N

N

Sequencing of parts in a robotic cell
Haoxun Chen, Chengbin Chu, Jean-Marie Proth

» To cite this version:

Haoxun Chen, Chengbin Chu, Jean-Marie Proth. Sequencing of parts in a robotic cell. [Research
Report] RR-2496, INRIA. 1995, pp.26. inria-00074179

HAL 1d: inria-00074179
https://inria.hal.science/inria-00074179
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074179
https://hal.archives-ouvertes.fr

%I NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Sequencing of parts in a robotic
cell

Haoxun CHEN - Chengbin CHU - Jean-Marie PROTH

N° 2496
Février 1995

PROGRAMME 5

//:’;,"’ : > a pp O r t
4 N de recherche

Les rapports de recherche de I'INRIA
sont disponibles en format postscript sous
ftp.inria.fr (192.93.2.54)

si vous n'avez pas d'acces ftp

la forme papier peut étre commandée par mail :
e-mail : dif.gesdif@inria.fr

(n'oubliez pas de mentionner votre adresse postale).

par courrier :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

INRIA research reports
are available in postscript format
ftp.inria.fr (192.93.2.54)

if you haven't access by ftp

we recommend ordering them by e-mail :
e-mail : dif gesdif@inria.fr

(don't forget to mention your postal address).

by mail :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

SEQUENCING OF PARTS IN A ROBOTIC CELL

Ordonnancement de piéces
dans une cellule robotisée

Chen Haoxun ()) Chu Chengbin () Proth Jean-Marie (1-(3)

1. INRIA-Lorraine, CESCOM, Technopole de Metz 2000, 57070 Metz, France
2. Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, P.R. China
3. Institute for Systems Research, University of Maryland, U.S.A.

Abstract. This paper considers scheduling problems in a robotic cell which produces a set of
parts on several machines served by a robot. We study the problem of sequencing parts in the
cell in order to minimize the production cycle time when the sequence of the robot moves is
given. This problem is NP-hard for most of the one-unit robot move cycles in a robotic cell
with more than two machines producing more than two part-types. We first give @ mathematical
formulation to the problem, and then propose a branch-and-bound algorithm to solve it. The
bounding scheme of this algorithm is based on relaxing, for all the machines except two, the
constraint that the machine is occupied by a part for a period at least as long as the processing
time of the part. It turns out that the lower bound obtained in this way is tight. This relaxation
allows us to overcome the complexity of the problem. The lower bound can be computed using
the algorithm of Gilmory and Gilmore. Computational experiments on part sequencing
problems in three-machine robotic cells are given.

Keywors. Scheduling, Robotic Cell, Lower Bounds, Branch and Bound.

Résumé : Ce rapport considere les problémes d’ordonnancement dans une cellule dans
laquelle sont produites des pieces sur des machines servies par un robot. Nous étudions le
probléme qui consiste a minimiser le temps de cycle pour une séquence donnée de
mouvements du robot. Ce probleme a ét€ prouvé NP-difficile pour la plupart des séquences 1-
périodiques de mouvements du robot dans une cellule comportant plus de deux machines sur
lesquelles sont produits plus de deux types de pieces. Nous fournissons d’abord une
formulation mathématique du probléme et proposons ensuite une procédure par s€paration et
évaluation pour sa résolution. Le calcul des bornes inférieures est basé sur la relaxation qui
consiste a annuler les durées opératoires des pieces sur toutes les machines sauf deux. Il
s’avere que les bornes inférieures ainsi obtenues sont de bonne qualité. Cette relaxation nous
permet de surmonter le probléme de la complexité, puisque les bornes inférieures peuvent étre
obtenues en appliquant 1’algorithme de Gilmore et Gomory en temps polyndmial. Des
expériences numériques sur I’ordonnancement de pieces dans une cellule a trois machines sont
également fournies dans ce rapport.

Mots clefs : Ordonnancement, Cellule robotisée, Bornes inférieures, Séparation et
évaluation.

1. Introduction

Industrial robots play an important role in advanced manufacturing systems. A major
application of industrial robots is in so-called robotic cells, which consist of one or more
machines, a robot which loads and unloads parts on machines, and a material handling
mechanism for feeding the cell and removing parts from the cell. Optimizing the performance of
such cells is a major issue. Since the robot in such a cell usually performs repetitive sequences
of pickup, move, load, unload, and drop operations, the performance of the cell depends on the
scheduling of robot activities and the operations to be performed on the parts.

Only a few studies on the scheduling of parts and robot moves in robotic cells have been
reported in the literature. An extensive review of the literature related to this problem is given
by Sethi et al. [8] and further references can be found in the paper of Hall, Kamoun and
Sriskandarajah [3]. Sethi et al. {8] study the problem of determining the robot move cycle and
the sequence of parts in a minimal part set (MPS) that jointly minimize the production cycle
time. They find the optimal sequence of robot moves for a two machine robot-centered cell
producing a single part-type. For the case of three machines and one part type, they show that
under specific assumptions about the data, two of the six potentially optimal robot move cycles
are dominated by the other four. Finally, for the case of two machines and multiple part-types,
they find a polynomial time algorithm to solve the problem of sequencing parts for a given
sequence of robot moves. Hall, Kamoun and Sriskandarajah [3] consider the same problem.
They provide an efficient algorithm that simultaneously optimizes the robot move and part
sequencing problems. For single part-type problems, they prove that in a very general
environment, the repetition of one-unit cycles dominates more complicated policies that produce
two or more units. Hall, Kamoun and Sriskandarajah {4] consider the problem with three or
more machines. They prove that, in a robotic cell with m machines, the part sequencing
problem can be polynomially solved for 1+m(m-1)/2 out of m! one-unit robot move cycles, and
is unary NP-hard for the other cycles. They propose a pseudo-polynomial algorithm for the
part sequencing problem when the number of possible part-types is fixed. Kamoun, Hall and
Sriskandarajah [5] propose several heuristics for robotic cells with three machines.

Although optimal one-unit robot move cycle is in general not an optimal solution, if we
consider more complicated policies that produce two or more units (see Hall, Kamoun and
Sriskandarajah [3]), it is easily computed and applied due to its simply repetitive nature. For
this reason, we confine ourselves to one-unit robot move cycles in this paper. Since the number
of machines in a robotic cell is usually no larger than four, the number of possible one unit
robot move cycles is small enough to be able to find an optimal one by enumeration. Thus, the
remaining problem is to determine an optimal part sequence when the sequence of the robot

moves is specified.

