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Raffinement de Maillages Triangulaires Surfaciques

Résumé : Nous considérons ici une implémentation de 1’algorithme de Farin modifié, pour
Pinterpolation Bézier “C'” des surfaces déterminées par une triangulation arbitraire. Cet
algorithme fut originellement con¢ut comme un utilitaire pour des logicieles de CAO, mais
se révele utile aussi pour la visualisation des résultats des logiciels d’éléments finis et les
problémes de remaillage de surfaces & paramétrisation inconnue. La programmation utilise
le langage C++. Le but final est de parvenir a4 adapter automatiquement des maillages.

Mots-clé : Interpolation de Surfaces, Génération des Maillages, Génération de Maillages
Surfaciques, Eléments Finis.
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1 Introduction

We know that some tools of CAD can be useful in numerical analysis [9] for visual display
of results by computer graphics. If we want to obtain smoother display of results, we have
to interpolate them by a C! function. But, here, we consider the following problem that
appears in remeshing an arbitrary surface with unknown parametrization.

Suppose we are given a triangulation of a surface S, Sp. This triangulation defines a polygonal
surface and we want to remesh it, adding, suppressing and moving their points. In these
three processes we have to position points (vertex) over the given surface. We can use the
continuous surface Sy to position the points, but is it possible to do it better? Can we obtain
‘a better definition’ of the initial surface S using C! interpolation over Sy? We find that
Farin’s algorithm [7] for ‘C''’-linking of Bézier surface patches can be adopted for this task.

Farin’s algorithm [7], which has been developed primarily to obtain ‘C''” surfaces by connec-
ting triangular Bézier surface patches, can be applied in numerical analysis and particularly,
in our case, in a remeshing problem. Even though, there are no new ideas, the contribution
of this work is the implementation of Farin’s algorithm in C++ and its use in a remeshing
process. This algorithm has been incorporated in the package PPMSH at INRIA.

Figure 1.1: Triangulation of an hemisphere

Our problem can be stated in the following way:

Suppose we are given a triangulation of a surface S (see fig.(1.1)) in R?; that is, we are given

1. aset {s;} of points in R? lying on S,

1<i< Ny )

2. an array of triangles {K;}, ., , forming a conforming mesh [4] of the above points,
such that, the surface Sy obtained by linear interpolation over the triangles

RR n° 2462
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Figure 1.2: The same hemisphere recovered by a ‘C!” interpolation over the initial triangu-

lation
(1.1)

N: 3
Sp = U{Zaisj» D >0, ay+as+az =1},
j=1 i=1

is an approximation to .S, where 5;:, 1 <1 < 3, are the vertices of the triangle Kj.

The surface Sp is only C°, and not necessarily ‘C1” (see definition (5)) . Now, we can state

the following problem:
Find another inierpolation, Sy,, so that Sy shall be ¢l . easy to construct and as close to

S as possible.

Remark 1 Fist of all, we remark that this problem, for a general surface, can not be reduced
to the problem of C interpolation for a surface of the form z = f(x,y) over a triangulated
2D domain knowing the values of f at the vertices of the triangulation. Therefore reduced

HCT [11] interpolation seems difficult to extend to our case.

INRIA
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2 Mathematical background

In this section we give some definitions and theoretical results that we are going to use to
develop the numerical algorithm presented in the next section.

2.1 Bézier surfaces

Definition 1 The I-th Bernstein polynomial of degree n in two variables is defined by:

|
Br(u) = ——wituiul u = (up, us, us), (2.1)

i1 liolis!
with

I=(i1,i,i3), n=|I| =41 + 12+ i3, u1 +us +uz = 1. (2.2)
We define B} (u) = 0 if some of the (41,12, 13) are negative.

Remark 2 The variable u can be regarded as barycentric coordinates of a point py with
respect to a triangle K.

Bernstein polynomials satisfy the following recursion:

Proposition 1 Let B} (u) be the I-th Bernstein polynomial of degree n in two variables,
then
B?(u) = ulB?—_ell(u) + UQB?—_elz(u) + u3Bn_1 (u): |I| =n, (23)

I—e3

where ey = (1,0,0), ex = (0,1,0) and e3 = (0,0, 1).
Proof:

Let E(u) = ulB?__ell (u) + U2B?:€12 (u) + 7J3,B?__€13 (u). We have:

(n—1)! + (n—1)! + (n — 1)t i1, 02, i3

U U5 U
(i1 — Dliglig! 316y — Dlig! * ayligl(is — 1] 8 203
1

E(u) =

A simple exercise of calculus gives that the partials 87 of the Bernstein polynomials are:

ol n!
' B*(u)= ———— B (u)= ———B" " "(u), |J|=r. 2.4
P = g B ) = oy B, = (2.4)

RR n° 2462
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Definition 2 We define a triangular Bézier surface patch of order m with control points

{bI}|I|=n € HS by

Sp={S(u)= > bBf(u): w; >0, > w=1} (2.5)

|I|=n

The surface patch S can be regarded as a mapping
S:K —R3 ueKw— Sh)eR?,

from a triangle K, with u barycentric coordinates of a point p € K, into R3.

Figure 2.1: Control points for Bézier surface patch of order n = 4.

Remark 3 The three control points b, 0,0y, b(o,n,0) and b 00 (see fig. (2.1)) are called the
vertices of the patch Sy. We also say that Sy is a triangular surface patch over the triangle
K with these three points as the vertices.

Remark 4 A surface paich Sy passes through the vertices and not necessarily through the
other control points.

Definition 3 A surface defined as the union of triangular Bézier surface patches over a
given mesh is called a Bézier surface over the mesh. If all the surface patches are of order
n, then the Bézier surface is said to be of order n.

The boundary of a triangular Bézier patch is defined by:

3

U{S) cui=0, w; >0, > u;=1} (2.6)

i=1

INRIA
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So k-th boundary edge, for £k =1, -+, 3, is a Bézier curve of order n and it depends on the
control points by with ix = 0 (see fig. (2.1)):

E bIB?(u)Hk:o, w;>0, uytugtuz=1" (27)
|I|=n,ix=0

This curve is patch-independent because 1t is defined by the control points of the k-th
boundary edge.

So, if our interest is to obtain a continuous approximation of our surface, we only impose
that the control points of two adjacent patches must be equal.

Definition 4 (de Casteljau algorithm) Given a triangular array of points by € R* with
|I| = n and a point p with baryceniric coordinaies u, we define:

by (w) = wi bl () + usbly o () + usbly s (w), (2.8)
where r =1,....n, |J|=n—r, e1 = (1,0,0), es = (0,1,0), e3 = (0,0, 1) and b5 = b%.

