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Une nouvelle caractérisation intrinseque du type
principal

Résumé : L’objet de ce rapport est d’établir une nouvelle caractérisation intrinseque du
typage principal (ou briévement en anglais pts) des approximants. La méthode consiste en
la définition d’une bijection entre réseaux de preuve sans coupures, A-termes G-normaux et
leurs schémas de typage principal, et mieux encore, en la définition d’une bijection entre
approximants de réseaux de preuve sans coupures, formes normales approximantes et leurs
schémas de typage principal.

Mots-clé : lambda-calcul, réseaux de preuve, type principal
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1 Introduction

In relation with the extended type system of [1] as extension of Curry’s type system, was
defined in the same article the notion of principal type scheme of approzimate normal terms
(or approzimate normal form in [2]). The principal type schemes characterize the approzi-
mate normal terms in the following senses:

let ¢ be a B-normal A-term (notation: t € A1),

i) pts(t) is unique,

ii) if a A-term w is typable by pts(t) (that is #; : A1,..., 2y Ap Fu: Z and

(A1,...,An, Z) = pts(t)), then there exists v € AT such that u B-reduces to v and v is a
n-reduct of ¢ ([11], [9]);

iii) the set {1 : A1,..., 2, : Ay F ¢ : Z} is definable by suitable operations on pts(t) [10].

In [10], Ronchi found the following intrinsic characterization of the set PT'S of the principal
types schemes of the approximate normal terms a (notation: a € A4p)

(PTS ={(A1,...,4An, 2)/(A1,...,An, Z) = pts(a) with a € Ay, }):

Theorem 1 o (A1,..., A, Z) € PTS iff (A1,...,An, Z) is of one of the four following

forms:

—(0,...,0,0);
-, @ {a},0,--,0,0);
(A, An,An+1—>X) zf(Al,..  An, Any1, X) € PTS;

— ({21, 2y — o AN AL NP AL NP AL o) if (AL, AL Z;) € PTS
foralli, 1 < i< p, such that at((All, AL Z) Nat((AY . AV Zi)) =0 for
allii', 1 <4, ! <p,i#i and a & at((AS, ..., AL, Z;)) for alli, 1 < i< p.

o The sets PT'S and Ayp are isomorphic.

The object of the present article is to give a different intrinsic characterization of the set PT'S
by defining properties directly on the set at((A1, ..., Ay, Z)) of the atoms of (A1, ..., 4, 7).
The first two conditions (Cond 1,2 of Property 1) were found by Ronchi in [10]. The two
others (Cond 3,4 of Property 2), which are not so intuitive on sequences of types, become
clear when they are translated in linear logic terms: in fact, these conditions were firstly
found for proof nets in terms of criterion of correction on graphs [7], the two previous
conditions on sequences of types corresponding to the definition of the graphs involved. We
prove then, in Section 4, the correspondance between PT'S and the set PS of the sequences
of types which satisfy the four conditions, and, in Section 5, the isomorphism between P.S
and the set PNy, of the approximate cut-free proof nets to get some intuition about the
conditions.

So the main results of the article are contained in the following theorem:

Theorem 2 o The sets Aap, PTS, PNap and PS are isomorphic.

RR n"RR-2416



4 E. Duquesne, J. Van de Wiele

e The sets AT, PN and PST are isomorphic.

whose proof is done by steps in the different propositions below; the proof of the isomorphism
between At and PN is done in [7].

2 (-normal A-terms and approximate normal terms
Definition 1 o V is the set of term variables (V = {x;/i € N}).

o The set At[zy,...,2,] of the B-normal A-terms defined in the context {z1, ..., z,} is
defined by induction as follows from the finite subset {x1,...,2,} of V in which the
free variables of the A-terms belong:

— x; belongs to A*[z1,...,2,] (1 <i<n);

— if t belongs to At[z1,..., 20, 2ny1], then Axpyr.t belongs to AT[xy, ... 2,];

— ifty,...,t, belong to AT[zq,...,2,], then z1ty .. .1, belongs to AT [z, ... 2,
o The set AT of the B-normal A-terms is the following disjoint union:

At = H Atz ... z,).
{z1,. ,€n}EPsin(V)

Each B-normal A-term is an approzimate normal term, so AT is a subset of the following
set.