To solve this problem, it appears that an implicit enumeration of feasible solutions is
unavoidable. In this paper, we first give a mathematical formulation to this problem, and then
propose a branch and bound algorithm to solve it. The bounding scheme of this algorithm is
obtained by relaxing the constraint that each machine must process a part for at least its
processing time on the machine for all machines but two. We show that if the two machines are
chosen as two successive ones, the corresponding relaxed problem can be solved by using the
well known algorithm of Gilmore and Gomory for a special solvable class of the traveling
saleman problems in O(nlogn) time. The relaxed problems for some of the other choices,
however, are likely to be NP-hard. For this reason, each pair of the two machines chosen for
computing the lower bound is composed of two successive machines. Computational
experiments on intractable part sequencing problems in three-machine robotic cells are given.

2. Mathematical Formulation

We first introduce some notations required to specify a general robotic cell considered in
this paper.

m number of machines in the robotic cell. We denote these machines by M;, i=1, 2,
..., M, input station by I (or M) and output station by O (or M,). Parts are
processed succesively by My, M,,..., M.

k number of part types produced in the cell. These part types are denoted
respectively by 1,2, ..., k.

. k R . . .
ry, 13, ..., ry smallest integers such that ri/zjzlrj is the production ratios required for the part

type 1.
MPS minimal part set consisting of r; parts of parttype i, 1= 1,2, ... k.
n total number of parts to be produced in the MPS, i.e., n=r|+r2+...+r;.
Pij processing time of part 1 on machine Mj, i=1,2,..,n,j=1,2, ..., m.
ei,j time needed for the robot to travel from M; to MJ-, 12,1, 1=0,1, ..., m, m+1.
o) time needed for the robot to pick up a part from M;, i=0, ..., m.
5? time needed for the robot to drop a part onto M;, i=1, ..., m+1.
o activity of the robot consisting of picking up a part from M;, transporting the part

to My, and droping the part onto My, ;, i=0,...,m.
€] activity of the robot consisting of traveling from M; to M;j without carrying a part
(empty move). '

i time needed by robot activity o, i.e.. 8; = 87 +6; i, +57,,.

M2

M1
f R M3
a

s a

Fig. 1. A robotic cell with three machines

Figure 1 illustrates a robotic cell with three machines.

A one-unit robot move cycle can be represented as a sequence of the form:

OR = &, €41, &, € o +1.g

il+1'i2 i2 ”..gim—l+]'im aim 81-m

or briefly

OR = O, O O0
where i, 1y,, i, 1s @ permutation of 0, 1, ..., m. .

Because of the repetitive nature of the one-unit robot move cycles, we can assume that =0
without loss of generality.

Figure 2 illustrates a one-unit robot move cycle for the robotic cell represented in Fig. 1.

This cycle can be represented as 00lH00; 03.

Fig. 2. A one-unit robot move cycle

When we consider the sequence of robot moves as well as the sequence of parts in a

robotic cell, a time diagram is very helpful to understand all activities of the machines and the

robot in one production cycle of the robotic cell. To illustrate such a time diagram, let us
consider the robotic cell as shown in Fig. 1. Suppose that the cell produces three parts in one
cycle, one for each part type (the three parts are numbered by 1, 2, 3 respectively), that the pan
sequence is 1, 2, 3 and that the robot move sequence is specified as in Fig. 2. Then, the time
diagram of one production cycle in the robot cell is illustrated in Fig. 3, where a box labelled 1/)
represents the activity that the robot unloads a part i from machine M;, transports the part to
machine M;, and then loads the part onto machine M, . Robot moves related to the parts that
are delivered into the cell during this robot cycle (resp. last robot cycle) are represented by
boxes on layer O (resp. layer -1).

-1 3/2 3 /3 /2 1/3 P /2 2 /3

op-/o [1/1 2 /0 P /1 3/0 3/ 1

10 11

Fig. 3. Diagram of the robot activities during a production cycle.

For a robotic cell with three machines, there are six possible one-unit cycles of the robot
moves Sy, So, ..., S¢ (see Sethi, et. al. [8]) which can be described as:

S1 = 0o 0p0i3:
Sp = o0 03;
S3 = 0g0o 030;
S4==a0a3a1ag
S5 = 00030
86==a0a3a2ay

It has been proved by Hall, et. al. {4] that although the part sequencing problems for four
robot sequences Sy, S3, S4 and Sq are polynomial time solvable, the part sequencing problems
for the other two robot sequences S, and Sg are unary NP-complete.

Without loss of generality, we assume that there are n different parts to be scheduled at
input station 1. In other words, each of the r; parts of type i in the MPS is considered as a
specific part. Suppose that the n parts are numbered by 1,2,...,n. Then, a cyclic schedule of
parts can be represented as a permutation ¢ = (6(1), ..., 6(n)) of parts 1, 2, ..., n, where o(i)
means that part 6(1) is scheduled at i-th position. Let T denote the cycle time related 1o 6. Our
objective is 10 find a permutation 6 which minimizes the cycle time Tg.

Given a complete cyclic schedule 6 = (6(1), ...,6(n)), the cycle time T can be expressed

as:
Ts = Tomyo@)* To)o@3)* -+ + Tomo1), (1)

where Tg(j)g(i41) 1 the time required to produce part 6(i) which is measured from the time that
the robot starts to pick up part (i) at input station to the time that the robot starts to pick up part
o(i+1) at input station.

Let us denote by w; ; the robot waiting time in front of machine M; to pick up part 6(1),
i=1, 2, ..., n, j=1, 2, ..., m. Conventionally, 6(i) is sometimes denoted by [i] and we assume
that o(i), Wijs je {1, ..., m} are defined for any integer i, and that (i) = o(k), Wij = Wi if
(i-k) 1s a multiple of n.

In the following, we establish a mathematical formulation for part sequencing problems in
a 3-machine robotic cell when robot sequence S, or Sg are given.

The notion of production cycle will be used: It is the time period needed to produce the
parts belonging to an MPS. Note that the production cycle is different from the one-unit robot

move cycle.

(a) Part sequencing in a 3-machine robotic cell with robot sequence S,

The time diagram of one production cycle in a 3-machine robotic cell with robot sequence
S, is shown in Fig. 4, where [i] represents the part scheduled at the i-th position, a box labelled
as [i])/j represents the robot activity which consists of picking up part [i]} from machine M;,
rransporting the part to machine M;,; and then dropping the part onto machine Mj, ;. From

now on, such an activity is referred to as robot move [1]/).

