Structural, temporal and stochastic properties of unbounded free-choice Petri nets

Abstract : In this paper, we show how a decomposition of a free choice Petri net into a ``routing'' network and marked graph subnetworks (i.e. linear subnetworks in the $[\max, +]$ setting) leads to new methods and algorithms to test structural as well as temporal properties of the net. Although several results hold for general free choice nets, the paper primalily focuses on the class of single input-free choice nets, defined here. We show how this decomposition in linear subnets allows one to: (in the untimed case) check liveness in polynomial time; (in the timed case) establish evolution equations which allow to represent the system as a coupling of two linear systems, a $(\min,+)$-linear system, and a quasi $(+,\times)$-linear one; (in the stochastic case) check stability, i.e. the fact that the marking remains bounded in probability. The main tools for proving these properties are graph theory, idempotent algebras and ergodic theory.
Type de document :
RR-2411, INRIA. 1994
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:53:48
Dernière modification le : samedi 27 janvier 2018 - 01:31:05
Document(s) archivé(s) le : mardi 12 avril 2011 - 16:19:44



  • HAL Id : inria-00074264, version 1



François Baccelli, Bruno Gaujal, Serguei Foss. Structural, temporal and stochastic properties of unbounded free-choice Petri nets. RR-2411, INRIA. 1994. 〈inria-00074264〉



Consultations de la notice


Téléchargements de fichiers