N
N

N

HAL

open science

Mathematical Aspect of the Optimal Control Method in
Navier-Stokes Equations

Aixiang Huang

» To cite this version:

Aixiang Huang. Mathematical Aspect of the Optimal Control Method in Navier-Stokes Equations.

[Research Report] RR-2489, INRIA. 1995. inria-00074186

HAL 1d: inria-00074186
https://inria.hal.science/inria-00074186
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00074186
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Mathematical Aspect of the Optimal Control
Method in Navier-Stokes Equations

HUANG Aixiang

N° RR-2489
Janvier 1995

PROGRAMME 6
Calcul scientifique,
modélisation

et logiciel numérique

apport
derecherche







ZIINRIA

ROCQUENCOURT

Mathematical Aspect of the Optimal Control
Method in Navier-Stokes Equations

HUANG Aixiang *

Programme 6 — Calcul scientifique, modélisation et logiciel numérique
Projet Ident

Rapport de recherche n°RR-2489 — Janvier 1995 — 14 pages

Abstract: This study deals with the theorical basis of the optimal control
methods in primitive variable formulation and penalty function of the Navier-
Stokes equations.

Key-words: Navier-Stokes equations, optimal control

(Résumé : tsvp)

*Research Centre for Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049,
P.R. China

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : (33 1) 39 63 55 11 — Télécopie : (33 1) 39 6353 30



Aspects Mathématiques du Contréle Optimal
dans les Equations de Navier-Stokes

Résumé : Ce travail concerne la base théorique des méthodes de controle
optimal pour les équations de Navier-Stokes formulées en variables primitives

ou pénalisées

Mots-clé : équations de Navier-Stokes, controle optimal



Optimal Control in Navier-Stokes Equations 3

1 Introduction

Let Q@ C R* n = 2 or 3 be a bounded domain with a Lipschitz continuous
boundary 9 = I' = I'; U I';.The stationary Navier-Stokes equations are

—Au+ (uVju+Vp=f=f in Q,
u|r1=O,<)\——pn> =g OHF7
on Ty

where u is the velocity vector of the fluid, p is the pressure, \™! = Re is the
Reynolds number.

Let Sobolev space be X = (H'(Q2))" with norm || u [|3= >0, || u; ||} Yu €
X and seminorm |ulf = Y, Jwili,Vu € X, Xy = (Hg ()", V = {u;u €
X,u|p, =0} and Vo = {u;u € V, divu = 0}.

We introduce the following linear, bilinear and trilinear functionals :

" dut dv'
ao(u,v) = A(Vu,Vv)= A > /Q 90 %d:c,

7,7=1

G(u,v) = (div u, divv), a.(u,v) = ag(u,v) + ¢ 'G(u,v),
ai(u;v,w) = ((uV)v,w) = 2;Z:l/g'lﬂ%tujclac,
<F,v>=<fv>+<g,v>r,

where we assume f € V* (the dual space to V) , g € (H‘é(Fg))” and
H%(Fg) = {y0g9 : g € H'(Q)} is the image of the trace mapping 7o on H*(1)

Yy e H%(Fg% we define

e llsr,= gegllf(m{H 9 lls 1= 09I, }-

H_%(Fg) is the dual space to H%(Fg) , s0 Yu* € H_%(Fg),

e lloye,= sup [ <pu>r |/ wllyr,
p€EHZ(T,)

RR n"RR-2489



4 HUANG Aiziang

where < .,. >, denotes the duality between H%(Fg) and H_%(Fg). It is not
difficult to prove that Vf € V* g € (H_%(Fg))” <f,v>4+<g,v>n,isa
continuous linear functional on the space V. Therefore there is a F € V* such
that <F,v >=<fv>+<g,v>p VweVand |F|.<|[f|.+] g H—%,ng

where || . ||« is the norm of V*.

