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Couplage des Equations de Boltzmann et de Navier-Stokes
par frottement.

Résumé : Le but de ce rapport est d’introduire et valider une technique de couplage des
Equations de Navier-Stokes avec les Equations de Boltzmann afin de calculer les écoule-
ments hypersoniques autour d’engins manoeuvrant a haute altitude. La stratégie proposée
utilise localement un modele cinétique en couche limite, couplé & un solveur global Navier-
Stokes par le biais de conditions de frottement imposées a la paroi. Différentes simulations
numériques illustrent les possibilités de ’approche proposée.

Mots-clé : algorithmes de couplage, Boltzmann, décomposition de domaines, frottement,
gaz diatomique, marche en temps, Navier-Stokes.
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Figure 1: Slip velocity on a flate plate as predicted by a kinetic simulation

1 Introduction

Computing flows around manoeuvering vehicles at high altitudes involve different regimes,
characterized by the so-called Knudsen number K n. This adimensional number measures
the ratio between the average time separating two successive collisions of a given particle
and a characteristic time of the external flow. At altitudes of 70 km or below, this Knudsen
number is very small, and the flows are described by the Navier-Stokes equations. It is well
known that Navier-Stokes equations cease to be valid for higher altitudes corresponding
to Knudsen numbers larger than 1073. At this level, slip effects can be observed in the
boundary layer and the gas gets rarefied in the wake. For example, such slip effects can be
observed in Figure 1, where a kinetic calculation carried over a wedge plate at high Mach
number predicts a tangential velocity at the wall of the order of 100m/s for a velocity at
infinity equal to 1477m/s. Such effects can lead to significant changes in the aerodynamic
coeflicients of the vehicle.

The standard solution is to use analytical slip boundary conditions as described in [9],
[6], [22]. But the constants which are involved are hard to identify and their validity is
questionable. On the other hand, a direct simulation of the kinetic problem is rapidly too
expensive, because it requires one computational cell per mean free path. To overcome
such difficulties, many authors have recently tried to use intermediate asymptotic models
such as Burnett equations [23].

The solution proposed herein is quite different. It uses locally a kinetic model in the
boundary layer coupled to a global Navier-Stokes solver. The coupled problem is solved
by the time marching algorithm introduced and studied in [12] and [19]. The coupling can
be achieved either by friction (present work) or by half fluxes [2]. A complete analysis
of the coupling strategy, summarizing and developping the results obtained in the phase
Research and Development of the European space program Hermeés is described in [19].
In [19], the model used to solve Boltzmann equation is simply the hard sphere model
and for Navier-Stokes the viscosity is assumed to be constant, while in the present work

RR n"”2483



4 Jean-Frangois Bourgal , Palrick Le Tallec , Moulay D. Tidriri

more sophisticated physical models on both the viscosity and internal energy are used. In
Section 2, we describe the kinetic governing equation with an emphasis on the transition
regime, followed in Section 3 by a brief description of the Navier-Stokes equations. In
Section 4, we describe the coupling strategy. The following section describes the global
Navier-Stokes solver. The numerical method used to solve the Boltzmann equation is
introduced in Section 6. Numerical results are presented in Section 7. And finally, we end
this paper by concluding remarks.

2 Boltzmann equation

Let f be the density of gas particles at position x with velocity v, and internal energy I.
The Boltzmann equation of rarefied gas dynamics characterizes this density as the solution
of the integrodifferential equation ([7])

of  9f

S0l = QUL ).

For molecular gas having internal degrees of freedom, the collision operator ) is defined

by
11,

77)" 7t = [ Bdv.dLps(r)dris( R)dRdw,

QD= [ (1
with
A =IR® x IR, x [0,1]* x §?
ps(r) = [r(1=r)]57" s(R) = R*(1 - R*)"™.
As usual we have used the notation f = f(v, 1), f' = f(v',I'), f. = f(v.,L,)..., with
(v4, I.) the velocity and internal energy of the colliding particle, and (v, v}) and (I, I})
the post collision velocities and internal energies. As in the monoatomic case, the collision

direction w € 57 is fixed and in a collision, we transform the vector (v,v,,I,I.) with
v,v, € IR’, I, I, > 0, by setting

1
e? = Z|v — v*|2 + I? 4+ I? = total energy of the collision,

g = v — v, = relative velocity,

and by defining the post collision velocities (v’,v.) and energies (I, I.) by
v+ vl = v+,

g = — v, =2Re{g — 2wg.w}/|gl,
I? =r(1—R*)e?, I2=(1-r)(1—R*e%

The factors R.r € [0,1] introduced in the collision operator determine the quantity
of energy which is exchanged between internal and kinetic energy and between the two
internal energies ([5]). The practical form of s and 95 given here are such that the corres-
ponding measure is invariant in the collision process. The term (1, /I'I.)’~! is introduced
to give the right value of

845
T3
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FEquations coupling by friction 5

in the limiting hydrodynamic equation of state p = (7 — 1)pe.