Definition 2 o The set Aaplz1,...,z,] of the approximate normal forms defined in
the context {z1,...,2,} is defined by induction as follows from the finite subsel
{z1,...,2,} of V plus a new constant symbol w:

— w € Auplz1,...,T0);

—&; € Agplar, ... zn] (1< i< n);

— if a belongs to Aaplz1, ..., 25, Tuy1] such that a # w, then Az,4q1.a belongs to
Aaplz, ... 2p);
— ifai,...,ap belong to Aap[z1,..., 2], then z1a1 ... ap belongs to Aaplzq, ..., z,].

o The set Aap of the approximate normal forms is the following disjoint union:

IV R
{z1,. ,€n}EPsin(V)

Remark that A4, is isomorphic to the set of the Bohm trees.

Inria



A new intrinsic characterization of the principal type schemes 5

3 Principal type schemes of approximate normal terms
and principal type schemes of 3-normal \-terms

3.1 The sets of types

Definition 3 Let At be an infinite and countable set of propositional variables.
The sets of types DQP and DQP* are defined as follows:

e At C DQP;
e DQP* = Pﬁn(DQP), the set of the finite subsets of DQP;
o If A€ DAP* and X € DQP, then A — X € DQP.

Convention 1 i) The notion of equality of types (or formulas) is the notion of existence of
tsomorphism between them, so types are defined up to renamming of atoms.

i) If X1,...,X, € DQP, the subset {X1,..., Xn} will be denoted by \!_, Xi. We agree
upon the notation X; € \i_, X; for all i,1 <i<n.

In case n = 1, the notation /\3:1 X; will be simplified in X1; in other words, we will identify
each singleton with the unique element of it.

In case n = 0, the notation will be O obviously, and we have the property: O AN A = A.

ii) Ay, ..., Ay — o will denote Ay — (... — (A, — @) ...).

iv) The capital letters of the beginning of the latin alphabet (A, B, etc) will denote the ele-
ments of DQP*; the capital letters of the end of the latin alphabet (X, Y, etc except 7), the
elements of DQUP. The capital letters of the beginning of the greek alphabet except w («, S5,
etc) will denote the elements of At.

We keep the latin letters Z, 7', etc to denote any element of DQP or of DQP* as well.

v) We say that 7 is a subtype of Z’ (notation: Z € St(Z")) iff

A=A

- Z is a subtype of A or of X, in case Z' = A — X,

- 7 is a subtype of X; for one i,1 <i<mn, in case Z' = \\_, X;.

vi) The notation X(«) of the type X specifies that the atom o ends the type X :

if X = a then X = X(a) = a;

if X = A — X' (), then X = X(a).

To say that « is an atom which ends one of the elements of A € DQP* (i.e. X(a) € A),
the notation A(a) will be used.

If 7 is a type, the set of the atoms which occur in 7 is denoted At(Z).

vii) DQPT, DQP~, DQPY* and DQP~* will denote the sets of the types defined above
with a positive or negative signature. Precisely, DQPT = DQP x {+}, DQPt* = DQP*t,
the sels of the positive types, DQP~ = DQP x {—}, DQP~* = DQP*~, the sels of the
negative types.

We recall that the type A — X is a positive type (that is A — X € DQP*) iff

A€ DQP~*ANX € DQP*, the type N\;_, X; is a positive type (N\;_, X; € DQP**) iff
X; € DQPT foralli,1 <i<n.

RR n°RR-2416



6 E. Duquesne, J. Van de Wiele

The type A — X is a negative type (that is A — X € DQP~ ) iff Ae DQPT™*AX € DQP~,
the type N\;_, Xi is a negative type (N\!_, X; € DQP~*) iff X; € DQP~ for alli,1 < i< n.
We extend on the more natural way the previous conventions to these sets of types. In par-
ticular, o will denote an atom, « in the present case, with a signature o; At(Z) will denote
the set of the atoms which occur in Z (if «” occurs in Z, then a € At(7)).

3.2 Principal type schemes

In the following definition, the principal type schemes are defined up to renamming the
atoms of type (see Convention 1 1)):

Definition 4 Let a be element of Aapla1,...,25) CAup. 1 : A1, 2t Ap b a: Z (or
(A1,..., Ay, 7)) is the principal type scheme of a (pts(a)) inductively defined as follows:
if a is

o w, thenzy:0,... 2, :0Fw:0;

oz, thenay :0,. .. zim1 0,0ty i1 0, e 02 e (or(0,...,0,0,0,...,0,a))
is pts(x;);

e Mrppr.d (0 #Fw) and if ey AL, 0 Ap Tpgr tApp b d i Z
(or (A1, ..., An, Ant1,7)) ispts(a’), thenzy : A1, ... 20t Ap F Azpqr.d’ t Apyr — 72
(or (A1,...,An, Ang1 — Z)) is pts(Azn41.0");

o xiay...ap, and if ¥y : ALz, 0 AL b oap o Z; (or (AL, . AL 7)) is pts(a;)
(1 <i<p), then
1 (Z,..., 2, — a)/\/\leAli,xz :/\leAé,...,mn : ?:114; Fziar...ap : a0 (or
(Z1,oo s Zy —a) NN LAY N AS, o NP AL @) is pts(ziag .. .a,) using Con-
vention 1 i) if Z; # 0
(we suppose that at(a;) Nat(a;) =0 if i 1 and that « is a fresh atom ).