Proposition 2 Let by the intermediate points of the Casteljau algorithm, then they can be
expressed in term of Bernstein polynomials as:

=3 b5Br, [Tl=n-r. (2.9)
|I|=r

Proof:

We are going to use induction and the recursive definition of Bernstein polynomials (see

(2.3)).

Case r = 1:
by(w) = wibjy.q(u)+ uzbjy.o(u) + usby.5(u)
= ulb}-l-él + uzb}+€2 + u3bj+€3
1
= Z by 4 rBr(u).
| I]=1
Now, we suppose that the formula is true for 1,---,r — 1 and we obtain:
by = wiblye, +uebly +usbi
-1 -1 -1
= w Z byyersr B +us E byteorr By~ +us E b yes+1Br
[I|=r—1 [I|=r—1 [I|=r—1

RR n~° 2462
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_ * r—1 * r—1 * r—1
= wu Z by yrBreq + us Z by 41 BZe + us Z by 41 BrZes
|I|=r | I|=r |I|=r

= Z bj+IB;~

|I|=r

Remark 5 Seiting r = n in the equation (2.9), we obtain

S(u) = by(u) = Y b7 B} (). (2.10)

| I|=n

Remark 6 We can generalize (2.10) as:

Sm)= > b3(u)B;"(n), 0<r<n. (2.11)

|J|=n—r

We know that partial derivatives are not an adequate tool when dealing with triangular
patches. We will use the following generalization of the C'' regularity definition.

Definition 5 [5] (Visually continuous). Let ® and ¢ be two surface patches that have a com-

mon boundary curve T', and let T'(v) denote its tangent vector at point T'(v). Let Dé D(v)
1

denote a cross-boundary derivative of ® at T'(v), i.e., Dé ®(v) lies in the tangent plane of ®

1

at T'(v) and it is not colinear with T'(v). Analogously, we define a cross-boundary derivative
D(li ©(v). Now, our condition for ‘C'’ continuity is
2

det D(lilq)(v),Dilzgo(v),F'(v) =0. (2.12)

We also call (2.12) a condition for the construction of ‘visually continuous meshes’.

2.2 Punctual ‘C'’-continuity

We are going to obtain a theoretical result that guarantees the ‘C!’ regularity at every vertex
of a given mesh.

Proposition 3 Two Bézier curves, 7o, y1 defined over the interval [0,1] by the control
points b, -+ b2 and b, - bl with p = vo(1) = y1(0) are C at the intersection point if
and only if

(b — bn_1) = (b1 = by).

INRIA
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Proof:

We can write 9 and v; as:

) = SHBIw), uel.]
n) = YEBIw), wel.]

where BP(u) is the i-th Bernstein polynomial of degree n in one variable:

B'(u) = Z'(nni_ll)lul(l —u)" wel0,1].

It is easy to verify that

—n if 1 =0,

0 otherwise,

—n ifi=n-—1,
BM(1) = n ifi=n,

0 otherwise,

so, we get

W (1) =71'(0) < n(bd—b2_,) = n(b} - b)), (2.13)

and from the continuity condition, vo(1) = ¥1(0), we obtain that 42 = b}, which confirms
the above result.

Remark 7 [t is important to note that colinearity of three distinct control points b2 _,, b2 =
b and b} is not sufficient to guarantee C'-continuity. However, colinearity of these three

points does implies that vo'(1) is parallel to v1'(0).
Theorem 1 If all control points around a vertex s;, for every triangle K containing s; as

vertex, are coplanar, then the Bézier surface is ‘C'’ at s; and the plane of coplanarity shall
be the common tangent plane at s;, for all the surface patches containing s; (see fig. (2.2)).

Proof:

Let s; be an arbitrary vertex of our mesh. If we fix in equation (2.5) a coordinate of the
variable u, uy, we get a Bézier curve with one variable. This curve will be tangent to another

RR n° 2462
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tangent plane at s;

Figure 2.2: Control points around s;

one contained in a neighboring patch if and only if the neighbor control points are colinear
(cf. proposition (3)) with the common vertex.

Allcontrol points of these curves are linear combinations of the control points of the patches
containing the vertex s; and the coplanarity of the control points around s; implies thus a
continuous variation of the tangent vector for every curve. This fact guarantees the ‘C'’-
continuity at s; and the coplanarity plane of the control points around s; is the tangent
plane at s;, for all the surface patches containing s;.

2.3 Degree elevation

The two following proposition state that it is possible to express a Bézier curve or surface of
degree n as one of order n 4 1. This process is named by degree elevation of a Bézier curve
or surface.

Proposition 4 Let Bl'(u) be the i-th Bernstein polynomial of degree n in one variable. If
v(u) is defined by y(u) = 5.5 b; B (u) then y(u) = g+1 b BP (u) with

b = b,
. L
b= b —— bt i <i<n,
n+1 n+1 - -
By = b

INRIA
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Proof: We have:

1) = S hBw

=0

- n! X )
= Y b (1)

iz:; illn — z)!u (1-w)

- n! i n—i

=0

n! X X " n! X X
_ i i+1 _ n—ig . % _ n—i4+1
- Zb‘i!(n_i)!“ (1-w) +Zblu(n_i)!“ (1-w)
=0 +=0

i+l (n4 1) : i

— bz i1 1— n—i¢

2 i T

=0
“on4l—i (n4 1) i
bi 11_ n—i+1

2 ntl dmriogt Y

7=0
n+1 .
1 (n+1)! . s
— bi— % 1— n+1—1¢
; T T Tl S +

Ebzn+ ! : (7’L+ ) : uz(l_u)n—z+1
— n+1 d(n+1-=1)!

. - i n+1—i
= b0B0+1(u)+Z(bi_1n+1+bi ]
i=1

n+1

= D B (u).
=0

)BIH (u) + ba B (u)

Proposition 5 Let S(u) a triangular Bézier patch of order n with control points {br},, _, .
Then, it is possible to write S(u) as a triangular Bézier paich of degree n + 1:

Sm)= > bBiu)= > b8} (), (2.14)

|I|:n |J|:n+l

where

1
bj: n_i_l[ilb-]—el+i2bJ—€2+i3bJ—€3]’ |I|:n—+—1,

being ex = (1,0,0), e = (0,1,0) and e3 = (0,0, 1).