-1 n)/2 (n)/3 nre r13 (i-1)72 [1-1)73 n-1y n-171!

ol ly an {20 (2in [i)/0 lijn in)/0 In] A iy

Fig. 4. Time diagram of a cycle in a 3-machine robotic cell with robot sequence S,

Let C = 60+612+62+931+6]+923+ §3+940, K1 = 6 12+ 62-4- 63 1, Mo =
053+ 03+040+0 +0 12, U3 = 837+6 +6,3. C is the total robot busy time in one robot move
cycle. y; is the total robot busy time between the time that a part is loaded onto machine i and

the time that the part is unloaded from machine i, i=1, 2, 3.

We can derive a formula for Tgj)s(i4 1) as follows:

To(o@) = CHwp2+Wy 1+Wy 3, (2a)
To(i)oti+1) = CHWi 24w 1+Wiy 3, 1=2, ..., n. (2b)
Thus,
n n
To= X Togi)o(i+1)= NC + 2 (Wi 1+W;2+W; 3) 3)
1=1 =1

subject to

W2 2 max{0, pp)2 - Ha - Wn.1,3) | (4a)
w12 max{0, py1)1 - Uy - Wn2) (4b)
wy 3 2 max{0, pjq) 3 - K3 - Wi) (4c)
Wig2 max {0, P(i-1]2 - M2 - Wi23), 1=2, ..., n, (4d)
wi 1 2 max{0, p(j}.1 - Hy - Wis1 2), =2, ..., n, (4e).
Wi132 max {0, Pli-113 " M3 - Wi 1), =2, ..,n, 4f)

or equivalently,

Wn2t Wn.132P(n}2 - M2 (5a)
W1+ Wn2 2 P11 - B (5b)
Wn 3+ W11 2Pmp3 - H3s (5¢)
Wii12 + Wi232 Pi-1)2 - M2 i=2, ..., (5d)
Wi+ Wii12 2 Pjij - M =2, ..., n, (5¢e)
W13+ Wi12Pp[.1)3 " M3, 1=2, ..., n, o (5)
Wi 1, Wiz, Wj3 20, i=1, ..., n. 5g)

(4a) means that the robot cannot pick up part [n} from machine 2 until the part finishes its
processing on the machine. The meanings of (4b) — (4f) are similar.

Therefore, the part sequencing problem for S, can be formulated as follows:
p22

n
rglil TG =nC + Z (W“’1+Wi’2+wi,3)
W 1=1

subject to (5a) — (5g), where w={w,;,i=1,2, ..., n, j=1,2, 3}.

)j)

(b) Part sequencing in a 3-machine robotic cell with robot sequence S¢

The time diagram of one production cycle in a 3-machine robotic cell with robot sequence -
S¢ is shown in Fig. 5.

-1 n-1yq [n])/2] n]f31 |1)2 -2/ -1 in-21/3} |(n-1)3 |

o luye 1y | {2v0 (21 o | (i)n (n] /0 || nia

Fig. 5. Time diagram of a cycle in a 3-machine robotic cell with robot sequence Sq

Let C = 0(+0;3+03+042+0,+03,+8,+6050, p| = 013+ 63+042+02+63,, 1y =
920+60+913+63+942, Uz = 931+6 1+920+60+6]3. The meanings of C and y;, i=1,2,3 are
the same as these in (a).

Similar to (a), the part sequencing problem for S¢ can be formulated as tollows:

Pg:

x;lin Tg=nC+ i (Wi 1+Wj2+W; 3)

W i=1

subject to
Wn-1,3 %+ Wn,1 2 P[n-1),3 - M3 . (6a)
Wn2+ Wn132 Pn)2 " K2 . (6b)
Wit Wno+ Wn132PM,1 - Hs (6¢)
Wi 3+ W12 P13 - M3 1=1, ..., n-1, (6d)
Wi2 * Wi13 2 Pfij2 - H2 =1, ..., n-1, (6¢)
Witl,1 T Wi2 * Wil 32 Plis1),1 - M1 i=1, ..., n-1, (66)
Wi, Wi, Wi320, i=1, ..., n. (6g)

3. Lower bounds

The enumeration scheme used in almost all branch-and-bound algorithms developed so far
generates all n! permutation schedules in the following way: A node at the /-th level of the
search tree is characterized by a partial schedule 6 = (o(i), i€ S), where S is a subset of
{1,2, ..., n}, ISI = [, (i) indicates that part 6(i) is scheduled at the i-th position, for i€ S.
Any permutation G of the index set S (S = {1, 2,n\S) of the unscheduled jobs is a

complement of G, i.e., a complete permutation schedule oG = (o(i). ie S; G(i), i€ S), where

"o

o" denotes the concatenation, as usual.

In the branch-and-bound algorithm presented hereafter, a partial schedule is represented by
o=(c(1), ie S), where S = {n} at the O-th level of the search tree (i.e., at the root node),
S={n, 1} at the l-th level, S = {n, 1, 2, ..., k}, 2<k<n-1, at the k-th level. Note that due to
the cyclic nature of the schedules we consider, we can arbitrarily specify ¢(n), the part
scheduled at the last position, at the beginning of a run of the algorithm. This is the reason why
we take S={n} at the O-th level, S = {n, 1} at the 1-th level, Conventionally, we set k=0 if
S={n}and k=1 if S={n, 1}.

Given a partial schedule 6, we should derive a lower bound of the cycle time of 6oo for
all possible G. One approach is to obtain such a lower bound by relaxing the processing time
requirements of parts on each machine using Lagrangian multipliers and then to calculate the
lower bound by using subgradient method. We can expect that the Lagrangian-relaxation-based
lower bound is sharp, but it is at the expense of excessive computation time. For this reason,
we focus on finding a lower bound making a trade-off between the sharpness and the
computational requirements.

The basic idea 1s to obtain a lower bound by relaxing the processing time requirements of
the unscheduled parts on some machines, i.e., by assuming that, for each of the machines,
when the robot has been in front of the machine and ready to unload the part being processed,
the robot can unload the part even if the previous part has not finished its processing on the
machine. The remaining machines on which the processing time requirements of parts are not
relaxed are referred to as bortleneck machines.

As mentioned in the introduction, any problem involving three or more bottleneck
machines for NP-hard part sequencing problems in robotic cells is likely to be NP-hard. For
this reason, we restrict ourselves to choosing two machines as bottleneck machines.

