP2|R,'

3. 1P~y Ps.

PRrOOF: We only examine (2) and (3). It is enough to prove the result on closed expressions.
For (2), we show that
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Il

R ={wz(P|R),vZ(P:|R)) : P ~ct P2} U ~cy

is a bisimulation up-to ~cy. Take (v T (P1|R),v T (P2| R)) € R with Py ~cy P and suppose
that v Z (P, | R) % A. There are five cases to consider:

Case 1 P, 25 Ay and A=vZ (A |R).

Use the definition of ~¢ and simple algebraic manipulations with the laws of Lemma
3.5.

Case 2 R A; and A =vZ(P|A4).
Similar to case 1.
Case 3 P, % Ci,R - F,u=7and A=vZ(C;eF).

By definition of ~cy, Pi ~c¢ Q1 and Py 2, C1 imply that P e, Cy and Ge(Cy ~¢y
G ¢ Oy, for all G. Using this and assertion (1) of this lemma, we infer v 7 (P2 | R) —
vZ(Cy e F) ~cy vT(Cy e F), which closes up the bisimulation.

Case4 P, - FI,R 5 C,p=7and A=vZ(F ().
Similar to case 3.

Case 5 Interaction between P; and R along a first-order name.

This case is simpler than cases (3) and (4).

Now, assertion (3) of the lemma. We show that
R C{(1P|R,'Q|R) : P~c: Q)

is a ~g¢-bisimulation up-to ~¢y. We first notice that since ~¢y is transitive and preserved
by parallel composition (assertion (2) of this lemma), P ~¢y ) implies P | P ~¢¢ Q | Q.

We show that !Q | R can match any action from !P | R, say !P|R - Ty. We only
examine the case in which p is a silent action and originates from ! P; the remaining cases are
similar. Thus, assume T; = P; | R, for some P; s.t. ! P -~ P,. By Lemma A.1,if |P - P,
then P, ~cy P} | !P, for some P} s.t. P| P P}. Since Q | Q ~cy P | P, there is Q}
st. Q| Q - Q) ~ci Pl; therefore, 'Q —— ~c; 'Q | Q). From these facts, and using the
congruence of ~¢ for parallel composition, we have:

'P|R - ~¢¢ !P|P|R
QIR - ~a: !Q|P/|R.

This is enough, since (!P| P/ |R,!Q| P} |R) € R. O

We say that a variable X is guarded in an agent A if X only occurs in subexpressions of
A of the form pu. B.

Lemma A.3 Suppose that fv(P) = {X} and that X is guarded in P. Then, for all Q,

1. IfP 5 A, then P{Q/X} -~ A{Q/X};
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2. If P{Q/X} £ A, then there is A s.t. P 5 A and A’ = A{Q/X}.
PROOF: By transition induction. O
Lemma A.4 Suppose X1 € fv(P1) and that Xo & fv(P1). Then there exists Po such that

1. X; is guarded in P»;
2. P{X1/X2} = Py

3. if Q1 ~ci Q2, then Pi{Q1/X1} ~ct Po{Q1/X1,Q2/X2}.

PROOF: Induction on the structure of P;. The basis of the induction occurs when P; = X or

P, = n.A. If P, = X, then define P, & P, if X # X, and P, & X, if X = Xy;if P, = p.A,

then take P, def P.

When P, is a process of the form Ry | Ry, vz R, or ! R, use the inductive hypothesis on
the R or R;’s and (to prove assertion (3)) Lemma A.2. O

We are now ready to prove Proposition 3.8. We first recall its assertion.
Proposition 3.8 Let P, P, A € Ag; then P, ~ct Py implies A{P1/X} ~cy A{P2/X}.

PROOF: It suffices to prove the result for closed processes. Consider the set R of all pairs
of the form:

(P{Q2/X1}, P{Q1/X1}), with Qs ~c; @1 and X; guarded in P.

We prove the following facts:

(a) R is a ~g¢-bisimulation up-to ~cy;
(b) for all R with fv(R) C {X}, if @1 ~ct @2, then

R{Q2/X} R ~cy B{Q1/X}.

Then the assertion of the proposition follows from (a) and (b) by transitivity of ~c;.

We first prove (b). We can apply Lemma A.4 to R; let R’ be the process returned. We
have

R{Qs/X;} = (by Lemma A.4(2)) (13)
R'{Q2/X1,Q2/X2} R (X is guarded in R’ by Lemma A.4(1))
R'{Q1/X1,Q2/X2} ~ct  (by Lemma A.4(3))

R{Q1/X1}

which proves fact (b).