RR n° 2462
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Proof:

!
S(u) = Z br %u?u?ué‘”
I=n 123
— b 77,' 01,492,103
= Z mul us?ug’ (uy + ua + ug)
[T|=n
_ b n! Z1-|-1 ig, i3 i1 do+1 i3
= Z 721%'13 us Uy’ + Z 11'19'23 T dl Uy ug +
[T|=n |[I|=n
Z bILullluZ;uga-l-l
21!22!23'
|7|=

1 : (77, + 1)' i1 iy, 43
= Z b[(21 + l)mul +1u2 Usg +

: (n+1)! +1
b 1 i1,,92 i3
|IZ|— 1z + )ill(i2+1)!z’3.“ Ly g

. (n+ 1)' i1,42, 23+1
> brlia+ 1)mu1 uy iy

| I|=n
. . . -
= Z 1[21bJ—61 +igby_eo + ZSbJ—ea]B_] (11)
|J|=n+1
= > Bt
|J|=n+1

2.4 Directional derivatives

Now, we are going to state some results related to directional derivatives of triangular Bézier
patches and we also give a subdivision algorithm.

Let d = (d1, d2, ds) be a vector. The directional derivative of a surface S(u) with respect to
the vector d = (d1, da, d3) is given by

DdS(u) = d1Sy, () + d2Sy,(u) + d3Sy,(u)

= Y 9's(m)Bi(d),

|Il=1

where
ol
8S() = — o S(u)
Ouit dul duy

INRIA
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are the partials of S.

We can also compute higher order directional derivatives:
=Y 9'S(u)Bj(d). (2.15)
|I|=r

We can also apply the operator D’"d to Bernstein polynomials, i.e., we can combine (2.15)

and (2.4):

AP = s D BB () (2.16)

( |T|=r

We are now in a position to give the r-th directional derivative of a triangular Bézier patch
of order n.

Proposition 6 Let S be a iriangular Bézier surface patch of order n given by

S(u)= > bB}(u), wy +uy+us =1,
| I|=n

and let d = (d1,ds,ds) be a vector. The r-th directional derivative of S(u) with respect to d
s given by

D S(u) C3] E b1 ( (d). (2.17)

|J|=r

Proof:

We apply (2.16) to the definition (2.10) and we obtain

aS() n_,,,ZbeBJ )B7Z; (u)

[I|=n|J|=r

= (nﬁ‘ P Y b B (w)

r).
|I|l=n—r|J|=r

= &9 ZBJd) > by B ().

| J|=r [I|l=n—r

Now, the equation (2.9) completes the proof.
Remark 8 A dual result is given by:

TdS(u) =

- > by(d)By T (w), (2.18)

( |J|—n r

RR n~° 2462
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Remark 9 We consider, now, the edge uy = 0 and a direction d not parallel to it. The
directional derivative with respect to d, evaluated along u; = 0 is the cross-boundary
derivative. It is given by

sl = S @) (2.19)

wi=0  (n—7)

where Jo = (0, j2, j3).

S3

S1

S3

Figure 2.3: Subdivision: domain geometry.

2.5 Subdivision

Now, we consider a surface consisting of just two triangular Bézier surface patches of order
n. Let their domain be defined by points s1, s2, s3 and §; (see fig. (2.3)), and their common
boundary is through sss3. We suppose that a triangular Bézier surface patch Sy is given
with the triangle s; s5s3 as domain. It 1s also defined over s;s3s5. What are the Bézier points
of Sy if we consider only the part of it that is defined over 515389 7

Proposition 7 (Subdivision algorithm). Let K1 and Ky be two adjacent triangles with
vertices s1, S2, s3 and §1 (see fig. (2.3)). Let Sy be a triangular Bézier surface patch of
degree n defined over Ky , with control points {br} 1= - We suppose that the control points
of Sy in the common edge syss are written by Iy = (0,19,13), iz + i3 = n. Lel @i denote the
barycentric coordinates with respect to syszsy . Then 5'1,, the extension of Sy over Ko, is a
triangular Bézier surface patch of degree n and it can be described by

> brBR(q), (2.20)

| I|=n

INRIA
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where B
bII("JE,LB) = bEO,iz,ia)(V)7 r= 01 o, n (221)

and v 1s the barycentric coordinates of s1 with respect to s1s5s3.

Proof:

Let u denotg the barycentric coordinates in s;s9s3 and let t denote those in §1s3s89. Then
the surface Sy can be written in two ways:

> bBi(w)= > bBj(W).

| I|=n | I|=n

Let d be the barycentric coordinates (with respect to s1s2s3) of a direction that is not
parallel to the common boundary sss3. Let d be the barycentric coordinates of the same
direction with respect to s1s3s5.

Now, we can consider directional derivatives with respect to d evaluated along the common
edge (u; = 0) by applying (2.19) and we obtain:

S @B = Y H@BT@] L r=0m,

|Ig|l=n—r |Io]|=n—r

uq1=0 1=
where, Iy = (0,12, 43). Comparing coefficients we have

?D(d)zggg(a)a r:0,~--,n.

Here, b7 and B;D are themselves polynomials of degree r. The last set of equations states
that, for any r, the two polynomials agree in all derivatives up to order n, evaluated along
the common boundary. So, they are equal for all values of u and a:

}D(u) = B;D(ﬁ), r=20,---,n.

Now, let v be the barycentric coordinates of s; with respect to s;ssss. Noting that v
correspond to @ = (1,0,0) = ¥, we obtain

FO(V)ZEO(_), r=0,---,n.
Since 7)?0 (¥) = 17)(,472»2’2-3), now we have
B(,’i%ia) = b}u(v), r=20,---,n.

Remark 10 This last proposition gives an algorithm that allows us to construct the Bézier
points of the ‘extension’ of Sy to an adjacent paich.

RR n~° 2462



14 M.J. Castro Diaz

Remark 11 If 51 is inside sy, ss, and sz, then this algorithm uses convexr combinations
and (2.21) provides a subdivision algorithm.

Remark 12 Fquation (2.21) gives a condition by which two adjacent paiches of order n
can be part of one global polynomial surface. If we do not let v vary from 0 to n, but from 0
to some s < n , we have a condition for C*° continuity between adjacent paiches:

br=(rizia) = V{0,isis)(V): T=0,---,5.

