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Le pouvoir de discrimination des multiplicités
dans le A-calcul

Résumé : Le A-calcul avec multiplicités est un raffinement du A-calcul faible, ot 'argument
dans une application est muni d’'une multiplicité qui indique combien de fois on peut 1'uti-
liser. Ceci introduit des blocages potentiels dans 1’évaluation. Nous étudions le pouvoir de
discrimination de ce calcul sur les A-termes usuels. Nous montrons en particulier que 1'équi-
valence observationnelle que 1’on obtient coincide avec 1’égalité des arbres de Lévy-Longo
associés aux A-termes. Ceci est une conséquence de la caractérisation que nous obtenons
pour la précongruence observationnelle, comme un préordre intensionnel qui comporte la
n-expansion. Ce préordre a été introduit par Ong sous le nom de préordre de Plotkin-Scott-
Engeler.

Mots-clé : langages fonctionnels et paralléles, sémantique, lambda-calcul



The discriminating power of multiplicities 3

1 Introduction

The A-calculus with multiplicities was introduced in [5] to the purpose of studying the
relationship between the A-calculus and Milner’s 7w-calculus [12]. Tt is a “resource conscious”
refinement of the A-calculus, based on the following observation: in an application M N the
argument N is infinitely available for the function M. This appears clearly in the process of
B-reduction: when M is an abstraction Az R, the application M N reduces to R[N /z] where
the argument is copied within R as many times as there are free occurrences of . One
cannot predict the “multiplicity” of z in R, because R could be reduced to another term
where this variable is duplicated. For instance if R = (2z) where 2 = Afy.f(fy), then the
variable x occurs just once in R, but R reduces to a term where x appears twice.

In our refinement of the A-calculus, any argument comes with an explicit, finite or infinite
multiplicity. Namely, we write M N™ where m € N U {oco}, meaning that N is available at
most m times for the function M. As a particular case, we get the usual A-terms, where
all the multiplicities are infinite — in which case we may omit them, to keep the standard
notation. For example, in (Az(2z))I', the argument T = Azz (the identity) is available only
once. We have to be careful in defining the reduction process, since reducing this term to
21 would mean to transform a limited resource into an infinite one, for 2z really stands for
2z°°. Obviously this is not what we want. Then we have to delay in some sense the use of
the resource, until something is really needed for the variable it is bound to.

To this purpose, it is convenient to use the notion of explicit substitution of Curien et
al. [1]. That is, we extend the syntax with the construct M(N™/z) meaning that N is
substituted for £ in M at most m times, and we modify the -reduction rule in the obvious
way:

(AzM)N™ — M(N™/z)

In this paper we adopt the “lazy” regime of reduction of Abramsky and Ong [2], where, in
order to compute M N™, one has first to evaluate M, hopefully to an abstraction. Similarly,
to compute a term M(N™/z) one first computes M. Then one fetches a sample N of the
resource (if any, that is if m > 0), leaving the rest for future use, whenever the computation
cannot proceed without a value for z, that is whenever z occurs in the head position in M.
In this case M = zQ); - - - Qk, where the @Q;’s are either arguments with multiplicity R™ or
substitution items (R™ /y,) (y; # ), and the following reduction takes place:

Q1 QrN™ /) — NQi-- Qu(N™/z)

Defined in this way, the reduction process is entirely deterministic: for any term there is at
most one reduction that can be performed from it in one step.

Clearly what is new, with respect to the usual A-calculus, is the possibility of deadlock:
if something is needed for z, but there is no resource available for x, then no reduction is

RR n°2441



4 Gérard Boudol and Cosimo Laneve

possible. For instance, we have:

(Az.zz)It (zz)(T" /)
(Tz)(I°/z)
22> [0 /)
2z /)1 /)

Ll

However, we do not wish to regard a normal form such as z(z*°/;)(I°/;) as a meaningful
value. Here, as in the lazy A-calculus, a walue is a normal form that waits for an input.
In other words, a value is an abstraction, up to the identification of (AzM)(N™ /y) with
Az(M(N™/y)). This allows us to define the observational semantics of the calculus, namely
the preorder M <, N, as follows:

M <m N if and only if for any context (with multiplicities) C, if C[M] reduces
to a value, then C[N] reduces to a value, too.

Using Albert Meyer’s terminology, one can read “C[M] reduces to a value” as “C[M] gives
back the prompt”. Then there are two ways for a term of not “giving back the prompt”:
either it diverges, having an infinite computation, or its evaluation ends up with a deadlock,
that is a normal form which is not observable. In our observational semantics we do not
distinguish deadlock from divergence.

Our purpose in this paper is to determine precisely to which extent the A-calculus with
multiplicities is a refinement of the usual A-calculus. That is, we shall study and characterize
the discriminating power of contexts with multiplicities over the A-terms. In more technical
terms, we will study the restriction to A-terms of the preorder <p,.

Our results are as follows: foremost, it is immediate that <, is strictly finer than the
observational preorder, denoted <, that we get by restricting the contexts to be A-calculus
contexts, with infinite multiplicities (this is the preorder defined by Abramsky and Ong
[2]). For instance, z(Ay.zy) < zz, while z(Ay.zy) Zm 22z since (z(Ay.zy))(I*/2) reduces to
the value Ay((zy)(™/2)(I°/z)), whereas this is not the case for zz(I' /z), as we have seen
above. In other words, the lazy A-calculus is sensitive to the lack of resources. This is not
very surprising. As we will see, the extra discriminating power of finite multiplicities only
shows up when applied to A-terms exhibiting themselves some multiplicity: if M and N are
two affine A-terms, which use resources at most once, that is terms where any variable (free
or bound) has at most one occurrence, then

M=<m N& M=, N

We also examine the possible weakenings of the theory <, by adding new axioms. We show
that no such weakening can be as weak as =<y.

Our main result is the characterization of the preorder <, over A-terms. We show that
it coincides with the lazy Plotkin-Scott-Engeler preorder introduced by Ong in [13]. This
is an ordering on an intensional representation of A-terms, the so-called Lévy-Longo trees.
These are like Bohm trees, fitted in with the lazy regime where any divergent term as Q =
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The discriminating power of multiplicities 5

(Ax zz)(A\x zzx) is different from Az Q. The lazy PSE ordering on these trees is basically the
prefix ordering, for which  is less than everything, together with the facts that n-expansion
is increasing, that is M <y Az.Mx (z is not free in M), and that anything is less than a term
of infinite order — typically, Z such that & = Az E, for instance E = (A\fz.ff)(M\fz.ff).

The lazy PSE ordering was introduced by Ong to characterize the “local structure”
(following Barendregt’s terminology) of some models of the lazy A-calculus. An immediate
consequence of our main result and of results by Ong and Abramsky (namely the Theo-
rem 3.4.1.3 of [13] and Proposition 7.2.10 of [2]) is that finite multiplicities provide us with
strictly more discriminating power than the convergence testing combinators, introduced by
Abramsky and Ong [2] to make the lazy A-calculus “complete” in some sense. Regarding the
parallel convergence testing combinator, this may be surprising because there is no parallel
feature in our A-calculus with multiplicities. The same remark holds as well if, instead of
using this combinator, we use a non-deterministic choice, as in [4], or a parallel composition
of functions, as in [6]. Therefore the sensitivity of the A-calculus to the lack of resources is
much greater than one could think.

Another consequence of our characterization result is that the observational equivalence
M ~mn N over A-terms, meaning that for any context C' with multiplicities, C[M] has a
value if and only if C[N] has a value, coincides with the equality of the associated Lévy-
Longo trees. From this and previous results of Sangiorgi [14], we can draw some conclusions.
Sangiorgi studied the equivalence M ~, N induced by Milner’s encoding of the A-calculus
into the w-calculus [12], and he showed in particular that this coincides with the equality
of the associated Lévy-Longo trees. We can then conclude that, as far as the A-calculus is
concerned, the m-calculus and the A-calculus with multiplicities have the same discriminating
power:

M~ N & M~y N

Again, this may be surprising because the latter is a deterministic calculus, with no parallel
facility. We must also point out that Sangiorgi used a kind of bisimulation as the semantic
equivalence, while we use the much weaker notion of observational equivalence. Nevertheless,
our results show that even if we use an observational equivalence for the m-calculus, we still
keep the same induced semantics on A-terms, namely the equality of Lévy-Longo trees.

Sangiorgi also showed that one cannot go beyond ~, by extending the contexts using
“well-formed operators”, while adding a unary non-deterministic operator WM with evalua-
tion rules

WM — M and M — Q

is enough to get the full discriminating power of the m-calculus. Note that this operator has
some flavour of introducing potential deadlocks, since WM — 2 means that M, regarded as
a resource, may vanish. However, this is only true if we defer a part of the discriminating
power to the semantic equivalence itself, using the bisimulation for instance. Sangiorgi then
concluded that “non-determinism is exactly what is necessary to add to the A-calculus to
make it as discriminating as the mw-calculus’. As far as one is committed to use “well-
formed operators”, while being allowed to use a bisimulation semantics, this is true. However,
using explicit substitutions, which provide us with a computationally meaningful construct,
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6 Gérard Boudol and Cosimo Laneve

and still using an observational semantics, which in non-deterministic calculi is usually far
less discriminating than bisimulation, we may have a different conclusion: the possibility of
deadlocks s essentially what the m-calculus adds to the lazy A-calculus.

2 The A-calculus with multiplicities

2.1 Syntax

As usual, we assume given a countable set Var of variables, ranged over by z, y, z... The set
Am of terms of the A-calculus with multiplicities, or Am-terms, is generated by the following

grammar:
E ==z | \xE | (EE™) | (E(E™/z))

where m is a positive integer, or the infinite multiplicity, that is m € N U {oco}. To avoid
any confusion with usual A-terms, denoted by M, N ..., we use E, F ... to range over
Am-terms (here “m” stands for “multiplicities”. In [5] we also introduced a Ar-calculus, i.e.
a A-calculus with resources). However, we shall most often omit the infinite multiplicity,
writing EF and E(F/z) for EF* and E(F* /z) respectively. That is, we regard ordinary
A-terms as particular cases of terms with multiplicities. We call E™ a bag, made of m copies
of the term E. The set of bags is denoted by II. We use P, @, R... to range over bags, or
substitutions (E™ /). As it is standard, we abbreviate Az; - -- Az, E into A\z; - - - z,.E and
use EP; --- Py to denote (--- (EP,) - -- P;), where the P;’s are bags or substitutions.

The notions of free and bound variables are the standard ones (see [3]), augmented by
the following items:

e the free variables of a bag E™ or a substitution (E™ /) are the free variables of E;
e in E(P/z) every free occurrence of z in E is bound by the substitution (/z).

