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Abstract. The problem of scheduling » jobs ouw a single machine in order to minimize the
weighted sum of earliness and tardiness is NP-complete when jobs have different due dates. In
most of the papers dedicated to this problem. authors assuwe that there is no idle timme hetween
two consecutive jobs. However. as indicated by several authors. this assumption is not consistent
with the earliness-tardiness criterion. It is the reason why we do not make this assumption in
this paper. To reach an optimal solution, we propose a branch-aud-bound approach which takes
advantage of some dominance properties and lower bounding procedures. Numerical experiments
show that the algorithun can solve this problem with up to twenty jobs in a reasonable ainount
of time.

Keywords. Scheduling, Earliness. Tardiness. Lower Bounds. Dominance Properties. Branch
and Bound, Dynamic Programmiug.

Résumeé. Le probléme d'ordonnancement des tiches sur une machine en vue de minimiser la
somme pondérée des avances et des retards est NP-difficile lorsque les délais des taches sont
différents. Dans la plupart des articles dédiés a ce type de problémes. les auteurs supposent
qu'il n’v a pas de temps mort entre deux tiches consécutives. Ion revanche. comwme 'ont indiqué
plusieurs auteurs. ceci n'est pas cohérent avec le critere avances retards. (est pourquoi nous ne
faisons pas cette hyvpothése dans ce papier. Pour obtenir une solution optimale. nous utilisons la
méthode par séparation et évaluation en exploitant des propriétés de dominance. Les expériences
numériques montrent que cet algorithine permet de résoudre des problémes comportant jusqu’a
vingt taches, la plus grande taille de problemes résolus a ce jour. en un temps raisonable.

Mots clefs. Ordonnancement. Avauces. Retards. Bornes inlérieures. Proprietés de dominance.

Séparation et évaluation. Programmation dynamique.



1. Introduction

The study of earliness and tardiness penalties in scheduling models is a gnite new area of research.
For many vears. scheduling rescarches focused on single performance measures. referred to as
regular measures, which are nondecreasing with respect 1o job completion times. However. this
emphasis changed with the current interest in Just-In-Time (JI'T) production [9]. for which
earliness, as well as tardiness. should be taken into account. The scheduling models (problems)
with both earliness and tardiness penalties are referred to as I models {(problems).

For a compreliensive review of machine scheduling with 22T models. sce Baker and Scudder
[2]. Kanet [13] studied a special class of E/T problems which minimize the total (unweighted)
sum of earliness and tardiness for jobs having a common due date. He introduced an unrestricted
version and a restricted version of the problems. the latter being used when the common due date
is too tight for a sufficient quantity of the jobs to be completed before it. Tor the unrestricted
version, it has been proved that there exists an optimal V-shaped schedule with no idle time
between two successive jobs such thiat one job is completed exactly at the due date. The
algorithm to solve this problem is polviomial (Fuunons |3]). The restricted version is solved
by enumeration. A very efficient pseudopolynomial dyvnamic programming algorithm has been
proposed by Hall and Posner |11]|. Hall. Kubiak and Sethi [10].

The E/T problem tends 1o be very difficult when jobs have different due dates. Abdul-Razaq
and Potts [1] solved this type of problems. but they considered only schedules with no inserted
idle time. Their solution method is a branch-and-bound scheme. and they used a relared dynamic
programnung procedure to obtain good bounds. Their computational results suggest that prob-
lems with more than 25 jobs may lead to excessive computation times. More recently. Ibaraki
and Nakamura [12] improved the procedure: they proposed an SSDP (Successive Sublimation
Dynamic Programming) method to solve the problem. Cowmputational experiments show that
the SSDP method can solve problems with up to 35 jobs. However. they also cousidered only
schedules with no inserted idle time. It might be meaningful 1o study this version of the model.
but. as indicated in Baker and Scudder [2]. the assumption of no idle time is not consistent with
the E/T criterion.

Assuming that the job sequence is given, the optimal schiedule wheu idle tinies are allowed
can be obtained by applying a simple procedure proposed by Garev. Tarjan aud Wilfong [8].
The complexity of the algorithm is O(nlogu). Similar schenmes have been developed by Davis
and KNanet [3], by Fry. Darby-Dowman and Armstrong |7] and by Nim and Yano [14].

Given that the idle time can easily be optimized for a specified job sequence. the remaining
task is to determine the best sequence. Fryv. Armstrong and Blackstone [6] described a solution
procedure which is based on local search through adjacent pairwise interchange neighborhoods
until a local optimum is discovered. Their computational tests indicate that this heuristic
vields solutions within 2% deviation from optimum on the average. Fry. Darby-Dowinan and
Armstrong |7] describe a branch-and-bound procedure for minimizing the mean sum of carliness
and tardiness. They indicate that the algorithm runs into difliculty in an attempt to solve
problems with more than 20 jobs. Kim aud Yano [I4] cousider the special case of the problem
when the criterion is the total (unweighted) suin of earliness and tardiness. and thev propose a
branch-and-bound algorithin that solve problems with up to 20 jobs.

In this paper. we consider the F L' problem with jobs having different duce dates. and dif-

ferent earliness and tardiness penalties. In addition. we do not consider the assumption of no



inserted idle time. 'This problem has not been considered in the literature. since all the work
cited above make assuwnption either on common due dates. or with particular earliness and tar-
diness penalties, or without inserted idle times. We exploit several optimality conditions of the
optimal schedules and propose a branch and bound algorithm to solve the problem. The branch
and bound algorithm enumerates completion time windows of jobs and is based on dominance
properties and on two lower bounding procedures. Computational results for problems with up
to 20 jobs are given.

2. Model

i

The general E; T scheduling problem is defined as follows: n jobs have to be scheduled on a
single machine. Each job j (j = 1.2,...,n) has a positive integer processing time p; and a
positive integer due date ;. The jobs are assuined to be available at time 0. i.e., the release
date of all the jobs is zero. If (7, is the completion time of job j. the earliness and tardiness of
job j, respectively denoted by E, and T,. are defined as follows:

E, = max(0.d;, = C,) = (d, - C)*.