Remark 1 1) In case of B-normal A-terms, the definition of pts is restricted to the three
last rules with the fact that, in the last one, Z; # 0 for all i,1 < i < p.

ii) In the second and the last points, we have used the identification of a singleton and its
unique element.

iii) The definition of pts corresponds to Coppo, Dezani, Venneri’s one ([3]).

It differs from Krivine’s one ([9]) by the second rule which is

Tl P01,y Ti—1 PO 1, T DO, L] D41, T L Oy F i . Qg

(or (a1, ..., 01,05, g1, ..., 0n, ) and by the fact that pts are defined only for B-normal
terms.

iv) Remark that if (A1, ..., An, Z)) = pts(a) then Z belongs to DQP* iff a = w; if a # w,
then Z belongs to DQP.

v) In case t € At, then pts(t) € ||t|| in the modelization of A by a coherent set (see [{]).
This 1s why we consider Coppo, eic’s definition of pts: in case t is a variable z;, then
@,....0,0,0,...,0,«) € ||z;i|| (precisely,

Inria



A new intrinsic characterization of the principal type schemes 7

@,...,0,0,0,...,0, ) € Trol|(u1, ..., un) — zi(u1, ..., u,)|| which is the trace of the n-ary
stable function projection;: (x1,...,&n) — ;).

vi) As usual in sequent calculus terms, in the sequent x1 : A1,... 2y : Ap b a: Z, the type
7 is a positive type (or formally Z is element of DQPY ); the types A1, ..., A, are negative
types (or formally Ay, ..., Ay are elements of DQP™*).

The two following conditions were presented in [10]; Krivine formalizes an analogous condi-
tion to Cond 2+ ([9]). Cond 1,2 are satisfied by the pts of approximate normal terms, and
Cond 1,24 by the pts of S-normal A-terms:

Property 1 The pts’s satisfy the following conditions:

e Cond 1 each atom, if occurs, appears exactly twice, once with positive signature, once
with negative signature;

e Cond 2 the cardinality of each positive (sub)type is less or equal to 1 (that is, if A is
a positive (sub)set of pts, then #A4 < 1).

Moreover the pts’s of B-normal terms satisfy also the stronger following condition:

e Cond 2+ each positive (sub)ltype is a singleton.

We define a binary relation on the set of the atoms of the pts of an approximate normal
term a:

let «, 8 be elements of at(pts(a)),

a <1 (3 iff there exists a negative subtype of pts(t) of the form X(at) — Y (587).

< (resp. <) denotes the transitive closure (resp. the transitive and reflezive closure) of <.

The two following conditions which give, with the previous conditions, the announced cha-
racterization of the pts, will appear clearer in Section 5.2:

Property 2 The pts’s satisfy also the following conditions:

e Cond 3 the transitive closure of the relation <1 is a strict ordering with greatest
element;

e Cond 4 for each positive subtype A(a™) — Z(B) of the pts, one has a < f3.
The proof is obvious by induction on a in pts(a) or on the number of atoms in pts(a)
(#at(pts(a))).
4 Principal sequences

We extend the definition of the binary relation <; to the the set of the atoms of the elements
of DQP~*" x (DQP* U DQP*).

RR n°RR-2416



8 E. Duquesne, J. Van de Wiele

We denote by

- PPS° ={(A1,...,4,,X) € DQP™*" x DQP* /(Ay,..., A,, X) satisfies Cond 1,2 },

- PPS* ={(A,...,A,,B) € DQP~*" x DQP**/(Ay,..., A,, B) satisfies Cond 1,2 },

- PPS°* (resp. PPS**) is the subset of PPS? (resp. PPS*) of the sequences that satisfy
also Cond 2+,

-PS°={(A1,...,A,, X) € DQP™*" x DQP*/(A1,..., An, X) satisfies Cond 1-4 },

- PS* ={(A1,...,A,, B) € DQP™*" x DQP**/(A4,..., A,, B) satisfies Cond 1-4 },

- PS°t (resp. PS*t) the subset of PS® (resp. PS*) of the sequences that satisfy also
Cond 2+.

