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Le compilateur Pandore :
présentation et résultats expérimentaux

Résumé : Ce rapport présente un environnement de programmation des machines
a mémoire distribuées utilisant des directives de distribution de données, similaires
a celles de HPF. L’accent est mis sur les techniques de compilation et sur la gestion
des tableaux distribués. Des résultats expérimentaux sont présentés pour quelques
noyaux d’algorithmes numériques.

Mots-clé : Compilation, machine a mémoire distribuée, distribution de données,
optimisation de boucles, parallélisation, exécutif.



The Pandore Compiler: Owverview and Fxperimental Results 3

1 Introduction

The difficulty of programming massively parallel architectures with distributed me-
mory is a severe impediment to the use of these parallel machines. In the past few
years, we have witnessed a substantial effort on the part of researchers to define pa-
rallel programming paradigms adapted to Distributed Memory Parallel Computers
(DMPCs).

Among them, the Data Parallel model seems to be an interesting approach: the
programmer is provided a familiar uniform logical address space and a sequential flow
of control. He controls the distributed aspect of the computation by specifying the
data distribution over the local memories of the processors. The compiler generates
code according to the sPMD model and the links between the code execution and
the data distribution is enforced by the owner-writes rule: each processor executes
only the statements that modify the data assigned to it by the distribution.

Based on this approach, the techniques incorporated in the PANDORE compiler
permit generating scalable code. A first technique allows the compilation of any
program of the source language but suffers from inefficiencies. In addition, a second
method has been defined to optimize parallel loops. An efficient runtime support,
that comprises optimized mechanisms for the management of distributed arrays,
completes these two schemes.

This paper presents the PANDORE environment and focuses on some optimiza-
tions of the compilation scheme and the runtime support. It is organized as follows:
the next section briefly presents the PANDORE environment and section 2.2 gives an
overview of the PANDORE language. Section 3 explains the compilation process and
the optimizations used for parallel nested loops. The array management is described
in section 4 and results are discussed in section 5. Future work and extensions of
our system are presented in the conclusion.

2 The Pandore Environment

2.1 Overview

We have developed an experimental programming environment for bMPC. The kernel
of this environment is the PANDORE compiler, built according to the basic principles
discussed above.

When we designed the compiler, our objectives were the following:
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e to build a modular and extensible compiler:

In order to be able to integrate new techniques easily according to the state
of art, we rely on the specification of an intermediate program representation
which does not depend on the input language and on which all analysis and
transformation techniques may take place. The compiler has been written using
the caML language [ALM*90] which is a functional language based on the ML
language providing polymorphic type synthesis, pattern matching and facilities
to define parsing functions. Moreover, we have defined an abstract machine
level to achieve the generation of machine independent code.

e to use general and safe techniques:
Our aim is to distribute and parallelize any program which fulfills the chosen
input language syntax. Thus, we rely on an implementation of the owner-writes
rule that has been proved to be correct [BCJT92]. Moreover, by a suitable
runtime system and sophisticated compilation techniques, we obtain efficient
execution for a reasonably large class of programs.

The PANDORE environment is shown in figure 1. It comprises a compiler, a
machine-independent run-time and execution analysis tools including a profiler and
a trace generator.

A translator from HPF to the PANDORE language is also provided [JAC*94]. HPF
includes some “standard” extensions for data parallelism and data distribution in
the Fortran 90 language. It has been designed by the High Performance Fortran
Forum from March 1992 to May 1993. HPF permits to distribute arrays among
virtual processor arrays (TEMPLATES); see [For93] for a complete description of
the language.

The PANDORE run-time uses a generic message passing library called POM (Pa-
rallel Observable Machine [GM94]). This library offers limited but efficient services.
It allows to run the same program on a wide range of distributed memory computers.

2.2 The Pandore Language

The PANDORE language is based on a sequential imperative language using a subset
of C (excluding pointers) as a basis. We have added a small set of simple data
distribution features in order to describe frequently used decompositions. See [Che93]
for a more precise definition of the language. If other regular decomposition functions
are seen to be necessary, they will be added to the language.