T

s =max(0,C;, —d;) =(C, —d,)*.

The objective is to find a schedule o = {1, ;. ....C,} that minimizes the sum of weighted
earliness and tardiness of the jobs. that is:

n

Min flo)=> (a,E, + 3,T,) (1)
oell =1 X .

where I1 denotes the set of all possible nonpreemptive single machine schedules. «; and 3; are
the weights associated respectively with earliness and tardiness of joh j. The constraints to be
verified are:

Ci > pj. V1< j <. (2)

[C=p, CN[Cr =i Ce) =0, Vi<hk<n. 1< )< (3)

Constraints (2) say that any job cannot start processing before time 0. Constraints (3) are
capacity constraints to make sure that the machine process at most one joh at a time.

Let m be the number of distinct due dates. It is obvious that 1 < s < u. Let d, be the ith
smallest distinct due date. We then have d; < d, < -+ < d,. Bv convention. we set dy - 0 and
_ ([,77+] = 120, In what follows, the time interval (d,.d;; ] is referved 1o as the ith time window
(1=0,1,....m). Note( that for anv i = 0.1..... m. there is no j such that d, < d; < (/,+,.

3. Optimality Conditions

In this section. we describe some dominance properties of the .1 problem. These properties
will allow us to reduce the search for an optimal solution. From these properties, we deduce a
new branching scheme in our branch and bound algorithm.

[n the remainder of this section. we consider an optimal schedule o = {C'}.C";,....(,} and
analyze its properties. This will allow us to consider only schédules satisfving these properties.

For this purpose. we first define the following sets for each time window i (i = 0. 1,....m):



Fi={jld < C;, <diy}: setof jobs completed (or finished as indicated by = F7) within the

ah time window,

Xe={je FlC,-p, < d;}: set of jobs started belore o, and finished within the ith tire
window. Tt is obvious that X, contains at most one job. Il it is
not empty. this job is called cross-duc-date job of the ith time

window.

Fl!'={je F|d; <d;}: set of jobs completed within the /th time window and being tardy.
Fe = {je Fld, > d}: set of jobs cowmpleted within the /th time window and being carly

or on time.
Since Vj,d, > dy, all jobs in f{ are early or on time. the following remark is true.

Remark 1. I{ = 0.

On the other hand. since Vj. d; < d,,. all jobs in F,, are tardy. the [ollowing remark holds.

Remark 2. Ff = 0.

m

In the remainder. the set operation A\ B” means =~ A\ (AN B)7. Thus. it is possible that
(A\ B)UB # 4.
We now prove that. since ¢ is an optimal schedule. it should have the following proerties.

All the proofs use a reduction at absurdum method.

Property 1. For any ¢ = O.1,....m, and for any pair of jobs j,k € F,\ N,.if j € I'' and
k € Ff, then job j precedes job k.

Proof. Assume that this property is not true. that is. there are an 7 and two jobs joh € I\ X,
such that j € F}, k € F* and job k precedes job ;. Between jobs & and j (including themselves).
there are certainly two adjacent jobs ris € Fy\ X0 r € F! and s € [F7. such that jobs s
precedes immediately job r. As a consequence, C'y < ', = p.. I we interchange jobs r and
s, the schedule of the other jobs remains unchanged. and we obtain a new schedule @ with
Cr=Cs—ps+p <C,=ps, Co=C, > Cys 4 ppr. According to the assumption of the property,
we have C! > d; + p, > d, and Cy < diyy < d,. This means that in o’. job r is still tardy and

job s is still early. Therefore. we have
fla')y = flo)= a(Cy = CO+ 3(C - C) < —agp, = 3.ps <0,

This means that schedule @ is not optinal. which is v contradiction with the assumption. O

From this property we can see that. except for the cross-duc-date job (il any). jobs in ' are

scheduled together and those of Ff are scheduled together. for any 7= 0.1, 0.

Remark 3. Property | does not mean that j precedes k. ¥y € 1.V € I since it is possible
that X; C F¢.

Property 2. For any i = 0. 1.....m and for any jobh j € F' il b, is the completion time of
the job preceding immediatelyv job j (if j is the first job in schedule a. b is set to (). we have
C; = max(b; + p;.d;).



Proof. From the definition of the set ' and the feasibility of schedule 0. we know that. for any
i =0,1,....m and for any job j € F!. we should have (', > max(b; + p;.d;). Suppose that the
property is not true. In this case. then there are an ¢ and a j € F! such that ', > max(bj+p,. d,).
If we construct a schedule o' such that ¢ = md\(b + p;,d;). the schedule is still feasible and
we have C; > C” > d;, which implies that fla’) = flo) < 0. This means that schedule o is not

optimal, wluch is in contradiction with the as.sumption. ]

This property means that. for any 7 = 0.1.....m. jobs in F! are shifted to the left. and thus
there is no idle time between them.

Property 3. Foranv /i =0,1..... m and for any job j € 7. it a, is the starting time of the
job following immediately job j (if j is the last job in schedule o, a; is set 1o +o¢). we have
C; = min(a;,diyr).

Proof. Similar to the proof of Property 2. O

This Property means that. for any time window 7+ = 0. L.....m. jobs in F7 ave right shifted.
and thus there is no idle time between them. . .

Property 4. Forany i =0.1.....m. and for any pair of adjacent jobs j.h € F'\ X, (k tollows
7). we have p;/3; < pi/3.

Proof. From Property 1, we know that jobs in F! are scheduled together. for all ¢ = 0. L L
Assume that Property 4 does not hold. In this case, there are some 7 aud a pair of (l![]!l.l_’(:llf
jobs i,k € F'\ X, (k follows j) such that 1; /3, > pi/ 3. We construct anather schedule o’ by
permuting these two jobs. In ¢’ we have (" = (' > ', > d, and O} = ' = p, +pp > di+pp >
di + pe > dy. which implies

fto’y = flo)y= S, pi — dp, < 0.