Remark that in PPS* and PS*, there exists the particular sequence

(0,...,0,0) € DQP~*" x DQP**; this particular element will be denoted by Q"€.

With the identification between a singleton and its unique element (Convention 1 ii)), we
have the following obvious lemma:

Lemma 1 Let (A1,...,A,, Z) € DQP™*" x (DQP* U DQP**).
If Z #Q"Q, then

o (Ay,..., Ay, Z) € PPS° iff (Ay,..., Ap, Z) € PPS*;
o (Ay,... Ay, Z) € PPS°F iff (Ay,... Ay, Z) € PPS*+;
o (Ay,... Ay, Z) € PS° iff (A1,..., Ap, Z) € PS".

The equivalences established in the previous lemma allow us to define the principal sequences
as elements of the following subsets of DQP~*" x (DQP* U DQP**) (the symbol + will
denote the disjoint sum of sets):

Definition 5 e PPS=PPS°;
e PPSt = PPSot;
e PS=P5S°
o PS*T = PS°t (which is isomorphic to PS°* \ {Q"Q}).
Lemma 2 Let S = (A1,...,An, Z) € PS. Let o, 3,5 € AL(S).
o Ifa<i Band a <y [, then B =1

o If 7 = Z(at), then Z'(a™) is a subtype of Z or there exists i (1 < i < n), such that
Z'(a™) € A;.

o If 3~ or B* is a subtype of Z'(y) and if Z'(7y) is a subtype of S, then B < .

The proof is obvious.

Inria



A new intrinsic characterization of the principal type schemes 9

Proposition 1 o The sets PS and PTS are isomorphic.

o PST and the set PT'ST of the principal type schemes of B-normal terms are isomor-
phic.

Proof

We prove the first point, the proof of the second point being analogous and simplier.

By Properties 1, 2, each element of PT'S satisfies Cond 1-4.

Conversely, let S = (A;,...,A4,,7Z) € PS. We prove, by lexicographical induction on
(#at(S), complexity(Z)), that there exists an approximate normal term a € A gp[z1, - - -, Zy)
such that pts(a) = (41,...,4n, 2):

if #at(S) is

e equal to 0, then S = Q"Q, which is pts(w);

e strictly greatest than 0, then we consider the complexity of the type Z:

o if Z = «, then there exists i, 1 < ¢ < n, such that Z'(a™) € A;; Z'(a™) is of the form
Z'(a”)=Bi,...,B, —a”.

-Orp=0,then S=(0,...,0,c,0,...,0,«) which is pts(z;) if A; = «;

-orp> 0, then, forall j,1 <j <p, #B; <1. We define the following partition of {1, - - -, p}:
Indy ={je{l,---,p}/#B; =0}, Indy ={j € {1,---,p}/#B; = 1}.

o For all j € Indy, we set S; = Q"Q, so S; = pts(w).

o For all j € Indy, we pose X; (a;') = B; with Convention 1 ii), so we define

Af =N {X(P) € Ai/f < aj}foralli 1 <i<n.

We prove that for all j € Indy, S; = (A{, . ..,A%,Xj(aj)) e PS:

Cond 1: let 8 € at(S) \ {«} such that there exists j,j' € Indq,j # j', 8 € at(S;) N at(S;).
Suppose that 8+ occurs in S; and 8~ occurs in Sj.

Bt occurs in S; implies that there exists a subtype Y;j(y7) of S; such that 8t occurs in
Y;(v7) and such that Y;(y7) = X(aj) or Y;(v7) € Agg for some k,1 < k < n.

B~ occurs in S;: implies that there exists a subtype Yj/(’y’ol) of Sj» such that #~ occurs in
Yj/(’yml) and such that Yj/(’yml) = X(aj,) or sz(’y"’l) € Aggl, for some k', 1 < k' < n.

So, in S, there exist Y;(v7), Yj/(’y’al) subtypes of S such that

1) AT occurs in Yj(7?) and B~ occurs in Yj/('y"’l) (that is 8 <y and § < 7v'),

ii) Y;(y7) satisfies Y;(77) = X(aj) (that is v = o) or Y;(v7) € Ay for some k,1 < k < n,
since Y;(v7) € A],; (that is ¥ < «j), and

iii) Yj/(’y"’l) satisfies Yj/(’y"’l) = X(ozj,) (that is v/ = a;:) or Yj/(’y"’l) € Ay for some
k', 1 <k'" <mn, since Yj/(’y’ol) € Al (that is v < aj/).

