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Sur lelien entre
réseaux multiplicatifs
et
semantique cohérente

Résumé: On sait qu’un réseau admet une semantique cohérente cal culée comme
I” ensembl e de ses expériences, et ce méme en présence de laregle de méange (mix).
On démontre ici la réciproque: un préréseau est un réseau s et seulement s I’en-
sembl e de ses expériences est un objet sémantique — une clique de |’ espace cohé-
rent correspondant. De plus I’ interprétation des formules atomiques peut étre res-
treinte & un unique espace cohérent fixé dont la trame a quatre points. On montre
celaen transformant les lienscoupur e enlienst enseur . Si I’on traite directe-
ment des préréseaux avec coupures, alors on peut ains caractériser I'impossibilite
qu’ apparai sse une situation blocage dans le préréseau réduit. Ces résultats sont par-
ticulierement opportuns pour les expressions de preuve d’ Abramsky, et sont éendus
au calcul ordonné.

Mots-clé: Logique, théoriedeladémonstration, logiquelinéaire, réseaux depreuve.
Sémantique dénotationnelle.



Coherence semantics and multiplicative proof nets 3

1 Introduction and reminder

We tried to be self-contained, in particular regarding experiments since they have
not be taken up again since the original paper on linear logic [Gir87]. Nevertheless,
in particular for proof nets, it may be worth to have alook at [Gir87, Tro92]. The
next two subsections may be skipped by the reader familiar with proof nets (1.1)
and experiments (1.2).

1.1 Multiplicative proof nets

We deal here with multiplicative proof nets [Gir87] with the mix rule [FR94]. We
use acharacterisation alaDanos-Regnier [DR90, Tro92], where proof structuresare
graphs. Following [FR94] we use the following:

Definition 1 A path of a proof structure is said to be feasible whenever it does not
contain the two edges of the same par -link.

Inthisformalism, the mix proof nets are defined as the multiplicative proof struc-
turessuch that any switchingisan acyclic— but not necessarily connected — graph,
i.eaforest, or aswe prefer, asthe multiplicative proof structureswithout any feasible
cycle. They exactly correspond — see [FR94] for a proof — to the linear multipli-
cative sequent calculus enriched with the mix rule:

FTFA
-1, A

mix

Throughout the paper, we assume al axi omlinkstobe A~ A+ with A atomic, as
the n-expansion property for proof structures and nets allows.

1.2 Coherence semanticsand experiments

The starting point of this note is the so-called experiment method of [Gir87], §3.17,
§3.18 for computing the coherence semantics [Gir87, GLT88, Tro92] of a proof di-
rectly from the proof net.

RR n° 2430



4 C. Retoré

Definition 2 A coherence space A is a smple countable graph. The set of its ver-
ticesisdenoted by | A| , and called the web of the coherence space; vertices are cal-
led tokens. Adjacency which is a symmetric and anti-reflexive relation in a smple
graph is called strict coherence and “ = and y are adjacent in the coherence space
A” iswritten =~ y[A]. The following shorthands are convenient:

x Cy[A] : @ = y or z " y[A] —coherent
x X y[A] : not ™ y[A] —incoherent
x> y[A] :  # y and not (x " y[A]) —strictly incoherent

Thedual A+ of a coherence space A is defined by itsweb [A+| = |A[, and its
strict coherence: =~ y[A1] iff z - y[A] — At isthe complement graph of A.

Definition 3 An interpretation is a choice, for each propositional letter A of a co-
herence space (also denoted by A).

Remember a binary connective « is a functor which defines a new coherence
space A « B from two aready built coherence spaces A and B. Therefore, an inter-
pretation associates to each formulae a coherence space. A multiplicative (binary)
connective is a connective x such that theweb |A « B|is|A| x |B|, and they are
exactly three such connectives [Ret93b, Ret95]: @, p, < which are all associative,
while only the two first ones are commutative.

(z,y)C (2, y)[A®B]iff © C 2'[A] and y C y'[ B]
(z,y) " (", y")[ApB] iff 2~ a'[A] or y~y'[B]
(z,y)~ (2", y")[A<Bliff (27 2'[A] and y = y') or y~y'[ B]

Definition 4 An experiment of a proof structure I1 is a labelling of the nodes of the
proof net —i.e. of the occurrences of formulae appearing in the proof net. The label
of anode A isatoken, say a, of the web | A| of the coherence space A, and we write
a : A for this. An experiment is obtained as follows:

o for each axiom A~ AL we arbitrarily choose a single token
a € |A| = |A*| which istheir common label:

a: A a: At

and this completely determines the experiment.

INRIA



Coherence semantics and multiplicative proof nets 5

o theselabelsare spread all over the proof net, from the premises of links to their
conclusions as follows.

Let « € {p,®}. If the label of the left premiseisu € |A| and the label of the
right premiseisv € | B| thenthelabel of the conclusion A* B is(u, v) —which
belongsto |A x B| = |A| x |B|.

x: A y:B
NS
(z,y): Ax B

Definition 5 Theresult of an experiment £ isthetuple|E| = (¢4, ..., t,,) Of thetokens
t; labelling the conclusion nodes: ¢, : Fi, ....,andt, : F),.
An experiment is said to succeed whenever in each cut -link the two labels are
equal:
t:F_t:F*
Two experiments & and &, are said to be different experiments whenever there
exists a node on which the two labels differ, i.e. whenever they use a different token

for the same axiom — this does not mean that |£;| # |£,].