Let LB4(u,v) denote the lower bound tound by choosing machines M, and M,,
1<u<v<m, as the two bottleneck machines (i.c., by relaxing the processing time requirements
of the unscheduled parts on machines belonging to {1, 2, ..., m}\{u, v}). Then, LB5(Q) =
max{LBg(u, v) | (u, v)e Q} is a valid lower bound for any QCZ, where Z = {(u, v) I
1<u<v<m}

In the following, we first introduce the lower bound scheme for robot sequences S, and Sg
in a 3-machine robotic cell and then extend it to general robotic cells with an arbitrarily robot

sequence.

3.1. 3-machine robotic cell with robot sequence S,

(a) LB4(1,2)

In this case, M and M, are taken as the two bottleneck machines. Note that T can be

rewritten as

n
Tg=nC+ Z (Wi2 3+ Wi 2t Wi 1)

1=1

and the constraints (5a) — (5g) can be rewritten as

Wi 3t Wil 1 2 Pji-2),3 - M3, i=1, 2,
Wi-12+ Wi23 2 Pli-1],2 ~ M2, i=1,2, ...
Wil * Wii12 2 Plil1 - K1 i=1, 2, .
Wi23 Wii1,2, Wi1 2 0, i=1, 2,

If we drop constraints (8a) for i=] and i=k+1, ..

(7)
,n, (8a)
, n, (8b)
, N, (8¢)

.., N, (8d)

., n, Le., relax the processing time

requirements of parts o(1), i=k-1, k, ..., n-1 on machine 3, we can obtain a relaxed problem P,

of P, (P, is defined in Section 2 (a)) as follows:

}32:

n
min nC + Z (Wi23+Wi 1 2+W; 1)
=1

subject to (8a), i=2, ..., ki (8b)—(&d), i=1, ..., n.

132 can be further decomposed into the following two subproblems Pg and Py :

k
min kC + Z (Wi.23+Wiq 2+Wi 1)
i=l

subject to (8a), i=2, ..., k; (8b)—(8d), i=1, ..., k,
and

n
min (n-k)C + Z (Wi23+Wj 1 2+Wj1)
i=k+1 :

subject to (8b) — (8d), i=k+1, ..., n.

The sum of the minimal objective values of Py and Py, which is the same as the minimal

10

objective value of P,, provides a lower bound of T.

For problem P, since Pi-21,3- 1=2, ...,k and p(i.q;.2, prig,1 =1, -

., k are all known for

the given ¢ and w_y 3 (i.e., wy.1 3) only appears in constraint (8a) for i=2 and in constraint

w_1 320, an optimal solution of P can then be obtained in the following recursive way:

W_1’3 =0,

wip2 = max{0, pji.;12 - Hp - Wi 3}, i=1, ..
Wil :’naXIO,PULl'IJ]-\VFLQ}, i=1, .
wip 3 =max{0, pji.1)3- K3 - wi1l, i=1, ..

. k,

b I

. k.

Therefore, problem PS can be solved in O(k) time.

For problem Py, we can prove that there is an optimal solution {w;_; 3, Wi} 2, Wj 1,

1=k+1, ..., n} such that wi23 =0, i=k+1, ..., n, because otherwise, we can construct another

solution {W'i-2,3’ W'i-l,2’ W'i‘], i=k+1, ..., n} such that W'i_z’_; = (), W'i_|'2 = Wi12 + Wi2.3

and w'j } = wj). This solution satisfies all constraints of Pg and has an optimal objective value

as well. Therefore, problem Py is equivalent to the following problem Py

u,
o-

min (n-k)C + i (Wi_],2+Wi’|) (9a)

i=k+1
subject to

Wi12 2 Pli-1],2 - M2, i=k+1, ...
Wil + Wii12 2 P(ij,1 - B i=k+1, ...
Wil W12 20, i=k+1, ...

The optimal solution of Py must have:

wi12 =max{0, pi.1)2 - 2},
wip =max{0, pj 1 - 1) - Wi 2!

= max{0, Prij1 - M1 - max {0, Pli-1)2 - M2t }, i=k+1, ..

Thus, the optimal objective function value is :

n
(n-K)C+ 3 (Wi 2+wi)
1=k+1

i=k+1, ...

(9b)
(%¢)
(9d)

(10a)

(10b)

n
=(-k)C+ D (max{0, pji1)2 - Hp}+max{0, pjij1 - Ky - max{0, pri.1;2 - Mo} })

i=k+1

= (n-k)C + 2 max{max{0, pfi.1}2 - L2 }.ppif,1 - M}
i=k+1

n
= (n-k)(C-py-Hp) + Y max{max(pp,ppi.gy 2} +iy, Ppij 1 +ia !

1=k+1
n-1
= (n-k)(C-py-pp) + D, max{max{po.pij 2} +Ha, Plis1}1+H2)
1=k
n-1
= (-K)(C-py-Hp) + 3 max{fg(i), Lo (b
1=k

where
f_' = max{pz,pjyz}ﬂil and gJ = pj’]+u2, j=1, 2, RO t

n—1
Note that when k=0, the expression 2 max {f5i), Eo(i+1))} can be interpreted as the total
i=k
length of tour o of a traveling salesman problem (TSP) where the distance from city i to city j is

defined by d; ; = max{f;, g;}. Therefore, problem 15(‘,’ can be solved by using the algorithm of

N n-1
Gilmore and Gomory [2] in O(nlogn) time. When k>0, the expression Y max{fs), gc(m))}
i=k

can be interpreted as the total length of a path from city (k) to city 6(n) (6(k) and (n) are
both known) which passes exactly once through each city belonging to {1, ..., n N o(i),
1€S-{n, k} }. The shortest path can still be tound using the Gilmore and Gomory algorithm

after slight modification. For more details of this algorithm, please refer to Appendix 1.
(b) LB4(2,3)

In this case, My and M3 are taken as the two bottleneck machines. Note that T can be

rewritten as

n
TO-=HC+ 2 (wi,l+wi_1’3+wi'2) (12)

1=1

and the constraints(5a) — (5g) can be rewritten as

Wi+ Wii12 2P - M i=1, ..., n, (13a)
Wi1,3 + Wi 2Dji1),3 - M3 i=1, ..., n, (13b)
Wi2 + Wi1 3 2 P2 - M2 i=1, ..., n, (13¢)
Wil Wi1,3, W22 0, i=1, ..., n (13d)

Using a similar approach as in (a), if we drop constraints (13a) for i=1 and i=k+1, ..., n,
i.e., if we relax the processing time requirements of parts 6(i), i=1, k+1, k+2, ..., n on

machine 1, we can obtain a relaxed problem of P, (see Section 2 (a)) which can be

decomposed into the following two subproblems Py and Pg:

k
Pé: min kC + 2 (Wi,l+Wi-l,3+Wi,2)
i=1
subject to (13a), i=2, ..., k; (13b)—(13d), i=1, ..., k.

and

n
Pg min (n-k)C+ z (Wi’1+W"_]’3+Wi‘2)
1=k +1
subject to (13b) — (13d), i=k+1, ..., n.