This equation 1s a necessary and sufficient condition for the C* continuity of two adjacent
patches. We can make that claim since cross-boundary derivatives up to order s depend only
on the s+1 rows of control points ‘parallel’ to the considered boundary. For s = 1 we obtain:

br=(1,inis) = V10(1 iz is) + V20(0i341,i5) F 03b(0,023541), G2+ iz =n— L. (2.22)

2.6 Global ‘C'-continuity

Finally, we present the most important result that gives sufficient conditions to guarantee
‘C1’-continuity across a common boundary curve of two adjacent patches. Before stating it,
we give some auxiliary lemmas that we use in its derivation.

Lemma 1 Let

T(u)=> bBr(u), uel0,1], beR
7=0

then
n—1
() =nY (biyr — i) BP ™' (u).
=0

Proof:

Plw) = Y bB(w)

INRIA
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= an 71—1)_2) i— 1(1—u Zb 1(171_—1132) ui(l—u)”_l_i

= Ebz+1n 112!2) u'(1—w)" =170 Zb nn—_llz 5 ui(l )yl

= nz 1 b)BP ().

Lemma 2 Let Sy be a triangular Bézier surface patch of order n+ 1 with conirol points by
and let {L,} be a family of curves defined by

S 6B (g(s),

[I|l=n+1

uw€fo0,1]

where g(s) = (5, (1 — s)u, (1 — s)(1 — u)), s € [0,1]. Then

n+1

dL,
* n n+1
h (n+1) Zb B! Zb B!
where by = b1 ; n—i) and b; = beo,int1-i)-
Proof:
dLu (71—1—1)' d i1 ig, 12 i3 i3 —
I (0) = Z b1i1!i2!i3!£[5 (1=5)2u"2(1—9)*(1 —u)*](s=0)
I=(iy,i2,i3)
[I|l=n+1
n+ Dl ntloiy i i
= > bI(.rr),[’lSl N1 =)™ 2 (1 — u)](s = 0) —
21:29:13.
I=(iy1,i2,i3)
[I|l=n+1
n+1) N n—iy, i i
> b,(, = ',)l [(n4+1—1d1)s" (1 —s)" w2 (1 — u)](s = 0)
11:219:13.
T=(i1,i2,is)
[T|l=n+1
_ (n+1)! i
- E br iglis! u (1 - u) -
I=(41,32,i3)

[I|=n+1, i1=1
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16 M.J. Castro Diaz

Y w e et

22!23.
I=(i1,i2,i3)
|I|:n+1 11=0

n!

n+1
(n+1! ntl—i
me i+ D e e (-

n+1

= (n+1)] Zb*B” ZbB”“

Remark 13 If the boundary uy = 0 is a Bézier curve of order n with control points
{bi}Ogign; zﬂe‘,

n+1

S hB ) = 3 b ()
=0 1=0

then

Lemma 3 Let b;, b} and b; € R®, for 0 <i < n, and

K3

bo = aibg+ asbhs + ab,

b, = n_z(albi+agbi+1—|—abf)—|—i(agbi_l—}—azlbi—l—abf), 1<i<n—-1,
n

Bn = agbn_l + O[4bn + abz,

where a1, ag, g, o € R are constants, a1 + as+a =1 and ag+ as+a = 1. Let

) = a3 (b~ b)B (), wel, 1]
() = (n+1)Y0F - b)Brw), e, 1]

(n+1)Y (b — bi)BF(u), ue0,1].

=0

(1)

INRIA
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Then
7a(u) = ao(u)7o(u) + ar(u)7i(u),
where
ao(u) = ”: aa(l = u) —agul, welo,1],
ai(u) = o, uel0,1].
Proof:
ap(u)ro(u) = (n+ 1Das(l —u) — azu] Z(bz‘+1 — bi) B} ™ (u)
= —(TL + 1) ZZ:; Ozg(bH_l — bz)%ul+l(l - u)"—i—1 +
(n+1) as(biyr — m%uiu — )"l
— illn—1—1)!
= it1 n! i+1 n—i—1
= —(7’L + 1) 2 ag(bH_l - bl) - (z n 1)'(n — 1)'u + (1 _ u) +
(n+1) i = b)) i!(nni (=
= —(TL + 1) Zag(bi - bl—l)%ﬁul(l — u)”—i +
(1) Y a(bis = b 2 z'!(nni (=
= (n+1) Z_:CYZ(bi+1 - bz’)nT_iB?(U) - ZaB(bi - bi—l)%B?(“) :
w7 () = (0 + 1) Y (b~ b) B (1)
If we note
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18 M.J. Castro Diaz

we obtain

n—1

Tw) = (n+1) ) foa(bips — b)

n—1

+ a(bi —bi) + bi] B (u) +

n

~(n+1) | Y s~ b)) B () + (a6~ ba) + o) B (w)

n—1

= (n+1)>

=0

n—1

[(1 = az — a)b; + azbiy1 + abf] B} (u) +

CESDY %[(1 — az— a)b; + asbi_1 + ab?] B (u)
i=1

n—1

= (n+1) Z %[(aﬂ)i + asbip1 + bl Bl (u) +

=0

(n+1) E %[04352'—1 + asb; + abl| Bl (u)
i=1

= (n+ 1)2@3;@).

So, we get

n

ag(u)mo(u) + ar(u)m(u) = (n+ 1)2:(5Z — b)) B (u) = 72(u).

=0

Now we can obtain the following result that guarantees the ‘C1’-continuity across a common
boundary curve of two adjacent patches.

Theorem 2 (Farin)
Let Sy, and Sy, be two adjacent patches of a continuous Bézier surface of ordern+1. Let T be
the common boundary curve (of order n+1) of Sp, and Sy, and suppose T can be considered
as a Bézier curve of order n. Let by, by, -+, b, be the control points of T as a curve of order
n and let by, b}, ---, b (respectively bo, by,---, by ) be the adjacent control points to T of
Sy, (respectively Sy, ) (see fig. (2.4)). Then a sufficient condition for ‘C' -continuity of the
Bézier surface across T is the following one:

There are a1, ag, a3, ayg, a« € R verifying, a1 +as+a =1 and az +as +a =1, such
that,

bo = a1b0 + O!2b1 =+ vaa, (223)

INRIA
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n—1

s
I

(a1b; + agbip1 + abl) + —(asbi—1 + asb; + ab}), 0<i<n, (2.24)

i
n

bn = O[3bn_1 + a4bn + ozb:L (225)

Common boundary T

Figure 2.4: Control points for ‘C'’-continuity (n = 3).

Proof:

We can write I' as a Bézier curve of order n as
T(u)=> biBl'(u), uel0,1].
=0

The tangent vector of T' can be written by (see lemma (1))

mo(u) =T'(u)=n z—:(bH_l — bi)B?_l(u), u e [0,1].