The semantics of a proof of Fi,..., F, is a clique of the coherence space
Figp...pF, —Ii.e asetof pairwisecoherent tokensof thecoherence space F p...p F,.
The semantics of a proof isinvariant with respect to cut elimination — we are spea-
king of denotational semantics. Usually, it is computed by induction on the sequent
calculus proof. The experiments method provides an aternative way to compute the
semantics of a proof:

Theorem 1 ([Gir87], 3.18) Let II be a proof net with conclusions F1, ..., F,. Let
||ITT]| be the set of results of succeeding experiments of II with respect to an inter-
pretation. Then one has:

e If & and &, are two different experiments of 11 then |&;| | &, | and therefore

|IL|| is a clique of Fip..pF, — notice that in the proof net case
& # & = |&] # &)
e whenever II reduces to II’ by cut-elimination, then ||II|| = ||II’||, and since a

normal proof net always possesses a non-trivial semantics, so does any proof
net.

RR n° 2430



6 C. Retoré

We made few dlight changesto the original presentation of [Gir87]:

we spread | abellings from axioms to conclusions and not the converse

we define experiments for all proof structures and not smply for proof nets

we are working with the mix rule

we use a correctness criterion ala Danos-Regnier

The reader should not worry about that: Girard’s original idea straightforwardly
applies. Moreover, the proof for an even bigger calculus, implying theorem 1, ista-
ken up again from [Ret93b, Ret95] in appendix.

1.3 Contents of the paper

When proving the previous theorem, the argument makes such an intensive use of
the correctness criterion, that we start thinking the converse istrue. Noticing that:

e coherence spaces naturaly interpretsthe mix rule
e experiments could be defined for proof structures as well
e asfar ascorrectnessis concerned cut -linksmay beviewed ast ensor -links

we obtain the converse that we prove in section 2.

Definition 6 Here are the two dual coherence spaces! N = 7+ and Z = N+:

p € p €

Nz S

a r a

r

An NZ-interpretation is an interpretation in which any atomic formula is inter-
pretedasN or asZ.

! These are funny coherence spaces: N islinearly isomorphicto Z = N+, and it is the smallest
coherence space which is not definable from 0 and 1 with the binary connectives &, &, ®, ¢, <, nor
with any kind of n-ary multiplicative connectives.

INRIA



Coherence semantics and multiplicative proof nets 7

Theorem 2 (correctness)

Let IT be a cut-free proof structure with conclusions F1, .., F,,
let V be any NZ-interpretation,
let £ be any V-experiment of II.

IT is a proof net if and only if any other V-experiment &, satisfies
|E1| C |&|[FipFs...pF,] —and therefore |E; |~ |&;|[FipFs...pF], Sinceit isa cut-
free proof structure.

Our result also appliesto non-cut-free proof structures, since a proof structureis
aproof net if and only if the proof structure obtained by replacing thecut -linkswith
t ensor -linksisaproof net too. Neverthelessitisworth looking directly at non-cut-
free proof structures, since this direct study allows usto semantically characterise a
property that we call deadlock freeness.

Thisproperty already appeared intheworksof Lafont on interaction nets[Laf90,
Laf94]; since we deal withwell typed netsthisisthe only case of deadlock that may
appear, and our notions agree. This property aso appeared exactly aswe defineit in
the work of Abramsky on proof expressions [Abr93] whereit iscalled acyclicity —
but this nameis a bit misleading when dealing with proof nets.

Deadlock freeness corresponds to the absence of loop — cut on an axiom — in
the reduct, i.e. to the possibility for the proof structure to interact with others.

Theorem 3 (deadlock freeness)

Let IT be a proof structure with conclusions F1, ..., F},,
let IT* beitsreduct,

let V be any NZ-interpretation,

and let £ be any succeeding V-experiment of 11.

Then

e Il isdeadlock free, i.e. I1* is loop free if and only if any different succeeding
V-experiment &, of 11 satisfies |, | # |&;]

RR n° 2430



8 C. Retoré

e [I* consistsin a proof net plus some — possibly no — loops if and only if any
different succeeding V-experiment &, of Il satisfies |£;| C |&;|[Fip...pFy)

e II* isa proof net if and only if any different succeeding V-experiment £, of 11
satisfies |E1 || & |[Figp...9F)

Thistightensthe relation between coherence semantics and multiplicative proof
nets, and isakind of completeness result for linear logic. These resultstherefore add
anew facet to completeness results obtained via game theoretical semantics[AJ94],
and totality[ VdW89, VdW90, Loa94]. Althoughweapriori believed in thistheorem,
we were actually surprised that, in order to useit to decide whether aproof structure
is a proof net — hence a proof — the interpretation does not need to vary, and can
even be fixed (almost) a convenience. In particular, fixing any atomic formulaeto
be the same given finite coherent space N, one gets an algorithm out of proof. This
algorithm consists in finding among a finite number of experiments two incoherent
ones — and moreover, one of the two can be arbitrarily fixed! Even though this al-
gorithm is an exponential one and quadratic ones are already known for checking
the correctness of a proof structure [Gir87, Dan90, Ret934] , it is quite unusual to
get an algorithm for a syntactical property from denotational semantics.

This property is quite useful for proof expressions of [Abr93], sinceit allows a
direct (semantical) characterisation of the ones coming from proofs, and of the acy-
clic onestoo. It should be noticed how close proof expressions and experiments are.

Finally,using similar arguments we show how our result aso appliesto the mul-
tiplicative calculus of pomset logic [Ret93b, Ret95].

The proofsare sometimes redundant or straightforward, but | prefer to givethem
in full details.

2 Thesemantical characterisation of correctness
Notation 1 During this section:

e V denotes a given but arbitrary NZ-interpretation,

¢ Il denotes a cut free proof structure with conclusions 1, ..., F),

e & isagivenbut arbitrary V-experiment of IT —any experiment succeeds when
thereisno cut -link.

INRIA



Coherence semantics and multiplicative proof nets 9

Notation 2 Given a node A of a proof structure, and two of its experiments £; and
&, write A:~ for the two tokens ¢; and ¢, labelling the node A according to &; and

&, satisfy ¢, t,[A] —the same apply for A:~, A1 <, A=, ...