Then, in at(S), § < v < aj and B <9’ < aj. So f < a; and § < a;/ in at(S), which is
impossible for an element of PS by the previous lemma and by the definition of the relation
<3.

Cond 2-4 are obviously satisfied by S; for all j € Ind;.

So Sj € PS (j € Indy). By hypothesis of induction, there exists a; € Aap[z1, ..., 2,] such
that pts(a;) = S;.

RR n°RR-2416



10 E. Duquesne, J. Van de Wiele

Remark that for all 7,1 < i <n, /\{A{/] € Ind} = A;.

So S = pts(x;ai ...ap) with aj =w if j € Indy and a; # w if j € Ind,.

oif Z=A— Z' then S" = (A1,..., An, A, Z') satisfies Cond 1-4. By hypothesis of induc-
tion, there exists a’ € Aap[z1, ..., Zpn, Tny1] such that S' = pts(a’); moreover ¢’ # w since

Z #0.S0 S =pts(Azy41.0").
O

5 Cut-free proof nets

5.1 Definition

This section will repeat some contents of [7].

Definition 6 An approximate proof graph G(V,&) is a finite graph such that
o the set V of vertices is a set (of occurrences) of the following linear connectors:

— AX or axiom-connector,

— CUT or cut-connector,

— @ or parallelization-connector,

— ® or tensor-connector, the (semantic) dual of the p-connector,

— ! or positive exponential-connector,

— ? ornegative exponential-connector, the (semantic) dual of the positive exponential-
connector,

o the set £ of edges is a set (of occurrences) of the following formulas:

— or O (for output),

— or I (for input), the (semantic) orthogonal (or dual) Ot of the O-formula,
— or 10, the exponential of O,

— or ?1, the (semantic) orthogonal (or dual) (10)* of the !O-formula.

and such that the elements of V and £ define linear links:

o —(p or AX-link,

e & T 4o CUT-link,

. % or p-link,

. % or ®-link,

. !?) or !-link, —5— or!a,-link,

Inria



A new intrinsic characterization of the principal type schemes 11

. % or 7-link.

Moreover, a proof graph is an approzimate proof graph without any !4p-link.

Remark 2 As it was seen in [{], [5] and [7], a proof graph is a finite model of a first order
theory. We recall it and define the first order theory of the approzimate proof graph:
(V,E,s,b,h, e, AX,CUT, p,®,1,14,,7,0,1,10,71, ¢!, , ch,péUT,ngT,p;I,
pg,cg,pé,pfg,cé,c%fp,plo,cio,cgl) 1s the language of approrimate proof graphs, the lan-
guage of proof graphs is the same one without the symbols !4, and c%fp, where

o V, E are two types of distinct objects;

e s, g are two symbols of unary function of type (E,V), s for source, g for goal (in graph
terminology, one say target rather than goal);

e h,c are two symbols of constant of type V, h for hypothesis, ¢ for conclusion;

¢ O0,1,10,71 are four symbols of unary predicate of type V (we could also say that O,1,10,71
are subtypes of the type V),

o chx, CAx s PouT PouT Py Py s € Pl P s €l i 0P, e ed!
function of type (E, V).

The azioms of the theory of the approzimate proof graphs are G1-G14 and those of the
theory of the proof graphs are the same ones except G5,G6 which are replaced by the axioms
Gb+4,G6+ respectively, where

(G1) Vo, 9(p) # h;

(G2) Vo, s(p) # ¢;

(G3) Yp,0(p) V I(p) VIO(p) V ?1(p) (which means that the only objects of type E are
objects of its four subtypes (or predicates));

(G4) Vo, A(p) = —B(yp) where A designates one of the four symbols of predicate of type
E and B one of the others (which means that the different predicates of type E designate
distinct objects);

(G5) V&, AX (k) V CUT(k) V p(r) V ®(r) V'ap(k) VIk) VI K)V (k=h)V (k=2¢)
(which means that the only objects of type V' are objects of the seven subtypes (or predicates)
or the hypothesis vertez h or the conclusion verter c);

(G54) Ve, AX (k) V CUT(k) V p(k) V ®(k) VI(k) V ?(k) V (K =h) V (k =c) (which
means that the only objects of type V are objects of the siz subtypes (or predicates) or the
hypothesis vertex h or the conclusion vertez c);

(G6)

Vi, (k = h)V (k = ¢) = —[AX (k) V CUT(r) V p(k) V ®(r) V lap(r) V (k) V ?(k)]
(which means that the hypothesis h and the conclusion ¢, which are objects of type V, are
not objects of the seven subtypes (or predicates) of the type V );