We denote by fv(E) (resp. bv(E)) the set of free (resp. bound) variables of a term E, and
by A2 the set of closed terms. The set of closed bags is denoted II°.

Asusual, a (Am-) contertis any term built using the syntax of Ap-terms, plus an additional
constant [], the hole. Filling the hole with a term E in a context C results in a term denoted
C[E]. Note that free variables of E may be bound by the context in C[E]. We denote the
set of contexts by An[], and use C, D... to range over Am-contexts.

2.2 Syntactic equality

We shall consider Apy-terms up to a-conversion. To define the syntactic equality of terms,
we use the (partial) operation of renaming E[y/z] where y is neither free nor bound in E.

INRIA



The discriminating power of multiplicities 7

This is defined as follows:

_ y ifz==x
2[y/a] { z otherwise

M\zE if 7 =
(AzE)[y/z] {Ai(E[y/;p]) ot}zlerwgise
(EF™)Yy/z] = (EW/z)(FY/zh™
m _ E((F[Y/z)™/z) ifz=2
(E(E™[2)l/2] = {(E[y/x])((F[y/a:])m/z) otherwise

Now the syntactic equality of Am-terms is the congruence = generated by the following
axioms:

ME = Ny(Ely/a) v ¢NE) UbV(E)
E(P/z) = (B/e)(Ply)  y ¢ ~(E)Ubv(E)
(\eE)(P/y) = \e(B(Py)) =& N(P)U{y}

The third axiom has been added because it is more convenient to deal with normal forms
which are simply abstractions, rather than “closures” (AzE){(P1/z,) - {Pk/xz},)- It is imme-
diate, by induction on the definition of E = F' (including the implicit axioms of reflexivity,
symmetry, transitivity and congruence), that E = F = fv(E) = fv(F).

Proposition 2.1
1. \eE = (\WF)(P/z) implies E = E'(Q/2') and E'[w/g(Q/2') = Flw/y[(P/z);
2. \eE = MyF implies E[2/z] = F[2/y];
3. E(P/z) = F(Q/y) implies P = Q and E[z/z] = F[z/y];

4. EP = F implies F = F'Q and E = F' and P = Q; if E = F and E = AxE' or
E =E'(P/z) then F = AyF or F = F'(Q/y).

PROOF: By induction on the inference of the syntactic equivalence, straightforward. [ |

2.3 The reduction relation

Evaluation in the A-calculus with multiplicities follows the lazy strategy of Abramsky and
Ong [2], where one does not evaluate the body M of an abstraction Ax M, nor the argument
N in an application M N. However, there are some differences, mainly because we perform
the substitutions explicitly, and in a delayed manner. As we said in the introduction, the
substitution is performed in the following way:

2Q1 - Qe(N™/z) — NQi-+ Qr(N™/z)

RR n° 2441



8 Gérard Boudol and Cosimo Laneve

provided that no @); is a substitution for x, and z is not free in N. To formalize this reduction
by means of rules, we introduce an auxiliary evaluation relation ~+, which is only defined for
terms of the form E{(F/z) where x occurs in the head position in E. Then E(F/z) ~ E’
means that E’ is E where F is placed in the head position (provided that no free variable
is captured).

Definition 2.2 The reduction relation —, on Ay is the least one satisfying the following
rules:

E— FE E—FE
(AzE)P — E(P/q) - -
EP - E'P E(P/z) — E'(P/g)
E(F E' F=FE E—FE
(F/a) ~ x & v(F) -
B(F™ [3) = B'(F™ [2) FE
where the fetch relation ~» is defined by:
E(F /gy~ E' E(F/g)~ E'

z# x and z &€ fv(F
(EP)(F[z)~ E'P (E(P/2)){F/z)~ E'(P/z) 7 # e

One should note that, to infer E —, E’, one often has to rename bound variables in E to
fulfil the requirements about bound variables in the rules. For instance, we have:

(@(@y)(@/yl(@y)* [z) = (2(z0))(z/ul{(@y)?/2) —m (@y)(zu)){z/u)((®9)"/2)

The following proposition guarantees that —, is deterministic, up to =. That is, if E/ reduces
into F' and G then F = G.

Proposition 2.3 The relation = is consistent w.r.t. —m. Namely
E=F&E—nE & F > F' = E' =F'.
In particular, if E —m E' and E —m F' then E' = F'.

PROOF: The interesting case is when F' —p, F’ is not due to the last rule of Definition 2.2.
Under this assumption and by Proposition 2.1, both E and F' must have an abstraction or
a variable in the head position. We check the determinacy for these two cases, focusing on
the cases where E and F' are redexes, since the general case follows by congruence.

1. \zE)P = (\F)Q = E(P/z) = F(Q/y). By Proposition 2.1(4), (A\zE)P = (\yF)Q
implies AzE = MyF & P = Q. Now let z ¢ fv(E) U bv(E) U fv(F) U bv(F). Then
MeE[2/g) = ME = MAyF = AzF[z/y]. Moreover, by Proposition 2.1(2), E[z/g] =
F[%/y]. Hence, by congruence, E[2/z(P/z) = F[#/y]{Q/z). The result is obtained by

noticing that E(P/z) = E[2/2](P/z) and F(Q/y) = F[2/y(Q/z).

INRIA



The discriminating power of multiplicities 9

2. EF/zy~E & GH/z) ~ G &E=G & F=H = E' =G Actually, besides
this statement, we shall also prove that

(%) E(F/g)~ E' = E[w/:|(F/x)~ E'[w/z], w¢f(E)Ubv(E)Ufv(F)U{z}
We proceed by induction on the proof of E(F/z) ~» E'.

(a) The basic case is F = x and E' = F. Then G = z is an immediate consequence
of E = G. Hence E' = G’ follows from F' = H. Also (x) is straightforward since
z € fv(F) (hence z ¢ fv(H) because F = H).

(b) If E{(F/g) ~» E'is proved using the second rule of the fetch relation, then E’ = G’
follows from to Proposition 2.1(4) and the inductive hypothesis.

(c) Otherwise E = E"(P/;), and G = G"(P'/"), by Proposition 2.1(4) and the
fact that the fetch relation is not defined on abstractions. Let w ¢ fv(F) U {z} U
fv(E) U bv(E) Ufv(G) Ubv(G). By Proposition 2.1(3) E"[w/;] = G"[w/2']; hence
since by hypothesis E"(F/z) ~ Et and G"(H/z) ~ GT, we have by (%),
E'[w/:(F/z) ~ E*[w/:] and G"[w/:(H [z) ~ G¥[w]5]. Again, by induc
tive hypothesis, E*[w/;] = G*[w/;]. The equivalence E' = G’ follows easily by
congruence.

We let the reader check that (x) holds. [ |

3 The observational semantics

3.1 Observational preorder and the context lemma

In this section we introduce the observational semantics of our A-calculus with multiplici-
ties. It is an instance of the standard Morris’ “extensional operational semantics” (see [3],
Exercise 16.5.5, and [9], Chapter IV). The idea is to use the syntactic machinery to “test”
the expressions by plugging them into contexts, and looking for an observable result, that
is, a value. Then an expression is better than another one if it passes successfully more tests.

A term E is a walue if there exist z and F such that E = AzF. Let =, be the reflexive
and transitive closure of —p,. Then the convergence and divergence predicates on closed
terms are defined, as usual, by:

Elm < 3E value. E 5, E' (“E converges”)
Efm e ~(Elm) (“FE diverges”)

Notice that E i, does not necessarily mean, as in the lazy A-calculus, that the evaluation
of E does not terminate. Indeed, E “diverges” if its evaluation ends up with a deadlock,
typically a term of the form xQq - -- Qk(EU /xz)R1 -+ R, (where no @, is a substitution for
z). However, a deadlock is regarded as semantically the same as a truly divergent term, such
as 2 = (A\z zz®)(Az zz>)*®. It should be obvious that

F=E = (E{ym<e Fln)

RR n°2441



10 Gérard Boudol and Cosimo Laneve

Definition 3.1 The observational preorder is the relation <m on Am defined as follows:

E=mF &% vC. C[E),CIF] € A%, = (CIE] Im = C[F]m)
Two terms E and F are observationally equivalent, in notation E ~n F, whenever E < F
and F <m E.

Due to the universal quantification over contexts, the definition of the observational preorder
is not very manageable: it is usually quite difficult to prove or disprove an inequation £ <,
F. In [11], Milner stated and proved a property called the context lemma, which was then
generalized to the A-calculus by Lévy [9], establishing that, in order to “test” a (closed)
A-term, it is enough to apply it. We now show that this also holds in the A-calculus with
multiplicities (see also [5]). To this end, we first introduce a restricted kind of contexts, the
applicative contexts, ranged over by K, L ... These are given by the grammar:

K u= [ | (KP) | K(P/z)
where P is any bag. This allows us to define the applicative testing preorder, which is the
observational preorder restricted to applicative contexts, that is:

E=<AF & VK. K[E|,K[F] € A%, = (K[E]Ym = KI[F] }m)

Before proving the context lemma, establishing that the two preorders <m, and < coincide,
we need some auxiliary results.

Lemma 3.2 Let K be an applicative contert and x a variable, not free in K. Then for any
finite set U of variables and any z ¢ U U {x}, there exists an applicative K' such that

f(E)Ubv(E) CU = KI[E[?/z]] = (K'[E])[#/x]

PROOF: By induction on K. This is trivial for K = [|. If K = (LP) then z is not free in L
nor P, and K[E[2/z]] = (L[E[?/%]])P- By induction hypothesis,

K[E[#/z]] = (L'[E))[2/)P

for some L', therefore K[E[z/z]] = ((L'[E])P)[?/x]-

If K = L(P/y), there are two cases: if y = z, then we let L' = L[v/z] for some fresh
v (in particular, v is not in U U {z}). We have K[E[2/z]] = L'[E[?/z]]{F/v). By induction
hypothesis, there exists L” such that L'[E[2/g]] = (L"[E])[?/x], therefore

K[E[z/z]) = (L"[ENP [v))[#/2]

Otherwise (y # z),  cannot be free in L (nor in P). Then by induction hypothesis there
exists L' such that K[E[z/z]] = (L'[E][?/z])(F/y). Again, there are two subcases: if y = z
then K[E[z/z]] = (L'[E]){P/z), therefore K[E[z/x]] = (L'[E]){P/z)[?/z] since z is not free
in P. Otherwise (y # z), we have K[E[2/z]] = (L'[E]){(P/y)[?/x]- [

An immediate consequence of this lemma is:

INRIA



The discriminating power of multiplicities 11

Corollary 3.3 If E <} F and z # x is neither free nor bound in E and F, then
E[z/a] 23y Fl2/2]

Now we prove the context lemma — thanks to the explicit substitutions, one may even prove
it for arbitrary terms (that is, not necessarily closed).