Proposition 1 Let A, Ay, Ay Ay ..and A,~ A bea family of axioms of II
(hence all the A; are atomic), and let ¢ and ¢ be two functions from [1, p] to
{Ala A%v A27 Aé_7 Ty Ap7 AZJ)_} such that {¢(p)7 ¢(p)} = {Ap7 APJ_}'

Then there always exists another V-experiment &, # & such that
¢(i):~" 1(2):~, and, for any axiomnot in the family, B:=~ B*t:=.

Proof: Assume the token for the axiom ¢ accordingto &; isz; € |N| = |Z|. Thenin
the interpretation of ¢(¢) whichis N or Z, there exists another token y; such that
z; " yilo(i)] and since (i) = ¢(i)*, we dso have ;> y;[+(7)]. Indeed for any
token z in |N| = |Z| there exists another token y of [N| = |Z| such that = ™~ y[N]
(resp. 27 y[Z]). o

2.1 Experimentsand feasible paths

During this subsection, the proof structureI1 is assumed to be a proof net?.

Lemmal Let X, Y be two conclusions of the proof net 11 such that there exists a
feasible path between X and Y, and let v be such a path.

Snce X and Y are conclusions the feasible path necessarily uses some
axi omlinks, and because it is a proof net all the successively met axioms are dis-
tinct.

Assume that using this feasible path v from X to Y the distinct axioms we met
are. A, A, Ay Ay .. and A, AL, from ¢(:) to (i), where
{6(i), (i)} = {A;, AL}, _

Proposition 1 provides another V-experiment £, such that: ¢(z):~  (z):>,
and, for any other axiom, B:=~ B*t:=.

Then, & and &, satisfy: X:~ and Y:~ while Z: X for any other conclusion Z.

2Thisisinfact not needed, as can be seen from section 5. Neverthel essit makes both the statement
of thelemma and its proof easier to follow.

RR n° 2430



10 C. Retoré

Proof: We proceed by induction, using the following fact: if aproof net isnot aunion
of axioms, thenit possessesafinal par -link or asplittingt ensor -link. The proof
for the mix calculusfollowsfrom sequentidlisationtheorem in [FR94, Dan90], and
isdirectly proved in [Ret933].

(1) If the proof net is a union of axioms, then because of v, X and Y are the two
conclusions of the same axiom, and the result is obvious.

(2) If thereisafina par -link, we arbitrarily choose one, and call 11’ the proof net
obtained by removing thisfinal par -link.

(& If X isits conclusion. Then the path v+ makes use of one of the edge of the
par -link. Call X’ the corresponding premise, and v’ therestriction of v to IT".
Therefore v’ uses the same axioms in the same order. We can apply the induc-
tion hypothesisto 11, X’ and 4/, and therefore we obtain X’:~ and Y:~ with
7. < for any other conclusion Z. From the coherence according to par , we
obtain the result.

(b) If Y is its conclusion, we proceed similarly, noticing that
a~b'Y'and a” X 0"[Y"] implies(a’,a")~ (b, 0")[Y'pY" = Y].

(c) If noneof X,Y isitsconclusion, then v does not use this link. So we apply
induction hypothesisto II’, X, Y and ~, and the result immediately follows.

(3) If thereisnofina par -link, there exists a splittingt ensor -link, and we arbi-
trarily choose one. Let TI' and 11 be the two parts — we arbitrarily put totally
disconnected parts of the proof net in one of these two parts. So we have a par-
tition of the nodes: 11’, 11", and the t ensor -link’s conclusion.

(@ If X isthisconclusion, say Y isin II’, and call X’ the premise of X inII'.
Then necessarily v startswiththeedge X — X", and call 7’ therest of v which
isnecessarily included in II'. We apply induction hypothesisto IT’, X', ¥ and
7'. Noticing that all conclusionsinI1” are Z:=, theresult is clear.

(b) If Y isthisconclusion, we proceed similarly.

(c) If neither X nor Y isthis conclusions, they either lie in the same part 11’ or
different parts,say X € II’and Y € 11",

(i) If X,Y areinthesamepart, sincethet ensor -link issplittingthen~ doesnot
use it — otherwise there would exist a feasible cycle. So we apply induction
hypothesistoII’, X', Y and~, and theresult follows— all conclusionsare Z:=
inII”.

(i) If X isinIl’and Y in 11", then v usesthe splittingt ensor -link. Cal U its
premiseinIl’, v’ thepart of v from X to U’ (includedin1I’) and U itspremise

INRIA



Coherence semantics and multiplicative proof nets 11

in11”, " the part of v from U” to Y (included in I1"). We apply induction hy-
pothesisto IT’, X, U" withy" andto IT”, U” and Y with+". Theresult follows,
sinceU":~and U":~ impliesU'@U":~.

2.2 Experimentsand proof structures

We still assume Notation 1.

Lemma 2 If the cut-free proof structure IT is not a proof net, then there exists ano-
ther V-experiment £, # & such that |&,|~|&,|[Fip...oF,]

Proof: Remember that the proof structureis not a proof net whenever it possesses a
feasible cycle, whilethetwo experimentsare not coherentinthepar of itsconclu-

sionswhenever al conclusionsare Z: X one of them being W : .
We heretoo proceed by induction on the number of linksof the proof structure.
(1) II can not be aunion of axioms.

(2) If1I hasafinal par -link, thenthe proof structureobtained by removing thisfinal
par -link neither isaproof net. We apply induction hypothesis, and we are done.

(3) Otherwisell possessesafina t ensor -link.

(a) If the proof structure obtained by removing thisfinal t ensor -link isneither a
proof net, we apply induction hypothesis, and we are done.

(b) Otherwise, the proof structure obtained by removing thisfina t ensor -link
isa proof net. Therefore this proof net contains afeasible path v between its
two premises, say X and Y. We apply the previous lemma, and thus we ob-
tain another experiment &, suchthat X :~ and Y :> the other conclusionsbeing

7 X. This obviously provides another experiment £, of Il such that X @Y :~

and Z: X for any other conclusion.