This means that ¢ is not an optimal schedule. which is in contradiction with the assumption.
O

Property 5. For any i = 0.1.....m and for any pair of adjacent jobs j. o€ 7\ X, (k follows
7). we have p;/a; > pifag. -

Proof. Similar to the proof of Property 4. O

From Property . we can deduce that. in an optimal schedule jobs are scheduled in the
the followinr)' order: F§5. N1 RN N FEN N N PN N P N N N E N NN
X Yoo FL\ X According to properties 2 and 3. jobs in £7_, \ X',_j and those in FfU X,
(¢ = 1,2,...,m) arc scheduled contiguously. that means that there is no idle time between them:
They form a block.

From Properties | and 3. we can see that in an optimal schiedule jobs compleled on the left
side of d; (or before d;). that is jobs in Fr_o NN -y, are scheduled in noninereasing order of p, /a,
while those completed on the right side of d, (or after ;). except the cross-due-date one il any.
that is jobs in F/\ X,. are scheduled in nou decreasing order of p,/ 4, Therefore cach block is

V-shaped, according to Nauet’s terminology (113]) (decreasing on the lelt and increasing on the



tight). Since an optimal schedule is composed of several blocks. cach ol which is Veshaped. this
schedule is then picce-wise V-shaped.
Other optimality conditions concern two jobs at the extremitios of 1wo succeessive time win-

dows.

Property 6. For any « = 1,2.....m, if j is the last job belonging to F,_y \ N, and k is the

first job belonging to F;. then following properties hold
(1). Ifd,; > (Z;H then dy > d,_\.

(2). Ifd; > diyy and dy, = d;. then pilo; > pi/ag.

(3). If d; = d; and dj, < di_y. then pil3, <! 3.

It should be noticed that jobs j and k are adjacent jobs. It is then possible to maintain the

schedule of other jobs unchanged by interchanging these jobs.

Proof of (1). Assume that (1) is not true. that is. there are an i and two jobs j. & such that
J (resp. k) is the last (resp. first) job in F,_y \ N,y (resp. F). d; > d,yy and d < d,_y.
According to the assumptions of the Property. (7, < d;, < (7,+, <y and Cyo>d, > d, oy > dy.
These latter relations imply that jis carly and L is tardy, According to Properties 3 aund 2. there
is no idle time between them. This means that ', = ', + p,. If we construct another schedule
o’ by interchanging jobs j and k. the completion times of j and b are yespectively (! = (' and
Cr =C;=pj+pr Since j € Fiop \ X;_1. we have ', — p, >d,_;. With these relations. we
obtain C; < diyy < d;and C; > C, = p, > di-1 > d;. This means that j is still early and &
is still tardy. However. compared to schedule o, the earliness of j is reduced by «;pp while the
tardiness of k is reduced by p,. This means that o’ gives a better solution than . which is in

contradiction with the asswmption that o is an optimal schedule. O

Proof of (2). Assume that (2) is not true. that is. there are au / and two jobs j kb such
that 7 (resp. k) is the last (vesp. first) job in Fi_y \ X,_| (resp. 1)) d, > r/._L+,._ dp = d, and
p,/a; < pi/ar. With the same reasoning as in the proof of (1). we can sec that in schedule
o, jis early and & is tardy. Consequently. according to Properties 3 and 2. there is no icle
time between them. Ye now construct another schedule o’ by interchanging these two jobs, We
obtain ('] = Cy and (' = C, = p; + pp = Cp = p,. We know that () < d,yy < d,0 This last
relation means that j is still earlv. Compared to schedule 7. the earliness of j i1s reduced by
a;pr. It is necessary to examine two cases: the case where job & is fardy. and the case where it
is early.

If ks tardy in o', that is. (', > dj. the tardiness of k is reduced by dip,. Considering the
reduction of earliness of job j. ¢’ provides a better solution than . which is in contradiction
with the assumption that ¢ is an optimal solution.

If kis early in o’. that is. ('} < dy. the difference between the tardiness in ¢’ and earliness
in o is ap(dy —CL) = 3(Cr = dy) = agp; — (g + ) (C) = dy). Considering the fact that & € F},
which implies that 'y > d; = dy. this difference is less than agp;. Cousidering furthermore
the reduction of earliness of j. the difference of criterion values of ¢’ and o is f(o') — f(o) <
—a;pi + agp;. With the assumption that p, /o, < pp/ag. we obtain fta’y — flo) < 0. This

means that ¢ is not an optimal schedale. which is in contradiction with the assumption. O



Proof of (3). The proof of (3) is quite similar to that of (2). Assume that (3)is not true. that
is. there are an ¢ and two jobs j. A such that j (resp. &) is the last (resp. first) job in Fi_y\ Xy
(resp. ), d; = d;, dp < d;_, and p;/3; > pe/ 3k From the assumptions. we know that in o.
j is early and k is tardyv. According to Properties 3 and 2. there is no idle time between them.
When we construct another schedule o’ by interchanging job j and k. we have €7 = Cy and

= C5 —p; + pi. Therefore. C'j >d, = d; and C, > di_y + pi > d,_y = dy. The difference
between the criterion values of ¢’ and o is then

Il

fla'y = f(a) 3C~d,) = ai(dj = C)) = B,

BACy ~d;) = 3ip,.

A

From Property 2 and the fact that & is tardy in o and k is the first job in F,, we know that
Cr—pe < d; = d;. As a consequence. f(o')— f(o) < F;pi.— 3k p;. The assumption p; /8, > pe/Bk
leads to f(o’) — f(a) < 0. This relation implies that @ is not an optimal schedule. which is in
contradiction with the assumption. O

This property means that in an optimal schedule. jobs are likely to be scheduled around

their due dates.