The sum of the minimal objective values of P§ and Py provides a lower bound for Tg.

As in subsection (a), problem Pg can be solved by using the following recursive formula

in O(k) time:

wi1=0,

wi-1,3 = max{0, pfip)3- M3 - Wi}, =1, ..k,
w2 = max{0, prjj2 - M2 - Wiy 31, =1, ..., k,
Wirn,1 = max{0, pis1)1-H1-wi 21, =l ke

and problem P is equivalent to the following problem PY:

n
PY: minn-k)C + 2 (Wj_13tW2) (14a)

1=k+1

subject to

Wi1,3 2 Pli-1],3 - M3 i=k+1, ..., n, (14by
Wi2 + Wi 32 P2 - M2, i=k+1, ..., n, | (14c)
Wi1,3» Wi2 20, i=k+1, ..., n. . (14d)

Similarly to (a), the optimal objective function value is such that
\

s n-1
(0-Kk)(C-pp-p3) + > max{fg), 8ogien)) (15)
1=k
where

fj = max{ps3, pj3}+Hp and g = pjo+H3, j=1, 2, ... n.
Therefore, problem 13;; can also be solved by using the Gilmore and Gomory algorithm,
(c) LB4(1,3)

In this case, Mj and M3 are taken as the two bottleneck machines. Note that Tg can be

rewritten as

n
TG =nC + z (wi_1’2+wi’|+wi_1,3) (16)

1=1

and the constraints (5a) — (5g) can be rewritten as

Wii12 + Wi23 2Pi-1].2 M2 =1, .., (17a)
Wi+ Wi 2 2 P(ij1 - Hs i=1, ..., n, (17b)
Wii13+ Wil 2 P13 - 13 =1, ..., n, (17¢)
Wii12s Wil Wi13, 20, =1, ..., n. (17d)

Using a similar approach as in (a), if we drop constraints (17a) for i=1 and i=k+1, ..., n,
i.e., if we relax the processing time requirements of parts (i), i=k, ..., n on machine 2, we

can obtain a relaxed problem of P,, which can be decomposed into the following two

subproblems Py and Py':

k
PCSSC min kC + Z (wi_1,2+wi7]+wi_|’3)
i=1

subject to (17a), 1=2, ..., k; (17b)—(17d), i=1, ..., k,

14

and

n
Py: min (n-k)C+ D (Wigp+Wi1+Wi13)
i=k+1
subject to (17b)— (17d), i=k+1, ..., n.

The sum of the minimal objective values of P; and Py provides a lower bound for Tg.

As in subsection (a), problem P can be solved by using the following recursive formula

in O(k) time:
W0,2 = 0,
Wii1= max{O, p“]’] - K- Wi-l,Q}’ i=], .k,
Wi-1,3 = max{O, pli-1|,3 - M3 - Wi,l }, i=1, cey k,

Wi,2 = max{O,p(i]‘z-uz-wi_m}, i=], PN k,

and problem Pj is equivalent to the following problem 15(‘5’:

n
Py: min (n-k)C+ D (wi +wi3)

i=k+]
subject to ‘
Wi12 D)1 - B i=k+1, ..., n,
Wi1,3+ Wj12P[i-1),3 - M3, i=k+1, ..., n,
Wil Wii132 0, i=k+1, ..., n.

Similarly to (a), the optimal objective function value of }5(‘,’ is

n-1
(n'k)(C‘Hl'“3) + Z max{fc,(i), gc(i+1)},
1=K

where _
fj = pj3+iy and g = max{py, pj }+H3, j=1,2, ..., n.

(18a)

(18b)
(18c)
(18d)

(19)

Therefore, problem Pg can also be solved by using the Gilmore and Gomory algorithm.

3.2. 3-machine robotic cell with robot sequence Sg
(a) LB4(1,2)

As in the case of robot sequence S,, the lower bound can be computed using the Gilmore

and Gomory algorithm.
(b) LB4(2,3)

As in the case of robot sequence S,, the lower bound can be computed using the Gilmore

- and Gomory algorithm.
(¢) LB4(1,3)

In this case, M| and M3 are taken as the two bottleneck machines. Note that the constraints

(6a) — (6g) can be rewritten as

Wi12+ W23 2Ppq)2-Ha, =1, ..., n, (20a)
Wi+ Wiip2+ Win32Pfij1 - My, i=1, ..., n, (20b)
Wi13+ Wil 2Pfi1)3 - M3 =1, ..., n, (20c)
Wi12s Wit w1320, i=1, ..., n (20d)

Similarly to subsection 3.1(c), if we drop constraints (20a) for i=1 and i=k+1, ..., n, i.e.,

relax the processing time requirements of parts 6(i), i=k, ..., n on machine 2, we can obtain a
relaxed problem of Pg, which can be decomposed into the following two subproblems P; and

G -
k
pSI min kC + (wi_1’2+wi’]+wi_1’3)
i=1
subject to (20a), i=2, ..., k; (20b)—(20d), i=1, ..., k,

and

Q

n
Pcl;: min (n-k)C + Z (Wi-1,2+Wi,l+Wi-l,3)
i=k+1
subject to (20b) — (20d), 1=k+1, ..., n.

The sum of the minimal objective values of Pg and P§ provides a lower bound for Tg.
As in subsection 3.1(c), problem P can be solved using a recursive formula in O(k) time.
However, problem P(‘,‘ seems to be more complicated. With a similar argument as before, we

can show that problem Pg is equivalent to the following problem f’(‘,‘ :

n
PY: min (n-k)C + z (Wi 1+Wi.13) (21a)
i=k+1
subject to
Wi1+tWwio3 2 Prija - M1 i=k+1, ..., n, (21b)
Wil 3+ Wil 2 Pli-1),3 - M3 i=k+1, ..., n, (21c)
Wi, wi1320, 1=k, ..., n. (21d)

The difference between this problem }5(‘,' here and the one in subsection 3.1(¢) 1s that

constraint (21b) and constraint (21c) are interdepent while constraint (18b) in subsection 3.1(¢)

is independent of constraint (1&c).