2.3 Thecharacterisation

We can now easily deduce from our two lemmas the following theorem, which also
applies for non-cut free proof net (by replacing cut -linkswitht ensor -links):

RR n° 2430



12 C. Retoré

Theorem 2 (correctness)

Let IT be a cut-free proof structure with conclusions F1, .., F,,
let V be any NZ-interpretation,
let £ be any V-experiment of II.

IT is a proof net if and only if any other V-experiment &, satisfies
|E1| C |&|[FipFs...pF,] —and therefore |E; |~ |&;|[FipFs...pF], Sinceit isa cut-
free proof structure.

Thedirectimplicationwasalready known—itistheorem 1— whiletheconverse
is the previous lemma. Notice this provides an algorithm to decide whether a proof
structureiscorrect or not: arbitrarily choose aNZ-interpretation and a vV -experiment
&1, and then test whether the result |£;| of each different experiment &, is coherent
with |&; | in the coherence space F; p..pF,,. Unfortunately, as such, it is not an effi-
cient one, since they are 4#* V-experiments. But it provides a semantical charac-
terisation.

3 Thesemantical characterisation of
deadlock freeness

We already told that the previous result applies to non-cut-free proof structure, tur-
ning cut -linksintot ensor -links. Nevertheless, adirect study of non-cut-freewill
enable us to semantically characterise the absence of deadlock in a proof structure
and its reduct.

3.1 Remarkson thereduction of proof structures
Call loop the following (part of @) proof structure:

A At
[

INRIA



Coherence semantics and multiplicative proof nets 13

Proof structures also enjoy 5 expansion, so we can, without lost of generality,
restrict our-selvesto atomic axi omlinks. Therefore, when one of the premise of a
cut -link isthe conclusion of an axiom, so isthe other.

Cut-elimination steps may be defined for proof structures as well:

par /t ensor -case asusua

axi omlaxi omcase we aso act as usua, unless the two involved axioms are the
same axiom: in this case it isaloop, and thereis no way to reduce this cut.

Firstly, notice that the reduct of proof structure which is not a proof net may be
aproof net — because not any path is preserved under cut-elimination, but only the
so called persistent paths which are the same as the regular paths [ADLR94]. The
following exampleisaproof structurewhichisnot aproof net, but reducesto aproof
net — a single axiom linking the underlined A+ and A — we take the convention
that (ApB)* = A+ ®B* and not the convention (ApB)* = B+@A*.

The main thing to quote is that this process preserves the set of succeeding ex-
periments and thisis essential to this section.

This process is also terminating (the size decrease), and confluent (digoint re-
ductions).

The reduct consists in acut free proof structure, plus, possibly, some loops.

Oncetheonly remaining cuts areloopsit iseasily seen that the absence of aloop
in the reduct is characterised by: any different experiments lead to different results.
Indeed, changing the value of an axiom of aloop obviously does not change the re-
sult, while changing the val ue of some axiom belonging to the part whichisacut-free

RR n° 2430



14 C. Retoré

proof structure obviously changestheresult. Axiomsof loopsin thereduct whereal-
ready in the proof structure before reduction, and, since the succeeding experiments
of the original proof structure are the same asthe ones of the reduct, it isclear that 11
reducesto aloop free proof structureif and only if different experiments of II have
different results.

Finally notice that, in order to find two different experiments having the same
result one of the two can be arbitrarily fixed.

3.2 Thecharacterisation

Our result, together with the previousremarks, enable usto semantically characterise
the possible reduct of a given proof structure without actually reducing it:

Theorem 3 (deadlock freeness)

Let IT be a proof structure with conclusions F1, ..., F},,
let IT* beitsreduct,

let V be any NZ-interpretation,

and let £ be any succeeding V-experiment of 11.

Then

e Il isdeadlock free, i.e. I1* is loop free if and only if any different succeeding
V-experiment &, of 11 satisfies |£; | # |&;]

e [I* consistsin a proof net plus some — possibly no — loops if and only if any
different succeeding V-experiment &, of 11 satisfies |£;| C |&;|[Fip...pFy)

e II* isaproof net if and only if any different succeeding V-experiment £, of 11
satisfies |E1 | | & |[Figp...9F)

Asaproof structurewhichisnot aproof net has the same semanticsasitsreduct,

which may be a proof net, without turningt ensor -linksinto cut -linksthereisno
hope to semantically characterise the proof structures which are proof nets.

INRIA



Coherence semantics and multiplicative proof nets 15

4 Application to Abramsky’s Proof Expressions

We apply hereour resultsto Abramsky’ sproof expressions[Abr93, Tro92]. Hitherto,
the only way to check whether a proof expression comesfrom a proof isto trandate
it into a proof net and to apply one of the usual criterions. In the multiplicative case
our previous results provide a direct characterisation which does not refer to proof
nets, but to semantics, and which is still decidable.

Noticethat proof expressions, oncetransformedin order to only use atomic axioms,
closely correspond to experiments:

¢ variables may be viewed as ranging over the tokens of a coherence space,
e read both t@u and tpu as (¢, u)

¢ read any co-equation as an equation forcing the equality of some variables

Let V beaninterpretation, i.e. an assignment of acoherence space to each atomic
type. A V-experiment £, of a proof expresson P ssimply consists in reading each
variable z of P having an occurence of type A and one of type A+ in P asatoken
of the coherence space correspondingto A viaV — since |A| = |A*| itispossible.
Theresult |£; | of an experiment &; of P issimply the tuple of tokens corresponding
to thetupleof termsof P , once each variable of P isreplaced withits corresponding
token. A succeeding experiment £; of P isan experiment for which each co-equation
of P between two terms becomes aformal equality between two tokens, once each
variable of P isreplaced with its corresponding token.

If V isan NZ-experiment it is even simpler: the web of the atomic coherence
space is aways the four points set [N| = |Z|. Let us call a N-valuation the mapping
of each variable of a proof expression to atoken of |[N| = |Z|. A N-valuation isa
V-experiment for any NZ-interpretation V.