Now, we suppose that T'is the first boundary curve of S;, (i.e., obtained with u; = 0) and
we consider the family of curves {y.} defined by:

u€[0,1]

()= Y biBrt(g(s)),

|I|:7’L+1

where g(s) = (s, (1 — s)u, (1 — s)(1 —u)), s € [0,1] and b} are the control points of S, . By
construction, v is a curve in Sy, , for every u € [0, 1] and it verifies:

1. v(0) isin T, for all u € [0, 1] (in fact, it is a parametrization of T in u),

RR n° 2462
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2. vL(1) is the opposite vertex to ' in Sp,.

So, the tangent vector at 4. (0) is a different tangent vector of S;, at every point of T' and
it can be expressed by (see lemma (2) and remark (13))

n

dy, ' n
i) = GEO = 04130 - 1B 0
(We note that b} = b(l1 in—iyy 0<i< n).
If we use the same arguments with S3,, we have:

n

a(u) = (n+ 1)) (ki — bs) B} (u).

=0

Now, the ‘C''’-continuity condition (2.12) takes the form

det [ro(u), 71 (u), T2(u)] = 0. (2.26)
We note that (2.26) is true if b; 11 — bi, b} — b; and b; — b; are all coplanar. We exclude this

) K3
trivial case and (2.26) is equivalent to the existence of coefficients @;(u) not all zero such

that

ag(u)mo(u) + ar(uw)m(u) + az(u)m2(u) =0, ao(u), a1(u), az(u) # 0. (2.27)

In order to arrive at a manageable ‘C'” construction, we specify that ag, aj, as be linear
polynomials. It is clear that a; and a; must be constants, while ag must be linear. So, we
obtain the result taking (see lemma (3)):

ag(u) = nzl(az(l—u)—agu), u € [0,1],
ar(u) = o, wel0,1],
as(u) = -1, welol].

Remark 14 The equations (2.23) and (2.25) are equivalent to say that:
bo, by, by and bo (respectively by_1, by, b

n

|BOb1b0| — |Bnbnbn—1|
[65b0b1|  [b5bn—1bn]

and ?)n) are coplanar and

(2.28)

If we want to verify the equation (2.28), we consider, for example, equation (2.23)
bo = aibg+ asb + ab
Bo — bo al(bo — bo) =+ O[z(bl — bo) + a(bz — bo)
(bo — bo) X (b1 — bo) a(bz — bo) X (b1 — bo)

INRIA
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So, we obtain -
_ lbobbol
|bsboba|

Using the same argument for the equation (2.25), we have the above result.
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3 Farin’s algorithm

Below we outline Farin’s algorithm for the construction of a ‘visually continuous’ Bézier
surface over a given triangulation, where the tangent planes to the surface at the vertices

are assumed to be known. Finally we prove that this algorithm verifies the conditions of
Theorems (1) and (2).

3.1 Construction of triangular Bézier surface patches of order 3
over each triangle

Our purpose is to define, over each triangle of the mesh, cubic surface patches, so that, the
resulting global surface shall be ‘C!” at every vertex of the triangulation. We remember that
a cubic triangular surface patch is well defined with 10 control points (see fig. (3.1)). So, we
shall construct these 10 control points as follows:

b(0,3,0)

b(3,0,0)

Figure 3.1: Control points by, |I| = 3, over K defining a surface patch of order 3.

1. Around each vertex, s;, of the triangulation, we compute the control points ¢}, - - -, qzwsl
(nvs, is the number of vertices around s;) over the sides a}, - ~,a?asi (nas, is the
number of mesh edges connected with s;) (see fig. (2.2)), satisfying the following two
conditions:

) qg, Jj=1,--- nvg, lie on the tangent plane at s;,

INRIA
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7 i+
. llz;z]%ﬁ—l: = constant (independent of j = 1,- -+, nvs;,— 1 and s;) which is taken as

L. This condition will be used in order to guarantee equations (2.23) and (2.25)
of Theorem (2).

2. From these control points around all the vertices, we obtain, for every triangle K
control points by for |I| = 3 except b(1,1,1), which can be computed so that:

1
5?((“0) = 1[5(2,1,0) +b(1,2,0) + bo,2,1) + b0,1,2) + br1,0,2) + 5(2,0,1)] -

1
6[5(3,0,0) + b(0,3,0) + b(0,0,3)], (3.1)

where S%(u) is a triangular Bézier surface patch of order 3 over a triangle K of our

mesh and ug = (3,1, 1).

This formula gives quadratic precision if the control points around vertices were com-
puted exactly.

The Bézier surface defined over the triangulation will be continuous, because adjacent tri-
angles have same control points over their common boundary and ‘C"’ at vertices, but it will
not be necessarily ‘C'” across inter-element boundaries. In order to obtain ‘C'’-continuity
we are going to use Theorem (2). We proceed in the following way:

3.2 Subdivision and degree elevation

1. We first subdivide the triangular Bézier surface patch over K, for all K € T}, (T} the
given mesh), at the barycenter of K into 3 subpatches of order 3 using the subdivision

d

algorithm (see proposition (7)) and we compute 19 control points that define them

(see fig. (3.2) and (3.1)) as follows:

bo =bz0,0), b1 =bws0), b2=booas, b= Sk (ug),
by = bg) 1 0), bs = b(1,20), similar for b5, bs, b7, bs,
blO = 0+ ‘3+ 8 similar fOI‘ b12, b14,

big = m similar for by7, byg,

by = % similar for by3, b5

2. Then, each subpatch of degree 3 is expressed as a patch of order 4 using the degree
elevation algorithm (see proposition (5)). We compute 31 control points, ¢;, 0 < i < 30,
from the b;’s as follows (see fig (3.3)):
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Figure 3.2: 19 control points defining the 3 subpatches of order 3.

ci= by, 1=0,1,2; c12 = bo;

es = (3bs+bo)/4, ca = (2bg + 2b4)/4, c5 = (b1 + 3b4)/4, similar for cg, c7, cs,
C9, C10, C11;

C13 = (3b10 + bO)/4, C14 = (2b10 + 2[)11)/4, Cly = (bg + 3[)11)/4, similar for C16,
€17, €18, €19, C20, C21;

can = (2b16 + b1o + b3)/4, cas = (2b1s + ba + b12)/4, caa = (2b16 + b13 + b11)/4,

similar for co5, c26, c27, C28, Ca29, C30.

3.3 ‘C'"’ corrections.