We now prove fact (a). Let P{Q2/X1} R P{Q1/X1}. We show that the actions of
P{Q2/X1} can be matched by P{Q1/X;}. Since X; is guarded in P, by Lemma A.3 we can
infer all transitions for P{Q2/X1} and P{Q1/X1} from those of P. There are three cases:
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Case (a) P - p.

Then we have the transitions
P{Q2/X1} = P{Q2/X1}, and P{Q1/X1} — P{Q1/X1}.

By fact (b), it holds that P'{Q2/X1} R ~ct P'{Q1/X1}, which closes up the bisimu-
lation.
Case (b) P -% C.

Then we have the transitions

P{Q2/X1} -5 C{Q2/X1}, and P{Qi/X1} —= C{Q1/X1}

For every closed abstraction G, we have G ¢ (C{Q;/X1}) = (G e C){Q:/X1},i=1,2.
Let R=G e C. Then R{Q2/X1} R ~ct R{Q1/X1} follows by fact (b).

Case (c) P - F.
Similar to case (b). O

Remark A.5 The weak version of Proposition 3.8 (i.e., R m¢t @ implies A{R/X} =
A{Q/X?}) can be proved along the same lines. We should mention, however, that in place of
the “bisimulation up-to ~¢4” technique (used in the proofs of Lemma A.2 and Proposition
3.8), one should use the following up-to technique for ~cy:

Given a symmetric relation R C Pr° x Pre, suppose that (P,Q) € R imply:

1. whenever P -5 P’ thereis Q' s.t. Q N Q" and P’ ~¢y R ~¢t Q'

2. whenever P -+ F, there exists Gst. Q = G and C e F ~¢y R ~¢; C o G, for all
concretions C'.

3. whenever P —% C, there exists D s.t. @ =% Dand FeC ~ct R =gy F e D, for all
abstractions F'.

Then R Crict.

The soundness of this technique can be established using a standard argument for up-to
techniques. O

B Proof of Proposition 4.1

In this appendix we prove Proposition 4.1, that is that {z := B} distributes over substitution,
on the hypothesis that z is used only in output subject position. The presentation of this
appendix is similar to that of Appendix A, where we inferred congruence for ~¢y over
substitution. In both cases, we have first to prove some instance (Lemma A.2 and B.3,
respectively) of the general result (Propositions 3.8 and 4.1, respectively). Moreover, the
proof of Proposition 4.1 closely follows the proof of Proposition 3.8.
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We write “x nsp A” to mean that name x occurs free in agent A only in output subject
position. Our first target is to show that {z := B} distributes over parallel composition. We
cannot quite follow the proof technique used by Milner to show the analogous result for the
w-calculus [Mil91, Section 5.4], due to the higher-order setting in which we are working. For
our proof, Lemmas B.1 and B.2 are needed. Lemma B.1 relates the actions of the processes
Q@ and @', where Q' is obtained from ) through a substitution of one of its names. In the
lemma, assertion (2) — the vice versa of (1) — is only possible because of the condition
x,z nsp ) which prevents new possible interactions from being generated as effect of the
substitution Q{z/z}.

Lemma B.1 Suppose x,z nsp Q. We have:

1. IfQ 55 A, then Q{z/x} #iz/s} A{z/z};

2. if Q{z/z} N A’, then there exists A s.t.
Q 5 A with i = p{z/z} and A’ = A{z/z}.

Moreover both in (1) and and in (2), it holds that x, z nsp A.

PROOF: A simple transition induction, both for (1) and for (2). O

Lemma B.2 Suppose that ©,z1 nsp Q, that x,z1 & fn(B) and that z2 ¢ fn(Q,B). Then
Q{z1/z} {z1 := B} ~ct Q{z2/z} {1 := B} {22 := B}.

PROOF: Below, for a generic process P, we write P {Z := B} for P {z; := B} {z := B}.
Since zo does not occur free in Q{z1/z} {z1 := B}, we have

Q{z1/2} {21 := B} ~ct Q{21/2} {Z := B};

therefore it suffices to prove that Q{z;/xz} {Z := B} ~cy Q{22/z} {Z := B}. For this, we
show that the set R of all pairs of the form

(Q{=1/2} {z:= B}, Q{z2/z} {Z := B})

with 2,2, nsp @, z,z ¢ fn(B) and 2z ¢ fn(Q, B), is a ~¢¢-bisimulation up-to ~¢y . Suppose
P1 R P2, for

def ~ = def ~ =
P, = Q{z/z}{Z:= B}, P, = Q{zy/x} {Z:= B}.
We have to consider the actions of @{z;/z} and Q{z2/2z} which can cause an action of either
P, or P;,. In the following we make use of Lemma B.1 which tells us how to infer the actions

for Q{z1/z} and Q{z2/z} from those of Q.