The collision cross section B measures the probability of collision of particles (v, )
and (v, I,) with parameters (w,r, R). In the general case, it is a function of all collision
invariants

B := B(e, Rlg|, Rlg.w|, I’r(1 — R*), I?(1 — r)(1 — R?),(1 - R*)(I* + 12)) > 0.
In our simulations, we have used the classical Variable Hard Sphere model (VHS)
B = Clg|™*"|g.w|R'~*7,
which is the simplest model compatible with a Sutherland type viscosity law
L= KTzte

at the Navier-Stokes limit.

This equation must be complemented by boundary conditions imposing the distribution
of incoming particles. In the case of perfect accomodation on the body’s surface, we would
have

[z v, 1, t) = poo My 7. (v,I) if v-n <0 at infinity,
z, 0,1, )= kM,  (v,1) if v-n < 0on the body’s surface
f( s Uy Ly w,Tw\Ys y )

/f(x, v,,I,t)v-ndvdl = 0 on the body’s surface,
with M, r denoting the Maxwellian distribution with mean velocity « and temperature 7’

781 lvul24212
p - u2T

MfuyT(v, I) = Agme

More elaborate boundary conditions are introduced in Section 6. In any case, when the
gas is dense, solving Boltzmann equation is very expensive. Hence it is more convenient
to solve Navier-Stokes equations. When the gas is nearly dense the use of Navier-Stokes
model with an appropriate boundary conditions derived from the kinetic theory may give
a good result (see the next paragraph for a brief discussion and [22], [6], [9] or [8], for more
details on the derivation).

3 Navier-Stokes equations with slip boundary conditions
The Navier-Stokes equations are given in conservative form by
ow

W—I—V-F(W):O on ,

with the state vector W and flux F(W) given by

)
W = pU
ple+%)

RR n"”2483



6 Jean-Frangois Bourgal , Palrick Le Tallec , Moulay D. Tidriri

pu
FW) = pu @ u+ pld — o,
(ple+ ) +pju=ou-utyq

Moreover, the internal energy e is related to the gas density p and pressure p by the
equation of state p = (7 — 1)pe, the viscous stress o, is proportional to the deviatoric part
of the deformation rate tensor, and the heat flux ¢ is related to the temperature gradient
by the Fourier law :

o, = w(T)(Vu+ V'u) — N(T)divul,

qg=—-Mp(T)VT.
Here, € is the physical domain, on which we impose the boundary conditions

W = W at infinity,

and appropriate boundary conditions on the body as specified below.
The standard approach in rarefied regimes is to use the following slip boundary condi-
tions on the body :

u-n=0, (1)
pu-1=K,Ci50,(u-7)+ K,Ces0,T, (2)
T - Tbody - I(HCQQOHT. (3)

Above n denotes the unit normal vector to the wall and 7 any tangential direction.

Such boundary conditions can be obtained as in Gupta, Moss and Scott [9] by assuming
that half-flux are conserved in the kinetic boundary layer. Alternatively, for monoatomic
gases, these boundary conditions are obtained in Coron [8] by solving the Boltzmann
equation at order (K?), approximating f by the asymptotic equation

d(z,bod
F.z,v,t) = Myr(v)lp— K,¢(z,v,0)]+ X(%, v, 1)
+ K.C(z,v,1),
2 A v—u)® 5
Koo(ooot) = 5 (Ul - S ) grad 7
H 1 2711 -
_ p('rT)2((v —u)® (v—u)— g(v —u)’ld) : grad w.

Above, M, r(v) is the standard Maxwellian distribution, ¢ is the Chapman-Enskog cor-
rection used in the derivation of the Navier-Stokes equation [8] and y is a boundary layer
correcting term.

The boundary conditions (2) and (3) involve constants C;s which are hard to identify and
their derivation uses a priori assumptions which turn out to be quite arbitrary. Moreover,
their extension to diatomic gases is quite delicate. Hence we would like to replace them
by flux boundary conditions of the type

Oy T = §1,

—(Z‘TL‘|—UT'UU"IZ:92,

INRIA



FEquations coupling by friction 7

where the friction stress vector g; and energy flux g, would be computed numerically by
a local kinetic model.

The proposed method is therefore to couple these Navier-Stokes equations to the Boltz-
mann equation, where Navier-Stokes equations are used in their domain of validity far
away from the obstacle and the Boltzmann equation is used in a small domain surroun-
ding the obstacle. The friction fluxes are then obtained from the Boltzmann equations and
plugged as wall boundary conditions in the global Navier-Stokes system.

4 Boltzmann/Navier-Stokes coupling

4.1 Coupled problem

Let us consider the geometry described in figure 2. Let f(z,v,I,¢) denotes the particle
distribution in the Boltzmann region €, which is a small region surrounding the body.
Let W = (p, pu, p(e + %)) be the value of the conservative variable as computed by a
Navier-Stokes model in the whole domain 2. On Qy, we solve the Boltzmann equation

O L S

with boundary conditions
f(o)ls = Myx(v,I) if v-n<0,

f(’l])lbody = kﬂfuw)Tw(v,I) it v-n<0.