Remark 3.1:
Problem P¥(21a—21d) is likely to be NP-hard.

Remark 3.2:

Since problem }35’(21a-21d) is likely to be NP-hard, when we implement the lower bound
scheme proposed at the beginning of this section for robot sequence S, we take
Q = {(1,2), (2,3)}.

Remark 3.3:

Problem Pg(21a—21d) is more complicated to solve than other counterpart studied before,

because although the processing time requirements of jobs on machine 2 iy rclaxéd, 1.e., the
robot waiting time at machine 2 is zero, the robot waiting time at machine 1 and that at machine,
3 are still interdependent. This situation is different from all others we have considered so far.
This difference can be made much more clear by observing Figure 6.

Figures 6(a) and 6(b) are a portion of the time diagram in Fig. 4 and a portion of the time
diagram in Fig. 5 respectively, where crosshatched boxes indicate possible robot waiting
events before the robot performs corresponding moves. In Fig. 6(a), the robot waiting time at

machine 1 is independent of the robot waiting time at machine 3 because there is no

17

crosshatched box between box {i]/0 and box [i]/1. However, in Fig. 6(b), the robot waiting
waiting time at machine 1 is dependent on the robot waiting time at machine 3 and vice versa,
because there is a crosshatched box [i-2]/3 (which is related to the robot waiting time at
machine 3) between box [i)/0 and box [i}/1 and a crosshatched box [i+1]/1 (which is related to

the robot waiting time at machine 1) between box [i]/2 and box [i}/3.

[i-11/2 , lil/2 UG
[11/0 [ttt £33 [i+1 1 RHS
(a) Robot sequence is Sy
s | ity g (72 3
(31/0 |ttt - KA | (i1 <EAp) {1200

(b) Robot sequence is S,
Fig. 6. Robot waiting events when'M; and My are taken as bottleneck machines
3.2. m-machine robotic cell (m>3) with an arbitrary robot sequence

In this subsection, we extend the lower bound scheme introduced at the beginning of this
section to m-machine robotic cell (m>3) with an arbitrary robot sequence.

Suppose that the robot sequence we consider for an m-machine robotic cell 1s O =
o o o ...y, where ig=0), iy, ip, ..., Iy I8 @ permutation of 1, 2. .., m, o, j=1, ..., m

are as defined before. og can be thought as a string of characters o, j=0,"..., m. We consider

the robot sequence in two adjacent robot move cycles, l.e., Gf{ =

.

aio (Xil (Xi2 .(Xim aio ail aiz .. .aim

A sub-sequence of 0%{ that starts and ends with aj. and & is denoted by oR(j). The sub-
sequence is unique if we neglect where it is located in 0% . G (j) is defined as the sub-sequence
of ORr(j) such that 6r(j) = ;.1 Or(j)®;, i.e., OR(j) Is obtained from Og(j) by eliminating the
first character g and the last character oy

Fori, je {1, 2, ..., m}, i1#), we say that machine M; and machine Mj are nested into each

other if Gg(i) includes o and or(j) includes @;. For instances. for robot sequence S, of 3-

1%

machine robotic cells, we have 012{: 000030000 03 OR (1) = agopay, Or(1) = a; and
or(3) = apo a3, OR(3) = ay. Since Gr(1) does not include a3, machine M| and machine M3
are not nested into each other. However, for “robot sequence Sg, we have 0%{=
QO30 0L} CgO3 0oL y; OR (1) = 0300y, GR(1) = 30 and OR(3) = o003, Gg OR(3)
= o0t Since both Gx(1) includes oz and Gg(3) includes aq, machine M; and machine M3
are nested into each other.

For an m-machine robotic cell with an arbitrary robot sequence O, the following

Proposition holds:

Proposition 3.1. For any je {1, 2, ..., m-1}, machine Mj and machine Mj+] are not nested

into each other.

For any r, se {1,2,...,m}, r<s, we consider the lower bound L(r, s) for partial schedule
o =(0(i),1€S), S = {n, 1, 2, ..., k}. Then Proposition 3.2 holds:

Proposition 3.2. If machine M; and machine My are not nested into each other, then the
optimal objective function value of the corresponding problem 13(‘,’ as defined for 3-machine

robotic cells in subsections 3.1 and 3.2 is a constant (independent of the part sequence). [t can

n-1
be represented as A + 2 max{fo(i), go(i+h)}» where A is a constant, h is a positive integer

i=k
constant, and fj, g; 2 0, j=1, ..., n are defined by the parameters 8;, 87, i=0, 1..., m+1, 8j;,
1,j=0, 1, ..., m+1 and Pij» i=1, 2, .., n, j=1, 2,..., m of the robotic cell.
Proposition 3.3. For any je {1, 2, ..., m-1}, Ls(j, j#1) can be computed by using the’

Gilmore and Gomory algorithm.

For proofs of the above three propositions please refer to Appendix 2.

According to Proposition 3.2, for m-machine (m>3) robotic cells with arbitarily robot
sequence, we can implement the lower bound scheme LB4(€2) = max{LBg(u,v) | (u, v)e Q}
where Q =-{(1, 2), (2, 3), ..., (m-1, m)}. The lower bound LB5(2) can be computed by

using the Gilmory and Gilmore algorithm in.O(mnlogn) time.

4. Branch and Bound Algorithm

We now present the main features of our branch and bound algorithm.

The algorithm first arbitarily specifies the job scheduled at the last position (the n-th
position) and then enumerates the jobs at positions 1, 2, ..., n-1 successively.

An initial upper bound is obtained by comparing the cycle times of the part sequences
generated when we compute a lower bound for the root node for each choice of the two
bottleneck machines by using the Gilmore and Gomory algorithm. The cycle times can be
computed by using a graph-based algorithm proposed by Chen, Chu and Proth |1} or by
solving a linear programming problem.