INRIA
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dist d-phase (distributed parameter list)

{
d-block

}

The distributed parameter list allows specifying the partitioning and the mapping
of the data used in the distributed phase. The array is the only data type that may
be partitioned. The means to decompose an array is to split it into blocks. The
specification of the partitioning for a d-dimensional array is given by the keyword
block (11, ...,14) where t; indicates the size of the blocks in the it" dimension. This
is similar to the HPF CYCLIC(k) distribution [For93] except for the mapping. For
example

Y[NC][MC] by block (1, MC)

indicates that the array Y of NC x MC elements is decomposed into blocks of size
1 X MC: the array is decomposed into NC lines.

Then, the mapping of the blocks onto the architecture will be achieved by the
compiler in a regular or cyclic way according to the mapping parameters (regular or
wrapped). In PANDORE, we consider only one dimensional processor arrays whose
size is not specified in the source code but used as a parameter by the compiler. As
we allow the mapping of multidimensional decompositions, it is needed to indicate
the order for the mapping of blocks: (1,0) states for column first, (0,1) states for
row first.

The last specification given in the parameter list concerns the transfer mode for
values between the caller and the distributed phase: allowed modes are IN, OUT
and INOUT. This specification is similar to the Fortran90 INTENT attribute.

Figure 2 shows an example of a distributed phase.

2.2.2 Other Features

Some other constructs have been added to the C language, with no direct relation
with distribution, to improve the ease of programming. Ordinary C functions are
not allowed in the PANDORE language but in addition to distributed phases, two
features are offered to the programmer: macros and closed functions.

Macro declarations are similar to procedure definitions but parameters are passed
“by name” and calls to a macro are in-lined by the compiler. Closed functions are
similar to C functions but cannot access global variables nor modify distributed
arrays. Closed functions are similar to HPF PURE functions.

INRIA
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#define N 128

dist LU(

double A[N][N] by block(1,N) map wrapped(1,0) mode INOUT)
{

int i,j,k;

for (k=0; k<(N-1); k++) {
for (i=k+1; i<N; i++)
ATi][k] = A[i1[kx] / ACk][k];
for (i=k+1; i<N; i++)
for (j=k+1; j<N; j++)
ATi1[j] = A[4i1[3j] - A[i1[x] * A[kI[j1;

Figure 2: Kernel of the LU factorization algorithm

2.3 Related Work

Many other research projects are addressing the definition of programming environ-
ments for running data parallel programs on distributed MIMD computers. Among
them, the Vienna Fortran Compilation System (VFCS) and the Fortran D system
are well known. Preliminary research related to these projects and to the PANDORE
project began in 1988, hence Fortran D, Vienna Fortran and the PANDORE language
have been defined anteriorly to HPF'.

VFCS is based on the Superb tool [ZBG88] that has been designed by M. Gerndt
and H. Zima. Superb is a semi-automatic tool; data distribution is interactively spe-
cified and not included in the source language. The Vienna Fortran language has
been defined later on [ZC92]. It includes data distribution features and alignements
but does not use templates, as opposed to HPF. VFCS is a source to source transla-
tor; it implements the overlap concept and some support for irregular computations.

Fortran D has been initiated by K. Kennedy who laid the foundation of the
owner-writes rule and the run-time resolution technique. In the Fortran D language,
arrays are aligned with virtual index spaces called decompositions that are distri-
buted on the processors. This language is relatively close to HPF. The compiler
performs some optimizations like loop bounds reduction and message vectoriza-
tion [Tse93].
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These three environments are still prototype environments, none of them can
handle efficiently a very large set of applications, each of them solving different
compilation problems. Researchers from the VFCS and PANDORE groups are wor-
king within the Prepare European Esprit Project whose aims is to build a HPF
programming environment of industrial quality [AM93].

3 The Pandore Compiler

The compiler uses two techniques to generate sPMD code from the user-supplied
data decomposition with respect to the owner-writes rule. The first one is known
as runtime resolution [CK88] and is employed in most compilers for HPF-like lan-
guages; this technique does not require complicated analysis from the compiler and
can be used with any input program to produce a distributed code preserving the
dependences of the input program. For parallel loops or reductions that can be ana-
lyzed at compile time, a more sophisticated technique is used to generate efficient
SpPMD communication and computation codes.