In the velocity-pressure formulation, the variational form of (1) is
to find u € Vg such that ag(u,v) + a1(u;u,v) =< F,v> Vvel, (2
In the penalty function formulation, the variational form of (1) is

to find u. € V such that a.(u.,v)+ a1(us;u.,v) =<F,v> VveV, (3)

where ep. + divu, =0, ¢ is the penalty parameter.
In both case, the variational form of (1) can be written as

to find u € H such that A(u,v) 4+ a1(u;u,v) =<F,v> VveH (4)
In the case of (2), H = Vi and A(u,v) = ap(u,v) ; in the case of (3) H =V

and A(u,v) = a.(u,v).
2 Optimal Control Formulation
We define the functional J(v) by

J(V):A(V_£7V_£)/27 (5)

where ¢ is a solution of the Stokes equation

(e H, A(§,n)=<F,n>—ai(v;v,n), YneH. (6)

The optimal control problem associated with (4) is

find u € H such that J(u) = min J(v). (7)

veH

Inria



Optimal Control in Navier-Stokes Equations 5

It is obvious that (6), (7) have the structure of an optimal control problem
where v is the control vector and ¢ is the state vector. (6) is a state equation,
while the functional (5) is a cost function.

It is clear that if u satisfies (4), then u is also the solution of (5), (6),
(7). Conversely, if u is a solution of (5) (6), (7) such that J(u) = 0 then u
also satisfies (4). The trilinear form a;(u; v, w) is continuous on H. So we can
introduce the norm of a1(u;v,w) as

N= sup 1aWVW
u,v,weEH |U|1|V|1|W|1

and we have

lar(u; v, w)| < Nluly|v]i|wl;. (8)

When meas I'; = 0, a1(u; v, w) is antisymmetric with respect to v, w. i.e.

ar(u;v,w) = —as(u;w,v) Yue Vg, v,we X. (9)
(8) shows that, Yu € H,Jh(u) € H* (the dual space to H), such that

< h(u),v>=<F,v > —a;(u;u,v). (10)
So
I h(u) |l.= 322' <h(u),v>|/lv}i <[ F |l +Nlulf. (11)

4

Especially, if F € (L(Q))", then Yu € H,h(u) € (L:(Q))",

| <F,v > —ai(u;u,v)|

[ h(u) [lps= sup <|Fllos +Cluly  (12)
vELA(Q) H v H0,4

in view of the Sobolev embedding theorem L*(Q}) — H'({), we have

Lemma 1 The mapping defined by (10) u — h(u) is a continuous opera-
tor from H into H*. When F € (L%(Q))” it is also continuous from H into
(L%(Q))” In the meantime the following estimates hold

| h(u1) —h(uz) |l < N(|Ju]; + Jugfi)juy —uzfy, Yug,uy € H,
| h(u1) —h(uz) [[p2 < C(lur)i + [uz|i)juy —ugfy, Vug,u, € H.

'3

RR n"RR-2489



6 HUANG Aiziang

The bilinear functionnal A(u,v) is continuous and coercive on H x H

|A(u,v)| < Muli|v]y,  [A(u,v)] > ~]uli.
The introduction of (10) into (6) leads to

find £ € H such that A(¢,7) =< h(v),n > Vne H. (13)

There exists a unique solution ¢ = T'v for (13) according to Lax-Milgram’s
theorem, so the operator v.— ¢ = T'v defined by (13) is a mapping from H
into H, and

Tvly < v | h(v) [L< w7 (|| Bl +N|v[) Vv e H. (14)

4

In addition, when F € (L%(Q))” and meas I'y = 0, then T'v = ¢ € (H*3(Q))"
and

I TV llz0= C Il h(v) los < C(I F llo s +[V[}) VveH (15)
In other words, 7" is a mapping from H into (HQé(Q))” Using lemma 1 and
Lax-Milgram’s theorem we can obtain

Lemma 2 Suppose ) is a bounded domain of R™ with Lipschitz boundary 1.
Then the mapping T defined by (13) is continuous from H into H. If the boun-
dary is of class C?,F € (L%(Q))”, and meas 'y = 0, then T is also continuous
from H into (HQ%(Q))” and the following hold

|TV1 — TV2|1 S NV_1(|V]_|1 + |V2|1)|V]_ — V2|1 \VIV]_,VQ & H
|| TV1 — TV2 HQ,% S O(|V]_|1 + |V2|1)|V]_ — V2|1 \VIV]_,VQ & H.

From lemmas 1 and 2 we immediately obtain

Lemma 3 The operator T is compact from H into H.