Everywhere in 2, we solve the Navier-Stokes equations
ow .
8—t -I— dl’UF(W) = O,

with flux boundary conditions

W = W* at infinity,

0
F(W)-n= n-o(W)-n on the body.
T-0OBg "N
—4Bor T

Here, 7 - 0, - 7 and ¢p,; - n are the total friction fluxes predicted and computed by the
Boltzmann model on Qy, and (p,u,T) on the interface S are the density, velocity and
temperature locally predicted by the Navier-Stokes model.

Since the Boltzmann equation behaves in space like a first order transport equation,
imposing the velocity distribution of the incoming particles completely defines the Boltz-
mann solution inside 2y,. Similarly, the above boundary conditions on W define a well
posed Navier-Stokes problem ([19], chapter 6, and [21]). Indeed, in such a problem, we can
impose either a zero normal mass flux or a normal stress, either a tangential velocity or a
tangential stress, and either a given temperature or a given energy flux. The combination
zero mass flux, tangential stress and heat flux is thus perfectly appropriate.

RR n"”2483



8 Jean-Frangois Bourgal , Palrick Le Tallec , Moulay D. Tidriri

Figure 2: The global geometry

The coupling from the Boltzmann equation into the Navier-Stokes model is achieved by
these imposed tangential and heat fluxes at the wall. The Navier-Stokes model acts on
Boltzmann by imposing the incoming distribution M, r(v)(p — K, ¢) on the interface 5.

The proposed coupled model is therefore well defined. With the same global Navier-
Stokes solver, it gives an easy way of suplementing and testing a large variety of kinetic
boundary conditions. These kinetic boundary conditions are first imposed on the Boltz-
mann model, and the resulting fluxes o, and ¢g,; are then plugged in the Navier-Stokes
equations. They correspond to the losses in tangential momentum and energy of particles
colliding into the wall.

4.2 Interpretation

The interpretation of the above coupled problem is easy when coupling the same equa-
tion on overlapping domains. If we make additional assumption, similar argument, as has
been seen in [19] and [20] for Navier-Stokes/Navier-Stokes coupling can still hold for the
Boltzmann/Navier-Stokes coupling. For example, we can suppose that Boltzmann and
Navier-Stokes equations correspond to the same physical problem inside Q. Then W is
solution of the same physical problem on Qy as is fi,., and is characterized by a set of
boundary conditions (quasi Maxwell distribution on the interface, imposed friction forces
on I';), which are also satisfied by fj,.. Therefore, it should correspond to the same physical
solution. By construction, this physical solution then satisfies the Navier-Stokes equations
on Q (because W does) the imposed inflow conditions on I'y, (also because of W), and
adequate kinetic boundary conditions on the wall (those imposed on fi,.). Compared to a
standard Navier-Stokes approach and under the assumption on the equivalence between
Navier-5Stokes and Boltzmann, we have finally replaced the unknown wall boundary condi-
tions on the velocity by a well defined kinetic boundary conditions imposed on f;,. and
through f,., we also have some information on the kinetic structure of the flow next to
the wall.

INRIA



FEquations coupling by friction 9

Even if we do not believe in the equivalence between Navier-Stokes and Boltzmann
models inside Qy, we can still justify our coupling strategy provided that we assume
that imposing friction forces on I';, given inflow data on I',, and using either Boltzmann
equations or Navier-Stokes equations on ) lead to the same kinetic physical solution fg,
outside Q. (For the Boltzmann model, we would supplement the friction forces by an
additional information extracted from f,. in order to get a well posed global problem).
Then fi,. and f,;, would satisfy :

equality of velocity distribution on interface,

equality of friction forces (4 additional information) on the wall,

the same Boltzmann equation on Qy .

We would deduce as for the Navier-Stokes/Navier-Stokes coupling ([19] and [20]) that
the two distributions f;,. and f,, are equal inside the local domain and in particular
at the wall. Then, f,, satisfying the kinetic conditions imposed to f;,. on the wall, the
Boltzmann equation on €2 and the adequate inflow boundary conditions on I'y,, is the
desired Boltzmann solution. In turn, this means that f,. is locally equal to the desired
solution. Therefore, if our assumption is true, f;,. is locally the kinetic solution which has
been computed at low cost by using a coarse averaged approximation away from the wall

(outside Qy).
4.3 Algorithm

The numerical solution of this coupled model can be easily achieved by the following
algorithm :
Initialization

0) Solve Navier-Stokes equations on the whole domain (using a coarse mesh, a conser-
vative formulation, flux splitting and say slip boundary conditions).

Loop on time : For increasing time n and until reaching a steady state,

1. Solve several time steps of the local Boltzmann solver

(fn-(-l - fn)/DT‘I' v- an = Q(fn7fn)7

Jow1 = M, r(v)(p — K,¢) on the interface .9,
Jos1 =EM,, , (v)on the body.

2. From f,4; compute the friction fluxes F, = (7 - 0po -, —qpa - 1) on the body.

3. With imposed friction fluxes Fj, solve several time steps of the global Navier-Stokes
equations
(Wrg+1 - er)/DT + Fi,i(WrgH) =0,
F(Wi,) -n=(0,n-0(Wj,,) n,F;)on the internal boundary I'

n

and with the usual boundary conditions at infinity.