*For nodes that are not eliminated in the enumeration tree of the algorithm, a lower bound is
computed by using the method proposed in Section 3. When a complete schedule is reached, its
cycle time is computed by using the graph-based algorithm or by solving a hnear programming
problem, which is compared with the best upper bound obtained up to now. It the cycle time is
less than the upper bound, the upper bound is updated and a new upper bound is obtained. In
the algorithm, we use the depth-first-search plus best lower bound rule to select which node
should be examined next. , '

In addition, some eliminating rules can be implemented in our algorithm by taking into

account the feature of the minimal part set.
5. Computational Experiments

We have tested the performance of our algorithm using randomly generated problems for
3-machine robotic cells with given robot sequences Sy and Sg. The problem data are generated

in the following way: §; = 6? =2,1=0, 1, ..., m+1; eij =4li-jl, 1, =0, 1, ..., m+1; Pijs 1=1,

.., 0, j=1, ..., m, the processing times of parts on machines, are generated by using the
scheme given by Lageweg, Lenstra, and Rinnooy Kan (7], i.e., four different problem classes
are considered: random problems, problems with correlation between the processing times of
each job, problems for which the processing times of each job have a positive trend, and
problems with both correlation and positive trend. Table 1 presents the distributions of these
classes, where c(i) is the correlation coefficient of jobi,1 =1, ..., n, taken from a uniform |0,
4] distribution, afldj is the machine index. All parts in MPS are considered to be different, i.e.,

no MPS-based eliminating rules are used in our computational experiments.

20

Table 1. Problem classes

Problem class Distribution Parameters

Random (R) Uniform 1, 100

Correlation (C) Uniform 20c(i)+1, 20c(1)+20

Trend (T) Uniform 12.5G-D+1, 12.5G-DH+100
Correlation/trend (CT) Uniform 2.5(j-1)+20c(i)+1, 2.5(j-1)+20c(i)+20

Table 2 presents the computational results of our algorithm for 3-machine robotic cells with
robotic sequences S, and Sg and with n=10 and n=15, where column “CPU seconds” denotes
the average CPU time in seconds on a RISC 6000 for 10 randomly generated instances of each
problem class. It should be noted that the average computation time for problem classes with
robot sequence Sg 1s much less than that for these with robot sequence Ss.

Table 2. Performance of the branch-and-bound algorithm for n=10, 15

OR =59 OR = Sq
Parameters Problem class CPU seconds | Parameters. Problem class CPU seconds

R 29.0 R 1.83
n=10 C 24.6 n=10 C 5.61

T 36.5 T 1.27

CT 31.9 CT 3.82

R # R 150.5%
n=15 C ® n=15 C *

T 241.1 T 87.5

CT * CT *

* problem classes for which the average computation time exceeds 300 seconds.

In order to illustrate relative sharpness of the lower bound, we have run our optimal
algorithm as a heuristic for large size problems (n=20 und n=30). Table 3 presents the
performance of the heuristic run of our optimal algorithm. Column 2 in the table describes the
stopping criterion used in the heuristic run. For example, in 20-part problems, we terminate the
optimal algorithm when the total CPU ume exceeds 60 seconds or when we find an upper
bound which is within 5% of the lower bound. It is interesting to point out that the average
relative difference of the upper bound and the lower bound obtained when the algorithm is
terminated is less than 5% for problem classes with robot sequence Sq, and less than 10% for

these with robot sequence S».

Table 3. Heuristic run of the branch and bound algorithm

Parameters Stopping criterion Problem class CPU seconds (UB-LB)/LB

R 40.03 0.0705

OR = 57 CPU 2 45s or C 23.47 0.0543
n=15 (UB-LB)/LB<0.05 T 27.56 0.0550
CT 36.258 0.0612

R 0.560 0.0332

OR = S¢ CPU 2 45s or C 0.445 0.0399
n=15 (UB-LB)/LB<0.05 T 0.304 0.0219
CT 0.416 0.0358

R 60.00 0.0612

OR = Sy CPU 2 60s or C 60.00 0.0733
n =20 (UB-LB)/LB<0.05 T 48.23 0.0654
cr 60.00 0.0684

R 1.699 0.0327

OrR = S¢ CPU 2 60s or C 0.996 0.0266
n=20 (UB-LB)/LB<0.05 T 0.925 0.0253
CT 0.831 0.0226

R 90.00 0.0886

OR = Sp CPU 2 90s or C 73.93 0.0703
n =30 (UB-LB)/LB<0.05 T 69.43 0.0645
cr 74.02 0.0670

R 4.720 0.0378

OR =S¢ CPU 2 90s or C 2.640 0.0256
n =30 (UB-LB)/LB<0.05 T 1.695 0.0275
o) 2.462 0.0264

In this paper we propose a general bounding scheme for the part sequencing problem in
robotic cells processing multiple types of parts when the robot sequence is given. In the
bounding scheme, a lower bound can be quickly computed by using the well-known Gimory
and Gilmore algorithm. We propose a branch-and-bound algorithm based on the bounding
scheme. The performance of the algorithm is given for 3-machine robot cells with given robot
sequences Sy and Sg and with n=10, 15. The heursitic run of the branch-and-bound algorithm

6. Conclusion

22

shows that the average relative difference of the upper bound and the lower bound obtained
when the algorithm is terminated is less than 5% for problem classes with robot sequence Sg

and less than 10% for these with robot sequence S,.

Further investigation is needed to develop much sharper lower bounds which can be
computed in polynomial time and to develop eliminating rules based on dominance properties to

attack large-size problems.

References

[1] Chen Haoxun, Chu Chengbin, J.M. Proth, Cyclic Scheduling of a hoist with time window
constraints, submitted for publication in IEEE Transactions on Robotics and Automation, -
also Rapport de Recherche, No. 2307, 1994, INRIA-Lorraine, France.

(2] P.C. Gilmore and R.E. Gomory, Sequencing a one state-variable machine: A solvable case
of the traveling salesman problem, Operations Research, Vol. 12, pp. 655-679, 1964.

[31 N. G. Hall, H. Kamoun, C. Sriskandarajah, Scheduling in robotic cells: Two machine cells
and identical parts, Working paper #93-06, Dept. of Industrial Engineering, University of
Toronto, Canada, 1993.

[4] N. G. Hall, H. Kamoun, C. Sriskandarajah, Scheduling in robotic cells: Large cells,
Working paper #93-07, Dept. of Industrial Engineering, University of Toronto, Canada,
1993,

[5] H. Kamoun, N. G. Hall, C. Sriskandarajah, Scheduling in robotic cells: Heuristics and cell
design, Working paper #93-08, Dept. of Industrial Engineering, University of Toronto,
Canada, 1994. ‘

{6] K. Kamoun and C. Sriskandarajah, The complexity of scheduling jobs in repetitive
manufacturing systems, European Journal of Operational Research 70(1993) 350-364.