Property 7. If o, = 3, = p,.j = 1.2.....0 and if there exists an optimal schedule such that
at least one job is processed withiu cach time window. theu there is an optimal schedule such
that jobs with the same due date are scheduled around this due date.

This property is a consequence of Properties 1-—0.

4. Optimal Schedule for Given Completion Time Windows of

Jobs: A Dynamic Programming Algorithm

¢
In the previous section. we proved that an optimal schedule should be piece-wise 1-shaped.
From these results. we know that as soon as F; (i.e. the set of jobs completed within the ith
time window) is given for each ¢ = 0.1,....m. it is possible to compute F' and F¢. where
Fl'={je Fld, <d}and I* = {j € F|d, > dip1}. Cousequently. if the cross-due-date jobs
Xi(e=1.20..., m) are given. we can decide partial precedence relations between jobs. Jobs in
FE\ X, should precede those in Ff\ X,. Furthermore. jobs in F*\ X, should be scheduled in
non increasing order of p;/a;. Jobs in F!'\ X; should be scheduled in nou decreasing order of
p;/3;. Therefore. if cross-due-date jobs are specified. the sequence is fnlly specilied. and we can
use the algorithm of Garev. Tarjan and Wilfoug [8] or Davis and Kanet([4]) to insert idle times.
In this section. we show that as soou as F, is given for each ¢ = 0.1.....m. it is possible to
obtain an optimal schedule using a dyvuamic programming approach. without knowing the cross
due date jobs ¢ priori.

In the dymanic programming approach. we use the results obtained in the previous section
saying that jobs in F*_, \ X,_; and those in F/UX, (i = 1.2..... m) form a block. i.e. there is
no idle time hetween these jobs.

Before giving the details of the dyvnamic programming algorvithim. we have to solve the follow-
ing subproblem: It consists of scheduling a block composed of £/ \ N, _; and FTUX; for given

Xt € Fio( X, C F aud 7. where 7+ d; is the completion time of the last job of the block.



Using Properties 4 and 5. we know that jobs in F7_; \ X,y are scheduled in non decreasing
order of p;/a; while those in £\ X, are scheduled in non decreasing order of p,/3,. Therefore.
if a feasible solution exists for the given X,;_;..\; and 7. the minimal total earliness- tardiness
of jobs in this block is well defined. Let (i, 7, u,v) denote this minimal value when X, = {u}
and X; = {v}. We also introduce a fictitious job 0 with py = 0. For anv i such that X, = 0.
we artificially set X, = {0}. Lu order to simplify the explanations. we introdnce the following
notations related to the block composed of {vr} U F'U (F7_ |\ {u}).

pilv) = Z v Total processing tine of jobs completely processed on the
JEFI\{v}
right side (as indicated by ~p™) of d;:
Cilu,v) = pi(v) + p. + Z p;: Total processing time of the block.
JEFT A\ {u}

The following notations are related to the ith time window

Ai = maxp;: Longest processing time of jobs completed within the ith time window:
JEF; '

P, = Z pj:  Total processing time of the jobs completed within the /th time window.
J€F
Knowing ¢, u. and v. we examine the conditions which should be verified by 7 in order that
a feasible solution exists. If © # 0. since  should start hefore d; and be completed after d,, we
should have,
pile) < < pile)+ pe. . {1)

If v=0and F! # 0. since the first job in F/ should start exactly at d,. it is necessary that

T =pr). (9H)
.
If v=0and F' =0, since jobs in F,_; \ {u} should be completed within the (¢ — 1)th time
window, we should lLave.

Py —pe—d, +d_y <1 <0. : (6)

If v #0o0r Ft # 0. the following condition must be satisfied. because the jobs in 11U {v)}

have to be completed within the ith time window.
0<7<dip) —d,. (1)

To sum up, 7 should verifv the following conditions in order that =(/. 7. w. r) exists.

7 € (p;(v). min {(_/}H —di. pi(v) + pe + L} . if o #£0. (8)
TE [/),‘( o). min {p;(v),(/lH - r/,}] . if v =19 an(l'l-",’ # 0. (9)
TE(3,_1—])“—(7_,-_#(/,_1.()]. if e =0and ' =0. (10)

If these conditions are not satisfied. no solution exists for the giveu /. 7. v and r. Tn that
case, z(t, T.u, ) 1s set 1o +X.

We now explain the dyvnamic programming algorithm. Informally speaking. the blocks are
scheduled one after another. Let ¢ be the number of /'s (I < ¢ < ) such that F; U F_ | # 0
and by (k= 1,2.....q) be the bth smallest ¢ (I <7< ) such vhat FLu b £00 F, U b _) s



the union of the set of jobhs cotpleted within the ith tirne window and the set of jobs completed
within the (+ = 1)th timte window and which are early or on titne. With these notations. we have
Fr,_1 =0.

In the remainder of the section. g(k.7.7) denotes the minimal total earliness ‘tardiness of
jobs in {v} U F,ik U (Uo<ich, £i). given that. the cross-due-date job of the fiith time window is
Xr, = {v}, and the completion time of the last one of these jobs is 7+ dj,. With this definition.

we obtain the following boundary condition
gll.m,v)=z(L, 7.0.v). (11)

because Fp, -y = 0.
For a solution to exist for the given k.7 and . or, in otherwords. in order that g(k.7.v)
exists. it is necessary that there exists a w such that z(hy. 7, u, v) < +2¢. Therefore. if » # 0 or

Fi # 0. relations (4) and (5) should be verified by replacing ¢ with /. Thus.