RR n"”2483



10 Jean-Frangois Bourgal , Palrick Le Tallec , Moulay D. Tidriri

The whole strategy has been proposed in the phase Research and Development of the
Hermes program (see [19]). At that time it was tested with a frozen viscosity in the Navier-
Stokes domain and with a monoatomic hard sphere model in the Boltzmann region. This
still will be the case when comparing Navier-Stokes with slip kinetic boundary conditions
to a Boltzmann calculation. However more sophisticated models are also studied here. This
includes variable viscosity for the Navier-Stokes solver, the variable hard sphere model and
the Larsen-Borgnakke model for the Boltzmann solver ([3]). These enhanced models are
then validated on several configurations as will be seen in the next sections.

5 Navier-Stokes solver

Let us consider the compressible Navier-Stokes equations which we formally write as

ow .

o + diw[F(W)]=0 on Q, (4)
with W = (p, pv, p(e + %)) the conservative variables, and F = F*° + F* the total flux
(convective and viscous part). The problem consists in computing a steady solution of
these equations, satisfying the boundary conditions introduced in the previous section

W = W* at infinity,

0
F(W)-n= Z'Z(W);L" on the body.
"UBol *
—qBo1 " T

The global domain € is discretized using node centered cells (figure 3) defined on an
unstructured grid. Then, at each time step n and for each cell i, we solve

Wn+1 _ Wn
- 4 / FO(W™+Y) o,

/C, At jez‘,%i) 8CiNdC; ( )

1+ Fd(Wn+1)'ni+ F(wn+1)nl — _/ F’IZZ
oC;-T oC;NI' oC;NI'y

In our numerical implementation, the fluxes F* and F¢ are computed at time step n 4 1
and linearized, with F° computed by an Osher approximate Riemann solver [16]. The
resulting linear system is solved by a block relaxation method.

On the body T'y, because of our special choice of boundary conditions, the flux is given

by

0
n; - o(Wnth) . n,
aC;nTy, aC;nTy Ny - OBol T
—4Bol " 1

In other words, friction forces and heat flux are given explicitly as predicted by the local
solver and the mass flux is imposed to zero. Then, in order to have a well-posed problem,

INRIA



FEquations coupling by friction 11

=

Figure 3: A boundary cell

the normal stress (the multiplier of the zero mass flux constraint) cannot be imposed and
must be obtained from the solution W*! (see [19] and [21]).

Remark : Imposing friction forces to the global solution instead of no slip boundary
conditions allows to have an accurate solution away from the boundary layer even with a
coarse mesh (see [19]).

Remark : In some of our tests, we will use a SUPG finite element method for solving
(4), as introduced in [15].

6 Boltzmann solver

In this section, we will present first the numerical approximation methods used to solve
the Boltzmann equation. Then we describe the treatment of the boundary conditions and
the calculation of momentum and energy fluxes on the body.

6.1 Approximation of the Boltzmann equation

We have chosen to solve the Boltzmann equation by the particle method proposed by
Babovski [1] and described in [4]. The main ingredient is to decouple at each time step
the transport phase from the collision phase.
The free transport phase solves
of

the collision phase solves

of _

QUL =0, Jlt) = S ™)

These two steps are realized successively. For this purpose, particle approximations of
kinetic equations are introduced, based on the approximation of the density f by a sum

RR n"”2483
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of Dirac mass

N

Ftw,0,1) = izé (& = a:(1)6((0, T) = (05, T)(1)). 8)

The positions z;(¢) change during the free transport phase only, and are updated following
(6) by

The velocities and internal energies (v;(¢),;(¢)) change during the collision step (7). At
this step, one covers the computational domain with regular cells C;, and one solves the
collision step separately on each cell, taking as initial distribution

flo,t = = T Z 6((v, 1) — (v, 1;)(0)).

Following [1], we solve (7) under the weak form

d
7 <JW.9> = <QU.[)9>
1 . 1
where ¢ is any continuous function and where we have used the notation

< f,g>= f(?),[)g(?],[)d?]d[,

ARa XIR+
dm = dvdv,dldl, pssdrd Rdw.

The above writing of the collision operator is a consequence of the microreversibility of
each individual collision and stays valid even if f is a sum of Dirac distributions. For our
choice of f, the scattering term is then simply

2

3 | FRta+ g)Bdm = Lo S lgton 1) + gloy, )W (10)

P
SN2 &=

i
with weight W,, ,. given by

Wy, = /B@éwédrd}{a’w.

The source term in (9) is similarly

2/ff* g + ¢.)Bdm = N‘?Z/ v, I}) + g(v, I7)| Bpspsdrd Rdw, (11)

with v}, v}, I/, I/ the result of the collision of (v;, ;) with (v;, I;).

7 ]7 2277

We then integrate (7) in time by :

e replacing the double sum in (10) or (11) by a random choice of N/2 pairs of particles

g = {(Uh 11)7 (U*la I*l)}7 {(U27 Iz), (U*27 1*2)}7 ---{(UN/27 IN/2)7 (U*N/27 I*N/z)}§

INRIA



FEquations coupling by friction 13

e discretizing (7) in time by the explicit Euler scheme

< "t g> = < f" g> +Al[source- scattering]

N/2
1 N -1
= X iy Ii *19 I*z' 1-
i Z_ﬂ[g(v )+ g(va, L)) N
N -1
N

AW, o..)