3.1 The Runtime Resolution Technique

The application of this basic scheme requires a simple analysis from the compiler.
Roughly speaking, the technique consists in transforming each assignment of the
program: for each right hand side (rhs) reference to a distributed array, the compiler
generates the appropriate send and receive statements to ensure cooperation between
the processors owning respectively the rhs and the left hand side (lhs) reference.
Then, the compiler inserts a mask so that the assignment is performed only on the
processor owning the lhs reference. Figure 3 shows an example of a simple input
program with the corresponding pseudo-code produced with the runtime resolution
technique.

It is well known that this technique yields inefficient code. As it can be seen on
figure 3, communications are performed elementwise and the entire iteration domain
associated with the input loop is scanned by all the processors: for each iteration step,
each processor evaluates masks to discover if it has to perform a communication, an
assignment, or nothing.

INRIA
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for: =1, 100
for j =1, 100
for: =1, 100 if myself # owner(A[i, j]) A myself = owner(B[j,i])
for j =1, 100 = then send BJ[j, i] to owner( A, j])
Ali, j] :== Bl[j,1] if myself = owner(A[i, j]) A myself # owner(B[j,])
then receive B[j, ] from owner(B[j, i])

if myself = owner(A[i, j]) then A7, j] := B[j, {]

Figure 3: Runtime resolution

3.2 Compiling Parallel Loops and Reductions
Framework

The compiler optimization effort concentrates on reductions and parallel loops with
one statement. This kind of loop is frequently used in scientific programs; further-
more, when they are not explicitly present, these loops can be produced thanks to
automatic parallelization techniques. For example, affine-by-statement scheduling
[DRI2, Dar92] can be applied on loop nests with uniform or affine dependences and
produces a sequential loop indexed by time, whose body is composed of parallel
loops with one statement.

As the optimized method we have developed is based on the polyhedron model, we
suppose that array references and loop bounds are affine functions of the enclosing
indices. Concerning data distribution, we assume that arrays are partitioned into
blocks with constant size; the optimized scheme is described when each block is
owned by only one processor but the technique can be trivially extended to handle
block replication. Because the mapping of the blocks is not taken into account during
the optimization process, every mapping is supported for the blocks of an array.
Alignment is not available in the PANDORE language so this feature is not presently
treated. Finally, it should be noted that the analysis carried out in the compiler is
symbolic, that is to say independent of the number of blocks of the arrays involved
in the parallel loop or the reduction.

In this rather general framework, our optimized compilation scheme embeds seve-
ral optimizations such as restriction of iteration domains and message vectorization.
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Related Work

Other existing compilers for HPF-like languages often target a larger application
domain than PANDORE presently does (such as programs with irregular loops) and
thus use various translation and execution techniques. However, concerning the op-
timization of regular parallel loops, that is in a framework comparable to the one
described above, the compile-time analysis they perform at present can be applied
on a more restricted class of loop bounds, access patterns and distributions. In the
Vienna Fortran Compilation System (VFCS) [BCZ92], the loop bounds and the
array access functions are affine functions of one enclosing index. In the Fortran D
compiler, the restrictions are the following: the loop bounds must be constant, the
array access functions are of the form i+c (i is a loop index and ¢ a constant known
at compile-time) and only one dimension of an array can be distributed. For both
compilers, arrays involved in the parallel loop must be mapped in such a way that
each processor only owns one block of an array, hence they can not handle general
cyclic distribution. Furthermore, both compilers perform a domain analysis for each
processor, leading to a compilation time that depends on the number of processors.

In VFCS, communication code generation and communication optimization (as
well as storage allocation) rely on an overlap analysis. For each processor and for
each array appearing in the rhs, the overlap analysis aims at approximating the
union of the set of local elements and the set of distant elements needed by a rectan-
gular section (overlap area). Because the compilation technique relies on the spMD
model, the overlap area for an array is defined as the smallest rectangular section
that can contain all the overlap areas computed for each processor. Communication
code generation and communication optimization for an array are then performed,
depending on the analysis of the intersections between the overlap area and the
distant blocks. For the generation of the computation code, the compiler performs
a symbolic loop bounds reduction: the new loop bounds depends on the processor
identity.

The Fortran D compiler performs domain analysis using rectangular-triangular
sections called regular sections. For each rhs reference A[f(I)] and for each pair of
processors (p,p'), the compiler carries out communication code generation and com-
munication optimization thanks to the computation of two index sets:
IN(A[f(D)],p,p) and OUT(A[f(I)],p,p’). These sets define the indices J of A such
that p must receive A[J] from p' (IN) and p must send A[J] to p’ (OUT'). Regarding
computation code generation, the compiler performs loop bounds reduction for each
processor p. This reduction is based on the computation of the iteration set associa-
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ted with the lhs reference B[g([])], that is, the set of iterations that cause B[g(I)] to
access data owned by p.