T € (pp,(v). min {(-/?hkﬂ - (l_hk./);,k(v) + e+ l}] . i £ 0. (12)
T € [pr (e)omin {pa, (€),dp 41 — dp,, }] - i =0 and 1",1“ £ 0. (13)

If v =0and Ff = 0. there wust be a wsuch that s(fig. 7w ) < 430 A5 a consequence.
UZT> PILA.—] _/\/LL—I_([le +(//;.;\-—l~ (l‘l)

From the definition of ¢, the following recurrence formula holds:

glk+1.7.v)= min min - glh O a)+ s(hppy.Tou o), (15)
uelf,,ku{o} PEQ,(T.u.v)
where the set Oy (7. u.¢) is defined hereafter. In this formulas it is possible that « € F),, _|
(in the case where i < hp — |. we should have £, —y = 0). In that case. without loss of
generality, we set z(/. T u.v) = (1. 7.0, 0).
Since there should be no overlapping hetween the last job of the block and the first job of

the next block. the following inequality holds:
B < nye(r.u.e). (16)

where m(T.u,v) =7+ dp, = dyy = Gy (0 0).

To summarize. O (7. u. ¢) is defined as

(pr (). min {dy, 41 = dypr (u) + o+ Lopdroac ). il a # 0. (1)

[/’hk( w). min {pp, (). (thﬂ =ty T rf)}] . i w = 0 and I," Z0. (I8)

APhj—1 = Ay — iy, + (7,”._1. min {0. (7. a. )} ilto=0and /",i“ =0. (19)

A little more should be said about the case where v = 0 and ”u = 0. In this case. jobs

in Fp _, are carly. The closer 8 is to 0. the smaller the earliness of these jobs. In fact we can
construct a schedule such that € is as close 10 0 as possible. since if there is a feasible schedule
such that # is not close to 0. we can obtain another feasible schednle by reducing 6. the schedule
of the jobs preceding jobs in [ _ being unchanged. Tn this latter schedule. the criterion value



in also reduced. Therefore. 8 < 0 should be as close 1o 0 as possible. From this remark. it o = 0
and Fjf = 0. Op(7. v s

9, Pt = Ap—1 =y, + 20 2 min {00t mow )}
. . ' (20)
{min[0. (7, w.v)]}.  otherwise.
From (17), (18) and (20). we can see that whatever the case. we have
[(-)I.'(T- i ”)l S Pmax- (ZI )

where pay = maxi<;<, p, -
We can see that it is possible that Op(7.u. ) = . In this case. no solution is feasible for the

given k.7, u and », and we set. by convention. min - g(h.d.u) = +x.
GO (T.u.0)

The optimal criterion value for the given & = {F;|i = 0.1.....m}. denoted by ET(®). is
obtained when the last block is scheduled. We obtain.

Fl(d)= nmin min qlq. 6. ) (22)
u€ly, U0} |IEQ (4. 0.0)
where,
Ou(+x.c.0) = (/111(,( ). min {r/,,ﬁ, =i, i, /:) + /;{.}) . (2:3)
if v# 0, and
O, (+3c.0.0) = {p, ()} (24)

if ©=0.
Concerning the complexity of the algorithm. we can see that for each £ (0 <, < —1). the
and the number of 7's

number of ©’s (i.e. the number of cross due date jobs) is at most |F,

I at most puay (see (21)). Therefore the number of g(k+ L.7. )5 15 al most pax > pey [0, ] =
NPmax- Lor the computation of each g(h + 1, 7. ¢), there are at most n choices of u. The choices

of § can be avoided by memorizing  min  g(k.f. ) during the computation of g(h. 6. u)'s.
T e (Tur) '

Therefore, the complexity of the dvnamic programming algorithm is Q7% pax)-

5. Lower Bounds

In this section. we describe two methods to compute a tower bound of a complete schedule

constructed from a partial solution.

Note. In this section. probleins are denoted by a P followed by the equation numbers in
parentheses. ‘These equations define the objective function and the sct of constraints of the
problem. For instance. P(26 29) denotes the problem defined by criterion and coustraints
referred by (26) to (29).

Let us denote by w, the time window in which job ; should be completed. ie. w, =/ if and
only if d; < C; < diy.

According to Properties introduced in Sectiou 3 and the dynamic programming approaci
described in Section 1. a complete schiedule caii he found using the dyvnamic progranuning
approach proposed in Section 4. as soon as the set fuw, )= 12,0 n} s given. Similarlyv. a
given partial solution can be represented by 17y = {a,.j = L2.... 0 with L <1 < n. Irom
this partial solution, we can define the following sets. which are siinilar to those of Sections 3

and 4.

10



Fe={1<j<lld,=id >d}: setof jobs assigned to the ith time window and being early

or on time:
Fr={1<j< eir, = i.d, < d;}: set of jobs assigned to the ith tine window and being tardy:

Ji={l<j<nld; =d;}: set of jobs with due date d, and 1o which no time window is

assigned:
Si=JUF U,
With these notations. the following equalities hold:

UlSiSmSi = {1.2.. 71} U1<,<m = {l +1.04+2..... II}. (25)

A partial solution being given. the problem of minimizing total earliness tardiness can be

f01.'n'1ula,ted as follows.

{\hll“<n/“<//$ Z max {a, (d; — C,).3,(C;, —d;)} (26)
subject to
C,>p,. V1< <o (27)
(C=p, CN[CL=pe. Cry=0. Vj<hk<nVI< )< on. (28)
di) < C, < dyyr Vi< j<|. (29)

Constraints (27) and (28) are the same as (2) and (3). Constraints (29) are introduced to
take into account the partial solution.
The remainder of the section provides 1wo methods 1o obtain lower bounds of this problen.

5.1. First Method

In this subsection. we give a method based ou the idea 1o separate the jobs to which time
windows are assigned by the partial solution, i.e. the jobs | < j <l aud those to which no time
window is assigned. taking into account the influence of the previous jobs.

Before giving the details of the method. we introduce a quite obvious lemma.

Lemma 1. Consider a problem defined as [ollows

AMinimize Z i),
.l‘l{;‘.(:l‘)>0.k€ U Q, } =1
= 1<7<

and its p subproblems.