Asintheproof net casg, if P isaproof expression, andif Pg isthe proof expres-
sion obtained from P by replacing each co-equation with the correspondingt ensor
term, then either both P and P, come from a proof, or they both do not. Taking this
into account, and reading again our theorem 2 we obtain:

Theorem 2 (correctnessfor proof expressions)

Let P be a proof expression with conclusions £, .., F,,, and let Pg be the proof
expression obtained from P by replacing each co-equation with the corresponding
t ensor -terms, having the conclusions F, .., F,, K@K+, .., K, K,*.

RR n° 2430



16 C. Retoré

Let V be an arbitrary NZ-interpretation, let £; be a N-valuation of P, and let
|€1| beitsresult according to P .

The proof expression P comes from a proof if and only if any other N-valuation
&, of P having the result |£,| according to Py, satifies:

& | C1&|[Fip..oFnp(Ki@K ) p..0(K,QK,")]

Thedirect |ook at the proof expressionsinvolving co-equationsisalthough worth
quoting, since deadlock freeness exactly corresponds to acyclicity of [Abr93]:

Theorem 3 (deadlock freenessor acyclicity for proof expressions)
Let P be a proof expression with conclusions 1, .., F,,. Let V be an arbitrary
NZ-interpretation, let £; be a succeeding N-valuation of P.

e The proof expression P isacyclic, i.e. reduces to a loop free proof expression if
and only if any different succeeding N-valuation &, of P satisfies |E;| # |&:].

e The proof expression P reduces to a proof expression coming from a proof plus
some —possibly no —Iloopsif and only if any different succeeding N-valuation

e Theproof expression P reduces to a proof expression coming froma proof if and
onlyif any different succeeding N-valuation £, of P satisfies|E;| ™ |&: |[Fip...p F )

5 Extension to pomset logic

These results a so apply to pomset logic [Ret93b, Ret95], for which an anal ogous of
Girard’stheorem (th. 1 of this paper) aso holds— in appendix we take up again the
proof of [Ret93b, Ret95].

30ne can wonder where the interpretationV istaken into account, since the variables are aways
mapped in |[N| = |Z| when V isaNZ-interpretation. The interpretation V isused when looking whe-
ther the results of the two experiments/N-val uationsare coherent. In fact the standard notationismis-

leading, and it would be clearer to write Flvp..pFan(Klv@[(lvL)p..p([(IY@KPVL) instead of
Fip. pFap(Ki9K) o p(K,0K,™ )
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Coherence semantics and multiplicative proof nets 17

5.1 Reminder on ordered proof nets

In this pomset calculus, the conclusions are partially ordered, and the connectives
are ®, p and the non-commutative <, the corresponding link being :

A \A<B/ B

To beprecise, weshould say that thecut -link areviewed asfinal t ensor -links,
with dual premises: X@ X+ 4.

The order on conclusions is represented by putting one arc from C'; to C'; whe-
never C; <7 C;.°

Let ussay arc for directed edge, and edge for undirected edge.

A feasible path of an ordered proof structureis a path, which does not use both
edgesof thesamepar - or bef or e -link. We can alwaysassumethat apath, feasible
or not does not use two consecutive arc of the order (which is transitive), and we
always do so in the sequel.

The correctness criterion simply is: thereis no feasible circuit (directed elemen-

tary cycle).

Remark 1 LetII bean ordered proof structurewithout any bef or e -link, and whose
order between conclusionsis empty. Then II is a usual mix proof structure.

Let II be an ordered proof net without any bef or e -link, and whose order bet-
ween conclusions is empty. Then IT isa usual mix proof net.

Here are two similar operations on orders needed in the proofs:

4Infact, thisX® X+ istobeunderstoodas3X X® X+ ~ L, which doesnot modify the proof net.
Since L istheunit, itisclear that the proof net isaproof of the other conclusionswith therestriction
of the order to them.

>We could have written an arc from aconclusion C to aconclusion C’ only when C” is a succes-
sor of C'inZ, since the criterion would be the same, but it would make the following proofs more
complicated.
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18 C. Retoré

Definition 7 LetZ beapartial order onamultiset of formulael’, Ap B. ThenZ(A~B)
istheorder onT', A, B defined by: Z(A~B) restricted to I', A (resp. I', B) isZ with
ApB = A (resp. ApB := B), and neither A <z(4~p) B nor B <z(4~p) A.

Let 7 be a partial order on a multiset of formulae T', A<B. Then, Z(ASB) is
the order on T, A, B defined by: Z(AXB) redtricted to T', A (resp. T', B) is T with
ApB = A (resp. ApB := B),and A <7(4%B) B.

And hereisthe size of an ordered proof structure that we use in the proofs:

Definition 8 Let 11 be an ordered proof structure, call
a itsnumber of axi omlinks
t itsnumber of t ensor - and cut -links
p itsnumber of par -links
b its number of bef or e -links
o itsnumber of order arcs
Itssize is defined as
a(o + 1)3(2t) +b+p

because we sometimesreplaceat ensor -link by abef or e -link, and when repla-
cing Z with Z(AS B) or with Z( A~B) the number o becomes (2 x o) + 1 at worse.
Some lexicographical size would work fine, but it is not actually needed.

5.2 Coherenceand experimentsfor the ordered proof nets

We already defined the coherence space for < whichis

|A<B| = [A] x | B|

(a,b)(a,0)[A<B] .iff . (a~a'[A]and b= V') or b~b[B]

Assuming the conclusions are C'; partialy ordered by Z, the coherence space in
which the semantics takes placeis [1;(C)):

[1)

T

= |Cy] X ... X |C]

(c1yey )7 (€] ooy €, )[H C;] Jiff . Fi. ;O] and (‘v’j[Cj >7Ci = ¢ = c;)

k3
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Coherence semantics and multiplicative proof nets 19

All the definitions concerning experiments straightforwardly extend the oneswe
gave in the introduction for mix proof structures; fake conclusions X® X+ corres-
ponding to cuts are not labelled, and for an experiment to succeed, we ask, as usual
that the two labels of two the premises of any cut -link are equal. The result of the
experiment consist in the tuple of the labels of the real conclusions — however the
fake conclusions corresponding to cuts have no label.