Lemma 3.4 (The Context Lemma)
E<mF & E<AF

PROOF: The direction “=" is obvious. To establish “<”, we use the notion of a multiple
contezt, that is the notion of a context where there may be several kinds of holes, indexed
by positive integers, i.e. [];. For any such context involving only holes whose indexes are
less than k, we define C[E},. .., Ei] in the obvious way, that is by filling the hole []; by the
corresponding term E;. We shall also use the notation C[E] for C[Ey, ..., E]. We show the
following:

Ei=AF & ... & By = F, & C[Er,...,Ex] Um = C[F,...,F] Im

where C[E] and C[F] are closed. Assuming that C[E] ~>m V' for some value V, we show that
C [}7’] {m, by induction on (I, h), w.r.t. the lexicographic ordering, where [ is the length of
the evaluation sequence C' [E] % m V, and h is the number of occurrences of holes in C. We
may write C = CoC} - - - Cyp, where Cj is either a hole [];, or a variable x, or an abstraction
context Az B, and the C;’s, for 7 > 0, are bags or substitution contexts. We examine the
possible cases (this proof technique is directly adapted from Lévy’s one [9], with the notable
difference that we are dealing with open terms).

C() = \z B.
There are two sub-cases. If [ = 0 then C[E] = V is a value, therefore C1[E], . .., Cm[E]
are substitution items, and C[F] is a value too.

Otherwise (I > 0), there exists j (1 < j < m) such that Cy,...,C;_1 are substitution
items, say (D1/z,),..-,(Dj-1/x; ), and Cj[E] is a bag. Notice that
AeBIEN(D1E) ;) -+ (D3-1[E] ;) = Ae((BIEDI [l DrlE)ay) - - (D3-1[E] ;)

for some fresh variable z. It should be clear that there exists a context B’, obtained
from B by renaming z by z, and by replacing some of the holes [|; by [Ji+, such that
(B[E))[#/x] = B'[E, E'] where E! = E;[2/z]. By definition of the reduction relation,
the term

G = (\(B'[E,E'|ADrlE)/z,) - - (Ds11E)/2;_1)))C5E] - - Crl E]
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12 Gérard Boudol and Cosimo Laneve

reduces to V' by an evaluation sequence of length [. Let
C'=B'(D1/zy) - (Di-1/2;_1){Ci/2)Cis1 - Cnm

Then G —my C'[E, E'] and C[F] = C'[F, F'] where F! = F;[z/z], therefore we may
apply the induction hypothesis to conclude, since F; <4 F; = E! <A F! by the
Corollary 3.3.

CO =X.
In this case [ > 0 since C[E] is not a value. Moreover, there exists j (1 < j < m)

such that C; = (D"*'/z) and no C4 [E],---, Cj_l[E] is a substitution for z. Without
entering into the notational details, one can see that

C[E] —m DIE]Q: - Qj—1(DIET" /2)Cis1[E] -+ CrlE]

where z is fresh, and Q1,...,Q;—1 are built from C; [EL e Cj_l[E‘] by renaming x
into z, and by renaming into fresh variables the variables that are bound by the C;’s
(that is, more precisely, the variables y € fv(D[E]) such that, for some i < j, C; is a
substitution for y). It should be clear that we may find a context C’ and renamings

El, ..., Es such that
C'[E,E',...,E*) = DIE)Q: - Q;_1(DIEY ) 2)Cj 41 [E) -+ - Con[ E]

so that we also have _ o ~
C[F]) »m C'[F,F',... F*]

where the F?’s are obtained from F by performing the same renamings as in Ei wrt.
E. Therefore we can conclude using the induction hypothesis, and the Corollary 3.3.

Co = [];-
Let C’ be the context E;Cy ---Chp,. It has h — 1 holes, and obviously C'[E] = C[E],
therefore by induction hypothesis C'[F] {m. Since C'[F] = E;Ci[F]---Cn[F] and
E; =4 F;, we conclude F;C1[F]---Cm[F] {}m, that is C[F] {m. |

The context lemma is important, for several reasons. For instance, it shows that the Ap-
terms may be regarded as functions, since their semantics is determined by applying them to
arguments (for a formalization of this point, see the “functionality theory” of [5]). Moreover,
by restricting the universal quantification over contexts, the context lemma allows us to prove
more easily some semantic relations. For instance, one can use it to check the following:

Proposition 3.5 If E —, F then E ~ F. Moreover, Q <y E <m Z for any E.

We recall that Z = (Afz.ff)(Afz.ff). This term is such that K[=Z] {m for any applicative
context K, while K[Q] {tm.

Using the context lemma, one can also prove that n-expansion is increasing with respect
to the observational preorder, as we indicated in the introduction:

INRIA



The discriminating power of multiplicities 13

Lemma 3.6 z ¢ fv(E) = E Xy Az(Ez™)

To prove this property, one first proves the following auxiliary statements:
1. E(P/z) =m E(y*/z){P/y), provided that y ¢ fv(E) U fv(P);
2. EP ~pn, Exz>(P/z), provided that z ¢ fv(E) U fv(P).

We refer to [7] for the details. In this paper, we shall give an easy proof of this lemma, using
a result established in [5]; this proof is deferred to the Appendix A.

3.2 Encoding the lazy A-calculus

In this section we recall from [5] some facts concerning the embedding of the (lazy) A-calculus
of Abramsky and Ong [2] into the A-calculus with multiplicities, and we begin to study the
semantics induced by the latter over A-terms. It was shown in [5] that the context with
multiplicities are strictly more discriminating than ordinary contexts (that is, with implicit
infinite multiplicities). Here we show that this happens in a way that cannot be softened by
adding further equations over Ap. The set A of A-terms is given by the usual syntax:

M =z | XM | (MM)

As we said, to avoid any confusion with terms with multiplicities, we use the standard
symbols, thatis M, N ... to range over A. The set of closed MA-terms is A°. The lazy evaluation
M —4 N is defined by the following rules:

M — M
MN — M'N

We shall also write M —g N for the standard S-reduction (that is, M = C[(AzR)S] and
N = C[R[S/z]] for some A-context C with one hole), and M =5 N for the S-conversion.
We let <; and ~, be the observational preorder and equivalence of the lazy A-calculus.

There is an obvious encoding of A into Ap, consisting in imposing an explicit infinite
multiplicity on the argument of an application, that is:

[z] = =
[MaM] = Xz[M]
[MN] = [M][N]™
In [5] it is proved that this encoding is correct, i.e.:

[M] Zm [N] = M X, N

The converse implication holds if one restricts the observational preorder of Ay to using only
terms with infinite multiplicities. This means that we may regard the lazy A-calculus as a
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14 Gérard Boudol and Cosimo Laneve

subcalculus of the Am-calculus. For this reason infinite multiplicities may be omitted, writing
EF instead of EF. Similarly, we also omit the explicit mention of the encoding, writing
M for [M]. We note also that the equivalence ~p on A-terms induced by the A-calculus
with multiplicities contains the standard 3-conversion (see [5], and the Appendix A):

Proposition 3.7 M =g N = M ~n N.

It was shown in [5] that the encoding of the A-calculus into the Am-calculus is not fully
abstract. In other words, the contexts with multiplicities provide us with more discriminating
power. A typical example is this:

Example 3.8 The two A-terms A = Azzxz and A" = Az xz(Ayxy) are equated in the lazy
A-calculus, that is A ~, A’ but their encodings Axxx™ and A\x x(\y zy>)*> are not Am-
observationally equivalent, since (Ax xz>°)I' ftm while (Axz z(M\y 2y°°)*>°)I! Um, where T =
Azz is the identity (the pair of terms A, A’ has been used by Lévy in [9], Proposition 5.3.5,
for a similar purpose).

In other words, the preorder on A-terms induced by the A-calculus with multiplicities, that
is M <m N, or more accurately [M] <m [N], is strictly finer than M <, N. We shall see
several other examples in the Section 6.

To conclude this section, we show that the Ap-calculus cannot be weakened by adding
new inequations to coincide with the lazy A-calculus (over A). To this end, we adapt the
notion of functionality order of a term (see [10, 2]). Roughly, the functionality order of E is
the number of nested abstraction E has or is convertible to.

Definition 3.9 The order of a Am-term is inductively defined as follows;
i. E has order 0, denoted E € OF, if ~(3F. E Sn= \aF);
ii. E has order n + 1, denoted E € O, if IF € O'. M Lm= MaF;
itt. E has order oo, denoted E € OX, if E ¢ O, for any n.

o0

The terms of proper order n are defined as follows:

—

1. E has proper order 0, denoted E € POg', if E € Of and ~(3P 3z e v(E). E 5, 2P).
Every term in PO is said strongly unsolvable;

2. E has proper order n + 1, denoted E € PO, ,, if 3F € POI. E Sp= Az F;
3. E has proper order oo, denoted E € POT. | iff E € OT .

[o ols

For example Azz € OT but Azz ¢ PO, while Az Q2 € POT". Notice that z(F°/z) € POJ'
because  does not occur free in z(F°/z). An example of term of infinite order is Z. It is
eagsy to see, using the Context Lemma, that the following property holds:

Remark 3.10 If O € POy' and T € PO then O < E <m T for any E.
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The discriminating power of multiplicities 15

To state our next results, it is convenient to use Barendregt’s notations [3] regarding the
inequational and equational theories, that is:

MoFECF & p<, F

MnFE=F & Fon F

and similarly for the lazy A-calculus, using A¢ in this case. More generally, when we write
T + E C F, we mean that the pair (E, F) is in the precongruence generated by the set 7 of
pairs of Am-terms. We now show that Ay, is a (maximal) “fully lazy theory”, as is Al (see [2]).

Proposition 3.11

i. Mm is a fully lazy theory, that is for every m,n € N U {oco}:

VE € PO" VF € PO™. (MnFECF < m<n);

1. Mm s o maximal fully lazy theory, i.e. for E, F € Ay such that Mlm i/ E C F, then
either Mm + E C F is inconsistent or My + E C F is not fully lazy.

PROOF: 1. It is easy to check that if £ € PO and F' € PO} with m < n then Mm - EC F.
Now if E € PO and F € PO are such that Mm = E C F then m < n, because otherwise
we would have F I* ... T! i, while E I* ... T! {,.