Other optimization techniques focusing on parallel loop optimization and using
the polyhedron model are also being investigated [TACK93] but are not implemented
yet.

A different approach, that is neither based on parallel loop optimization nor on
the owner-writes rule, is set out in [AL93]. This technique handles loop nests with
affine loop bounds and access functions and takes as input a data decomposition
and a computation decomposition. It characterizes SPMD communication sets (using
data-flow analysis) and the SPMD computation set with polyhedrons, computes the
loops that enumerate these sets and then performs loop splitiing to produce the
final target code. This technique has not been fully integrated in a compiler and
seems to be applicable only if the compiler can effectively handle a lot of possibly
complex polyhedrons and if loop splitting does not lead to an unacceptable target
code fragmentation.

Optimization Process

A complete description of the compilation scheme of PANDORE can be found
in [LPA93]. In this paper, we only describe our approach through the example of
the LU factorization algorithm given in figure 2.

First, reductions and parallel loops with one statement need to be identified (as
dependence tests are not yet included in the compiler, we rely on user annotations).
In the LU factorization, the k-loop is not parallel so the iteration domain associated
is replicated on all the processors. On the other hand, the inner ¢-loop and (¢,7)-
loop, parameterized by k, are parallel. Thus, the compiler applies the optimized
compilation scheme for both of them. The remaining of this section details the
code generation for the (7, 7)-loop. This code comprises a communication part and
a computation part.

Communication Code Generation

The compiler produces a sequence of communication codes, one communication code
being defined for each rhs reference to a distributed array in the (%, j)-loop assign-
ment. Each communication code is composed of a send part and a dual receive part.
For sake of brevity, we will focus on the production of the communication code rela-
ted to the A[k, j] reference. Codes for the other references can be then easily figured
out.

RR n " 2467
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First, subscripts and array partitioning analysis is performed for lhs reference
Ali, j] and rhs reference A[k, j] so that the compiler constructs the system of affine

constraints:
0 < kAl <127

0 < kAr < 127
E4+1<i<127
E+1<j<127
u==k

o=
kAL < 1 < kAl
kAr < u < EAr

which defines the set of vectors (kAl, kAr, u, v, ¢, 7) in which the array element Afu, v],
located in the block number kAr of A, is needed to perform the writings on the the
block number kAl of A (array A is partitioned into 128 lines numbered from 0 to
127). The above system of constraints defines a polyhedron P parameterized by k
which is then projected along the ¢, j axis; this results in a new polyhedron F;; whose
enumeration code is computed by the method described in [LeF94]. This yields the
nested loop:

for kKAl =Fk+ 1, 127
for kAr =k, k
for u = kAr , kEAr
forv=Fk+1, 127

From this loop, the compiler generates the send code and the dual receive for
reference A[k, j]. For the send code for instance, the compiler inserts send statements
and appropriate masks in the loop so that the mapping of the blocks is taken into
account at runtime:

for kKAl =k + 1, 127
if myself # owner_block(A, kAl)
for kAr =k, k
if myself = owner_block(A, kAr)
for u = kAr, kAr
RLR _send {A[u,v]/k+1 < v < 127} to owner_block( A, kAl)

Although this loop contains masks, it is important to notice that these masks are
evaluated at the block level and not at the iteration vector level as in the runtime
resolution. Furthermore the (kAl, kAr)-loop do not scan the whole cartesian product
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0..127 X 0..127 and the location of the first mask prevents from enumerating all the
vectors described by the (kAl, kAr)-loop.

From the description of the elements A[u,v]| to be sent, the runtime library
routine RLR_send performs several communication optimizations:

e Direct communication is performed when possible: what is transferred in this
case is a memory zone that is contiguous both on the sender and the receiver,
thus eliminating any need of coding/decoding or copying between message
buffers and local memories.

o Message aggregation is also carried out and reduces the effect of latency by
grouping small messages into a large message.

e Elimination of redundant communications is performed when several references
to the same distributed array appears in the right hand side.