5.3 Similar resultsfor ordered proof structures

The proposition 1 still holds, since it only depends on the properties of N.

Althoughtheargument itself isroughly the same, theanal ogousof lemmallooks
more sophisticated, because we proveit here without assuming that the ordered proof
structureisan ordered proof net. Theremark 1 makessurethat that thisrefined lemma
also holdsfor mix proof structure.

Lemma 1 (for pomset logic)

Let V be any NZ-interpretation,
let 1T be any cut free ordered proof structure,
let £ be V experiment of 11,

let X, Y betwo of its conclusions such that there exists a feasible path from
Y to X, such that neither thefirst nor thelast edge of v isan order arc,

and let v be such a feasible path from Y to X using a minimal number of
axiom edges.

Assume that using this feasible path v from Y to X the distinct axioms we met
are. Ay A, Ay Ay .. and A, AL, from (i) to ¢(:), where
{6(i), (i)} = {Ai, A}, _

Proposition 1 provides another V-experiment £; such that: ¢(:):~  w(2):,
and, for any other axiom, B:=~ B*t:=.

Then, according to the experiments £; and &, we have X:~ and Y':~ while for
any other conclusion Z:~ there exists a conclusion 7’ >z 7 such that 7’:~.6

61f IT isaproof net, it means, asin Lemma of section 2, that X isthe oly conclusion which makes
the results of the two experiments coherents, while they are strictly incoherent in Y.
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Proof: We proceed by induction on the size of 1T previously defined.
If any conclusion different from X, Y is the conclusion of an axiom

Indeed, because v is minimal, exactly one atom of X (resp. V) is¢(1):",
(resp. ¢(p):>) the others being C':=, and therefore X:~ (resp. Y:>). If Z:, as
Z isthe conclusion of an axiom, it meansthat Z = ¢(«). Following v towards X,
we necessarily use an arc of the order to another conclusion, which may not be Y
because yisminimal, nor X', because v is minimal and does not end with an order
arc. Thereforeit goesto Z' # X, Y, Z, which isthe conclusion of an axiom of v,
and hence Z’ = (¢ + 1):~, — and the order arc from Z to Z' means Z’ >1 Z.

Otherwise, let T # X, Y beanon atomic conclusion

If T = A® B |, we consider one of thetwo proof structures obtained by replacing

thisfinal t ensor -link withthebef or e -link A< B or A> B, theorder on conclu-
sionsremaining the same. At least one of these two proof structures containsafea-
siblepathfromY to X, and weassumeitisIl’, theonewith A < B, the other case
being symmetrical. We apply the induction hypothesisto II’ — t ensor -links are
counted twice more than the bef or e -links. Now, let Z: ™ be a conclusion of 1I.

(1) If Zisaconclusionof I’ thenthereexistsaconclusion Z’ of I’ suchthat 7/ > Z
and Z':-.
(@ If 2/ # A< B then Z’ isaconclusion of 1T and we are done.

(b) If Z' = A<B, thenin Il wehave A® B:-, andthus AQ B > Z and AR B:~.
(2 If Z = A®B, thenin II’ we have A< B:" and thus II’ contains a conclusion
7" > (A<B) suchthat Z’:~. Butin Il weaso have 7' > A®B and Z':>-.

If T'= ApB |, we consider the proof structure IT" obtained from II by removing
thisfinal par -link, and takingtheorder 7' = Z( A~ B). Thepathy fromY to X in
1T induces apath with the same propertiesin 11, we apply theinduction hypothesis

to I’ — the number of order arcs of 11’ is at most twice the number of order arcs
of II. Now, let Z: ™ be aconclusion of 1I.

(1) If Z # ApB. Then there exitsa conclusion Z' of 1l such that Z’ >4, Z and
7z~
@ If 2" # A, B then Z' isaconclusion of TI such that Z’:~ and Z' >7 Z.
(b) If 72/ = A~
(i) and B: X thenwehave ApB >7 Z and ApB:~.

INRIA



Coherence semantics and multiplicative proof nets

21

(i) and B:™, then there exists a conclusion Z”: of 1I’ such that Z"” >z B.
Because of thedefinition of 7' we have Z” # A, — hence Z" isaconclusion

of II; thus 2" >7 Zand Z" : .

() If 2/ = B:~, symmetricd to (b).
(2) If Z = ApB, then A:™ (or resp. B: ™), and there existsa conclusion Z' of 11’
suchthat Z":~, Z' >7 Z. Because of the definition of Z’, we have Z' # B (or
resp. Z' # A), — hence Z' isaso aconclusion of IT; thus 7’ >7 Z and Z':>.

, we consider the proof structure 11’ obtained from II by removing
thisfinal par -link, and takingtheorder 7' = I(AﬁB). Thepath~ fromY to X in
IT induces a path with the same propertiesin IT’. We apply theinduction hypothesis
to IT" — thenumber of order arcs of TI’ isat most one plustwicethe number of order
arcs of II. Now, let Z:~ beaconclusion of 1II.

(1) If Z # A<B, thenthereexistsa conclusion Z’ of I’ such that 7’ >z, Z and
VAt
(@ If 2" # A, B then Z' isaconclusion of Il such that Z’:~ and Z' >7 Z.
(b) If 72/ = A~
(i) and B: X thenwehave (A<B) >7 Z and A< B:~.

(i) and B:™, then there exists a conclusion Z”: of 1’ such that Z"” >z B.
Because of the definition of Z’ we have Z” # A, and Z" is a conclusion of
Il suchthat 7" >7 Z and Z":>.