Lemma 4 Suppose Q is a bounded domain of R" with Lipschitz boundary
I'=r,Ul'y, H=1V,. Then

Inria



Optimal Control in Navier-Stokes Equations 7

1. the u — a1(u;u,v) is weakly continuous in H, i.e.

u,, — u (weakly) in H (16)
= im0 @1 (W U, V) = a1(u;u,v) Vv E H.

2. the operator T is weakly continuous from H into H 1.e.
u,, — u (weakly) in H = Tu,, — Tu (weakly) in H. (17)

Proof

1. Since the embedding operator H — (L*(Q))" is compact and an ar-
bitrary linear compact operator from a reflexive Banach space into a
Banach space is certainly a strongly continuous operator, so u,, — u

(strongly) in (L*(9))™.
Now, Vu € H,Vv,w € X,

vw div udz = / (vw)(un)ds

I

(vw)(un)ds—/

Cll(ll; v, W)—|—Cl1(ll; w, V) = %
Q

r
Let w € (D(92))", then

la1 (W Uy, W) — aq(u;u, w)
= lar(u — up,;w,u) + a1 (u,; W,u —u,,) + F2((um —u)w)(u,,n)ds
- /F (uw) (1 — wn)ds|

<N |lu—up oz W[l ullog+ || wn floa)
+C || uyn —u Ho,g,r |W|o,§,r(|u|0,4r + [umfoar)-

It is well known that as ¢ < 2(n—1)/(n—2), H(Q) — L4(T') is compact,
and H'(Q) — L*(Q). From this we have u,, — u (strongly) in (Lg(F))”

and

|al(um;umaw) - al(u; U,W)|
< CONwlia(luli + [unh) [u=un floz +CWli(July + [unli) || un —u Ho,gr :

RR n"RR-2489



8 HUANG Aiziang

Therefore

lim aq(um; Uy, w) = a1(u;u, w)

m—00

in view of the boundedness of {um} in H. Thus (16) holds by virtue of
the density of (D(Q))" in H.

2. It is easy to obtain (17).

Lemma 5 Under the conditions of lemmas 3 and 4 and F € (L%(Q))”, the
operator T is strongly continuous from H into H, i.e.

u,, — u (weakly) in H = Tu,, — Tu (strongly) in H. (18)

Proof If (18) is not true. Then there exists a subsequence {u,,,} such that

|Tu — Tyl > Ve> 0. (19)

But we have u,,, — u in H and hence {u,,,} is uniformly bounded in H. As T
is compact, there exists a subsequence {u,,,} of {u,,,} with Tu,,, — w in H.
On the other hand, u,,;, — u = T'u,,, — Tu by virtue of (17). As the weak
limit is unique we conclude that w = T'u, and thus Tu,,, — Tu in H. This
contradicts (19), and so we conclude that Tu,, — Tu in H, i.e. T is strongly
continuous.

Lemma 6 The operator T is Gateauz differentiable everywhere in H, i.e.

A(T'(w)w,v) = ay(u;w,v) —ay(w;u,v) Vv,we H. (20)

and T'(u) is Lipschitz continuous in H,

H T'(ul) — T/(UQ) HS 2N1/_1|u1 — UQ|1 Vul,u2 € H (21)

Furthermore, if the conditions of lemma 3 are satisfied, Vu € H, T'(u) is com-
pact for H — H.

Inria



Optimal Control in Navier-Stokes Equations 9

Proof It is not difficult to obtain (20).
To prove (21) we observe that

A(T'(ay) = T'(u2))w,v) = ay(ug —uy; w,v) + ay(w;uy — uy,v).
Hence

|7 (y) = () < o7 sup [0 ENY)  nlwin V)
v,weH |W|1|V|1

Employing (8), we obtain (21).

By virtue of (12) and the regular theorem for Stokes problems, T'(u)w €
(H2§(Q))” — H. Hence T"(u) is compact.

3 The Existence Theorem and the Minimi-

zing Sequence
The variational problem (6) is equivalent to the operator equation
u="Tu. (22)
That u is a solution of (6) if and only if u is a fixed point of 7.
Theorem 1 Suppose F € H* and

ANv=? | F ||.< 1. (23)

Let K = {u;u € H,|uly < 2v7Y || F |l.}. Then there exists a unique fired
point of T' in the set K.

Proof  First, we prove that T is a mapping K — K. If v € K, then

Tvly < vTHITF [l +NIVE) < vT (L F [l H4Nv [ F 2 <2070 | F .