—— ——

m—1 times m—1 times

#. If Mm i/ E C F then there exists a context C such that C[E] {m and C[F] ftm. That
is C[F] € POy" and C[E] € O™, n # 0. There are two cases:

1. C[E] € POM. Then the theory Mm + E C F it is not fully lazy, since C[E] C C[F] is
a consequence of £ C F'.

2. C[E] € O™\ PO™. Then C[E] ~m Az1 - - - Tn. 2:P. Let k be the number of bags in the
vector P. It is clear that the context

C'=CI' - T'Azy -z DT T
— ——’

2—1 times n—1 times

is such that C'[E] ~m I and C'[F] ~m Q. So

Mn+ECFE TCQ hence
IX!C ox! since C is a precongruence, hence
XCQ

Since Mm F Q C X for any X, we have My + EC F F X = Q, therefore My + EC F +
X =Y for any X and Y, that is, the theory is inconsistent. [ ]
An immediate consequence of this proposition is the following:
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16 Gérard Boudol and Cosimo Laneve

Corollary 3.12 There exists no set T of pairs of Am-terms such that, for every M, N € A,
Mn+7THEFMEN if and only if M+ M C N.

PROOF: Assume that there is such a 7. Then Ay + 7 is consistent, since I %, Q. On
the other hand, Mm + 7 F Azzz = Azadyzy (see Example 3.8), therefore My + T +
(Az zz)I' = (Azz)yzy)I'. By the Proposition 3.5 Mm + 7 F (Azzz)I' = 2(I°/z) and
Mm+T F Az z)y 2y)I' = \y(zy(I°/z)). By the previous proposition Mm +7 + z(I°/z) =
Q and Mm+7 F Ay(zy(I°/z)) = M\yQ therefore Mm+7 is not fully lazy. But this contradicts
a result of Ong (see [2]) that A is fully lazy. [ |

4 Lazy approximants and Lévy-Longo trees

In this section we start relating the observational preorder <, with an intensional repre-
sentation (1) of A-terms due to Lévy, and studied by Longo [10] and Ong [13]. In [8], Lévy
introduced a refinement of Wadsworth’s notion of syntactic approximant [15], suited for the
lazy A-calculus where Az Q must be distinguished from 2. Then Lévy defined an interpreta-
tion of the A-calculus, based on this notion of “lazy approximant”, and he showed that the
induced preorder is a precongruence. Lévy’s interpretation may be defined as follows:

Definition 4.1 The set N of (lazy) approzimants, ranged over by A,B,---, is the least
subset of A containing A\x1 ...7,.Q, and A\x1 ... Tn.TAL -+ Ay, whenever A; € N. For M €
A, the direct approximation of M is the term w(M) of N inductively defined by:

wOE. (\y. M)NM, - My) = AZ.Q
w(AZ.yMy---My) = M.yw(Mp)- - -ww(My)

The interpretation of M € A is A(M) = {w(N) | M =3 N}. Lévy’s preorder on A-terms,
denoted M Tr N, is the inclusion of sets of approximants A(M) C A(N). The equality
M =, N is A(M) = A(N).

One may characterize Lévy’s preorder on approximants: A C, B if and only if A is a prefix of
B, where the prefix ordering is the precongruence < on approximants generated by 2 < A.
Using the Proposition 3.5, it is easy to see that

A<B = A=<XmwB
The Church-Rosser property has the following consequence (see [8]):

Lemma 4.2 For any M € A, the set A(M) is directed with respect to the prefix preorder,

namely
VA", A" € AIM)3A e A(M). AA<A& A"<A

Iby “intensional” we mean “relying on the syntactic shape of the terms, up to 3-conversion”.
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The discriminating power of multiplicities 17

Moreover, it is easy to see that A(M) is in fact an ideal, that is it is downward-closed with
respect to the prefix ordering:

Ae AIM)& B<A = Be AM)

This is because any term M is 3-convertible to a redex, namely (I M), whose direct approxi-
mation is . In particular, we have Q € A(M) for any M.

In [10], Longo gave a suggestive presentation of Lévy’s interpretation, by means of what
is now called Lévy-Longo trees. These are refinements of the well-known Béhm trees (see
[3]), that deal with the fact that, in the lazy A-calculus, the unsolvable terms cannot be all
identified to 2. The Lévy-Longo trees are possibly infinite, node-labelled trees, where the
labels are either Y, representing terms of infinite order as =, or Azy ...z,. L, representing
terms as Azxy---2,.8, or Azy...x,.x, representing the “head” of a solvable term, as in
Bohm trees. To define these trees, let us first recall the notion of a A-term of proper order
n, with n € NU {oo} (see [2]).

1. MePOy & VM'.M 5, M' = 3IM". M' —, M"
2. M €PO,;; & F23IM' €PO,. M 5y \xM’
3. Me€POyx & VnIzy,...,z, IM'. M =5 Az1--- 20 M’

Definition 4.3 The Lévy-Longo tree of a A-term M, LT(M), is defined inductively as fol-
lows:

1. LT(M) =7, if M € POy;
2. LT(M) = Azy -+ xp. L, if M € PO,, with n € N;

3. LT(M) = AL Ty T , f M =g ey ---zp.aMy - M.

T~

LT(My) - LT (M)

To recover Lévy’s ordering M T, N on the tree representation, one defines an operation
AzT on trees, consisting in prefixing the label of the root of 7" by Az, with the rule that
AzY = Y. Then a tree T is less than T’ whenever T" is obtained from T by replacing some
leaves labelled Az; ...z,.L in T by trees Az; ...z,.T"”. Obviously, M =, N means that M
and N have the same Lévy-Longo tree, LT(M) = LT(N).

One may observe that if a term M has a S-normal form, then LT(M) is finite. On the
other hand, an example of infinite Lévy-Longo tree is provided by Wadsworth’s combinator
J, satisfying J =g Azy. 2(Jy), which may be given by J = (AfAzy. z(f fy)) A fAzy. z(f fy)).
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The tree for this term is:
LTJ) = IJzyox
|
AY1-Yo
|
/\yg.yl

Regarding Lévy’s interpretation, a natural question is: is there any observational semantics
on A-terms that coincides with C 7 As a matter of fact, neither <, nor even <, does provide
a right answer, for two reasons:

1. Lévy’s preorder does not deal with the fact that terms of infinite order are greater
than any other one (Remark 3.10). For instance, I Z, E since A(I) = {Q, Az Q, Az z}
while A(E) ={Q,Az1 Q,...,Az1...2,.Q,...}.

2. Lévy’s preorder does not deal with the fact that n-expansion is increasing (Lemma 3.6).
Typically, Lz Ay. zy since A(z) = {Q,z} while A(\y 2y) = {Q, Ay Q, Ay zQ, Ay zy}.

In other words, Lévy’s interpretation is not fully abstract with respect to <m,. However, we
will see that it is adequate, that is M T, N = M =<, N. Moreover, we will prove in
the next section that Lévy’s interpretation is equationally fully abstract with respect to <,
thatis M =, N & M ~y, N.

As a first step towards these results, we establish a property that we call the approxima-
tion lemma (cf. [9]). It states that, in order for C[M] to converge (where M is a A-term and
C' a Am-context), only a finite amount of information about M is needed to know. Intuitively,
this should be clear, because M can only participate by a finite number of reduction steps in
the convergent computation of C[M]. Moreover, it is only whenever M shows up in the head
position, as a function applied to a series of arguments, that it has to exhibit some specific
finite intensional content, like beginning with a series of abstractions. Then any term having
at least the same intensional content is as good as M, as far as the convergence within the
context C is concerned. The appropriate formalization of “finite intensional content” is given
by approximants.

Lemma 4.4 (The Approximation Lemma) For any Am-context C and for every M € A
with C[M] closed:
CIM] Im & FA. A€ AM) & C[A] Im

PRrOOF: The implication “<” is easy, since M =g N implies M ~n N (Proposition 3.7),
and w(N) <m N since <, is a precongruence such that Q <m X for any X.
To establish “=” we use multiple contexts, as in the context lemma (again, the explicit

substitution construct is very convenient for this proof). We recall that C[ M ] stands for

C[M,...,M,]. Let us denote by C[ M | the fact that C[ M | converges to an abstraction
in [ steps. Then we show the following:
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The discriminating power of multiplicities 19

if C[My,...,M,] is closed and C[Mj, ..., M,] |}, then there exist Ay,..., A,
such that A; € A(M;) and C[A1,...,4,] Im.

We proceed by induction on [, observing that the context C' may be written CoC4 ---C,
where Cy is either a hole [];, or a variable z, or an abstraction context Az D, and the C;’s,
for j > 0, are either D™ or (D™ /z) for some context D. We examine the possible cases, the
interesting one being Cy = []; (case 2 below). We do not investigate the case Cy = z, since we
may let C' = [|,41C1 - - Cp, so that C[En,...,E,] = C'[E,...,E,, x] for any En,...,E,,
and we are in case 2 (or more precisely case 2.b, where one can see that the approximant
taken for z in order for C'[Ex, ..., E,,z] to converge is z itself).

There are two cases. If [ = 0 then C[]Tf ] is, possibly up to =, an abstraction and we
can let A; = Q for any i. Otherwise (I > 0), there exists ¢ such that C; is a bag D'™,
and C; are substitutions for any j < ¢. Then we have

CIM] =—m D'[M,M'|C1[M]-- Cisr[MUD'IM]™ ) )Copr[ M- Co[ M] Y51

where z is fresh and D" is obtained from D by renaming « by z, and by replacing some

of the holes [|; by [Ji+p, so that (D[M])[2/z] = D"[M,M'] where M! = M;[#/z]. Then
we let C' = D”Cl---Ci_l(lzlm/z)CiH -+ Clh, so that C[E] —m C'[E, E[z/x]] for
any Fi, ..., E, such that C[ E]is closed (note that the choice of z only depends on the
variables that are bound by C). By induction hypothesis there exist A7,..., A}, and
By, ..., By such that A} € A(M;) and B; € A(M;), and C'[A},..., A}, B1,..., Bp] m-
It is easy to check that there exist A7, ..., A} such that A} € A(M;) and B; = AJ[2/z].
By Lemma 4.2, there exist Aj,..., A,, respectively approximants of Mj, ..., M, such
that A, < A; and AY < A;, therefore C[A] Jm since C[A] —m C'[ A, Alz/z]], and
B; < Ai[2/x].
2. Co = [|i-
Here C[M ] = M;C1[M]---Co[M]. If I = 0 then M, is an abstraction, and C1[ M|,
.., Cp[ M ] are susbtitution items. In this case we let A, = w(M;), and A; = Q for
any j # i. Otherwise (I > 0), there are three cases, according as M; is a normal form
(with respect to —;) or not:
(a) Mi =z M'.
Let us assume, for simplicity, that C; is an argument context D™ (otherwise we
have to use = to push the context C; under the abstraction Az, as in the case
(1)). Then the normalizing derivation of C[M ] is of the form
C[M] —m M'(DIM]™ [2)Co[ M-~ C M] Y

We let C" = [Jp41(D™/2)Cs - - - Cy, so that for any Ex,...,E, where E; = Az E
such that C[En,..., E,] is closed, we have C[E, ..., E,] =m C'[E1,...,Ey, E].
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By induction hypothesis, there exist approximants A1, ..., A}, of My,..., M,, M’

such that C'[A"] Um. We let A; = A} for j # i, and let 4; € A(M;) be
such that A, < A; and AxAp,41 < A;. Such an A; exists by the Lemma 4.2,
since AzA,+1 € A(M;), and we have A, = AzB for some B > Apt+1. Then

C[A] —m B(D[A]™/4)Co[ A]---C,[ A], therefore C[A] Jm.
Mz’ = l‘Ll Lq
In this case, there exists j < n such that C; = (D™*!/z). Without entering into

the notational details, one can see that the normalizing derivation of C[ M ] is of
the form

C[M] =m (DIMIL'T - L')Qy -+~ Qoa (DIMI™ ) - Co [ M] Ui

where z is fresh and L1,..., L; and Q1,-..,Q;—1 are respectively obtained from
Ly,...,Lyand Cq M. .., Ci-al M ] by renaming some variables (which are bound
in C[]\Af ]) with fresh ones. It should be clear that we may find a context C' and
renamings ﬁ, ..., Ms such that

C'[M,LM",... M) = (DIMIL'Y - L'?)Qu Q1 (DIM]™ /) -+ Co [ M]
By induction hypothesis, there exist approximants
Al ALLAY, AR By, B,
ofMl,...,Mp,...,Mlh,...,M[’},...,L'l,...,L;, with 1 < h < s, such that
C'[A",B,A',... A Im
Obviously, for some appropriate renamings Bj, ... ,B; of By,...,By, the term

xBy -+ By is an approximant of M;. We use again the Lemma 4.2 to conclude.