(c) If Z/ = Bthen(A<B):~and Z <7 (A<B).
(2) If Z = A<B, then either

(@ A:™ A B:=andthere existsaconclusion Z’:~ of 11’ suchthat 7' >7; A and
Z'"~. Because of Z':~ it may not be B and it is therefore a conclusion of 1I,
and because of the definition of Z’ wehave 7' > B andthus 72’ > Z.

(b) or B:™, and there existsa conclusion Z’ of 11’ suchthat 7’ >z B. Therefore
7' # A—hence 7' isalsoaconclusionof Il —and Z' >7 (A< B)and Z':>.

Lemma 2 (for pomset logic)

Let V be any NZ-interpretation,

let IT be a cut-free ordered proof structure which is not a proof net, with
conclusions C'; ordered by 7,

and let & be one of its V-experiments.
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Then there exists another experiment £, such that |&; |~ |&;|[TTz C:]-

Proof: We proceed by induction on the size of the proof net previously defined.

(1) If theorder isnot empty, we suppressone order arc between aconclusion X and
one of its successors Y — but not the ones obtained by transitivity from it —
and thus obtain another ordered proof structure I’ whose order isZ’.

(& If itisnot yet an ordered proof net, we apply induction hypothesisand we are
done.

(b) If itisan ordered proof net, it means II contains a path from Y to X, neither
starting nor ending with an order arc — the transitivity of the order make sure
that otherwise the proof structure could not be a proof net. We apply the pre-
vious lemma. We then have another experiment £, such that C’:~ and C: ™,
and such that for any other conclusion Z: ™, there exists 7’ >7: Z. Therefore
&1~ &[Tz Cil.

(2) If theorder isempty,

(8 and thereisafinal bef or e -link or par -link, we suppress it and replace 7
with, respectively Z(A~B) or Z( ASB), which is neither proof net. The in-
duction hypothesistrivially gives the result.

(b) andthereisafinat ensor -link, let A® B beone of them. One of thetwo proof
structuresIl’ and 11" obtained by replacing respectively thisfina t ensor -link
A® B withthefina bef or e -link A< B or with thefina bef or e -link A>B
is neither a proof net. We apply the induction hypothesisto it, and this gives
theresult sincewe have A< B:~ = A®B:~,and A>B:~ = A® B:>, while
AQB:= & A<B:=& A>B:=.

(c) and dl links are axi omlinks: this case can not happen, a family of axioms

with no order isa proof net. R

Asfor the usual mix calculus, an ordered proof structure isan ordered proof net
if anonly if itiswhen looking at cut -linksast ensor -links. Although cut -links
are aready pictured ast ensor -links, it makes a difference for the succeeding ex-
periments: inat ensor -link we do not ask for the labels of the premises to agree,
and the final conclusion of thet ensor -link corresponding to a cut, say X® X+,
has alabel which is part of the result of the experiment.

We thus obtain the semantical characterisation of correctness and of deadlock
freeness for ordered proof structures, exactly as we did for the mix proof nets, i.e.
theorems 2 and 3.
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6 Variantsand remarks

Let V and V* be the following coherence space:

[ r [ —mM8M —
V: \ / VL

We have the followi ng anal ogous of prcopositi on1:

r

Proposition 1 (bis) Let V be any VV*-interpretation, and let 1T be a proof struc-
ture.

Let A, Af, Ay Ay ..andA, A beafamily of axiomsof II (hence all the
A; are atomic), and let ¢ and ¢ be two functions from [1,p] to
{4, A%? AQA%? cooy Apy AZJ;} such that {+(p), ¢(p)} = {4, APJ_}'

Then there always exist two V-experiments & and &, such that
¢(1):"°" ¢ (4):~, and, for any axiomnot in the family, B:=~ B*:=.

Proof: Since both V and V+ contain both a couple of strictly coherent tokens and a
couple of strictly incoherent tokens, it is clear. o

From thiswe derive the same kind of results, where

For all NZ-interpretation V, for all proof structure (or net) II, for all
experiment &; of 11 there exists another experiment &, such that ...

isreplaced with:

For all VV-+-interpretation V, for all proof structure (or net) II, there
exist two experiments &£; and &, of II such that ....

As we said this method does not give an efficient algorithm to test whether a
proof structureisaproof net: the number of experimentsto belooked at is4#2< with
proposition 1 and 9#** with proposition 1 (bis). Nevertheless, oncethefeasiblecycle
is known, which is a quadratic agorithm, then finding two strictly incoherent expe-
riments, using proposition 1 or proposition 1 bis, isimmediate.
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Appendix: proof of theorem 1 (for pomset logic)

We give here the proof of [Ret93b, Ret95] which extends Girard’'s argument to the
ordered calculus, taking into account the slight changes quoted in the introduction.
Because of remark 1 it also (re)prove Girard origina theorem for usua mix proof
nets. The sign o indicates a case which never happen with the usual mix proof net.

Remark 2 (o) If (a4, ..., a,)> (ay,...,a.) lHAZ] and a, " al[Ag] then
T

dJA; >1 A alva;[Al].
(Obvious from the definition of the ordered product of coherence spaces.)

Lemma 3 (compatibility) Iftwo experimentsdiffer somewhereinthe proof net then
they are strictly coherent.

Proof:  We shall assume that our to experiments differ somewhere in the proof net,
and that they are not coherent in the ordered product of coherence spaces. Under
these assumptionswe shall build afeasible path, starting from the point where the
two experiments differ. This path will be endlessly increased unlesswe exhibitsa
feasible circuit; however, since the proof net isfinite both cases exhibit afeasible
circuit, and thisisacontradiction. Whilebuilding the path, we shall also useamark
which iseither “uUP” or “DOWN” saying that the next edge to be used is above or
below. This path will aso followsthe following principles:

e if themark is up the path ends on aformula A:~
e if themark isDOWN the path endson aformula A: ™

e when the path goes down through a par- or before -link
Ax Bwehave A x B:~ and X:~ where X € {4, B} isthe premise that the
path uses.