RR n"RR-2489



10 HUANG Aiziang

by virtue of (14) and (23). So T': K — K.

Secondly, T' is a contraction mapping in K. If vi,va € K, then in view of

(23)

|Tvy — Tva)y < NvH(|vi|i + [ve|)|vi — va| < |vi — va|i

So, T is a contraction mapping K — K. We conclude that the mapping 7" has
a unique fixed point in K.

It is well know that if A(u,v) = ao(u,v),H = V5 and meas I'ys = 0,
then problem (22) has at least one solution u* which satisfies

wly < v F L (24)

In addition, if 4Nv™% || F ||.< 1, then problem (22) has a unique solution
which satisfies (24).

In another case, we have

Theorem 2 Suppose A(u,v) = a.(u,v),F € H*. H =V, meas I'; = 0, and
the constants a, 3 are such that

v>a>0,andv—CB/2>a>0

where C' s a Sobolev embedding constant

H u HOAS C|U|1 Yu € X,n Z 4.

Then the penalty variational problem (3) for the Navier-Stokes equation has a
unique solution in set K1 = {u;u € V,| divu ||o< B, July <a ' || F |} if

o' N | F.<1, (25)

Inria



Optimal Control in Navier-Stokes Equations 11

2. the penalty parameter € is small enough such that
0.5(e/a)? || F [l.< 8. (26)
Proof It is easy to prove that
lar(w; v, v)| <0.5CIv[i || divu o Vu,veH (27)
Let Cy(w,v) = a.(w,v) + a1(u;w,v). Then Vu € K,
L. Cyu(.,.) is a continuous bilinear form on H x H
2. Cy(.,.)is H - elliptic, i.e.
Cu(v,v) > alv]} Vve H. (28)
In fact, by (27) and (24), Yu € K,

Cu(v,v) = v|v]i+e™ || divv ||} +ai(u;v,v) = (v—CB/2)|v|} > a|v|? VveH.

Hence the existence of the unique solution to

Culw,v)=<F,v> VveH (29)

is guaranteed by the Lax-Milgram theorem. That is, a mapping P : u — w =

Pu is well defined by (29)

|Puly =|wli <a ' || F ..

In addition, by virtue of (29) and (28) we have

e |l divw [lg +elwli <[|F . [wls.

Using ab < oa® + b*/(40) (where o > 0 is an arbitrary constant) we have

e || divw [|g +(e — o)y <|| F |IZ/(40).

RR n"RR-2489



12 HUANG Aiziang

Setting @ = o and using (26) we obtain

| divw |o< 8.

Consequently P is the mapping K; — Kj.

Furthermore, P is a contraction mapping. In fact, if w; = Pu; and wy =
Pu,, we have

ac(Wi — Wa, V) + a1 (uy — uy; Wi, v) 4 ag(ug; wy — wy,v) = 0.

Setting v = w1 — wa we obtain

Cug(W1 — W3, W; — W2) = Cl1(112 — U, Wi, W1 — Wz)-

It follows that

|lwy — wa|; < Na™* | F |« [ur — uz]s

by virtue of wy; € K;. Using (25) we conclude thet P is a contraction mapping.
So w = Pw as the unique fixed point in Kj.

Assume that (u.,p.) and (u,p) are the solutions of (3) and (2) respec-
tively. Then we have [Kai]

Theorem 3 Under hypothesis (23) the following estimate holds :

|u - u5|1—|— H P — Pe HOS ciée,

where ¢, 1s a constant.

Lemma 7 Assume that u* is a solution of (22) and condition (23) is satisfied.
Then we have

w—T'(u)w=0= w=0.

Inria



Optimal Control in Navier-Stokes Equations 13

Proof Infact, A(w—T"(u*)w,v) = A(w,V)+a;(u*;w,v)+a(w;u*,v),Vv €
H. Let C(u*;w,v) = A(w —T"(u*)w, v). Employing (8), (23) and that A(.,.)

is continuous and coercive on H x H, we obtain

Clu™yw,w) > v(1 —ANv* || F )Wl > [wl;  Yw € H;

i.e. coerciveness of C'(u*;.,.). C'(u*;.,.) is also continuous on H x H. Hence
Clu;w,v)=0,Vve H—=—= w=0.