(G6+4+) Ve, (k = h)V(k = ¢) => 1[AX(k) V CUT(k) V p(k) V ®(k) V (k) V 2(k)]
(which means that the hypothesis h and the conclusion ¢, which are objects of type V, are
not objects of the siz subtypes (or predicates) of the type V);

(G7) V&, N(k) => - M (k) where N designates one of the symbols of predicate of type V and
M one of the others (which means that the different predicates of type V' designate distinct
objects);

are forteen symbols of unary

RR n°RR-2416



12 E. Duquesne, J. Van de Wiele

in G8-G13, N will designate one of the symbols of predicate of type V (in case of the azioms
G8, G10, G12, N s not the predicates ? and '4,), A one of the four symbols of predicate of
type E, and p4, ¢4 two symbols of function of type (E,V):

(G8) Yk, N(k) = A(pa(k)) (which means that the premise p& of the vertez k of subtype N
is of subtype A),

(G9) V&, N(k) = A(ca(k)) (which means that the conclusion c4 of the vertex & of subtype
N is of subtype A),

(G10) Ve, Vi, [A(¢) A N(k) A =

(G11) ¥y, ¥, [A(p) A N(k) A ¢ =cy]=s(p) =
(G12) Yo, ¥k, [A(p) A N(x) A g(p) = K] = ¢ = py,

(G13) ¥y, Y, [A(p) A N(k) A s(p) = kK] = ¢ =c

(the axioms G8-G13 define completely the linear links except the ?-link, the '4p-links are
completely defined by the azioms G9, G11, G13),

(G14) Yo, ?%(g(¢)) = I(¢) (this aziom defines the ?-links, it precises the type of the pre-
mises; the cardinality of the premises of a 7-link is not fized a priori).

We will only consider cut-free proof graph, that is proof graph with no CUT-link.

Terminology 1 i) The bottom (resp. top) of an edge is the extremity of the edge which
points up (resp. down).

ii) An hypothesis (resp. conclusion) in a proof graph is an edge whose top (resp. bottom)
points at no link.

Definition 7 A cut-free approximate proof structure (or approximate proof structure for
short) is an approzimate proof graph G such that:

i) there is no CUT-link,

ii) there is no hypothesis,

iii) no I-formula is conclusion of G.

Moreover a cut-free proof structure (or proof structure for short) is a (cut-free) approzimate
proof structure with no !4p-link.

Definition 8 Let G(V, &) be an approzimate proof structure.
o & ={p€&/pisnot a ?I-formula} and V* = {k € V/k is not a ?-connector}.

o To every ¢ € £*, we add the following orientation o(p) € {1,1}: o(p) =1 if ¢ is a
I-formula, and 0( ) =1 if ¢ is a O-formula or a 'O-formula.
So we get (I1,1),(0 ]),(10,]) € & x {1, 1}, which will be written I 1,0 | and 10 |

respectively.

e This orientation induces a binary relation T on E*: let p, 0 € E*,
Ty iff there exists a vertex k such that the orientation added to ¢ points at k and
the orientation added to ¢ goes out k;
explicitely,
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T’ is the transitive closure of 7, 7' the transitive and reflexive closure of 7.

Remark 3 1) The relation T is as follows for each link k: if k is a:

- AX-link (———5): 1T O,

-p-link (%) Opremise T Oconclusion:

- ®'hnk (%) Iconclusion T Ipremisea 0T Ipremise:

- I-link (%) O 7T!0.

ii) An obvious formalization of the notions of the previous definition can be done in an
analogous way as in Remark 2 (See [4] for it).

Condition N1
7' is a strict ordering relation (that is, =(¢7"y), for all ¢ € £*) with greatest element.
(IZOIndiItion N2
R
i oy ©  For any such subgraph, if I, is a premise of the ?-link, then I, 7" Oy.

Remark 4 If an approzimate proof structure satisfies Condition N1, N2, then its conclu-
sions are only 7I-formulas except one which is a O or 'O-formula, this conclusion being the
greatest element of the relation T .

The smallest elements of T are the premises I of the 7-links and the conclusion 'O of the
eventually ! 4p-links.

Definition 9 e A cut-free approximate proof net with a O or a !O-conclusion (or ap-
proximate proof net with a O or a !O-conclusion for short) is a (cut-free) approzimate
proof structure which satisfies Conditions N1 and N2 with a O or a '0O-conclusion
respectively.

e A cut-free proof net with a O or a !O-conclusion (or proof net with a O or a !0-
conclusion for short) is a (cut-free) proof structure which satisfies Conditions N1 and
N2 with a O or a 'O-conclusion respectively.