Case (a) Q — Q'
We get the actions
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P Q{xn/z}{Z:=B} and P, Q'{z/z}{%:=B}.

Now we are back in R because Lemma B.1 insures that Q' meets the conditions of
R.

Case (b) Q@ % G.
By the conditions on z and z; it must be a ¢ {z, z1}. We thus get the actions:

P % G{a/z} {Z:=B) ¥ G1 and B - G{z/z} {7 := B} € G..

We have to prove that C' e G; ~ct R ~¢y C o Go, for every concretion C. Assuming,
by alpha conversion, that x, z1, z2 do not occur free in C, we have

CeG; ~¢y (Co@){z/z}{Z:=B}, fori=1,2
which shows that C e G ~c; R ~ci C e G holds.
Case (¢) @ 2, C,witha ¢ {z, 21}
Similar to case (b).

Case (d) Q - C, with a € {z, 21}

We assume that a = z, as the case a = 2 is similar. The transition by @) determines an
interaction between Q{z1/z} and !z;. B in P;, and an interaction between Q{z2/z}
and !zy. B in Py:

P ~oy (BeO){z1/z}{Z:= B} and P, ~¢ (BeC){z/z}{Z:= B}.

and we are back in R .

Case (e) Q N Q', with £ # 1.

Similar to the previous cases. O

Lemma B.3 Suppose that z € fn(B) and that z nsp P, Q. Then
1. (vzP) {2:=B} ~cyvz(P{z:=B}), z # z.
2. (P|Q) {z:=B} ~c+ P{z:=B}|Q {2z := B}.

3. (1P) {z:= B} ~a! (P {2 := BY}).

PROOF: The hardest cases are (2) and (3), and we only consider these. It is enough to show
the result for closed agents. We start with (2).
Let z ¢ fn(P,Q) and Q’ ef Q{z/z}. Then @Q = Q'{z/z}; moreover, if z' ¢ fn(P,Q, B),
then
(P|Q){z:=B} =
(P1QY{z/z}{z:=B} ~ct (by Lemma B.2)
(PlQ)N /ey {z:=B}{s':==B} =
(P|Q'{z'/z}){z:=B}{z':=B} ~¢¢ (since z ¢ m(Q'{z'/z},B) and 2’ ¢ fn(P, B))
(P {z:= B}) | (Q’{z’/x} {z":= B}) = (using alpha conversion)
P{z:=B}|Q{z:= B}
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Now assertion (4) of the lemma. We show that the set R of all pairs of the form
(Q |(!P){z:=B}, Q| (P{z:= B})) with z ¢ fn(B) and z nsp P
is a ~g¢-bisimulation up-to ~¢t. An action of
QI(!P){z=B} o  Q|!(P{z:=B}

comes from an action of () alone, an action of P alone, an interaction between () and P, or
an interaction between P and {z := B}. We analyse the cases of higher-order output action
by P and of communication between P and {z:= B}, supposing z is a higher-order name.

Suppose P %+ C, with a # 2. Since z nsp P, also z nsp C. Assuming z does indeed occur
free in C, we have:

QI('P){z:=B} % ~c (C|Q|'P){z:=B} ¥¢

and

def

Q!(P{z==B}) H~c (C|Q|!(P{z:=B}){z:=B} ¥

We show that, for all G, it holds that G e C; ~cy R ~¢y G e Cy. By alpha conversion, we
can assume that z ¢ fn(G) and, therefore, using assertion (2) of this lemma, we have

Ge(C; ~ct (GeC|Q|!'P){z:=B}
~ct (GeC|Q){z:=B}|(!P){z=B}¥ R,

and
GeC, ~c (GeC|Q|!(P{z:=B})){z:=B}
~ct (GeC|Q){z:=B}|(P{z:=B}) ¥R,
which is enough, since R; R Ra.
Now we look at the case in which z is a higher-order name and there is an interaction

between P and {z:= B}. Suppose P — C is the action of P. We have

Q[(1P){z:=B} — ~a

QI(CeB|1P)(z:=B} & B
and
Q!(P{z:=B}) D ~ac
Q|(CeB){z:=B}|!(P{z:=B}) def Ry.

It holds that z nsp (C e B | ! P). Therefore, using assertion (2) of this lemma,
Ry~ Q|(CoF){z:=B}|(!P){z:= B} = R}

which, since R} R Rs, closes up the bisimulation. a

Recall that a variable X is guarded in an agent A if X only occurs in subexpressions of
A of the form pu. B.