Let J(u) be a functional defined by (5) :
Ju)=A(u—-Tu,u—Tu)/2=Au—-§¢u—¢)/2.
It is easy to check that J(u) is Gateaux differentiable everywhere in H, and

< Grad J(u),w >= A(Tu —u,w — T"(u)w)

= A(Tu —u,w) + a1(u;w,Tu —u) + a;(w;u,Tu — u),Vu,w € H. (30)

So we conclude that if u* is a solution of (22), i.e. a fixed point of T', then u*
is a stationary point of J

Grad J(u™) = 0. (31)
If u* is a stationary point of .J, then we have, by (30)

A(Tu* —u*,w—T'(u")w) =0 VYw e H. (32)

From lemmas 6 and 7, we conclude that I — 7"(u*) is an isomorphism of
H. So (32) yields Tu* — u* = 0. Hence we obtain

Theorem 4 Under condition (23), a solution of (22) is a stationary point of
J. Conversely, a stationary point of J is a solution of (22).

Theorem 5 Suppose Q is a bounded domain of R™ with Lipschitz boundary I’
and one of the two hypotheses :

RR n"RR-2489



14 HUANG Aiziang

A(, ) =aol.,.), H="Vo,F €V, (33)

Al ) =ac(.,.), H=V,F € (LF(0)",T is of class C*  (34)
holds. Then J(u) is weakly lower semicontinuous on H and achieves its infi-

mum at some point in H.

Proof Let u,, — u (weakly) in H.
1. When (33) is valid, then by lemma 4, Tu,, — Tu (weakly) in H.

2. When (34) is valid, then there exists a subsequence (still denoted by
{T'u,,}) such that, by lemma 3,

Tu,, — T'u (strongly) inH.

So we have z,, = u,, — Tu,, - z=u— Tu (weakly) in H. In addition,
A2y — 22 — 2) > 0 = A2, Zm) > 2A(2m,2) — A(z,2).
Hence we get

liminf J(u,,) > J(u). (35)

Similary we can prove that (35) is also true for the whole sequence {u,,}. So
we conclude that J is weakly lower semicontinuous on H.

On the other hand, J(u) > 0,Vu € H. Let o = infyen J(u),{u,} be

a minimizing sequence

lim J(u,) = .

m— 00

Inria



Optimal Control in Navier-Stokes Equations 15

From this

?

A2, 20n) < M.
Hence {z,,} is uniformaly bounded. Furthermore, it follows from equation (6)
that
AU, v) + a1(up;uy, v) =< F,v > —A(z,,, v). (36)
So

|um 1 S V_l(H F H* +V|Zm|1) S 02-
In the case of (34), setting v = u,, in (36)

(v — 0.5C || div up Jlo)[unh <|| F |lx +0]zn) < vCy

by virtue of(27). From the proof of theorem 2 we know that if ¢ is small enough
then v — 0.5C || div u,, |[o> v — 0.5C3 > a. So {u,,} is uniformly bounded.
Therefore we can extract a subsequence {u,,,} of {u,,} such that

U,y — Ug (weakly) in H

lim J(u,,) = ‘}glf_l J(v) =a.

Mp—>00

Since J(u) is weakly lower semicontinuous on H

a= lim J(u,) > J(uo).

Mp—00

But by the definition of a we must have J(ug) > «, i.e J(ug) = .

Theorem 6 Suppose the conditions of lemma 2 are satisfied and the minimi-
zing sequence {u,,} of J is such that

lim J(u,,) = 0. (37)

m— 00

Then {u,,} converges strongly to the solution u of (4) :

u,, — ug in H. (38)

RR n"RR-2489



16 HUANG Aiziang

Proof The proot of theorem 5 showed that there exists a subsequence u,,, of
u,, such that u,, — ug,J(ug) = inf J(v) = 0. According to lemma 5 there
also exists a subsequence (still denoted by u,,;) of u,,, such that

Tu,,, — Tug (strongly) in H. (39)
In addition, (37) shows that

lim A(zm,2Zm) = 0,2, = U, — Tu,,t.e.

Tim_ [z, = 0. (40)
From (39), (40) we conclude that
U, — Ug (strongly) in H. (41)

Using (33) we have

A(ug, v) + a1(Wpmp; Uy, v) =< F, v > —A(zp, v), Vv € H.