Now, for each inter-element boundary I' of the original triangles, the interior control points
by, b and by, by adjacent to T' (see fig. (2.4)) are modified so that the condition (2.24) is
satisfied. This modifies the control points numbered 22, 23, 25, 26, 28, 29 (see fig. (3.3))
for a triangle. For example, the control points numbered 22 and 23 are modified to obtain
‘CY-continuity across the edge with control points 0, 3, 4, 5, 1. These modifications are
computed in the following way:

Let Sy, and Sp, be two adjacent patches of order 4 and let T' be their common boundary. Let
by, b1, by and b3 be the control points of T' as a curve of order 3, that is before the degree
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Figure 3.3: 31 control points defining 3 subpatches of order 4.

elevation action, and let by, by, b} and b (resp. bg, by, by, and 53) be the adjacent control
points to T' of S, (resp. Sp,) (see fig. (2.4)). We compute a1, as, as, as and « such that

bo arbg+ asby + aby, a1 +as+a=1,
53 = a3b2+a4b3+ab§, as 4+ ag+a = 1.

This is possible by the conditions of the subsection (3.1) and remark (14). Now, for i = 1,2

let

3—1
3

i = (a1b; + asbigg + aby) + %(OZSbi—l + agb; + ab}) — b;. (3.2)

We compute gz?l and y; by

- 1 q
¢i - CY2 + 1,“11 (33)
Xi = —ad, (3.4)

and redefine b and b; as bF + x; and b; + q?z
Then (2.24) holds for i = 1,2 with n = 3. So we have ‘C'’-continuity of the Bézier surface
across I'.

The above modifications would disturb the interior ‘C-continuity of the original triangles.
This 1s rectified by redefining the control points numbered 14, 17, 20, 15, 18, 21 and 12 in
that order (see fig. (3.3)), for each K, as arithmetic averages of their surrounding 3 control
points. For example,
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c1a = (c13 + 22+ ¢20)/3,  c15 = (c14 + €24 + €30)/3. (3.5)

3.4 Does this algorithm provide a ‘C'’ Bézier surface?

Theorem 3 The Bézier surface of order 4 over the mesh, obtained from the above algorithm

is ‘C1.

Proof:

We are going to prove that the final control points verify the sufficient conditions stated in

Theorems (1) and (2).

a) The Bézier surface is continuous by construction, that is, the boundary control points
of every two adjacent patches are equal.

b) The control points of the cubic surface patches around a mesh vertex, s;, are coplanar
by construction (see subsection (3.1)) and the final control points of the triangular Bézier
surface patches of order 4 around s; are obtained (by the subdivision algorithm and the
degree elevation process) as linear combinations of those of the cubic surface patches. So,
they are coplanar, and Theorem (1) guarantees that our Bézier surface is ‘C'!” at each vertex,
s;, of the triangulation.

c) Now we must check the ‘C1’ regularity at each inter-element boundary of the mesh
and also the interior ‘C!’ continuity of the original triangles.
Let Sp,, Sp,, bi, bF and b; i = 0,---,3 be as in the subsection (3.3) (see fig. (2.4)) , then,

there are aj, as, as, as and a € R such that

bo
b

a1bg+ ashy + aby, a1 tast+a=1,
a3b2+a4b3+ab§, as + g+ = 1.

In effect, we obtain, thanks to the conditions of the subsection (3.1) and the subdivision
and degree elevation algorithms, that the control points around a vertex s; of our mesh are
coplanar and

Bobibo]  [Bububai]

|b3b0b1| B |b;bn—1bn|J
and using remark (14), we check the conditions (2.23) and (2.25) of Theorem (2).
Noting that

bf o= b4, i=12
b= bi+di, i=12
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where
- 1
¢ = aQ——HN“
Xi = —ag¢;,
and

s N . .
i = Tl(albi + asbit1 +abl) + %(043])1'—1 + ash; +abl)—b;

condition (2.24) is obtained by a simple calculus and we have the ‘C'’-continuity of the
Bézier surface across every inter-element boundary.

S3

S1 59

Figure 3.4: Original triangle s1s2s3 and its three subpatches.

Now, we must check the ‘C'’ regularity of the original triangles, i.e., the ‘C'’-continuity
across a common boundary of two adjacent subpatches. But, the corrections that we have
made using (3.5) correspond to equation (2.22) (see remark (12)) with v = (v1,vq,v3) =
(—=1,-1,3). We take this value of v because v is the barycentric coordinates of sz with
respect to s15251, where §; is the barycenter of the original triangle s1sas3 (see fig. (3.4))

So, the Bézier surface of order 4 over our mesh is ‘C"’.
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4 Implementation

4.1 Basic algorithm.

Here, we outline the computational procedure used to construct a ‘C'’ Bézier surface for
our problem starting from a given surface triangulation in 2D or 3D using Farin’s algo-
rithm. Here, the tangent planes at vertices are not given as input and they are computed
approximately.

1. Input: We read as input the mesh, that is,

e number of triangles, number of vertices,
e connecting tables of triangles and vertices,
e coordinates of the vertices,
o references of vertices, edges and triangles.
2. Data structure: For the given triangulation we construct an internal data structure
which gives:
e for each vertex s;, the vertices connected to it, and the triangles containing s;,

e the number of sides of the triangulation, and for each edge, a;, the triangles
containing it and the 2 vertices defining a;.

Figure 4.1: Construction of tangent vectors.

3. Normal and tangent vectors: If the normals to the surface at vertices of the mesh,
Ty, are not given for each vertex s;, a normal vector, 7i;, 1 < i < N, is computed
approximately as a weighted average of the unit outward vectors fig of the triangles
K containing s; as follows:

e K
i = e (KK (4.1)

EK c s, €K |I{|
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We suppose, now, that our surface is not a closed one, that is, it is a surface with
edges. For these edges, we must compute, for every side a;, two tangent vectors, one
for each vertex contained in a; (see fig. (4.1)). We proceed as follows:

e 17 is the tangent vector corresponding to s? and parallel to vector s?lsl-l (see
fig.(4.1)),

e t} is the tangent vector corresponding to s; and parallel to vector 5?5}’ (see
fig.(4.1)).

