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Abstract: The concept of causality between events is fundamental to the design
and analysis of parallel and distributed computing and operating systems. Usually
causality is tracked using physical time, but in distributed systems setting, there is
no built-in physical time and it is only possible to realize an approximation of it. As
asynchronous distributed computations make progress in spurts, it turns out that
the logical time, which advances in jumps, is sufficient to capture the fundamental
monotonicity property associated with causality in distributed systems. This paper
reviews three ways to define logical time (e.g., scalar time, vector time, and matrix
time) that have been proposed to capture causality between events of a distributed
computation.
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Le temps logique en réparti ou comment capturer la
causalité

Résumé : Ce rapport examine différents mécanismes d’horlogerie logique qui ont
été proposés pour capturer la relation de causalité entre événements d’un systeme
réparti.

Mots-clé : causalité, précédence, syteme réparti, temps logique, temps linéaire,
temps vectoriel, temps matriciel.
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1 Introduction

A distributed computation consists of a set of processes that cooperate and compete
to achieve a common goal. These processes do not share a common global memory
and communicate solely by passing messages over a communication network. The
communication delay is finite but unpredictable. The actions of a process are mo-
deled as three types of events, namely, internal events, message send events, and
message receive events. An internal event only affects the process at which it oc-
curs, and the events at a process are linearly ordered by their order of occurrence.
Moreover, send and receive events signify the flow of information between processes
and establish causal dependency from the sender process to the receiver process. It
follows that the execution of a distributed application results in a set of distributed
events produced by the processes. The causal precedence relation induces a partial
order on the events of a distributed computation.

Causality (or the causal precedence relation) among events in a distributed sys-
tem is a powerful concept in reasoning, analyzing, and drawing inferences about
a computation. The knowledge of the causal precedence relation among processes
helps solve a variety of problems in distributed systems. Among them we find:

e Distributed algorithms design: The knowledge of the causal precedence relation
among events helps ensure liveness and fairness in mutual exclusion algorithms,
helps maintain consistency in replicated databases, and helps design correct
deadlock detection algorithms to avoid phantom and undetected deadlocks.

e Tracking of dependent events: In distributed debugging, the knowledge of the
causal dependency among events helps construct a consistent state for resu-
ming reexecution; in failure recovery, it helps build a checkpoint; in replicated
databases, it aids in the detection of file inconsistencies in case of a network
partitioning.

e Knowledge about the progress: The knowledge of the causal dependency among
events helps a process measure the progress of other processes in the distri-
buted computation. This is useful in discarding obsolete information, garbage
collection, and termination detection.

e Concurrency measure: The knowledge of how many events are causally depen-
dent is useful in measuring the amount of concurrency in a computation. All
events that are not causally related can be executed concurrently. Thus, an
analysis of the causality in a computation gives an idea of the concurrency in
the program.
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The concept of causality is widely used by human beings, often unconsciously,
in planning, scheduling, and execution of a chore or an enterprise, in determining
infeasibility of a plan or the innocence of an accused. In day-today life, the glo-
bal time to deduce causality relation is obtained from loosely synchronized clocks
(i.e., wrist watches, wall clocks). However, in distributed computing systems, the
rate of occurrence of events is several magnitudes higher and the event execution
time is several magnitudes smaller; consequently, if the physical clocks are not pre-
cisely synchronized, the causality relation between events may not be accurately
captured. However, in a distributed computation, progress is made in spurts and
the interaction between processes occurs in spurts; consequently, it turns out that
in a distributed computation, the causality relation between events produced by a
program execution, and its fundamental monotonicity property, can be accurately
captured by logical clocks.

In a system of logical clocks, every process has a logical clock that is advanced
using a set of rules. Every event is assigned a timestamp and the causality relation
between events can be generally inferred from their timestamps. The timestamps
assigned to events obey the fundamental monotonicity property; that is, if an event
a causally affects an event b, then the timestamp of @ is smaller than the timestamp
of b.

This paper first presents a general framework of a system of logical clocks in
distributed systems and then discusses three ways to implement logical time in a
distributed system. In the first method, the Lamport’s scalar clocks, the time is
represented by non-negative integers; in the second method, the time is represented
by a vector of non-negative integers; in the third method, the time is represented as
a matrix of non-negative integers. The rest of the paper is organized as follows: The
next section presents a model of the execution of a distributed computation. Section
3 presents a general framework of logical clocks as a way to capture causality in
a distributed computation. Sections 4 through 6 discuss three popular systems of
logical clocks, namely, scalar, vector, and matrix clocks. Section 7 discusses efficient
implementations of the systems of logical clocks. Finally Section 8 concludes the

paper.

2 A Model of Distributed Executions

2.1 General Context

A distributed program is composed of a set of n asynchronous processes py, pa, ...,
Piy ...y Prp that communicate by message passing over a communication network. The
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processes do not share a global memory and communicate solely by passing messages.
The communication delay is finite and unpredictable. Also, these processes do not
share a global clock that is instantaneously accessible to these processes. Process
execution and a message transfer are asynchronous — a process may execute an
event spontaneously and a process sending a message does not wait for the delivery
of the message to be complete.

2.2 Distributed Executions

The execution of process p; produces a sequence of events e?, e
is denoted by H; where

PRI

Hi = (hi, —i)

h; is the set of events produced by p; and binary relation —; defines a total order
on these events. Relation —; expresses causal dependencies among the events of p;.

A relation —,,,, is defined as follows. For every message m that is exchanged
between two processes, we have

send(m) — s receive(m).

Relation —,,,, defines causal dependencies between the pairs of corresponding send
and receive events.
A distributed execution of a set of processes is a partial order H=(H, —), where

H=U;h; and —=(U; —; U —>msg)+-

Relation — expresses causal dependencies among the events in the distributed
execution of a set of processes. If e; — eg, then event e; is directly or transitively
dependent on event ey. If e; /4 e5 and ey /4 e1, then events e; and ey are said to
be concurrent and are denoted as ey || e3. Clearly, for any two events e; and e3 in a
distributed execution, e; — e3 or e3 — €1, or €1 || e3.

Figure 1 shows the time diagram of a distributed execution involving three pro-
cesses. A horizontal line represents the progress of the process; a dot indicates an

event; a slant arrow indicates a message transfer. In this execution, ¢ — b, b — d,
and b || c.

2.3 Distributed Executions at an Observation Level

Generally, at a level or for an application, only few events are relevant. For example,
in a checkpointing protocol, only local checkpoint events are relevant. Let R denote
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