Letting mp — oo we obtain

A(ug,v) + a1(ug;up,v) =< F,v> VveH (42)
by virtue of (40) and (41), i.e. up is a solution of (4).
It remains to prove (38). Assume that it is not true. Then there exists
a subsequence {u,,,} of {u,,} such that
|umq — 110|1 >ec Ve> 0. (43)
But {u,,,} is also a minimizing sequence of .J which satisfies (37). According
to the previous discussion we obtain
U, — Up (strongly) inH,

where {u,,,} is a subsequence of {u,,,}. This contradicts assumption (43), and

we have (38).

Inria



Optimal Control in Navier-Stokes Equations 17

4 The Construction of a Minimizing Sequence

Now, let us make a minimizing sequence.

Step 0 We take ug as the solution of the corresponding Stokes equation :

A(ug,v) =< F,v>, VveH.
Then compute go € H by A(go,v) =< Grad J(ug),v > Vv € H, and

set Zg = Zo-

Assuming Uy, §m, Zm, are known form = 0,1, 2..., compute um+1, Em+1, Zm+1
as follows

Step 1 Descent. Compute

A = arg min J(Wp — A2 ), U1 = U — A\iZim (44)

Step 2 Calculation of the New Descent Direction.
Find g,,+1 € H such that

A(gmy1,v) =< Grad J(u,41),v> VYoe H

Pm+1 = A(gm-}—h gm+1 — gm)/A(gﬂ”H gm)7
Zy+1 = 8m+1 + Pm+1Zm -

Step 3 Test.
If || w1 — um |1< € or |[J(ums1)| < € then stop else go to step 1 to
continue.
Let t € R. It follows that

A(T(u+tw),v) =< F.,v > —a;(u +tw;u + tw,v),

and

T(u+tw)=Tu+ T'(u)wt + T'(w)wt*/2.

RR n"RR-2489



18 HUANG Aiziang

Since J(u) is defined by (5), ( 6). So J(u + tv) is a polynomial of degree 4 of
t:Vte R,v e H,

2J(u+tv) = 2f(t) = ap + art + agt® + azt® + ayt?, (45)
where
=A(u+Tu,u Tu), a; =2A(u —Tu,v—T'(u)v)
=Av-T(u)v,v—-T'(u)v) — A(u = Tu, T'(v)v)
azs = A(T'(u)v — v, T'(v)v), ay = A(T'(v)v,T'(v)v)/4.

It is clear that (o = Tu, & = T'(u)v, & = T'(v)v/2 are the solutions of the
following variational problems respectively

A(&o,n) =< F,n > —ay(u;u;n),
A(&,n) = —ar(u;v,n) —ai(viu,m), Ype H
A(&2,m) = —ar(v;v,n).

Theorem 7 Yu,v € H, there exists a solution of the single variable minimi-
zing problem

= arggré%lJ(u +tv),

and t* is a zero point of polynomial f'(t) = % where f(t) is defined by (45).
Proof It is known from (45) that

1. If {2 # 0, one has ay = (&3,&2) > 0, owing to the coerciveness of A(.,.),
so f(t) is a polynomial of degree 4. Certainly, f(¢) achieves its infimum
in the finite interval.

2. If {2 = 0, one has a4 = 0. However,

az=—A(Vv—£,6)=0
=A(v—§,v—£&) —24(u—§,&) = Av—&,v—§&).
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Likewise, when v — &1 # 0,2 > 0, f(¢) is a polynomial of degree 2, and
achieves its infimum in finite interval.

3. fv—¢ =0,& =0, one has ay = az = ay = 0 In this case
a1 =2A(u—£0,v—fl) =0

so f(t) = ag. Then f(t) can achieve its infimum. According to 1,2 and 3,

a
flit) = 71 + ast + §a3t2 + 2a4t” is a polynomial of odd degree, hence there
exists at least a zero point of f’(¢) at which f(¢) achieves its infimum.

In practice, this theorem is very important. Due to it, there are many
improvements in computational efficiency and accuracy for the conjugate gra-
dient method. For this reason to solve the minimization problem (44) one
only has to find a root of the equation of degree 3. In order to evalute J it
is necessary to compute aq(.;.,.), and A(.,.) and to solve the Stokes problem
once.
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