_I_

At/[go(vl’»,llf) + @(vl,, I.;) | Bipstsdrd Rdw;

e using the identities ( assume that ¢s(r)¢s(R)drdRdw is normalized so as to be a
probability measure)
N -1
N

AlB; = /10§s§(N—1)/NB,Atd57

N -1

/

4

1—

AWy, v, = //1(N—1)/NB,Atgsg1d5995¢6d7’deW7
¢ and computing all integrals using a Monte-Carlo method.

In practice, once the random choice of the N/2 pairs has been made, we perform for
each pair a random choice of r, R,w according to the law @ssdrd Rdw, and a uniformly
random choice of s; € (0,1). Then, if s; < %AtBi, the source term 1 — %Ath“v“
is zero, the scattering term %AtBi is equal to one, and thus the collision is processed :
the particles (v, I);, (v., I.); are replaced by the particles (v', I');, (v., I.); obtained in the
collision with parameters r, R,w. If not, the pair of particles is kept unchanged. The final
distribution is then

[t = % Z{é((vyf)— (vi, 1)) + 6((v, I) = (vsi, L)) }
Y A8((v, 1) = (v}, 1)) + 6((v, I) = (vl 1)}
i¢l,

where I; denotes the set

N -1

L={Ji,l <i<N/2,s> —

ALB;).

The complexity of this algorithm is in 0(N). Moreover, by construction, this algorithm
conserves exactly mass, momentum and energy.

6.2 Numerical algorithm

The numerical algorithm corresponds to the Monte-Carlo method described above and
was initially developed at the University of Kaiserslautern. This algorithm is the following

1. Get an initial distribution of particles.

2. Loop in time from 1 to N, :

RR n"”2483
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e generate randomly the particles at the external boundary ;

e advance the particles in free transport

zi(t+ Al) = z; + v; At

e erase the particles that leave the domain, except those which get in contact
with the obstacle and which are reflected as indicated later ;

e accomplish the intermolecular collision as indicated above.

As output, the average values p, u,T and the fluxes at the body are obtained by averaging
the corresponding kinetic quantities over all particles of the cell considered and on several
( > 100) consecutive time steps. The fluxes at the body (friction forces and heat fluxes)
are calculated using their kinetic definitions. Under the notation

n : external unit normal to the physical domain,

I’ : surface section on which we integrate the flux,

dS :areaof T',

dt : time interval considered,
the quantity o - ndSdt corresponds to the impulse exerted on the fluid by the surface
section I' during the time interval di, i.e. to the sum of impulses received by the elementary
particles which collide with I' during the time interval d¢. We then have

Opo - ndSdl = zzml(vl+ — v ),

i
i€J

with J denoting the set of particles which collide with I' during the time interval dt.
Therefore we have the final formula :

pvol™ + _

OBol "M = ——— v —;
et nedSdt ;( )

with p*, vol® and n* denoting respectively the density, volume, and number of particles

associated with a reference cell of the flow at infinity. Similarly gg. - ndSdt = (n - o,J -

u — ¢-n)dSdt is the energy received by the fluid on the section I' during the time interval

dt, which gives

1 1
qdBol * TLdet = — 2(5m2|02+|2 —|— Iz+ — §ml|vz_|2 — I_)

g
i€J

Remark 6.1 In order to minimize the memory place, at each call to the local Boltzmann
solver, we initialize the initial distribution of the particles by the Mazwellians M; defined
at each cell i and whose parameters p;,w; and T; are either the average values pl ~*, u} !
and TN computed at the previous call to the Boltzmann solver, or the values given by
the present Navier-Stokes solulion..
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Figure 4: Layer of boundary cells

6.3 Boundary conditions at infinity

In classical situations, the boundary conditions at infinity consist in imposing the distri-
bution of the ingoing particles equal to the Maxwellian at infinity. We mean by infinity
that the limit of the domain is fixed far away from the obstacle.

Herein, we want to solve a local Boltzmann problem in a small domain surrounding the
obstacle. In this domain, the external boundary conditions are computed from the global
Navier-Stokes solver. To adapt these new boundary conditions (instead of the classical
boundary conditions at infinity) to these particular geometries, we introduce a layer of
boundary cells (see figure 4). We compute at the center of each cell the quantities p, u and
T predicted by the current Navier-Stokes calculation. To do so, we look for the triangle
in the global mesh which contains the center ¢ of the boundary cell and we compute p;, u;
and 7; by linear interpolation. Then, we introduce in this cell (p;N*°) particles. These
particles are distributed randomly in space, and their velocities and energies are obtained
by drawing them randomly according to the Maxwellian distribution M (u;,T}).

These particles are finally transported by their velocity field and we take into account
only the particles which enter effectively the local domain during the time step considered.
This operation is repeated at each time step of the local Boltzmann solver.