If M, is not a lazy normal form, then the normalizing derivation of C[]\’Zf/ ] must
start with a reduction of M;. We have shown in [5] that in this case there exists
M' € A such that M; —; M’ and M'Cy[M]---C,[M] ¥, with I’ <1 —1. Then
we let C' = [|p41C1 - - - C,, and we use the induction hypothesis and the Lemma
4.2. ]

The Approximation Lemma holds in particular for any A-context C' (that is, more accurately,
with infinite multiplicities) and in this case the lemma is a particular case of Lévy’s Lemma
5.7 in [8] that his preordering C, is a precongruence, which he proved using the idea of
Welch that inside-out reductions are complete in some sense (see [3]). However, the proof
we give is, to our view, simpler. One should remark that we make an essential use of the
construct of ezxplicit substitutions, in the cases (1) and (2.a).

As a corollary of the Approximation Lemma, we can now prove the adequacy result
mentioned above, relating Lévy’s interpretation to the observational preorder:
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Theorem 4.5 For any A-terms M and N
MCE,N = M=<nyN

PROOF: Assume that M T, N and C[M] |, with both C[M] and C[N] closed. Then, by
the Approximation Lemma, there exists A € A(M) such that C[A] ym. By definition of C,
we also have A € A(N), therefore C[N] |m by the Approximation Lemma again. [ |

5 The characterization of the discriminating power of
multiplicities

We have seen that Lévy’s preorder cannot coincide with the restriction of <, to A-terms.
In this section we aim at characterizing this observational preorder as an ordering on Lévy-
Longo trees, or more accurately as an intensional ordering on A-terms. We already indicated
that the reasons for the above discrepancy are the absence of a top element in C, and that »-
expansion is not C c-increasing. Therefore it is necessary to weaken the intensional preorder
C. into another one, taking into account these features. This was done by Ong in [13]
(Definition 3.4.1.1), who called lazy Plotkin-Scott-Engeler preorder the following preorder:

Definition 5.1 The preorder M T} N on A-terms is given by

MCLN &5 VkeN. M <! N

where <] is defined as follows:
1. M <] N for any M and N;
2. M <}, N if and only if

(a) N € POy or
(b) M € PO, and N =g Azy -+ Tp. N" with m > n, or
(¢) M =g Axy...xp.xMy-- - M; and N =g Ax1...2001 ... Y- N1 - - N:Y1--- Y}
for some Ni,...,Ns and Y3,...,Y; such that M; <7 N; and y; <]'Y;, with
k VRS
y; & tv(xzMq--- My).

In the clause 2(c) of the definition we implicitly assume that the variables z1, ..., Zn, Y1, .., ¥s
are distinct. It is easy to check that <} and C7 are indeed preorders. Moreover, it should
be clear that

M=N & MC}]N&NC} M

since M T, N = M <] N for any k. A remark on the notation: we should have used

EZ’T rather than C7 (and similarly for <}) to indicate the two ingredients added to Lévy’s
preorder. We will content ourselves here using the simpler T} — as a matter of fact, the
main difficulties come from 7-expansion.
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Example 5.2 Recall that Wadsworth’s combinator J satisfies J =g Azy.x(Jy). It is equal
to the identity in Scott’s Do model of the A-calculus. One can check that z <] (Jz) for any
k, therefore I T} J. On the other hand J Z}. 1, since Jz £7 z. Note that these two terms
are distinguished in the lazy A-calculus, since JQ2 |y while IQ fyp. We let the reader check
that A" L} A (see the Ezample 3.8), and that the least index k such that A" L] A is 2. This
is the level at which their Lévy-Longo trees differ.

The following properties should be obvious:

Remark 5.3

L. M<] N = M<]N;

2. M'=3 MCLN=5N' = M CL N
3. M<]N = XxM<]\N.

We shall use the fact that the preorder C7 is in some sense a fixpoint. More precisely, we
will use the following:

Proposition 5.4 If M T} N and M =g A2y ...2m.xM;y--- M, then either N € POy
or N =g Xz1...2m¥Y1 ... ys.xN1 -+ NY1 - Y, with y; & fv(aMy---M,), M; C} N; and
y; E2 Y.

PROOF: Assume that M C} N and M =g Az1...zpm.cM;y---M; and N ¢ POs. Then
for any k there exist NF,... Nk ;. ... y; not in fv(zM;---M;) and Ylkv"'th]Z such
that N =g Az1...2m¥1 - .. Y, .o NT NslekY;’i with M; <] NF and y; <] Y]-k. By the
Church-Rosser property, ty = tn, N} =3 N} and Y =g Y for any k, h. Then by the
remark above, we may let N; = N and Y; =Y. ]

Before proving our characterization result, establishing that <m and T} coincide over \-
terms, let us first point out a source of trouble. It is not very difficult to see that, if both
A and B are approximants, then A C7. B if and only if there exists an 7-expansion A" of
A (2) such that A’ < B (the “only if” part may be proved by induction on B). However, it
is not true in general that if M C} N, then for any approximant A of M, there exists an
n-expansion of A which is an approximant of N. For instance, we have A(z) = {Q,z } and

AJz) = {Q, Mo, M\yo-zQ, Ayo.zAy1Q, Ayo.zAy1.y0, ...}

therefore, although z C} Jz, there is no A € A(Jz) such that z T} A. The fact that we
cannot express T in terms of approximants is one of the main difficulties in proving our
characterization theorem. There are two main points in the proof: the cruz lemma, solving
the afore-mentioned difficulty, and the separation lemma.

2M’ is an n-expansion of M if it results from M by a sequence of rewriting steps N — Az(Nz), where z
is not free in N, performed in any context.
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Lemma 5.5 (the Crux Lemma) 2C} X = z <, X.

It is possible to give a direct proof of this lemma, showing that C[X] {m if z C} X and
C[z] Um, see [7]. However, this proof is quite difficult and technical (hence the name of the
lemma). In this paper we give an easy proof, using a result established in [5], namely that
there is a functional interpretation of the A-calculus with multiplicities which is adequate
with respect to the observational semantics. Since we do not deal with this functional in-
terpretation here, we defer the proof of the Crux Lemma to the Appendix A. We note an
immediate consequence of this lemma:

Corollary 5.6 Forany A€ N, ACTI M = A<m M.
PROOF: By induction on A.

1. f A=Ay ...2,.Q, that is A € PO, then M € O,, for some m > n, and it is easy to
see that A < M in this case, since Q@ < X for any X (see the Proposition 3.5).

2. If A= Azy ... 2. xA; - - - A, then , by the Proposition 5.4, there are two cases: either
M € PO, in which case A <m M is obvious (see the Remark 3.10), or M =g
AZL . Tt Y My - MYy oYy with Ay ©) M; and y; T} Y. By induction
hypothesis A; <m M,;. Moreover, by the Lemma 3.6 (n-expansion is increasing):

A=m A2y - Tm¥1 - - - Y- TAL - Asy1 - U

Then we use the Crux Lemma, that is y; <m Y; for 1 < ¢ < ¢, and the fact that <y, is
a precongruence to conclude. ]

The second key lemma, the separation lemma, states that if M and N intensionally differ
at some finite order, that is M £} N, then one can test the difference in the Am-calculus.
That is, there is a Am-context C separating these two terms, in the sense that C[M] {m
while C[N] ftm. The proof, which is long and technical, uses a refinement of the classical
“Bohm-out technique” (see [3]). As such, it uses the tupling combinators

P, =M1 Tnt1- o121 Tny
and the associated projections
Ul =Az1 - 2n. 25

Then we show that if M £} N then M and N may be separated by means of a context of
the form
0®Pa™ /1) Pa™" [p) P Pr

where the bags P;’s are either P,™, where m is finite, or (U?)*, or 2%, and the m,’s are
finite. Let us call canonical a context of this form.

Lemma 5.7 (The Separation Lemma) Let M, N € A be such that M £] N for some k.
Then there exists a canonical context C € Aml[] closing both M and N such that C[M] Im
and C[N] ftm-
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The proof is given in the Appendix B. Let us just recall here Bohm’s extraction technique:
assume for instance that

M = lx.x N = Jlzx
/N /N
T 7 T VA
N\ /7 N\
X Y X %4

where Y is “obviously” not greater than V — for instance Y = Q while V is a value (we
assume that X, Y, Z and V are closed). Then one would like to find a context C' extracting
the difference, showing up Y from C[M], and V from C[N]. Since Y and V are the second
arguments of z in (zXY') and (zX V), one should substitute U3 for the second occurrence of
x in M and N. However, we cannot simply use the context [|[U3, since  occurs in the head
position in M and N. In this position, the difference is in the first argument, so that we
should use here U? for x. The solution is to first replace z by a tupling combinator, namely
P, (because z is of arity 2 in M and N), since then the abstraction on z will be replaced
by a series of new abstractions, one for each occurrence of x, as it is clear from:

MPy; =5 Izz(AyyXY)Z
NPy, =5 Xzz(AyyXV)Z

Now we can apply these terms to the sequence U2U2 to achieve the desired extraction. Note
that a complication arises whenever x also occurs free in the pair of subterms that we want
to extract, because this variable will be replaced by a tupling combinator. For instance,
as we will see in the Proposition 6.1, using A-contexts cannot allow us to separate the
two terms Gi = Az.z(2QQ)(z(zQQ)Q) and G = Az.z(zQQ) (z(Ay 202Qy)Q) — the reader
is invited to draw the trees: both G1P2U3U?% and G2P>U2U? converge, respectively to
(zQO)[P2/z] =g Az.2QQ and (Ay.zQ0Qy)[P2/z]. A similar, simpler example is provided by
the pair A = Az zz and A’ = Az z(\y zy) of A-terms of Example 3.8. This is where we use
the multiplicities, basically by allowing only a finite amount of tupling combinators.