¢ when the path goes up through a par - or bef or e -link we have X :~ where
X € {A, B} isthe premise that the path uses, and A « B:>.

e thepath never endsin an unlabelled formula, i.e. the fake conclusion X ® X *+ of
acut -link.

We successively and patiently view all the possible endings and marks of our
path, with the following conventions:
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The expression we arrived in alink 1ink with the mark upP (resp. DOWN),
means that the end point of the pathis A : ~ (resp. A : ™), that thelink | i nk is
the one above A : ~ (resp. below A : 7). Therefore we can neither arrive in an
axiom with the mark DOwWN, nor in a conclusionwith the mark up — there aways
issome link above a conclusion— nor inacut -link with the mark up — because

of thelast principle.

The afore mentionned principles are easily shown to be preserved while we
extend the path, and we skipped that.

When a case does not say anything about the mark, it is that the extension of
the path it defines does not change it.

start Let X betheformulawherethetwo experimentsdiffers; weeither have X: ™
or X:>~. Inthefirst case we start with the mark bowN, and in the second case

with the mark up.
the path endsin a par -link
with the mark up Hence we have

ApB:~

ApB:~

and therefore we have

(or the symmetrical case B:>). If our path already used the ApB — B edge,
because of thepropertiesof our already built path, we usedit upwards, and there
isafeasiblecircuit. Sowe can extent our feasiblepath usingtheedge Ap B— A,
and it stillsenjoysall the properties.

with the mark bowN Assume we arrived via A (the case we arrived via B is

symmetrical), hence
A B:?

ApB:?
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and therefore

ApB:"™

Soif weusedthe B— Ap B edgewe used it downwards, hencethereisafeasible
circuit: the part of the already built path starting from Ap B and leading to A
together with the A — Ap B edge. Otherwise we can extent our feasible path
usingtheedge ApB — A, and it stillsenjoysall the properties.

o the path endsin abef or e -link

with themark up Similar to the case par -link with the mark up.
with the mark DOwN, viathe smaller premise If wearrivedviathe A premise

then either
A B~
A<B:~
or
A" — B:C
A<B:™

Inthefirst case, we extend our path using thearc of thelink and put the mark up.
Inthesecond case, noticethat if our path aready usedthe B— A< B edgeit used
it downwards, hence we have a feasible circuit using the path
B — A<B,...Aandthearc A — B.

with the mark DOwWN, viathe bigger premise If wearrived viathe B premise
then

A:? B:"

\ /

A<B:™
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If the path aready used the A — A< B edge it used it downwards; hence we
haveafeasiblecircuit using the B — A< B edge. Otherwise we extend the path
withthe B — A< B edge.

the path endsin at ensor -link
with the mark up Hencewe have

AR B~

(or the symmetrical case B:“). Therefore we can extend our path using the
A®B — A edge.

with the mark bowN Assumewe arrived viathe premise A : ™ (the casevia
the other premise B : © issymmetrical). Hence we either have

AR B: ™

AR B~

or

Inthefirst case we extend the path usingthe A — A® B edge, and keep the mark
DOWN and in the second we extend it using the two edges
A — A®B — B, and put the mark UP.
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o the path endsin a conclusion, with the mark bownN

Ap:” A~

Since the path endsin aconclusion A, : ~, because of remark 2, asthetwo ex-
periments are incoherent in the ordered product of coherence spaces there must
be an arc leading to a conclusion A; — and not a cut — where the two expe-
riments are strictly incoherent. We extend the path with the corresponding arc,
and put the mark up.

the path endsin an axi omlink with the mark up

A~ AL~

Thetwo experimentsare strictly incoherent in thisconclusion of theaxi omlink
We extend the path with the edge of the axi omlink where the two experiments
are strictly coherent, and we put the mark DOWN.

the path endsin the premise of a cut -link with the mark bownN

X~ Xt~

(XoX1)

cut

Hence the two experiments are strictly coherent. We extend the path with the
two edges of the cut -link, ending in the other premise of the cut -link — be-
cause cut -links are pictured ast ensor -links in this cal culus we thus use two
edges— and we put themark uP. Indeed they are strictly incoherent in this other
premise, because both experiments succeed.

Thecareful reader may wonder why we do not not need to usethe arcsincident
with acut. Thisfollowsfrom thefact that cuts may be eliminated without changing
thesemanticsof aproof net: otherwisethe path we build could not betranslatedinto
the cut-free proof net. o

Lemma 4 Any cut-free proof net has a non-trivial semantics.
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Proof: Any experiment succeeds when the proof net is cut-free; this provides nume-
rous tuplesin the semantics:

H card(|4;])

Ai—A} €Az
Lemma 5 If a proof net IT reducesto I1’ then they have the same semantics.
Proof: Wejust need to check it holdswhen IT reducesto I’ using one elementary cut-

elimination step. It is obvious that the succeeding experiments of Il and I’ arein
a one-to-one correspondence. o

The two previous lemmas obvioudy entail the following

Theorem 1 (for pomset logic) Let II beaproof net with conclusions F1, ..., F),. Let
||11]| bethe set of results of succeeding experiments of 11 with respect to an interpre-
tation. Then one has:

o If & and &, are two different experiments of 11 then |&;| ™ |&;| and therefore
|IL|| is a clique of Fip...pF, — notice that in the proof net case
& # & = [&] # &)

e whenever II reduces to II’ by cut-elimination, then ||1I|| = ||II’||, and since a
normal proof net always possesses a non-trivial semantics, so does any proof
net.

Acknowledgements: Jacquesvan de Wiel e suggested me to study experimentsfor the orde-
red calculus, and explained to me Girard’soriginal work: the changes | made to Girard'spre-
sentation, the formalism and the notation are his. PS. Thiagargjan asked me, after atalk, the
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