Computation Code Generation

The sPMD computation code is generated as follows: the compiler analyzes subscripts
and array partitioning for the lhs reference A[, j] to build the set of constraints:

0 < kA <127
E+1<i<127
k+1<j<127
kA < i< kA

which defines the vectors (kA, 1, j) where iteration vector (¢,7) is such that lhs re-
ference A[i, j] writes in block kA of A. The enumeration code for the polyhedron
associated with the previous system is then computed using the same techniques as
in the communication code generation:

forkA=Fk+1, 127
for 1= kA, kA
forj=Fk+1, 127

From this nested loop, the computation code is finally generated by inserting an
adequate mask so that the owner-writes rule is ensured:

RR n " 2467
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forkA=Fk+1, 127
if myself = owner_block(A, kA)
fori=kA, kA
forj=Fk+1, 127

As in the communication code, one can note that the number of tests performed
by each processor is very small. First, the mask used to take into account the mapping
at runtime is introduced at the block level and second, the outer k4-loop does not
scan the whole interval 0..127.

4 Management of Distributed Arrays

4.1 Rationale

Representation of distributed arrays as well as accesses to elements of these arrays
is a critical issue for overall performance of the produced code. Any sophisticated
compilation scheme is useless if no effort is done on the management of distributed
arrays in terms of time efficiency and memory requirement.

We have to achieve a trade-off between the speed of accesses and the memory
overhead induced from the array representation. The extreme solution consisting in
allocating the entire array on each processor is obviously not applicable. Conver-
sely, minimal allocation associated with index conversion involving several costly
operations such as mod and div has to be avoided.

For a given processor p, accesses to array elements can be divided in two cate-
gories: accesses to local elements — i.e. elements assigned to p by the distribution —
and accesses to elements previously received from other processors. Our optimized
compilation scheme generates code in which communication is separated from com-
putation and no difference is made in the computation code between accesses to
local and received elements. Therefore, if a non-uniform representation had been
used (for instance by allocating a sub-array for local data and managing buffers and
hash-tables for received data), an ownership computation would have been required
at runtime for each access in order to use the appropriate access mechanism, redu-
cing the benefit of the optimizations made by the compiler. It should be added that
even if such a separation is possible at compile-time, it may induce an important
code fragmentation.

INRIA
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We want to provide an array management scheme defined only from the dis-
tribution parameters (not from the code itself) and thus consider that only global
indices appear in the generated code. This independence facilitates the use of dif-
ferent compilation techniques within a code fragment that contains several loops.
Moreover, an array management scheme that depends on the analysis of the loops
and access patterns might have led to different layouts and access mechanisms wi-
thin the scope of one distribution. In this case, data rearrangement or additional
computation would have been needed at runtime between loops to switch from an
array management scheme to another.

Another useful property concerning the layout of distributed arrays is the conser-
vation of memory contiguity. Indeed, if contiguous elements of the original array are
still contiguous in the local representation, it makes it possible to take advantage of
direct communications, target code optimization and better cache behavior.

We have adopted a management of distributed data structures based on the pa-
ging of arrays. This is a general and uniform management of local and received data.
It has been designed in order to achieve efficient accesses while avoiding unacceptable
memory overhead.

4.2 Related Work

To our knowledge, management of distributed arrays have not been studied indepen-
dently from compilation techniques in existing HPF-like languages compilers. The
first technique of storage for distributed arrays, the overlap [ZBG88] has been im-
plemented in the Vienna Fortran Compilation System [ZC92] and in the Fortran D
compiler [Tse93]: a single sub-array is allocated for local data as well as for received
data. This technique provides uniform and efficient accesses but can be applied to a
restricted number of distributions and access patterns and may lead to the replica-
tion of the whole array. The Fortran D compiler may select one of two alternative
storage methods for received values (buffers and hash tables) when it can separate
purely local computation and computation needing received values.

Although they have not been integrated in complete prototypes, other techniques
have been proposed. In the compilation scheme defined by Ancourt et al [[ACK93],
local elements and temporaries are packed according to the array distribution and
alignment, the loop bounds and the array subscripts by changing the basis of the
original index space. Accesses to elements are performed in a non-uniform way with
index conversion by evaluating affine functions and possibly integer division. Chat-
terjee et al. [CGST93] propose an access mechanism for local elements based on
a Finite State Machine (FSM). These elements are accessed by executing a FSM

RR n " 2467



16 Francoise André, Marc Le Fur, Yves Mahéo, Jean-louis Pazat

that has to be computed at runtime for each loop nest even if the same distribution
applies.