We denote by

e PN(O)ap, the set of the approximate proof nets with a O-conclusion;
e PN(!0)ap, the set of the approximate proof nets with a !O-conclusion;
e PN(O), the set of the proof nets with a O-conclusion;

e PN(!0), the set of the proof nets with a !O-conclusion.

RR n"RR-2416



14 E. Duquesne, J. Van de Wiele

Remark that in PN (!0)4,, there exists the particular element 57 ... 57 75 it will be denoted
by N If the !0-conclusion of an element G(V, &) of PN(!0)ap is conclusion of a !4,-link,
then G(V, &) = N

Lemma 3 e PN(O)ap and
PN(10)ap \ {N?} are isomorphic.

e PN(O) and PN(!O) are isomorphic.

Proof

Transform each approximate proof net with a O-conclusion G into an approximate proof net
with a !0-conclusion by adding a new !-link k whose premise is the O-conclusion of G; the
10-conclusion of G’ is the !0O-formula conclusion of the -link «.

Conversely, each approximate proof net with a !O-conclusion G can be transformed in an
approximate proof net with a O-conclusion by suppressing the link whose conclusion is the
'O-conclusion of G: necessarly, this link is a !-link, since G # N,

O

We define then the set of the cut-free proof nets (or proof nets for short) as follows:

Definition 10 e PNy, =PN(O)ap +{N} (which is isomorphic to PN(!10)ap) is the
set of the (cut-free) approximate proof nets.

e PN = PN(O) is the set of the (cut-free) proof nets.

5.2 Other definitions

Definition 11 Let G(V, &) be an approzimate proof graph.

R is a binary relation defined on E:

©RY iff there exists a vertex k € V such that ¢ s a premise of & and ¢ is a conclusion of
K.

G is said R-well-founded iff the transitive closure of R 1s a well-founded strictly ordering
relation.

Remark 5 1) Using the aziomatization of Remark 2, the binary relation R can be defined
as follows:

R iff there exists a vertex k € V such that g(¢) = & and s(¢) = k.

ii) The elements of PNy, are R-well-founded (see Remark 7 below).

In [{], the R-well foundation of the elements of PN(O) is proved.

Proposition 2 The elements of PPS are (isomorphic to) the R-well-founded approzimate

proof structures with a O-conclusion or a !|O-conclusion. PPS%’s ones are (isomorphic to)
the R-well-founded proof structures with a O-conclusion or a 'O-conclusion.

Inria



A new intrinsic characterization of the principal type schemes 15

Proof

Let S € PPS. We define the approximate proof structure G(S) = (V, £) which is (isomorphic

to) S:

o £ = St(S) with

- |0|| = St(S)n DQPH,

- II|| = St(S)n DQP~,

- )'O|| = St(S)n DQP**,

- |I?1)| = St(S)n DQP—*

e V is the set of the occurrences of the constructors of the types. Formally V is the union of

the following sets:

- AX is (isomorphic to) At(S),

ol ={—/ — in A— X ]lo]l},

-lel={—=/— in A= X €|},

Ntapll = A/ A in A2y Zi € 1011} (A=, Zi = 0),

1M =AA/ A in Aisy Xi € 101} (Nisy Xi = X3),

120 =AA/A in Nizy X € 12101}

and such that (V, £) satisfies

-{(a7,at)/a € At(S)} is the set of the AX-links,

-{(A, X, A — X) e DQP~* x DQP* x DQP* /A — X € St(S)} is the set of the p-links,
(A, X, A — X) e DQP*T™ x DQP~ x DQP~ /A — X € S5t(S)} is the set of the @-links,
(0) € DQP** /0 € St(S)} is the set of the !4,-links,
(
(

Xi, Ni—y Xi)/ Ni—y Xi € St(S)} is the set of the -links,

X1, -, Xg, /\f:1 X;) € DQP~F x DQP_*//\Z?:1 X; € St(t)} is the set of the ?-links.
e G(V,€&) is R-well founded, since the types are well founded.