To be perfectly accurate, we should replace the Maxwellian distribution M (u;,T;) by
an approximation of the Chapman Enskog expansion M (u;,T;) — K,¢, but this seems to
have very little effect on the global solution.

6.4 Boundary conditions on the body

In kinetic theory, the interaction between the gas and the body is expressed by a boundary
condition acting on the density distribution f(z,v,t?). These interactions on the body are
very complex and very hard to model. Therefore we restrict ourselves to the total acco-
modation model of Section 2. In certain specific tests, we have also used the intermediate
Maxwell accomodation model given by

f(xafvf) = ﬁ($)f($,R€,I)+ (1 - ﬁ(x))a(x)*MO,T(fvf)
V¢ such that £-n > 0,
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Vo € 89,/5 n(2)f(z, &, T)dedT = 0,

Above, n(z) is the external normal to the obstacle at £ € 99, 8(z) € (0,1) is the Maxwell
accomodation coefficient and

RE =€ —2(¢ - n(x))n()

is the velocity of the particle after elastic reflexion on the obstacle.

This boundary condition is imposed numerically to all particles which collide into the
obstacle during their free transport. They are then reflected after impact with velocity v
given by

vt = (1-B)vf + Bof,

It =0-p)rt+pI,
where [ is the accomodation coefficient, v = Rwv is the velocity after specular reflexion
and (v}, IF)is the velocity obtained assuming total accomodation, calculated by randomly

a? a

drawing (v, I) following the probability distribution AMq (&, 1).

7 Numerical results

7.1 Sensitivity to the choice of the local domain and to the downstream
boundary conditions on the global calculation

This test case corresponds to a flow above a flat plate at no incidence with :

M., Res/m T Tyan
10. 143.800 52°K 290°K

We compare in this paragraph the results obtained when considering a local Boltzmann
domain that is smaller and smaller. More precisely, the plate takes respectively the length
of 11 em (L1), 10 em (L2), 7 cm (L3) and 5 cm (L4) (see figure 5). The local length in the
vertical projection is 1 cm and does not change for all configurations described above.

For all these calculations, the size of the cells in x and y direction is almost the same
for the local calculation. The sensitivity to the choice of the local domain is studied on
the friction coefficient (¢, the heat flux coefficient C'4, the slip velocities, and the normal
stress vector. The viscosity law considered here is the VHS law p = CT" with w = 0.93
and C' = 6.9 107° SI.

We present on figure 6 the C'; corresponding to the calculation L1, L2, L3 and L4. We
observe that the curves obtained are perfectly identical. The heat flux corresponding to
the calculation L1, L2, L3 and L4 are presented in figure 7. The results obtained are also
perfectly identical.

In conclusion, the choice of the local domain corresponding to the calculation L4 is
sufficient. The boundary conditions imposed on the downstream part of the plate in the
global domain are satisfactory, and do not affect the solution upstream.

Remark 7.1 The number of cells in the Boltzmann calculalion is 3350, the number of
the Boltzmann particles is 83750, the tolal number of lime steps for Boltzmann is 1300,
the total number of time sleps for Navier-Stokes is 608, the number of coupling algorithm
iterations is 5.
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Figure 5: Coupling geometry with different local subdomains

Figure 6: Values of C; for different subdomain sizes. Values range from 0.08 to 0.02 and
all curves are perfectly superposed.

RR n"”2483



18 Jean-Frangois Bourgal , Palrick Le Tallec , Moulay D. Tidriri

Figure 7: Values of (), for different subdomain sizes. Values range from 0.035 to 0.005 and
all curves are perfectly superposed.

7.2 Study of ONERA test case without angle of attack

In this paragraph, we will compare our results to those obtained by the ONERA [10] on
a 10em long flat plate at high Mach number and with no angle of attack.

The case studied corrresponds to the geometry given on figure 8 and to the following
data :

Mach number = 20,

Temperature at infinity 7, (K) = 13.6,

Temperature at the body Tw (K) = 286,

Vitesse Vi, (m/s) = 1477,

Mean free path A, (m) = 2.34 107,

Reynolds number per meter = 83800,

Dimensions of the Boltzmann domain L(m) = 0.081, H(m) = 0.022,

Exponent of the viscosity law w = 0.964,

The constant of the viscosity law C' = 2.11 1075,

This case has been studied by using our coupling strategy with two different Navier-
Stokes flow solvers, and is compared to the results of a full kinetic simulation and to
experimental results.

The first Navier-Stokes solver corresponds to the non-structured implicit finite volume
solver described in Section 5 and based on the Osher flux splitting. The mesh of 4048
vertices is given on figure 9. The Boltzmann solver starts from the tip of the plate and
uses 8800 cells (250000 particles), which are of size 1X0.2mm. The accomodation coefficient
is equal to 1 at the body. We have performed 7 coupling iterations, corresponding to a
total number of 2300 time steps for Navier-Stokes solver (with CFL = 20) and 1800 time
steps for Boltzmann solver. The total time of computation was 50 h on Apollo DN10000.

The second Navier-Stokes solver is a SUPG solver developped by Dassault Aviation.
The mesh used for the Navier-Stokes calculation is obtained from the previous one using
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Figure 8: Plate Problem.
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Figure 10: Second mesh of the plate problem.