We must point out that the separation lemma is the only occasion where we really need
the power of finite multiplicities. In the basic case where M £] N, it turns out that M
and N are already separable in the lazy A-calculus. However, it is important to be able to
give in this case a resource of multiplicity 1 for the head variable (if any). Then to prove
by induction the separation property for M £ 41 N, we just increase the multiplicity of
the resource for the head variable by one. The discussion above should also indicate that,
as regards affine A-terms, the multiplicities are harmless: for such terms, any bag E™*! is
like E* since E will never be used more than once (E° is always like 2°°, since deadlock
and divergence are identified). That is, one may prove (see [7], and the Appendix B):

Lemma 5.8 (The Separation Lemma, Affine case) Let M and N be affine A-terms
such that M L] N for some k. Then there exists a A-context C closing both M and N such
that C[M] 4m and C[N] ftm. That is, M <, N = M C} N for M and N affine A-terms.
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Now we can establish our main result:
Theorem 5.9 Let M and N be A-terms. Then M T} N if and only if M <m N.

PRroOOF: The implication “<” is the Separation Lemma. For the converse, assume that
M C7 N and C[M] Jm. Then by the Approximation Lemma there exists A € A(M) such
that C[A] m. Clearly A C} M, therefore A T} N, hence C[N] {m by the Corollary 5.6. B

An obvious corollary of this theorem is:
Corollary 5.10 M =, N & M ~n N.

We mentioned in the introduction that Sangiorgi showed in [14] that the equality of Lévy-
Longo trees =, also coincides with the equality ~, induced by the m-calculus over A-terms.
We can then conclude that, as far as equality of A-terms is concerned, the w-calculus and
the Ay-calculus have the same discriminating power:

(%) M~ N& M~y N & M= N

for M, N € A. At first sight, this may be surprising, since the latter is a deterministic calcu-
lus. Then one could interpret this result as meaning that parallelism is of little use in sepa-
rating A-term: what is important is to be able to distinguish the successive appearances of a
given variable in the head position. As shown by Bohm, the A-calculus provides part of this
ability. But it generally fails distinguishing subterms like xMj - - - My and Ay.xMj - - - Myy,
and this is where limited resources are useful.

Regarding the affine A-terms, it is easy to see that the various preorders we considered
(except Lévy’s one) collapse down to =<,. Obviously one has <, C =, therefore EZ )
by the Theorem 5.9, while the other inclusion is the Lemma 5.8. Therefore, we have:

Theorem 5.11 Let M and N be affine A-terms. Then
MCIN & M2a N & M=, N

In particular, for affine A-terms, the w-calculus, as well as the Ap-calculus, is not more
discriminating than the usual lazy A-calculus, that is:

() M~ N & M~N

for M and N affine. The results (x) and (*x) provide a justification for our initial idea, which
was to introduce multiplicities as a means to study the relationship between the w-calculus
and the A-calculus. Moreover, it looks somewhat easier to use applicative Am-contexts to
show the equality or difference of A-terms, rather than 7-calculus contexts — this is not quite
fair, however: the simplest way is to draw Lévy-Longo trees!
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6 Convergence testing and parallel features

Our sentence that “parallelism is of little use in separating A-term” sounds contradicting
the idea that, according to Plotkin and Abramsky, some parallel features are missing from
the A-calculus. In this section we discuss this point.

In investigating the full abstraction problem for the lazy A-calculus, Abramsky found out
that this calculus is not expressive enough. The problem is the following (see [2]): there is a
canonical denotational semantics, in a domain satisfying D = (D — D), , which is adequate
for the lazy A-calculus, but the semantic preorder it induces is strictly finer than the obser-
vational preorder <,. In other words, lazy A-contexts are not powerful enough. Abramsky
showed that it is necessary to add some “convergence testing” and parallel facilities to gain
the same discriminating power as the denotational semantics.

Let us recall some definitions and facts regarding the convergence testing combinators.
Abramsky and Ong established the non full abstraction result by showing that the two A-
terms A; = Az z(z(AyQ)Q)(A\yQ) and Ay = dxz(Azz(AyQ)Q2)(A\yQ) are observationally
indistinguishable, whereas they are denotationally different. Their difference shows off once
one adds to the calculus a (sequential) convergence testing combinator. That is, we enrich
the syntax of A-calculus with the following clause:

M = - | (cM)

(this is not exactly the way taken in [2], where a constant C is considered; this may be
defined by C = Az(cz)). The extended set of terms is A, and the reduction rules are those
of the lazy A-calculus plus the following ones:

M — M
c(AzM) -1 -
cM — cM’

In this calculus, a value is still any abstraction. Then we can rephrase the notion of conver-
gence, denoted {}c, and those of observational preorder and equivalence, denoted <¢ and ~,
respectively. In this theory the two terms A; and A, above are distinguished, since A;C {jc
while A5C |Jc. These two terms are also distinguished in the A-calculus with multiplicities,
since A1(U?)! fpm while Ay(U?)! .

Extending the lazy A-calculus with a sequential convergence testing is not enough, ho-
wever. Abramsky showed that one needs to add some parallel facility. That is, the syntax of
A-calculus is now enriched with the following clause:

M = - | (pMM)

Again, Abramsky and Ong considered a combinator P, which may be defined by P =
Azy.(pzy). The reduction rules are those of the lazy A-calculus plus the following ones:

M—M ,N-—N

p(AzM)N — I pM(AxN) — I
pMN — pM'N'
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The function p is parallel because it looks at its two arguments simultaneously — and the
fastest to converge will win the race. We denote by |}p the convergence predicate in the
lazy Ap-calculus, and by <p and ~p the corresponding observational preorder and equiva-
lence. Abramsky showed (see [2], Proposition 7.2.10) that <p coincides with the semantical
preorder induced by the interpretation into the canonical domain D = (D — D), . In this
interpretation, the two terms A = Az zz and A" = Az z(Ay zy) of Example 3.8 are equal,
therefore A ~p A’. Note that one may let (cM) = (pM M), so that Ap is stronger than Ac.
Indeed, Abramsky and Ong give a pair of denotationally distinct Ac-terms (thus distinct in
Ap) that are not distinguished in the Ac-calculus.

Since we are studying various preorders over pure A-terms, one may wonder whether
there exists a pair of A-terms M and N satisfying the same property, that is M <c N while
M ZAp N. The answer is positive. That is, one can show that the theory =p, restricted to
A-terms, is strictly stronger than <.

Proposition 6.1 Let Gy = Az.2(zQQ)(z(zQN)Q) and Go = Ax.z(2QQ)(z(\y 2QQy)).
Then Gy ~c Gg, while G1P fip and G2P |p.

PROOF: Firstly it is easy to see that G1P {tp and G2P {p. Now we show that G; ~¢ Go.
This requires extending the notion of functionality order to the Ac-calculus. In fact, one just

has to modify the definition of proper order 0, as follows: M has proper order 0, denoted
M € POy, iff

M € 0§ and —[ 3k3z. ANy, -, Ny. M 5S¢ c(---c(zN1)Na - - )Ny |

Moreover, we use the property of Ac that M |c = M ~¢ Az Mz for any closed M. By this
property, we just have to prove that, whenever M Q2 {}c, the terms G; M and G M behave
in the same way, as far as convergence is concerned. The interesting cases are when M € Of
with ¢ < 2.

(M S 08) Both G]_M ﬂc and GQM ﬂc.

(M € 0Y)
If M € POS then it is immediate that G1M fic and GoM fc. Otherwise we have
M ~¢ Az (c(---c(zNy)Ny - - )Ny ). Then observe that

GoM  ~c M(MQQ)(M(\y.MQQy)Q)
~c (c( - e((MOQQ)NT) Ny - )Ny ) (M (Ay MOQy)Q) fhe

and
GiM  ~c M(MOQ)(M(MO)Q)
~c (e c(MQQ)NL)No - )N ) (M (MQQ)Q) fre
(M € 03)
The case where M € POS is again immediate. Otherwise, if M € OS \ POS then we
have M ~¢ Az1x2.(c(---c(yN1)N2---)Ni ). So we have two subcases, according to
y = x1 and y = x3. We leave to the reader to check that, in any case, G; M ¢ and
GoM frc. u
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The two A-terms G; and G, are also differentiated using contexts with multiplicities. Indeed,
it is easy to check that:

G,P,*(U3)' (UD)' m while G1P>*(U5) (U)' ftm

This example shows that contexts with multiplicities may simulate the use of parallel conver-
gence testing. This is a general fact, as we will see. This would be obvious if parallel conver-
gence testing were definable in the A-calculus with multiplicities. However, this is not the
case; in fact, sequential convergence testing is not even A\p,-definable, as we now show.

Lemma 6.2 There is no closed Am-term T such that for every E:

I E|
TE' ~ m
m { Q  otherwise

PROOF: We proceed as Abramsky and Ong [2], showing that for every E € A%:
E~nl or [EQ1 Im & EOyQ)! dm]

This is obvious if E € O with n # 1, or E € PO". Now assume that £ € O" \ PO[". Then
E 5n= \zF with F 5, 2Q1 - - - Q, where no Q; is a substitution of the shape (P/z). It
all the );’s are substitutions or £ = 0 then F ~p I. Otherwise, at least one (); is not a
substitution and (AzF)Q fm and (AzF)(AyQ)* fim. [ ]
It is indeed possible to show that the preorder =<p, restricted to A-terms, is weaker than
=m, see [7]. However, this turns out to be a consequence of our main result and of some
results by Ong. He introduced the lazy PSE-preorder to characterize the local structure
of some models of the lazy A-calculus. In particular, he showed in [13] a soundness result
(Theorem 3.4.1.3), and a consequence of this is that the lazy PSE-preorder C7 is adequate
with respect to the denotational semantics. In other words

MCLN = M=<p N

Then an obvious corollary of this and our characterization theorem (together with previously
mentioned facts) is:

Theorem 6.3 Let M and N be A-terms. Then
MmN = M N == MXN = M=N
Moreover, none of these implications can be reversed. The counterexamples are:
A" Am A while A" ~p A
where A = Az zx and A' = Az z(\y zy),

G2 ﬁp G1 while G’2 ~c G1
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where Gy = Ax.z(zQ0Q) (2(zQN)Q) and G = Ax.z(xQQ) (z(\y zQQy)Q),
A2 ﬁc A1 while A2 >y A1

where A1 = Az z(z(AyQ)Q) (M) and Ay = Az x(Az 2(AyQ)Qz2)(A\yQ). However, for M and
N affine A-terms, we have:

MZnN & MXpN & M=2N & M=, N

We may then conclude that parallelism is indeed useful in separating A-term, as far as the
purpose is to recover the canonical denotational semantics. For this purpose, introducing
finite multiplicities is not appropriate: they provide a discriminating power which is far too
strong.