. Construction of control points around vertices and control points for cubic patch over

each triangle: For any vertex s;, let sg, j=1,---,nv;, be the vertices connected to s;
(see fig. (2.2) ). We suppose that they are ordered from left to right with respect to s;
(see fig. (2.2)) and we assumed that s; is an interior vertex, that is, s7"* = s}. Let 5] be
the projection of Sg in the tangent plane at s;. If s; is a boundary vertex and Sg is also
a boundary vertex, we first project Sg over the tangent vector at s;, corresponding to
the edge s; Sg, then, §i is the projection of this intermediary point in the tangent plane
at s;. Let ; the angle between széi and siég“, 1 < j <nwv; —1. Now, we compute the
lengths I;, 1 <7 < n as follows:

1
P— glength of sisg, (4.2)
2 |s;s1 57T
I: = 2% 1 1< j<ny—1. 4.
it 9 lysing; =~ 7= (45)

Now, we compute qg, 1 <j < nv; (see fig. (2.2)), on sléz with length ;, 1 < j < nv;.
L=
nv;—
i

Choose «a, ( such that for the points

- 1 _ nv
, we want ¢; = ¢,;"

1 as follows:

If s; 1s an interior point, i.e. when s . If it 1s not already

nv;

satisfied, we modify ¢}, ¢'"* and ¢

T =TT e T s, 4 =4+ B s) (4.4)
in order to obtain -
$:q: 0 T g 1
i Bl _2 (45)
|sis; sil 9
The equation (4.5) reduces to a quadratic equation in « if we put @ = for a = =8
nv;—1 nv;

and can be solved. With the values of o and 3 thus obtained, we redefine ¢;

z y 13
and ¢} as ¢?""7', ¢} and g} respectively.

The values of |s;q]""*~%¢]'"*""| are not modified because ¢7”*' is moved parallel to
q;w’_Q — s;, 50, the control points ¢, 1 < j < nu;, satisfy the conditions noted at 1 of

subsection (3.1). They are associated to the triangles connected to s; as follows (see

fig. (2.2)):
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If Kg is the triangle sisg sg-H with s; as the k-th local vertex, then supposing £ = 1,

we take for Kg (see fig. (3.1))

b(s,o,o) = Si, b(2,1,0) = ‘1{; b(2,0,1) = q?“;

the cases k = 2,3 being similar.

Repeating this process for every vertex of the triangulation, we have, for each element
K (see fig. (3.1)), all control points b7, |I| = 3, except by 1 1), which is computed using
(3.1).

5. Subdiwvision: Now, we subdivide the surface patch over each triangle K at the bary-
center into 3 subpatches of degree 3 and we compute 19 local control points using the
algorithm described in subsection (3.2).

6. Degree elevation: Then each subpatch of order 3 is expressed as a patch of order 4 and
we compute 31 control points following the process given in subsection (3.2).

7. ‘C'’ corrections: Now, for every inter-element boundary T of the original triangles, we
redefine the some interior control points to obtain ‘C'’ regularity across each inter-
element boundary. The process that we are followed is described in subsection (3.3).

8. End: The final surfaces is ‘C!’ (see subsection (3.4)).

4.2 Surface with sharp edges.

For a surface with sharp edges, we do not want ‘C'’-continuity across sharp sides. If we
impose that, the algorithm could give, some times, very distorted shapes near the sharp
edges. This can be taken care of in the algorithm by the following modifications:

1. Identification of sharp edges and fized points. Sharp edges can be identified as follows:
For each inter-element boundary T', we compute the two unit outward normal vectors
of the two triangles containing it. If the angle between them is greater than a value
given by the user, then T is considered as a sharp edge. Now, we consider that a vertex
is a fixed point of our mesh if:

e it is the intersection of 3 or more sharp edges,
e it is the intersection of 3 or more subdomains,
e it is the intersection of 2 or more subdomains and it lies on the boundary,

e the angle between two interconnected boundary edges, two interconnected sharp
edges or two connected inter-subdomain edges is greater than the angle given by
the user. In this case, the tangent vector, corresponding to the edges containing
it at this vertex, is parallel to the respective edge,
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e it is a cone vertex.

Control points around vertices: If s; 1s a vertex on a sharp side, we proceed in the
following way: The sharp edges divide the surface at s; into different ‘C'’ subpatches.
We arrange the subpatches according to an angle criteria: first, the one with greater
angular variation among the unit outwards normal vectors of the triangles in it. Now,
for each subpatch, we compute, separately, the average normal vector of the triangles
connected to s; of that subpatch and then, the control points as in step 4, imposing
over each sharp edge, the same control points in order to guarantee C° condition.

No ‘C'’ corrections: The computation will be skipped for a sharp edge.
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5

‘Geometrically continuous’ mesh generation

In this section, we present the code, developed at INRIA that generates ‘geometrically
continuous’ meshes from a given triangulation, using the Farin’s algorithm introuuced in
the previous sections. The resulting mesh is finer than the original one, and it is obtained
by subdividing each triangle in 4, 9, 16, ... new triangles. If we have a scalar or vector field
over the original mesh, with values at the vertices, we also obtain a new field over the new
vertices of the final mesh, using linear interpolation.

5.1

Data structure.

We outline, the different data required to construct a new mesh from a given one and a
possible scalar or vector field solution over this new grid.

1.

Mesh dimension: It is an integer, and the two admissible values are 2, if it is a 2D
mesh, or 3 in the 3D case.

. Mesh type: Specifies the type of our mesh. If the dimension is equal to 2 there is no

choice, and the default one is ‘.am_fmt’ used in other codes as EMC? [10] . Tn the
other case, we can choose between two different mesh types: ‘.am_fmt’ or ‘.points
and .faces’ . The 3D ‘.am_fmt’ type is the natural generalization of the 2D type, and
the ‘.points and .faces’ type is the one implemented at MODULEF [1].

. Mesh name: Here, we must give our mesh name, without the type extension, that is, if

our mesh is named ‘toto.am_fmt’, we have to write ‘toto’.

Solution over the mesh? : There are two possible values: 1 if we have defined a scalar
or vector field over the mesh, 0 if not. If the answer of this question is affirmative,
i.e. 1, then, we must give the solution name. This solution has to be given over the
mesh vertices in *.bb’ format, also used by MODULEF [1]. As in mesh name, we must
specify the name, without extension. So, if our solution is named ‘solution.bb’ we have
to write ‘solution’.

. Final mesh name: Here, we give the name of the final mesh. The mesh type is identical

to the initial one, and as in that case, we don’t specify the extension. So, if the initial
mesh type is ‘.am_fmt ’ and we write ‘end_toto’, we obtain ‘end_toto.am _fmt’.

. Number of cuts for each mesh edge: Here, we must type an integer value between 1

and 6 (1 < ne < 6). So, each initial triangle will be cut in nc? new triangles to obtain
the final triangulation (see fig. (5.1)). We note, that if nc = 1 then the final and the
initial triangulation are identical.