Minimize  £i(v).
{rles(e)>0.he,}

The sum of the optimal criterion values of the ji subproblemns is a lower bound of the optimal

criterion value of the initial problens.

We introduce other decision variables denoted by v, (1 < j < n). Variable w, is the time
window assigned to job j. Durthertwore. X, still represents the set of cross due date jobs related

to the ith time window. From w;’s. we can also define the sets F5and /7 (0 < ¢ < m)in the

I



same way as the definition of F! aud FE(0< i< m) from w, s at the hegiuning ol the section,
that is, F¢ = {1 < j < nlw, = id; > d;}. F = {1 < j < nlw, = id, < d}. Theset of

1

constraints related to these new decision variables are the [ollowing

wy; =w,. Vje{weS|l <w <P VI<i<m. {30)
w; =i Vie XVl <i<m, ' (31)
0<w;, <m. VjeSil<i<n. (32)

where contraints (30) take into account the given partial solntion.

The following constraints are derived from the definitions of the decision variables:

do, < C; <duyyr. V)€ {wlw, =i} 1<i < (33)
dy, < Cy<dp +p,. ¥j€EXN.VI<i<m (34)
JE N, Vieloloe,=id <O, <d +p.}. V1 <0< (35)

Since constraints (29) can be derived from constraints (30) aund (33). they are neglected in
the remainder of this subsection.

It should be noticed that the optimal criterion values of problem P(26- - 29) and of problem
P(26—28, 30—35) are the same. because from au optimal solution {C,]1 < j < n} of problem
P(26--29), we can derive the decision variables w;’s and X,'s that verifv all constraints of
problem P(26—28. 30—35). and vice versa.

From Properties 4 and 5. we know that an optimal solution should verifv the following

conditions,

C;<Cr. Vheboe FFO\NXCi|lw# jopoJa, <p o} YVjie i, \N,_,. VI<i<m.
Cy<Cr Vhe{fwe FINXw# jopu/30>p,/3;}. vje F VN V1 << o
Therefore, the following constraints can be added. since they are a subset ol the previous con-

ditions.
C,<Cr. Vhe{we Liw# jpola, <pla,}.¥je L, VI << (36)

C, < Cp. YheleeRi|w# jopo)3,>p,/3,).¥)€ R,V

A
IA

S (37)
where L; = S;N(F_, \ X,oy) (resp. R, = S, N (F'\ X)) s the set of jobs in 5, completely
processed within the time window on the left (resp. right) of ;. that is. the (i — 1)th {resp. ith)
time window. It should be noticed that all jobs in £; are tardy and all jobs in L, arc carly or
on time.

We now establish the lower bounds for the problem P(26-—28.30--37). I'rom this problew.

we construct two subproblems: The first one is
{
Minimize Z max {a;(d; — C')). 3,(C, —d,)}
WX
1=

subject to (27), (30)- (37) and the following capacity constraints which constitute a subset of

constraints (28)

(C, = p, CON[Cr = pe () = 0. Vi< h<IlVI<j<I

12



The other one is:

m

}P,n{],nle(; Z;J;' max {a,(d, — ). 3,(C _,‘—— d;)} {38)
subject to (27)—(28) and (30)- (37).

From Lemma 1., we know that the sum of the optimal criterion values of these two problems
provides a lower bound to problem P(26—28, 30 -37). The first problem is just the scheduling
problem of jobs in {j|1 < j < [} given the time window of cach job. This problem can be solved
by the dynamic programming approach described in Section 4.

The second problem, that is P(3%. 27—28. 30—37). is still NP-hard. since it is a gener-
alization, because of constraints (30), of the original problem (i.e. the scheduling problem to
minimize total weighted earliness. tardiness with different due dates). which is known to be NP-
hard. Therefore, we have to relax additional constraiunts in order to obtain a lower hound of
this problem. Contraints (27) are removed. The capacity constraints (28) are relaxed for jobs
belonging to different 5;'s. Theyv then hecome:

[C'J——])J'.C'J)ﬂ[C'k—pk.('k)2(0. Yhef{woe€e Sk > Ve s vl <i<m. (39)

Constraints (33) are relaxed to the following ones

di. Vje Flvl<i<m. (40)

di. Vyel_(.VI<i<un. (41)

(— '.I
('-'.I

IN WV

It is very important to notice that with this relaxation. some decision variables lose their

original physical meaning. For instaunce. w, does not mean auy more the time window in which

J
job j should be completed. because even if w, = i. it is possible that ', > d gy or (; < d,.
w; now means that job j should be completed after or at d,., (i.e. ', > d, )il d; < d,, and
it should be completed before or at d,. (i.e. ¢, < d, )il d, > d, . Consequently. L; and R,
lose their physical meaning. L, (resp. ;) is just the set of jobs defined by L, = {j € Si|w; =
-1, € Xio1od; > di} (resp. I, = {j € Sijw, =i.j¢ N, d; < d;}). However. considering
constraints (<0) and (41). we always have the remark that all jobs in R, are tardy and all jobs
in L; are carly or on time. '

The relaxed problem becomes therefore P(38. 30~ 320 3:0--37. 39--41). For this problem,
‘neglecting the physical meaning of decision variables. the following property holds.
Property 8. There is an optimal solution lor the problem P(38.30 32, 34- 37,39 -11) such

that for any ¢ (} <7 <) and for any job j € 5, we have v, € {/ = 1.7},

Proof. The proof can be found in Appendix A. O

Furthermore, we can casily prove that X; = 0.V </ < ni.since constrainis (27) are removed
as in the case of the unrestricted version of cotmmon due date problem. Therelore. constraints
(31), (34) and (35) can be removed. As a consequence of Property Sothere is an optinnal solution
such that £, = L, = {j € Siju, =1 = 1}. F' = R, =4, € S|, =i} and L,Uu R, =5,
The problem then becomes P38 300 32, 36- 37, 391 1) with an additional set of constraints:
w; € {i = 1.i}.,¥) € Si VL <0 < e The criterion and the constraints of this problem are
decomposable. The problem can then be decomposed into e independent subproblens. Fach

of them is related to a due date o, (i = 1.2, ..m). and the sum of optimal criterion values of