All of these methods not only take into account the array distribution parameters
but necessitate also a static analysis of code fragments (loop bounds and array
subscripts) in order to define the layouts of the local arrays and the associated
access mechanisms.

4.3 Paging Distributed Arrays

In PANDORE, arrays are managed by a software paging system. The runtime uses the
addressing scheme of standard paging systems but is not a virtual shared memory:
the compiler always generates communication when distant data are needed, so we
do not need to handle page faults.

The array management is based on the paging of arrays — not of memory: the
multi-dimensional index space of each array is linearized and then broken into pages.
Pages are used to store local blocks and distant data received. If data have to be
shared by two processors, each processor stores a copy of the page in its local memory.
Array elements are accessed through a table of pages allocated on each processor.
The compilation technique ensures that accessed pages are up to date, hence the
consistency between copies of array elements does not need to be handled at runtime.
One of the advantages of paging arrays is that accesses to local and received elements
are performed the same way. Indeed, as far as accesses are concerned, a processor
acts as if the entire array was directly visible, no matter if the element it needs to
access is local or has been received from another processor.

To access an element referred to by an index vector (¢, ...,%,—1) in the source
program, a page number and an offset (PG and OF') are computed from the index
vector with the linearization function £ and the page size S:
PG = L(ig,...,1n—1) div S, OF = L(ig,...,t,—1) mod S. For a given distributed
array, the parameters we tune for paging are the page size S and the linearization
function £. Time consuming operations are avoided in the computation of the tuple
(PG,OF) but also in the evaluation of the function £ by introducing powers of two,
turning integer division, modulo and multiplication into simple logical operations
(shift and mask). We first choose the dimension § in which the size of the blocks is
the largest. Function £ is the C linearization function applied to a permutation of
the access vector that puts index number § in last position. The page size S is then
defined by the following (s;s is the block size in dimension §): if ss is a power of two or
dimension ¢ is not distributed, 5 is the smaller power of two greater than ss; other-
wise S is the largest power of two less than ss. Actually, an optimized computation
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of (PG,0OF) is achieved by avoiding the explicit computation of the linear address
L(tg,...,in—1): we express PG and OF directly as a function of the index vector,
thus, when dimension é is not distributed, mod and div operations are removed. A
more detailed description of this array management can be found in [MP93].

4.4 Efficiency of the Paging System

As far as speed of access is concerned, paging of distributed arrays gives very satis-
factory results: times remain very close to times for accesses without index transfor-
mations. Table 1 shows the results of a preliminary experiment. We considered the
assignment to a scalar and measured the time taken by this assignment for several
right-hand-sides:

e i, : rhsis a literal constant;
e s : rhsis a reference to an element as it may appear in a sequential program;
o {, : rhsis a call to the macro that uses the paged access mechanism;

e {3 : rhsis a call to a macro that uses a block-oriented access mechanism. This
mechanism performs a modulo and an integer division at runtime to find the
block number and the offset in the block.

The array is a two-dimensional array of floats. Reported times (in us) are the dif-
ferences t, — t., noted sequential; t, — 1., noted page and ¢, — t., noted block. Best
and worst cases have been considered, depending on whether sizes of the array were
powers of two or not. Experiments have been carried out on a SparcStation 2, on a
node of the Intel iPSC/2 and on a node of the Intel Paragon XP/S. Native compilers
have been used with no optimization option.

Sparcstation iPSC/2 Paragon

best | worst || best | worst || best | worst

Sequential | 0.30 | 0.42 0.94 | 2.05 0.16 | 0.26
Page 0.34 | 0.38 2.14 | 2.26 0.22 | 0.25
Block 0.48 | 1.58 3.52 | 9.86 0.21 | 2.68

Table 1: Time for accessing array elements (in ps).

The memory overhead induced by paging is almost entirely due to the tables of
pages. Indeed, when a page contains elements that have no equivalent in the original
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array space, or when just a part of a distant page is accessed in an optimized loop,
only a portion of the page is actually allocated.