Lemma B.4 Suppose that Xy € fv(A;1) and that Xo & fv(Ay). Then there exists Ay such
that
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3/

1. X, is guarded in As;
2. A2{X1/X2} = Ay;

3. for all Q, we have A1{Q/X1}{z := B} ~ct A2{Q/X1,Q {z := B}/ X>} {z := B}.

PROOF: By induction on the structure of A;. The basis of the induction occurs when 4; = X
or A; = p.A. If A; = X, then define Ay % A, if X # X;, and 43 = X, if X = Xy; if
A; = p.A, then take As def Aj.

When A4 is a process of the form P; | P, v P, or ! P, use the inductive hypothesis
and Lemma B.3. As an example, we consider the case of parallel composition and prove

assertion (3). Suppose A; = P | P». By induction there exists P/, i = 1,2 such that P/ and

P; satisfy the assertion of the lemma. Define A, ' P/ | Pj. Abbreviating the substitution

{Q/X1,Q {z := B}/ X5} as {Qr/7}, we have:
(P | P{Q/ X1} {z:==B} =

(distributing the substitution)
(P{Q/X1} | P{Q/X1}) {z:= B} ~ci (Lemma B.3(2))
(
(

P {Q/X1}{z:=B} | {Q/X1}{#:=B} ~c¢ (induction)
P{Qr/%} {z = B}|P2’@/5} {z:=B} ~ac
(P{ | P){Qr/T}{z := B}. O

reversing the steps)

We are now ready to prove Proposition 4.1. We first recall its assertion:

Proposition 4.1 Let A, P,B € Ag. Suppose that z ¢ fn(B) and that z occurs free in A
and P only in output subject position. Then

A{P/X}{z =B} ~cy A{z:= B}{P{z:= B}/X}.

ProoF: It suffices to prove the assertion for closed processes. Consider the set R of all
pairs of the form:

(P{Q/Xl} {z:=B},P{z:= B}{Q {z:= B}/Xl}), with X; guarded in P.
We prove the following facts:

(a) R is a ~g¢-bisimulation up-to ~cy;
(b) for all R with fv(R) C {X},

R{Q/X1} {z = B} ~o: R ~cs R{z:= B}{Q {z:= B}/ X, }.

The assertion of the theorem follows from (a) and (b) by transitivity of ~c;.

We first prove (b). We can apply Lemma B.4 to R; let R’ be the process returned. We
have
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R{Q/Xl} {Z = B} ~Ct
R{Q/X1,Q{z:=B}/X>} {2 := B}

(by Lemma B.4(3))
(R{Q {z := B}/ X2} ){Q/ X1} {z := B}

R

(R{Q{z:= B}/X2}) {z:= BM{Q {:= B}/X: }

(by Lemma B.4(1), X; is guarded in R')

R {z:= BY{Q {z := B}/X1,Q {z := B}/ X}

(z is not free in @ {z := B})
R{z:=B}{Q{z:= B}/ X1}

(using Lemma B.4(2))
i.e., summarising:

R{Q/X1} {2z := B} ~o« R R{z:= B}{Q {+:= B}/X1},
which proves fact (b).

We now prove fact (a). Let Q1 R Q, for

Q: ¥ P{Q/X:}{z:= B} Q& P{z:=BH{Q{z:=By/X:}

with X3 guarded in P. Because X7 is guarded in P, we can infer all transitions for @); and
Q2 from those of P. There are four cases to consider:

Casel] P P,

Then we have the transitions

@ P{Q/X1} {z =B} ¥ @i, QP {z=B}{Q{z:=B}/X,} ¥q,
By fact (b), we have Q] ~ct R ~ct Q%, which is enough because R a bisimulation
up-to ~cy -

Case 2 P % C.

First suppose a # z. Then we have the transitions

Q1 5 C{Q/Xi}{z:=B}

Q: = C{z:=BH{Q{z:=BYy/X:}.

For every closed abstraction G, we have, using simple algebraic manipulations,

Go(C{Q/X1}{z:=B}) ~oi (GeO{Q/X1}{z:=B} ¥ Q]
Go(C{z=BH{Q{z=B}/x}) ~o (Ge0O){z:=BH{Q{z:=BY/X:} ¥,
Now @} ~ct R ~ct Q) holds by fact (b), for R=G e C.

Suppose now that a = z. In this case the transition P —Z O determines an interaction
with !z. B as follows in (); and Qs:
Q1 4 ~c

(BeO){Q/X1} {2 =B}y £ @4

Q: = ~a (BeC){z=BHQ{z=B}/X1} = Q,
and Q) ~ct R ~ct Q4 holds by fact (b).
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Case 3 P % G.

Since z nsp P, it must be a # z; then proceed as in case (2) for a # z.

Case 4 P -5 P and ( # 1.

Similar to previous cases.
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