13



these problems gives the optimal criterion vadue of problem P{3=.30 3234 37,39 41). The

subproblem related 1o the due date d; is as follows:

Minimize Z mux{(s',((-l, — ) 0, = dy (42)
{¢,.L} fel.

subject to
J€E L. Vj €S, such that o, =7 — 1. (13)
JE I, Vj €5, such that a, = . (-h1)
[Ci=p;, N [Cle= i Cr) =0, Ve e{w e Sle > ) Vjes,. (-15)
(', <d,. vjelL,. (46)
C, > d;, Vi€ R, (47)
¢ <y Vhe{we Lilw# jopefa, <plo,}.Vje Lo (48)
¢, < (. Vhe{w e Riw # Jope/3. > p,/4,}.¥) € R (19)
where R, = S, \ L;. This problem is identical to the problem of minimizing total weighted

earliness; tardiness with an unrcstrictod common due date. except for the objective function (-42)

and constraints (43) aud ( ). where constraints (48) and (119) mean that the optimal schedule

should be V-shaped. Therefore all available algorithins to solve general unrestricted version of

common due date L2 -1 problems apply to solve the problem after slight modifications. However.
no algorithm exists 1o solve the problem with arbitrary carliness and tarvdiness peualties. The
complexity about this problem is still open. But when the jobs ordering according to the ratios
p, /o is the same as the job ordering according to the ratios p, /3, for instance 3, = ~va . for
I < j < nowhere 5 > 0. the algorithm of Hall and Posner |[IH] is applicable 1o solve problein
P{-12—49) with slight modifications taking into account objective function (42) and constraints

(43) and (44).

5.2. Second Method

In this subsection. another method to obtain a lower houund of problem P(26 28} is presented.
Unlike what has been done in subsection 5.1, jobs 1o which a4 time window is assigned as well
as the remaining jobs are considered simultaneously in the objective function.

The lower bound is also obtained by relaxing constraints. As in the first method. constraints
(27) are relaxed and the capacity constraints (28) are relaxed for the jobs belonging to different

S5:’s. They become:
()= p;- CONCe = i Cr) = 0. Vibe{w € 5w > j}.Vj€ 5. VI <i<m. (50)

Constraints (29) are replaced by the following relaxed ounes:

(", 2 ([_;. V] € /,’Vl S ! S 1. (31)
(', <d,. YjeF_ ¥l <i<m. (52)
The relaxed problem is then P(26. 30— 52). Since Uyc <, S, = {1.2...onf and 5, N5, =

B. Vi < ! <. V1 < i < the objective function (26) can be rewritten as

"

Minintize Z Z max{a,(d, = C ). 5,(C, —d,)} (53)

(o =1 €5,

14



The objective function and the constraints of the problem P(50- 53) can be decomposed
into m parts, each of them being related to a due date o, (1 < i < mi). Therefore. the problem
can be also decomposed into m independent subproblems. each of them being related to a due
date d; (1 < i < m). The sum of the optimal criterion values of these subproblems is the optimal
criterion value of problem P(350---53). The subproblem related to the due date d; is as follows.

Minimize Z max{a,(d; — C;). 3,(C, —d,)} (54)
) e |
subject to
(C, = p; CHN[Ch = Cr) =0, Vh € {w € Sikw > j}.Vj€E S, (55)
C, > d;. Vje FLvl<i<om. (56)
C, <d,. VjieF, V1<i<m. (57)

Constraints (56) and (57) can be integrated into the objective function (51) by applying a
large penalty. The new objective function becomes:

Mi?g:mize Z max{a(d, — ). 3,(C; - )} + Z max{eo, (d, = ). M(C, - diy} +

’ = JE '5.,"—1
S max{M(d, - ;). 3,(C; —d)} + ET (58)
JEF!

where M is a very large uumber. and LT = Z_,elf',’ ,j,((], ~d,)+ Z./elf','_l a(d; —d;).
Therefore subproblem P(54--57) becomes P(58.33). Since LT is coustant (i.e. independent
of decision variables). this latter problem is simply the scheduling problem to minimize total
weighted earliness. tardiness with a common due date. where. for jobs in ' (resp. ﬁ;—l ). the
earliness (resp. tardiness) penalty is . \s mentioned in the first method. when the job ordering
in the ratio p,/a, is the same as the job ordering in the ratio p,/3,. for instance 3

, = va,. for

1 < j < n,where s > 0. the algorithm of Hall and Posuer {11] is applicable to solve rhis problem.

These two lower bounds are used in the branch aud bound algorithim preseunted in the next

section.

6. Branch and Bound Algorithm

We now presenut the main features of our branch and bhound algoritlim. The algorithm implicitly
enumerates completion time windows of jobs as described by {w,.j = 1.2.....[} in the previous
section.

An initial upper bound on the cost of an optimal schedule is generated by a greedy heuristic.
In this heuristic. jobs are scheduled one after another. At each iteration j. job j is scheduled
taking into account the partial schednle composed of jobs 1.2..... 7 — 1. At this iteration. we
expect that job j is scheduled around its due date. that is if d, = d, it is expected to be completed
either within the (7 — 1)th time window or within the /th time window. This gives rise to two
choices. Tor each of the choices. we know the expected completion time window for each job in
{1.2.....j}. Therelore. we can construet sets s and P50 By Assuming N, = 9.V < i < m,
we can completely specify the sequence of these according 1o Propertios | 1o 5. Idle times then

1)