Table 2 gives memory requirements for a few common distributions of arrays on
32 processors. For each distribution, we indicate the total number of pages, the theo-
retical minimal memory space required on each processor, the actual space allocated
for tables on each processor and finally the overhead as compared with the minimal
partition. Memory needs are expressed in bytes. It can be noticed that replacing
some block sizes (or array dimensions) by powers of two notably decreases the me-
mory overhead. We believe that overall memory requirements remain acceptable
when considering most commonly used distributions.

Array Number | Minimal | Local Space Local
Distribution of Pages | Partition | for Tables | Overhead

double A[100000] by block(1000) 196 25000 1960 8%
double A[100000] by block(1024) 98 25000 588 2%
double A[1000][1000] by block(1,1000) 1000 250000 6000 2%
double A[1000][2000] by block(50,500) 8000 500000 80000 16%
double A[1000][2000] by block(50,512) 4000 500000 24000 5%
double A[100][100][100] by block(100,1,50) 10000 250000 60000 24%

Table 2: Memory requirements for a few common distributions

5 Experimental Results

Some results of experiments with the optimized compilation scheme and the paged
array management are presented in this section. The compilation of several well-
known kernels have been tested with the PANDORE environment; the parallelization
of a wave propagation application is set out in [ALMP94]. The kernels studied here
are the following: Jacobi relaxation, Red-Black SOR, Daxpy, Matrix-matrix product,
Cholesky and LU factorizations, Modified Gram-Schmidt algorithm. The source code
of the distributed phases of PANDORE programs are given. Apart from the distri-
bution specification, they include minor modifications compared with the original
sequential code; these modifications are to a large extent aimed at taking advantage
of collective communication.

Measurements have been performed on a 32-node iPSC/2. The presented graphs
show the speedup against the number processors for several input sizes (the indi-
cated number is the value of N). Speedup is defined as the parallel time over the
time of the original sequential program measured on one node. Sequential times for
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data sizes that could not fit in the memory of one node have been estimated. The
obtained efficiencies are satisfactory ranging from 80% to 95% on 8 processors and
from 75% to 85% on 32 processors for the largest data size although the ratio of
memory operations to computation is often high.

dist jacobi(double B[N][N] by block(N/P,N)

map regular(0,1) mode INOUT)
double A[N][N] by block(N/P,N) map regular(0,1);
{

int i,j;

for (i=1; i<N-1; i++)
for (j=1; j<H-1; j++)
A[i1[3]1 = v*B[il[j] +
Wk (B[i-11[j1+B[i+1]1[j1+B[i1[j-11+B[i][j+11);

for (i=1; i<(W-1); i++)
for (j=1; j<(W-1); j++)
B[il[j]1 = A[i1[j];

}
LU Factorization dist LU(double A[N][H] by block(1,N)
T T T T map wrapped(1,0) mode INOUT)
32 = {
256 o— int i,j.k;
512 =— double line_k[HN], corner;
24 |- 1024 &2— -

for (k=0; k<(N-1); k++) {
corner = A[k][k];
for (i=k+1; i<N; i++)
16 |- = A[il[k] = A[i]l[k] / cormer;
for (j=k+1; j<N; j++)
line_k[j1 = A[k][j];
8 |- for (i=k+1; i<N; i++)
for (j=k+1; j<N; j++)
ATi1[j] = A[i1[3] - A[i]1[k] # line_k[j];

1deal —

0 8 16 24 32
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Cholesky Factorization

32
256 -o—
512 =—
24 1024 -&—
ideal —

dist cholesky(double A[N][N] by block(N,1)
map wrapped (0,1) mode INOUT)
{
int i,j,k;
double colk[N];

for(k=0; k<N; k++) {
Alk][k] = sqrt(Alk][k]);
for(j=k+1; j<H; j++)
A[j1[k] = A[j1 k] / A[K][k];
for (j=k+1; j<N; j++)
colk[j] = A[j]1[k];
for(j=k+1; j<H; j++)
for(i=j; i<W; i++)
A[i1[3] = A[i1[31 - colk[il * colk[jl;

Matrix-matrix product

32
256 o—
512 =—
24 | 1024 -&—
ideal —

16

32

dist matprod(double
map

double

map

double

map

A[N][N] by block(N/P,N)
regular(0,1) mode IN,
B[N][N] by block(W,N/P)
regular(0,1) mode IN,
C[N][N] by block(N/P,N)
regular(0,1) mode OUT