(71 B. J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan, A general bounding scheme for the
permutation flow-shop problem, Operations Research, Vol. 26, No. 1, pp. 53-67, 1978.

[8] S.P. Sethi, et al., Sequencing of parts and robot moves in a robotic cell, /nt. /. of Flexible
Manufacturing Systems, 4(1992): 331-35.

23

Appendix 1
Finding a shortest path by using the Gilmore and Gomory algorithm:

Problem P:
Given n cities 1, ..., n where the distance from city i to city j is defined by d;; = max({f;, gils fis
gj > 0, find a shortest path from city 1 to city n which passes each city exactly once.

We introduce another related problem P':

Problem P':
Given n+1 cities 1, ..., n, n+]1 where the distance from city i to city j is defined by dj; =

max{f;, gj}, where fj, i=1,...., n-1, gj,jzl, ..., 0 are the same as those in Problem P, g; = f,

= gn+1 = fue1 = L>0, find a shortest tour of the n+1 cities.

. Property Al:
Let L,ax(P) denote the length of the longest paths that pass each city once for Problem P. If
L=L,,2x(P), then any shortest tour of Problem P’ contains both the arc from city n to n+1 and

the arc from city n+1 to city 1.

Proof: For any tour containing the two arcs, the length is no larger than L, (P) + 2L, but for

any tour which does - not contain at least one of the arcs, the length is larger than 3L. Since
Lmax(P) + 2L < 3L, the assertion of Property Al is rue. Q.E.D.

Property A2: :

Suppose that the condition of Property Al is satisfied and that 1 15— ... -1, j»n->n+l->1is
a shortest tour of Problem P' (where 15, ..., i,,.; 1s a permutation of 2, ..., n-1), then
l1-ip—...>iy1—-n is a shortest path of Problem P.

Proof: If 1-ip—...>i,;—»n is not a shortest path of P, then there 1s a path
1-jp—...>Jp.1—=0 (g, .-, Jn-1 1S @ permutation of 2, ..., n-1) such that L, < L, where L,
(resp. L,) denotes the length of the path 1515 ... iy ;- n (resp. path 1 5 jp— ... 5], 1—>n).
Let us denote by C; (resp. Cy) the length of the tour 1 51— ... >i, ;>non+1-1 (resp.
tour 1 »jp—...5jpj»n-n+1-1). Obviously, Cy =Ly +dy pey +dpiy), Co =Ly +dp ey +
dp+1,1- It follows that Cy < Cy, which is contrary to the assumption of the property. Q.E.D.

The above two properties imply that we can solve Problem P by solving Problem P'. Since

Problem P’ can be solved by using the Gilmore and Gomory algorithm, so can be Problem P.
Appendix 2

Proof of Proposition 3.1:
Two cases may happen for o; and @, in Og. One is that ; occurs before @, in op.

The other is that o,) occurs before o.

For the former case, the sequences (5% can be represented by
010020}, 103010020, 103, where 0}, 62 and 03 are sub-sequences of og, which do not
include o and aj,. Clearly, Or(j+1) = 0,. Since 6, does not include a, neither does
OR(j+1), so machine j and machine j+1 are not nested into each other.

For the latter case, the sequences 0}2{ can be represented by 60, 0200300402003,
where Gy, 6, and G5 are sub-sequences of Og, which do not include o and o;,;. Clearly,
ORr(j+1) = 030). Since 630} does not include a;, neither does Gr(j+1), so machine j and

machine j+1 are not nested into each other.

Proof of Proposition 3.2:

Since machine M, and machine M, are not nested into each other, either 6R(r) does not
include otg or GR(s) does not include o,.

Case 1: neither 6R(r) includes o nor 6R(s) includes o,

In this case, since the robot waiting times at all machines except M, and M, are zero and
6R(r) does not include o, there is no robot waiting event occurred between the time that a part
1s loaded onto machine M, and the time that the part finishes its processing on M. Therefore,
the robot waiting time at machine M; related to part [i] can be represented by max{0, pj; -
i), where {1, is a constant, which is the busy time of the robot between these two times.
Similarly, the robot waiting time at machine M related to part [i] can be represented by max {0,

P(i),s - MUs}. Notice that the sum of max{0, pjj) - 1y} (resp. max{0, pfj) - Hy}) for all

unscheduled parts is a constant (independent of the part sequence), the optimal objective of 15(‘;
1s a constant (independent of the part sequence).

Case 2: Gg(r) does not include o but GR(s) includes o,

In this case, similarly to Case 1, the waiting time at machine M, related to job [i] can be
represented by w; . = max {0, 'pm,, - 1,). Let [jI/s denote the robot move of type [.]/s
immediately foll()wing the robot move [1]/r. Since 6R(s) includes o, |1]/r is located between
the moves [j}/s-1 and [jI/s in the time diagram of the robotic cell and j=i+h, where h = h'+1,
and h' is the number of parts on machines r+1, ..., s-2 when the robot performs the move

1

{31/s-1. Due to one-unit cyclic nature of the schedules under consideration, h' is constant

25

(independent of i) and so is h. Moreover, since the robot waiting times at all machines except
M, and M are zero, [1]/r is the unique move between the moves [j)/s-1 and {j]/s such that the

robot may wait before performing it. Therefore, the robot waiting time related to [j}/s ({i+h]/s)
can be represented by wi,p ¢ = max{0, pjisn) s - Kg - Wi} and the result of the proposition can
be derived as discussed in subsections 3.1 and 3.2 for 3-machine robotic cells.

Case 3: GRr(s) does not include o, but GR(r) includes o,

Similar to Case 2.
Proof of Proposition 3.3:

This proposition directly follows from Prositions 3.1 and 3.2 and the fact h' = 0 for r=j,

s=j+1 in the proof of Proposition 3.2.

26

Unité de recherche INRIA Lorraine
Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers l¢s Nancy Cedex (France)
Unité de recherche INRIA Rennes - IRISA, Campus universitaire de Beaulicu 35042 Rennes Cedex (France)
Unité de recherche INRTA Rhéne-Alpes - 46, avenue Félix Vialler - 38031 Grenoble Cedex | (France)

Unité de recherche INRIA Rocquencourt - Domaine de Voluceau - Rocyuencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)
Umité de recherche INRIA Sophia Antipolis - 2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

ISSN 0249 - 6399

AT

* R 4