Figure 11: Isodensities for the Onera plate problem.

adaptive techniques (refined in the zone where the Hessian of the temperature is higher)
as described on the figure 10. The total time of computation was 40 h on Apollo DN10000.
The total number of coupling iterations is 5 and corresponds to 1000 time steps for the
Navier-Stokes solver and 4000 time steps for the Boltzmann solver (250000 particles).

A first analysis of the results obtained by the above strategies is done by analysing the
iso-densities 11, which appear to compare quite well with the available experimental data.

To refine these first observations we present the experimental density profiles and those
computed by the local Boltzmann solver in the coupling strategies and in the global
Boltzmann solver. These profiles are drawn at 2 = 2.5cm on Figure 12, and 2 = 7.5¢cm on
Figure 13. The solution computed in (a) (Navier-Stokes/Boltzmann, mesh 1 and accomo-
dation equal 1) corresponds to the experimental solution except for the shock : the shock
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B A S e N

Figure 12: Density profiles at @ = 0.25. Values range from 0.70 to 1.71. The highest
curve corresponds to the coupled solution on the second mesh, the lowest curve to a full
Boltzmann simulation, the intermediate curve to the coupled solution on the first mesh,
and the continuous line to the experimental results.

computed at 7.5cm is 2mm more closer to the body than the one predicted by the expe-
rimental results. Using the adaptive mesh techniques we obtain almost identical results ,
but the maxima computed are slightly larger. Observe that the profiles of the numerical
density and of the experimental density do not perfectly agree. Depending on the mesh
we used for the Navier-Stokes equations, we arrive to obtain the same maxima levels for
both approaches (the error on the shock position is then 10 to 15 %) or the same shock
position (and in this case the error on the maxima levels is 10 to 15%). Nevertheless, the
agreement obtained by our strategy with the experimental results is much better than the
one obtained in previous simulations based on analytic slip boundary conditions [10], and
we recover the right values of velocity and temperature jumps.

7.3 Flat Plate with an angle of attack

The last experimental result compares our coupled strategy to a full kinetic simulation in
the case of a two-dimensional flow past a 5em flat plate at a 10 degrees angle of attack.
The case studied corrresponds to the following data :

Mach number at infinity = 18.31,

Temperature at infinity 7, (K) = 13,

Temperature at the body Tw (K) = 286,

Vitesse Vo, (m/s) = 1477.

We compare here the results of the coupled approach with those of a full kinetic si-
mulation and to a Navier-Stokes calculation with linear slip boundary conditions, for a
monoatomic gas with a hard sphere collision model. The Reynolds number is successively
taken as Re/m = 60362 corresponding to a rather dense Knudsen number of K'n = 0.01
and Re/m = 7545 (rarefied Knudsen number K'n = 0.08).

The full kinetic simulation in the dense case (resp. rarefied case) was performed on a
rectangular domain of 0.06 x 0.018m (resp. 0.06 x 0.034m) discretized in 20764 (resp.
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T T T T T T T T T T T T

Figure 13: Density profiles at @ = 0.75. Values range from 0.55 to 2.8. The highest curve
corresponds to the coupled solution on the second mesh, the lowest curve to a full Boltz-
mann simulation, the intermediate curve to the coupled solution on the first mesh, and
the continuous line to the experimental results.

REFI NED MESH (NS=10668, NT=21013)
T T

U./NESH' ——

Figure 14: Mesh used for the Navier-Stokes solution over the flat plate in the dense coupled
case.

10200) rectangular cells, using approximatively 660000 (resp. 315000) particles, 7000
(resp. 4500) total time steps including 6000 (resp. 4000) time steps for the accurate
calculation of flow averages. The corresponding CPU time was of more than 20k (resp.
5h30) on a H P735 workstation.

The global Navier-Stokes solution with slip boundary conditions was calculated on an
adaptively refined mesh of 10 668 nodes (resp. 1800 nodes) represented on Figure 14 and
was obtained after 10000 explicit steps.

The coupled calculations are initialized by the global Navier-Stokes solution with linear
slip boundary conditions and keep the same global mesh for the Navier-Stokes part of the
coupled calculation. The local Boltzmann domain is a 0.055 x 0.005 square box discretized
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Figure 15: Wall values of the friction coefficient for the three approaches in the dense case
(Kn =0.01) : Boltzmann, Navier-Stokes and coupled.
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Figure 16: Wall values of the total energy flux for the three approaches in the dense case
(Kn =0.01) : Boltzmann, Navier-Stokes and coupled.

in 2544 (resp. 2484) rectangular cells and using 80 000 (resp. 110 000) particles. We have
performed 3 coupling iterations, each iteration consisting of 2 000 (resp. 500) time steps for
the local Boltzmann problem and of 1 000 time steps for the global Navier-Stokes problem.
Coupling was realized through a Unix shell script iteratively calling the Boltzmann code
and the Navier-Stokes solver.

We present successively the values of the friction coefficient 'y, of the total energy flux
at the wall, the isodensity lines as computed in the local Boltzmann approach, and density
or temperature profiles.