{
int i,j,k;
double colj[N];

for (i=0; i<N; i++)
for (j=0; j<W; j++)
C[il1[j1 = 0.0;
for (j=0; j<W; j++) {
for (k=0; k<N; k++)
coljlk] = B[k][j]l;
for (i=0; i<N; i++)
for (k=0; k<N; k++)
C[il[j] = c[il[j] + A[i]l[k]*coljlk];
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Daxpy

dist daxpy(

double alpha mode IN,

double X[N] by block(N/P) map regular(0) mode IN,
double Y[N] by block(N/P) map regular(0) mode INOUT)
{

int i;

for (i=0; i<N; i++)
Y[i] = alpha * X[i] + Y[i]l;
}

32

24

16

Red-Black

L 1024

-o—
= R
A

8 16

24

32

dist RedBlack(double A[N][N] by block(N/P,N)
map regular(0,1) mode INOUT)
{

int i,j,k;

for (i=0; i<(H-1)/2; i++)
for (j=0; j<(N-1)/2; j++)
A[2*i+1][2*j+1] =
(W/4) * (A[2*i] [2*j+1] + A[2*i+2][2*j+1] +
A[2*i+1][2%j] + A[2*i+1][2%j+2])
+ A[2%i+1][2%j+1] * (1-W);
for (i=1; i<(N-1)/2+1; i++)
for (j=1; j<(H-1)/2+1; j++)
A[2xi][2#%j] =
(W/4) * (A[2*i-1]1[2%j] + A[2*i+1][2%j] +
A[2%i]1[2*j-1] + A[2*i][2%j+1])
+ A[2*i][2%j] * (1-W);
for (i=1; i<(N-1)/2+1; i++)
for (j=0; j<(H-1)/2; j++)
A[2*i][2*j+1] =
(W/4) * (A[2*%i-1]1[2*j+1] + A[2*i+1][2*j+1] +
A[2*i][2+j] + A[2+i][2%j+2])
+ A[2#i][2%j+1] * (1-W);
for (i=0; i<(N-1)/2; i++)
for (j=1; j<(H-1)/2+1; j++)
A[2%i+1][2%]] =
(W/4) * (A[2*i][2%j] + A[2*i+2][2%j] +
A[2*i+1]1[2%j-1] + A[2*i+1][2*j+1])
+ A[2*i+1][2%5] * (1-W);
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dist MGS(double v[N][N] by block(1l,N)
map wrapped(0,1) mode INOUT)
double xnorm[N] by block(1l) map wrapped(0);
double sdot[N] by block(1l) map wrapped(0);

Modified Gram-Schmidt {
) T T T | int i,j.k;
32 956 o n double vc[N];
512 =—

for (i=0;i<N;i++) {
24 1024 -&— — xnorm[i] = 0.0;
1deal — for (k=0;k<N;k++)

xnorm[i] = xnorm[i] + v[i] [kl*v[i] [k];
xnorm[i] = 1.0/sqrt(xnorm[i]);
16 | N for (k=0;k<N;k++)

v[i] [k]=v[i] [k]*xnorm[i];
for (k=0;k<N;k++)
8 - velk]=v[i][k];
for (j=i+1;j<W;j++) {

sdot[j]=0.0;
0 i i i i for (k=0;k<N;k++)

sdot[jl=sdot [jl+vc[k]*v[j][k];

0 8 16 24 32 for (k=0;k<N;k++)
v[jl1[kl=v[jl[k] - sdot[jl*vclk];

6 Conclusion

The two compilation techniques described in this paper have been fully implemen-
ted in the compiler and permit the compilation of the whole PANDORE language.
They benefit from the effliciency of our page-driven array management scheme. The
performances obtained on a series of numerical kernels are already satisfactory even
though enhancements can be made along several axes.

We plan to improve the compiling scheme in order to produce a more efficient
code that overlaps communication and computation. Also, the use of threads is stu-
died that should avoid undue sequentialization of communication operations within
the generated code.

In order to compile irregular data accesses efficiently, we are investigating the
integration of the inspector/executor technique [DSB92] as well as the exploitation
of shared virtual memory. The next step will be combining data-parallelism and
control-parallelism homogeneously in the PANDORE environment.
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