We may also note another consequence of Theorem 6.3. In [4] we have shown that the
semantical preorder, that is, equivalently, the preorder < coincides with the observational
preorder on the A-calculus extended with convergence testing (cM) and non-deterministic
choice (M @ N) (or parallel composition (M || N), see [6]). For instance, the two terms Gy
and Gy of Proposition 6.1 are distinguished using non-deterministic choice: Go(U? @ U2)
has a value, namely Ay(U? & U2)QQy, while G1(U? @ U3) always diverges (one does not
really need the convergence testing ability in this case, and this is not surprising since these
two terms are equated in A¢). Then we may conclude that the A-calculus with multiplicities
is more discriminating over A-terms than non-deterministic choice.

A n-expansion and the Crux Lemma

In this appendix we prove the “p-expansion lemma” 3.6 and the “crux lemma” 5.5. To
this end we use a result established in [5], showing the adequacy of a functionality theory
with respect to the observational semantics. The functionality theory is an adaptation of
the “intersection type discipline” of Coppo et al. We refer the reader to [5] for the details,
and just recall here the necessary definitions and facts. There are two kinds of functional
characters, one for terms of the calculus, and another for the bags. These are given by the
grammar:

6 1= w| (r—9)

T ou= ¢ | (mxm)
The functionality theory is an inference system for proving sequents of the form z1: 71, ..., x5 7 F
E:¢ and zy:m,..., x5 - P:m. We use I', A... to denote the assumptions, that is se-
quences x1:71,- .., Xk Tk. Lhere is a first group of rules, related to the constructions of the
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calculus:
za, '+ E:¢ )
AN S bs): ——— tin I
(var): z:pFx: 0 (abs) ISV — (z not in T)
' E: AF P: :m, 'k E: Al P:
(app) : Toé, T (subs) : il ¢, T (z not in T')
I',Ar (EP):¢ L, AFE(P/g): ¢
'k E: 'k E™: AFE™
(singl) : LrBe (bag) : 0. n
F'FE:9¢ I,AFE™":my xm

Then there are rules independent from the structure of the terms, which hold for both Ap,-
terms and bags. In particular, there is a rule subsuming all the structural manipulations on
can make on an assumption. To state this rule, we write I' > A whenever A results from I'
by a sequence of structural manipulations. That is, > is the least preorder on assumptions
satisfying:

Fe:m,y:n’, A > T,y o:m, A (exchange)
r » «:n,T (weakening)
T:my, i, I > ximgxm, (product)

Moreover, we use a congruence ~ over formulae, given as the least one for which the product
mo X mq is associative, commutative and has w as a unit. Then, using T' to denote either a
term or a bag, and 7, ¢ to denote formulae of any kind, our last rules are:

r=T:r

(triv) : F T w (struc): ——— T'>A&7t~0

AFT:o
We shall use I' Fx T: 7 to mean that the sequent I' F T": 7 is provable in the functionality
system. For any term E, let us denote by F(E) the set of pairs (T, ¢) such that ' k£ E: ¢.
In [5] we proved the following Adequacy Theorem:

FE)CFF) = EnF

In the proof we established a property known as the “subject expansion” property. Regar-
ding A-terms, one may show a stronger property, namely that [-conversion preserves the
functional characters:

Lemma A1 M =3 N = F(M)=F(N)

PROOF OUTLINE: The implication M —g N = F(N) C F(M) is an immediate conse-
quence of the subject expansion property (Proposition 3.7 of [5]), and of the correspondence
between [(-reduction and Am-evaluation (see the proof of Proposition 2.8 in [5]). The in-
clusion F((AzM)N) C F(M[N/z]) is an easy consequence of the Lemma 3.4 of [5] (and,
again, of the correspondence between the notions of reduction). This implies the “subject
reduction” property M —g N = F(M) C F(N) since the relation F(E) C F(F) is a
precongruence. The lemma follows by the Church-Rosser property. [ ]
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Note that this lemma, combined with the Adequacy Theorem, shows the Proposition 3.7.
We shall also use another property proved in [5] (Lemma 3.3):

Lemma A.2 TI'Fx E:¢ if and only if there exists an assumption A on free variables of
E such that A>T and A Fx E: ¢.

Before proving the n-expansion lemma, we first observe the following:
Remark A.3 z:7wbxz™:7 for any bag formula m.

The proof, by induction on =, consists in noting that, for 7 = ¢, one uses (var), (singl),
(triv), (bag) and (struc), as follows:

ok xi g
ok at:p Fz>®iw

T:pF x> Xw

3RO ol A )

while for 7 = my x 71, we have, by induction on the formulae, and using (bag) and (struc):

z:mo F x> mg rim Fx®im

Timg, LM Faw

Tk x®:nw

Now the Lemma 3.6 is established, thanks to the Adequacy Theorem above, once we have
shown:

Lemma A4 Tkxr E:¢p = ThxAx(Ex™):¢ for any ¢, provided x is not free in E.

PRrROOF: By the Lemma A.2, one may assume that z is not in I'. Then one proceeds by
induction on ¢. The statement is trivial for ¢ = w, by (triv) and (struc). Otherwise, ¢ =
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7 — 1, and, using the Remark A.3 and the rules (app) and (abs), we have:

Al o ol o r-EB:r—v

z:m, T'F Ex™:¢

TFMNEz™): ¢

This completes the proof of E <m A(Ex™). [
Now from the Adequacy Theorem above, to prove our Crux Lemma it is enough to show:

As a matter of fact, one can note that I' Fx x: ¢ holds basically as an instance of (triv) or
(var):

Lemma A.5 T Fx z:¢ if and only if either ¢ = w or z:¢ > T for some ¢ such that
¢~

PRrROOF: The “<” direction is obvious, given the rules (triv), (var) and (struc) of the func-
tionality system. The converse direction is easily established by induction on the proof of
[+ z: ¢, which can only be inferred using (triv), (var) or (struc). [ |

Given this lemma, we may reduce our task to show:
Lemma A6 zC} X = x:¢bxr X:¢

We proceed by induction on the size |¢| of the formulae, defined as follows:

lw| = 0
T —¢| = 1+ x| +|d]|
|To X M| = |mo| + |m1]

First we note the following:

Remark A.7  If the lemma is true up to size k, that is: |¢| <k & 2C} X = z¢btr
X:¢ then
Tl <k&zCLX = winbyr X<:7

The proof is essentially the same as that of Remark A.3, replacing the use of (var) by a call
to the hypothesis z: ¢ Fr X: ¢.

The statement of the lemma is obvious for |¢| = 0, that is ¢ = w, by (triv) and (struc).
Otherwise, we have ¢ = (1 — (- = (7, > w)---)) and X =g A\y1 ... ym.2Y7 ---Y,, with

INRIA



The discriminating power of multiplicities 33

y; T} Y;, by the Proposition 5.4. By the Lemma A.1 (in fact, the subject expansion property
would suffice), it is enough to show that

zobrAy .. yYmxYr - Yo 0

We distinguish two subcases:

(a) m < n. Then, using the induction hypotheses, we have y;: m; Fx Y,*: 7, for 1 <i <m,
by the Remark A.7. Therefore, using the rules (app) m times and then (abs) m times:

yr:m EYorm TPtz

Yo:ma Y5y yr:m, oY iy — -, s w

Ym'! Tm F Y, 00,

msTmy---,Y1:71,T: 100"' ﬂio m+1 crrillin
Ym: T Yy1:m, 29 F 2Y] Yoo — Ty S W

2o Ay Y 2Y° Y000

m

(b) m > n. This case is trivial, since for any M and I", we have
m>n = Lrkrdy...ym.M:my — - T > w

This is because
Yni Ty ooy Y1:T1, L MYt oo o Y- M w

by (triv), and then one uses (abs) repetitively. [ |

B The Separation Lemma

In the proof of the lemma, we shall use ¥, = ... to denote sequences of substitutions
(Pi/g,} - (Pn/gx,). More precisely, when we write EX where ¥ = (P1/g,) - (Pn/x,) this

must be read (- (E(P1/2,)) - (Pn/z,)). We recall that P, = \zy -+ Zpy1. Tng121 -« T

Lemma 5.7 (The Separation Lemma) Let M, N € A and fv(M)Ufv(N) C {x1,...,Zn}-
If M £} N then there exists p1,...,p, and m,...,m, in N such that for any ¢, ..., g, with
¢; > p; there exist closed bags Py, ..., P, with M(Py,™ /2) - (P, /2, )P -+ - Pr ym and
N®Pu™ [z1) - (Pa™ /2,)PL Pr .
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ProoF: We proceed by induction on k, assuming that k is the least integer such that
M £} N.

1. k = 1. We systematically examine the possible cases, according as M € PO,,, for some
m or not (i.e. M has a head normal form), and similarly for N.

(a) If M € PO,, and N € O, with h < m, we let m; =0 and p;, = 0 for any i, r = h
and P; = Q (that is, more precisely, P; = Q2% — recall our convention that the
omitted multiplicities are co) for any j < r.

(b) If M =5 Az1...2pm.2M;y--- My and N € PO, with h < oo, there are two sub-
cases. In any of these sub-cases, r will not depend on ¢, ..., ¢n.

i. If x = z; for some i < n (therefore x ¢ {21,...,%m}), then we let m; = 0
and p; = 0 for j # ¢ and m; = 1, and p; = s+ (r — m) where r = max(m,h),
and finally P, = Q for 1 < j < r. Let ¥ = (Py,°/z,) - (Pe."/z,,) and 5 =
(Pi/z) - (Pm/2,,)- Wehave, using the fact that L{K > /) >~ L[K /y], as shown
in [5]:

(MPgy,™ [1) - (P ™" [2,)) Q-

~m (A2 2 (Py My M)Z)Q- - Q)

~m (Py My M)EE)Q---Q

~m AYpi+1 - 'yQi+1'((yQi+1M1 e M Qypga - 'yQi)EE)

while

(N<PQ1M1/1;1)-'-(Pqnm"/xn))Q...Q '

T

since N ~m Avg...vp.Q and 7 > h.

ii. If © = #; for some i < m we let m; = 0 for any j, r = max(m,h) and P; = Q
for j # ¢, and P; = Ay ...y;.y where [ = s + (r —m) + 1. We have, if we let
T =P gy) - (Pa."" [,), and Z = (P1/2) -+ (Pm/ 2,,):

(M(P,™ [z} -+ (Po, ™ [2,)) 2+ Q01 - )2+ Q

v

~m (Az1..ozm(ziMy - M)X)Q- - QAyr -y ) Q- Q

~m (Ayg - yy)My---M)EE)Q---Q >~y 1

T—m
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and (N(Pg,™ /2,) - (P ™" /2,))P1 -+ - Py fim as in the previous case.