O

{
{
{
{

Remark 6 This is analogous to the interpretation of the proof nets by coherent sets of types
(see [8] and [6]):

a—:1 at:0’
- +
o X0 X I,
o AT X:0
A—X:0 ’
° X:I '10:A
A—X:T ’
° X:0
Ax:0’
° X :1 - Xn:I‘
N Xl
I=1

By extension, we could define the following interpretation of the !4,-links:

0:10
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16 E. Duquesne, J. Van de Wiele

Definition 12 Let G(V, &) be an approzimate proof structure.

i) T4 is the sub-relation of T defined on the set of the (occurrences of) I-formulas which
are conclusions of the AX-links:

©Tay iff o, are I-formulas conclusions of AX-links, oT'v and

(for all I-formula x conclusion of a AX-link, if @T"xT" ¢, then x = ¢ or x = ¢).

ii) T4 (resp. Ty ) is the transitive (resp. transitive and reflexive) closure of the relation T4.

Lemma 4 Let G(V, &) be a R-well-founded approzimate proof structure.
T' is a strict ordering relation with greatest element iff T also.

Proof

e Since T4 is a sub-relation of 7, 7, is a strict ordering relation if 7" is also.

Conversely, suppose that 7’ contains a cycle, we prove that 74 does also:

since the approximate proof structure G is R-well-founded, a cycle relatively to 7’ (fi Jo<i<m,
with f;i7 fi4+1(0 < i < m — 1) and f,—17 fo, cannot contain only O-formulas or only I-
formulas. So (fi)0§i<m must contain O,!0 and I-formulas and it must have the following
form:

(fi)o<icm =

(gik, 0% 92k, g%yk, 98" Jo<k<n—1 (With n — 1 < m) such that the sequence

(gik o ~g§’j‘k, 92,k géyk = gg"k) satisfies,
for all index k € Z/nZ,

- gik, = ~,g’fj‘k are O-formulas, g5 1, is a 'O-formula, g%yk, o ~,gg’fk are [-formulas,

- gik is conclusion of an AX-link,

- gi ¢ 1s premise and gﬁcl is conclusion of the same gp-link (1 < i< pyp — 1),

- g1 1s the premise and g2k 1s the conclusion of the same link,

- g2, and gé’k are the premises of the same ®-link,

- g4 1 is the conclusion and gg:lhkl is premise of the same ®-link (1 < i< py — 1),

- g5, and g%,k+1 are the conclusions of the same AX-link.

So (géyo, . -,géyn_l) is a T)-cycle, with gé,iTAgé,iH (0<i<n—1)and géynTAgéyo.

e Let ¢ be the O-conclusion or the !O-conclusion of G, that is the greatest element of 7, then
the conclusion ¢ of the AX-link which is hereditary premise of ¢ is the greatest element of
T4.

O

Proposition 3 Let S € PPS.
o Leta,B€ ALS). a<y fiffa Tup™.

o S satisfies Cond 3 iff the approzimate proof structure G(S) (isomorphic to S) satisfies
Condition N1.

e Suppose that S satisfies Cond 3.
S satisfies Cond 4 iff G(S) satisfies Condition N2.
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A new intrinsic characterization of the principal type schemes 17

So S € PS iff G(S) € PNa,.
And, so S € PS* iff G(S) € PN.

Proof

e Suppose that a <3 3, that is X(at) — Y(37) € St(S).

By Remark 3 we get:

at 7' X(at) T AX(at) T Y(87); since a~Tat and Y(87)7'S~, we can conclude
a~T'6™.

The two following properties imply the result o~ 7457 : let ¢ € At(S),

at T" ot T" X(at) implies ot = a¥,

and Y(B7) 7" ¢~ T" B~ implies o~ = 5~

The proof of the reverse assertion is analogous.

e Since G(S5) is R-well-founded, the previous lemma and the property o <1 8 iff a= 745~
imply that S satisfies Cond 3 iff G(S) satisfies Condition N1.

e The last point is a consequence of the first point of the proposition.

O

Remark 7 i) The notion of equality of sequences (or of pts) coincide to the equality of
(approzimate) proof nets (isomorphism between (approzimate) proof nets).

ii) The property of R-well foundation of the approzimate cul-free proof nets is a consequence
of the well foundation of the elements of the principal sequences: the types of DQP are well
founded.

6 Conclusion

This present article gives identities between syntactical and semantical notions such that
proof nets and principal sequences. The notions of syntax and semantics are no more so
clear. The second author defined in [12] the elements of the interpretation of the A-terms as
DQ-graphs (proof nets with a new definition of -links analogous to our definition of ?-link):
the formulas are seen as particular graphs. These particular graphs are R-well founded. For-
getting the R-well foundation allows to create cyclic formulas and allows to think of defining
new kinds of models of the lambda-calculus.

As in [10], next works should study the suitable operations on pts (or on proof nets) in the
present framework, and should create analogous operations for coherent models of lambda-

calculus.
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