. Sharp edge angle: Here, the user can introduce an angle expressed in degrees, #, that

controls the mesh sharp edges as follows: For each interior edge, I', we compute the
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Figure 5.1: Initial triangle Ky and the final ones with nc = 3.

two unit outward normal vectors of the two triangles on both sides of ', if the angle
between them is greater than #, ' is considered as a sharp edge. We also use 6§ to
determine fixed points, ex., if the angle between two connected boundary edges is
greater than 8, then, their common vertex is a fixed point. If we introduce # = 0, then,
angles are not considered.

This parameter is essential to keep the original geometry shape. If we suppose that we
have a mesh of the unit square, and if we don’t specify a suitable angle, i.e. 8§ < 90
degrees, the final mesh will be rounded at the four corners (see fig. (5.2)).

5.2 General algorithm.

Below we outline the general algorithm to build ‘geometrically continuous’ meshes.

RR

1.

n

Input data: We introduce the data used by ppinterpol as listed in the previous subsec-
tion.

. Mesh input: we create the internal data mesh structure, i.e. connection arrays, pointers

between vertices, edges and triangles, etc, from the initial mesh. If we have also a
solution over the mesh, we read it, and finally we check that the mesh does not contain
bad or distorted elements (edges and triangles).

Creation of the boundary curves: Now, we examine each mesh edge, and if there is
only one triangle containing it then it is a boundary edge. We construct a closed edge
lists for each connected boundary components and we compute the associated tangent
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Figure 5.2: Initial mesh of the unit square and final distorted one, when we do not consider

angles (6 = 0).

vectors. It is important to note that we can not work with meshes having edges
contained in 3 or more triangles'. We are now working to generalize the Farin’s
algorithm to this kind of meshes.

4. Creation of inter-subdomain boundary curves: This process is quite similar to the pre-
vious one. An edge I' is named as an inter-subdomain edge if it is contained in two
triangles with two different reference numbers. We construct edge lists for each inter-
subdomain boundary and we also compute the associated tangent vectors.

5. Creation of the Farin’s algorithm control points: Now, we use the Farin’s algorithm
presented in the previous sections to compute 31 control points over each triangle of
the initial mesh.

6. Creation of the final mesh: At this step, we have computed the control points over
each triangle, so we have a ‘geometrically continuous’ surface defined over the mesh.
Now, we use the parameter nc given by the user to compute the number of points
over each mesh triangle and the number of triangles obtained from the initial one.
The number of points is equal to (nc + 1)(nc + 2)/2 and the number of triangles
is equal to nc?. Then, we identify the common points, that is, the points over each
inter-element edges. Finally, for each point p over a triangle Ky of the initial mesh, we
compute the barycentric coordinates with respect to K. Farin’s algorithm provides
31 control points over each triangle, corresponding to 3 subpatches of order 4. So, we
have to determine which of these 3 subtriangles contains p and also its barycentric
coordinates with respect to it. Now, knowing the subtriangle containing p, we choose
the 15 control points defining a Bézier surface patch of order 4 (see fig. (3.3)). For

1This kind of meshes can appear in problems where we mix up 3D and 2D objects, but they can not be
considered as surface meshes. They also appear at the intersection of different surfaces.

INRIA



Mesh Refinement over Triangulated Surfaces 35

example, the control points corresponding to the first subpatch of order 4 are (see fig.

(3.3)): co, ¢s, ca, ¢s5, €1, C16, C17, C18, C12, C15, C14, C13, C22, C23 and ca4, similar for the
others.

At this point, we use the equation (2.5) with n = 4 to compute the value of the surface

at p, where u is the barycentric coordinates of p respect to the subtriangle and by the
15 control points.

The final result is a mesh with the two following properties:

e it is finer than the initial one if ne > 1,

e it is ‘geometrically continuous’.
7. Creation of the linear interpolation of the solution over the final mesh: If we have a
solution field associated to the initial mesh, we have to interpolate it over the final
mesh. But, that is very simple, because, for each vertex of the final mesh, we know an

initial triangle that contains it, and its barycentric coordinates.

8. QOutput data: Finally, we obtain the final mesh and the interpolated solution, if there
exists, and they are written in the same data type that the initial ones.

5.3 Examples.

In this subsection we shows some examples that we have computed with ppinterpol.
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Figure 5.3: Initial mesh of the unit circle and final one.

1. Unit circle: The figure (5.3) shows the initial triangulation of the circle with 12 points
in the boundary and the final result, with parameters § = 0 and nc = 6
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2. Plate with two domains: This plate has two subdomains and the intersection line is a
circle. We see with this example that we can obtain a better definition of the inter-
subdomain boundary line. The figure (5.4) shows the initial mesh and the final one

(f = 60 and nc = 6).
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Figure 5.4: Initial mesh of a plate with two domains and final one.
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Figure 5.5: Initial mesh of a torus recovering 5 others.

3. Siz Torus: In this case, the initial mesh is not connected. Figure (5.5) shows the initial
triangulation (courtesy of E. Saltel, INRTA) and a cut of it, where we can see 6 different
connected domains. Figure (5.6) shows the final result. Here ne = 2 and 6 = 0.

4. Semi-sphere and semi-circle: This example shows that we can work with surfaces made
up 2D and 3D domains. Here we also have 6 different subdomains (see fig. (5.8)). The

initial mesh and the final one are shown in figures (5.7) and (5.8). Here # = 60 and
nc = 4.
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Figure 5.6: Final torus mesh with nc =2 and § = 0.
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Figure 5.7: Initial and final mesh of a semi-sphere & semi-circle.
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Figure 5.8: Inter-subdomain curves over initial and final mesh.
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5. Connecting rod: Figure (5.9) shows the initial triangulation (courtesy E. Saltel, INRTA)

of a connecting rod and the final mesh. Figure (5.10) shows an intersection line between
two ‘C'’ patches, and the final result. We can appreciate that the intersection line is

also ‘visually continuous’. Here # = 30 and nc = 3.

Figure 5.9: Initial mesh of a connecting rod and the final result obtained with # = 30 and

ne = 2.
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Figure 5.10: Zoom of the initial and final connecting rod.

6. Airplane in a sphere: Here, the mesh is not connected. Figure (5.11) shows a zoom of

the initial triangulation (courtesy D.A) and the final mesh. In Figure (5.12), we can

appreciate a detail of it. Here # = 30 and nc = 2.
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