In the dense case, all three approaches yield almost identical results. We can nevertheless
observe a slight discrepancy between the global Boltzmann and Navier-Stokes solutions
both on the energy flux and on the density or temperature profiles. This is very likely due
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Figure 17: Isodensity lines as predicted by the local Boltzmann model in the dense coupled

case (Kn =0.01).
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Figure 18: Density profiles for the three approaches in the dense case (Kn = 0.01) :

Boltzmann, Navier-Stokes and coupled.
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Figure 19: Temperature profiles for the three approaches in the dense case (Kn = 0.01) :
Boltzmann, Navier-Stokes and coupled. Observe the small difference in the temperature
jump predicted by the linear slip boundary conditions.

to the physical inaccuracy of the linear slip boundary used for Navier-Stokes. On the other
hand, the coupled solution reproduces exactly the behavior of the full kinetic solutiomn.

For a denser case run at Knudsen Kn = 0.006, all three models gave almost identical
results. For the more rarefied case however (Kn = 0.08), Navier-Stokes and Boltzmann si-
mulation yield very different results, and this discrepancy can no longer be recovered by the
coupled approach. We clearly see on the different results how the improper Navier-Stokes
boundary conditions imposed at the interface affect the behavior of the local Boltzmann
solution at the wall after the first fifth of the plate. In such situation, the coupled ap-
proach is no longer valid. It could be made more accurate by increasing the size of the
local Boltzmann domain, but then the coupled approach is not competitive with respect
to a full kinetic simulation.

As alast test, we have rerun the dense calculation with a coupled approach using a local
Boltzmann domain which was two times smaller (0.055 x 0.0025). The local isodensity
lines and the wall friction values are represented on Figures 25 and 26. In this situation,
the local domain appears to be a bit too small. The introduction of incoming Maxwellian
distributions at the interface slightly perturbs the density next to the interface, and results
into a small diminution of the friction coeflicient downstream.

8 Conclusions

This numerical test performed in this study confirm the validity of the Boltzmann/Navier-
Stokes strategy realized herein by using friction boundary conditions.

We highlighted in this work the convergence of the method and the good agreement
of the results obtained by our strategy and those obtained by a direct kinetic simulation
for transitional regimes. The advantage of the proposed coupled strategy is to require less
computing time and to be applicable in situations where the direct Boltzmann simulation
is not possible (because of the lack of memory place and computer power).
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Xb (m

Figure 20: Wall values of the friction coefficient for the three approaches in the rarefied
case (K'n = 0.08) : Boltzmann, Navier-Stokes and coupled.
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Figure 21: Wall values of the total energy flux for the three approaches in the rarefied case
(Kn = 0.08) : Boltzmann, Navier-Stokes and coupled.

INRIA



FEquations coupling by friction 27

Figure 22: Isodensity lines as predicted by the local Boltzmann model in the rarefied
coupled case (Kn = 0.08). Observe the influence of the Navier-Stokes solution as soon as
the shock crosses the interface.

densi te(ro/roinf)

Figure 23: Density profiles for the three approaches in the rarefied case (Kn = 0.08) :
Boltzmann, Navier-Stokes and coupled.
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Figure 24: Temperature profiles for the three approaches in the rarefied case (Kn = 0.08) :
Boltzmann, Navier-Stokes and coupled.
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Figure 25: Wall values of the friction coeflicient for the three approaches in the dense case
with a small local kinetic domain (Kn = 0.01) : Boltzmann, Navier-Stokes and coupled.
Downstream, the coupled friction is a bit smaller than both the Boltzmann and the Navier-
Stokes values.
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Figure 26: Isodensity lines as predicted by the local Boltzmann model in the dense coupled
case (K'n = 0.01) using a small local kinetic domain.

The coupling strategy allowed also the treatment of experimental situations in the transi-
tional regimes and for two dimensional gas flows. The results obtained are compatible with
available experimental results and lead to the determination of a realistic accomodation
coefficient at the body.

The difficulties met in this study are of two types :

First the CPU time of the coupling approach is large. It requires more than twice the
CPU time needed for a direct Navier-Stokes simulation. However the latter fails for more
complex physical situations, while the proposed strategy works well.

Second the Navier-Stokes calculations performed within the coupling strategy are diffi-
cult. The convergence is slow, requires more robustness of the slope limiters(we have used
monotonic limiters) and the results are sensitive to the mesh used.

Finally, the domain of validity of the coupled approach is hard to identify. When the gas
is too dense (Kn < 1074), the coupled approach does not bring any improvement compared
to Navier-Stokes models used with linear slip boundary conditions but it validates these
linear slip bondary conditions . When the gas is too rarefied (K'n > 0.51071), the coupling
is inaccurate. When the local domain is too small, the assumption of local equilibrium on
the incoming distribution slightly perturbs the wall values of friction and heat flux.

In order to circumvent those difficulties, the coupling of Navier-Stokes with Boltzmann
on nonoverlapping domains using an adaptive definition of the Boltzmann domain and
half fluxes interface matching is presently studied (see [2], [14]).
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