If M =g Ae1...2;mxM;---M; and N =g Az1...25.2N;1 -+ Ny, there are again
several sub-cases.

i. h < m. This case is similar to (1.a) above.

ii. If h > m, we distinguish again two sub-cases. Notice that, by a-conversion, we
may assume z; € fv(x My --- M;) for m < j < h.

ii.1 If z # z, then either z is free in M, that is z = z; for some i, or = z;
for some i < m. These cases are respectively similar to (1.b.i) and (1.b.ii) above
(note that if z is free in N then z = z; with j # 4, and m; = 0).

ii.2. If z = z then the only possibility is t # s + h — m, and still we may have
either z = x; with ¢ < n or x = z; for some i < m. Note that if z = z; we may
assume, by a-conversion, that x # z; for m < j < h (otherwise we are back to
the previous case). Therefore there are four sub-cases:

ii.2.1. Ift < s+ h—mand z = z;, we let m; =0 and p; = 0 for j # ¢ and
m; =1, p, =s+h—m. Now if q1,...,¢q, are such that g; > p; for any j, we let
r=h+gqg —t+1, Pj=Qfor j#h+¢ —p;,+1 (note that h+¢; —p; +1 <r
since t < p;) and Pryg—p;+1 = AY1 -..Y1-y; where | = ¢; +p; —t + 1. Let ¥ and
Z be as in the case (1.b.i). We have — in the underbraced parts, we only count
the number of arguments, not of substitutions:

(MPo™ [ay) - (Pa™" [2,)) P+ P
~m (A21...2m.(Py My M)E)P, - P,

~m ((Pg; M: "'MS){E)Pm+1 o Phr o Prtgi—pi1 - B

~
pi qi—pitl pi—t

S (Patgimpis My MoQ - Q)TE)Q - Q T

~
qi+p;—t

while
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(NPo.,™ [ay) -+ (Pg. " [z, ))PL- - P,
~m ()\21 .. 'Zh-(PqiNl .- Nt)E)Pl ... P,

~m ((Pg Ni---N)ZE)Piyr - Paggipisr - P

~
gi—pi+t+1 pi—t

~m (AN NQ---QXENQ - Prggi—pit1-- Q2 ~m Q
where &/ = (P1/2) -+ (Pn/z).
ii22. Ift<s+h—mandz =z, welet mj=0forany j,r=(I—t)+h+1
where [=h—m+s, Pj=Qforj#iand j #h+1, P, = Ay1 ... Yi+1.¥141 and
Pri1 =My .o v—p41.01—¢41. We have:
(M(Pq™ 21} (Pa™" [x )Py P
~m ()\lem(Z‘,MlMs)E)Plpr

~m (M- M)EE)Pmir -+ Poyr - P,
m (( \1 )v ) +1 P h+1

1 1—t

~m Put1- P ~q I
while
(NPo™ [21) - (Pa,”" [z, ) PL - Py
~m (Az1...2p-(z;N1 -+ N) XYP; - - - P,

=m ((P.L'Nl"'Nt)EEI)Ph_l_l"'Pr =m PT:Q
—_——

I—t+1

ii.2.3.If t > s+h—mand z = z;, welet m; =0and p; =0for j #¢and m; =1,
p; =t. Now if ¢i,..., g, are such that ¢; > p; for any j, welet r =g, —p; + h+1
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and P; = Q for any j <r.If welet I =7+ s —m (note that [ < g; + 1), we have:
(MPg," /z1) - (Pa "™ [z, ))Pr- - P,
~m (Ae1... 2. (P, My - M)X)Py--- P,

~m (PuMy - M)YXE)Pyi1--- Py -+ P,

qi—pi+1
“m Ayt Ygr1 (g1 Mr o MsProgr - Pryigr - Ygi41) ZE) Im
while
(N®Po,™ Jzy) - (P, ™" [ )P P,
~m (Az1...25.(PyNi---N)E)P; --- P,

~m (Py N1 N)XE)Ppy1--- P,
~———

qi—t+1

~m ((ON;---N)EE")Pyyr -+ Proy fim

ii.24.Ift >s+h—mand z =z (i <m), welet m; =0 and p; = 0 for any j,
andr =h+1, P;=Qfor j #iand P, = Ay1...Ys41.Y¢41. Let I = s+ h —m.

We have:
(M(Pq,™ [y} -+ (Pg. ™" [z, )) Py -+ Py
~m (Az1...2m.(ziMy - M)X)P, --- P,
~m (PBMi-- M)EE) Py --- P,
————
h—m+1
“m AYig2 - Yer1-Yerl Im
while

(NPu™ 21y (P ™ [zp,))PL- - Py
~m (Az1...zp.(z;Ny - - Np)X)Py--- P,

~m ((RNthQQ)ZEI)Ph+1 =m Ph+1:Q
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2. k > 1. Since we assumed that M <], N for any k' < k, the only possibility here is
M =g Az1...2mxM;---M; and N =g Az1...2m¥Y1 ... Ye. N1 --- N;Y7 - -- Yy, where
i & (M --- M), with M; £, Ny or y £]_, Y; for some [. Then there are four
sub-cases, according as = z; or z = z; for some i. We only examine two of them, the
other ones being similar.

(a) M; £] | Ny and = = z;. We have
V(M) UN(N) C{zy,. .20} U {21, oy 2m b U {yr, .ot}

and in fact fv(M;) C {z1,..., 2, U {21,..., 2m}. By induction hypothesis, there

s ! ! " I ! ! " 1
exist M1, ..o, Moy Mlyeees My Tl yevey Moy ANA L1y oo oy fhny WYy v ey iy HY s -yt
such that for any ki,...,Kn, K1,. ..y Ky KT, ..o, Ky With K > 75, k% > 7 and

Kk > w7 there exist Q1, ..., Q, such that, if welet X = (P ) (Prn" [2,.),
and = = (P /1) oo Py, " [ ) and T= (Poy™ [y} - (P [y,)

m

MYETQr---Qp Im

while
N EZETQq - Qp fim

Then the proof consists in finding a context C such that C[M] is essentially
M YXETQq---Q,, while C[N] gives N{EETQ1---Q,.

We let mj = p; for j # ¢ and m; = p; +1, p; = m; for 5 # ¢ and p; =
max (m;, s +t). Given ¢i, ..., ¢, such that g; > p; for any j, let Q1,...,Q, be a
sequence satisfying the property above for £’ = 7’ and k7 = 7). Welet r = p+h
where h =¢; + 14+ m — s, and P, ..., P, be the sequence defined as follows:

Pt if1<j<m
P R B ifm<j<t
J (M1 .. ougu)® ifj=h
Q- fh<j<r
Q> otherwise

This sequence is thus

Pio P, =Pyt Py Fn Pl Pt Q-0 PLQ1--Q,

m

qi—(s+t)

Therefore we have, if & = (Po,"* /,) - (Pa. " [ )y & = (Pat" [y} oo+ Py P [
and I' = (Pry™t [y ) -« (Pap™ [y,), and T = Py o yq) - (Pry™ fogg041)
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(b)
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(MPg,"™ [y} (P, [x,))Pr- - Py
~m ()\21 . “Zm'(PqiMl .. MS)E)Pl . ..PT

~m (Py, My M)EE)Popyr - P,

“m (AVspiat - Vg1 (Vg 41 M1 - Mavoqr -+ 06 ) ZET)) Prgigr - -

~m (Po My Myvgpr Vg (5402 Q) TET)Q1 -+ Q,

qi

~m (MEETQ - Qp ~m (MIZEDNQ1---Q, Um

while
(N®Po™ [a1) - (Pa.™" [2,))Pr -+ Py
~m Ayr... 9. (P Ny---N;Y1--- Y)Y E)Ppqq1--- Pr

~m (P N1+ NoYi---Y)EED) Pryiyr - Py

“m (Aspesr - Vg1 (Vg 41N - NV Yivoqaqr -+ 0g, )V ET)) Proggr -+

qi
~m (NIEEF)QI . 'Qp Tm

y €7, Yr and z = z;. We use the induction hypothesis, as in the previous point,
that is:

YWEETQ:L - Qp ~m P Q1 Qp Im

while
NYETQ1--Qp ftm

We let m; = p; and p; = 7; for any j. Now given ¢1,..., ¢, such that g; > p;
for any j, let Q1,...,@Q, be a sequence satisfying the property above for &/, = 7’
and k] = 7. We let ¢ = max(7},s +t) and r = p+ h where h =g+ 1+m —s,
and let Py, ..., P. be the following sequence:

P,



40 Gérard Boudol and Cosimo Laneve

7 I 1 7 ” "
Pﬂ',l/“"l ...Pqp’z-l— o Py Hm Pﬂ.,l,/“"l ...Pﬂ,m Q- QP,Q1Q,
q—(s+t)

where P, = (Auq ... ug;.us4+7)™. Then it is easy to check (in fact the proof in this
case is entirely similar to the previous one) that

(MPg," [zy) - (Po."" [z, )P P ~m Pw;’IL;,Ql"'QP
while
(NP, a1} (Pg,"" Jx NP1 Pr ~m NJZETQr---Q,

The remaining cases, where M; £ | Ny and z = z; or y; £)_, Vi and = = x;,
are left to the reader. [ |

The reader may have noticed that, in the base case (k = 1), we could have let m; = oo
instead of m; = 1. As a matter of fact, M and N are already separated in the lazy -
calculus whenever M «7 N, since we could replace the bags Pqi0 by Q2°°. However, we could
not prove the induction step (k > 1) if we had used A-calculus contexts for separating M and
N such that M «£] N. For instance, we have Ay.zy £7 z, which falls into the case (1.(c).i),
giving the separating context [J(I°/4), hence, using the induction step, we find [[(I' /%) to
separate A’ from A.

On the other hand, one may note that if M and N are affine, then in the case (k > 1) of
the proof, the head variable x cannot occur in My,..., Mg, Ny,...,Ns, Y1,...,Y; (and, by
the Church-Rosser property, one may assume that these subterms are affine too, since the
set of affine A-terms is closed by S-reduction). This remark may be exploited to modify the
proof in order to establish the separation lemma for affine A-terms, that is the Lemma 5.8.
The details are left to the reader (see [7] for a proof).
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