Table 1: Computational results for the branclh and bound algorithm

No. | El/A EI/B | E2°A E2'B|E3°A E3/B|E1°N LI BiESA 5B
1 23 * 10 271 2 46 1 * 10 195
2 138 181 241 153 192 107 * 125 27 140
3 108 * * * 20-1 * 97 210 S *
4 26 121 261 242 * 1R 208 163 36 152
5 22 47 28 51 1 156 3 * 39 126G
6 78 * 38 141 29 60 100 215 119 13
7 31 35 35 90 50 IR 13 17H D3 [48
8 45 81 12 31 4 21 9 250 27 *
9 81 * 20 * 27 * 3 202 I 124
10 * 240 280 107 * 5l 91 PIN * 162

A lower bound computed by the first method:
B:  lower bound computed by the second method:
El: examples for 3, = 5, with ~ = 2:

E2:  examples for 3, = va, with 7 = 1:

E3: examples for 8, = ya, with ¥ = 0.5:

E4:  examples for 3, = o, = p;:

E5: examples for a, = 1.3, = 10:

*: examples for which the computation time exceeds 300 seconds.

can be inserted using the algorithm of Garey. Tarjan and Wilfong [S|. This provides a cost for
each choice of expected completion time window for job j. The final expected completion time
window of job j is chosen so that the corresponding cost is the least.

Other aspects of the branch and bound algorithin are the following. For nodes that are not
eliminated in the enumeration tree of the algorithm. a lower bound is computed using one of
the methods presented in the previous section. In the algorithm. we use the depth-first-search

plus best lower bound rule to select a node to he examined next.

7. Computational experience

The branch and bound algorithin was tested on carliness-tardiness schednling problems with

different due dates with n = 20. m was randomly gencrated using the uniforin distribution
on [2,10]. Processing times of jobs were randomly generated using the uniform distribution on
[1,10]. a;’s and 3;’s are generated with three different schemes: 1) 3, = ya,. for j = 1.2..... n
where aj,j = 1.2....n were randomly generated from the uniform distribution {1.5] and 5
was taken from the set {0.5.1.2}: 2) a, = 3; = p, for j = 1.2.....n: 3) o, = 1.3, = 10
for j = 1,2.....n. Due dates d,.7 = 1.2.....m were randomly generated using the uniform

distribution 3"} Ax + C[0.50,0\]. where ([...] denotes the uuilorm distribution. A, is the
total processing time of jobs with due date d,. The algorithin was coded in € language and
run on an IBM 6091 19 microcomputer. Ten problems were generated for cach type of a,’s and
B;’s. Whenever a problem could not be solved within the time limit of 300 seconds (5 minutes),
computation was abandoned for that problem. Computation times in scconds in order to obtain
optimal solutions for these problems are given in Table L. The influcnce of the lower bouuds

needs more comments. The computational experience shows that the computation of lower
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bounds using the first method requires a little more thine than that with the second method. but
the lower bound provided by the first method is frequently a little better than the oue provided
by the second method. As a result. thecaverage computation timme for rhe algorith using the
first method is less than the computation time when using the second method.

8. Conclusion

In this paper, some properties about optimal solutions of the earliness-tardiness scheduling
problems with different due dates are exploited and a branch and bouud algorithm is proposed
for solving the problems. Computational results show that the branch and bound algorithm can’
solve the problem up to n = 20 with modest run times.

Since weighted earliness-tardiness scheduling problems tend to be very difficult when jobs
have different due dates, much investigation is needbd further to develop more efficient algorithms

to attack large size problems.

A. Proof of Property 8

Consider an optimal schedule which does not verifv Property X0 There is at least one 7 such that
the set B;U A; #0. where B, = { € 5i10< w; </ =L} and A, ={j € 5,1/ < w, <wm},

Consider the case where 4, £ 0. It should be noticed that .1, € J,. sinee otherwise constraints
4

(30) would be violated. Thew. for anv j € ;. d; ="d;, < d, . which implies that ;€ l-',“J.

J

“According to (40), we have.
C,>d,, >d =d,. V)€ A, (59)

Let k € 4, be the job with the smallest completion titne. We consider two cases.

Case 1. pi/Br > p,;/53,.¥j such that j € R and O, < (.

We coustruct another solution identical to the one considered curventlve except that wy =
in the new solution. This solntion is feasible. since all the constraints are verified. Furthermore.
this new solution does not increase the criterion vaiue. However in the new solution. the set A,

is reduced by one element (& does not belong to 4, any wore).

Case 2. The hypothesis of Case | does not hold

In this case, it is possible to find a job j € I, with the simallest completion time such that
Cj < Crand p;/3; > pi/ 3. Let Q C 5, be the set of johs whose completion times are between
C, and (', including job j. Frow the notations. we have. a. = .V € ). As a consequence.
Q C R; and from (37) p, /3, > p;/3, > pe/ 3. Yo € Q. Construct another solution such that
wp =4, CL=Cotme Vo €Qand Cp=Co=ptpe 2 di+p=d o +pe > d o (since j € X,
This new solution is feasible. since all the constraints are verified. Furthermore. in this new
solution, A; is reduced by one clement (& docs uot belong 1o 4, anv more). Considering relations
Vo € QQ C Ri.Cy > d,. thefact that 'y > dy (stuce b€ A, see (39)) and ) > d,+pp > d, = d;
(since k € A4;, see (59)). if 2\ denotes the difference between the criterion values of the new aud

the previous solutions. we obtain.

A< =3 Z P+ Z 5

<20 LEQ LD



which means that the criterion value is not increased.

Therefore, whatever the casc is. we can obtain a schedule. without increasing the criterion
value. and in which the set A; is veduced by one clemoent. We can vopeat the same process until
A, =0,V <i <

If there is an ! such that B, # §. we can use a similar process to reach a solution. without
increasing the criterion value and in which 8, = 0.¥1 </ < nu.

Consequently, from the initial solution. we can derive a solution vertiving the property.
without increasing the criterion value. This means that either the new solution is also optimal
(in case the criterion value remains unchanged) or the initial solution is not optimal (if the new

criterion value is strictly less than the initial one). which is in contradiction with the assumption.
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