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Abstract: In this paper, we show how a decomposition of a free choice Petri net into a
“routing” network and marked graph subnetworks (i.e. linear subnetworks in the [max, +]
setting) leads to new methods and algorithms to test structural as well as temporal proper-
ties of the net. Although several results hold for general free choice nets, the paper primalily
focuses on the class of single input-free choice nets, defined here. We show how this decom-
position in linear subnets allows one to:

¢ (in the untimed case) check liveness in polynomial time;

e (in the timed case) establish evolution equations which allow to represent the system
as a coupling of two linear systems, a (min, +)-linear system, and a quasi (+, X )-linear
one;

e (in the stochastic case) check stability, i.e. the fact that the marking remains bounded
in probability.

The main tools for proving these properties are graph theory, idempotent algebras and
ergodic theory.
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Propriétés structurelles, temporelles et stochastiques
des réseaux de Petri a choix libres

Résumé : Dans cet article, nous montrons comment une décomposition d’un réseau de
Petri & choix libres en un graphe de routage et des sous-réseaux graphes marqués (c’est
dire des sous-réseaux linéaires dans le contexte [max, +]) conduit & de nouvelles méthodes
pour tester des propriétés structurelles et temporelles du réseau. Bien que certain résultats
soient vrais pour des réseaux généraux, cet article s’intéresse surtout a la classe des réseaux
a entrée unique, qui est définie dans l'article. Cette décomposition nous permet

¢ (dans le cas non-temporisé) de vérifier la vivacité du réseau en temps polynomial;

e (dans le cas temporisé) d’établir les équations d’évolution qui décrivent le systeme
comme le couplage d’un systéme [min, +]a-linéaire et d’un systeéme quasi [+, x]-linéaire;

o (dans le cas stochastique) de tester la stabilité du systeme, c’est & dire le fait que le
marquage des places reste borné en probabilité.

Les outils utilisés pour montrer ces résultats sont la théorie des graphes, 'algebre idempo-
tente et la théorie ergodique

Mots-clé : Réseaux de Petri, algébre (min,+), stabilité, théorie ergodique
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1 Introduction

Timed event graphs can be seen as linear dynamic systems in the so-called (max, +)-algebra
[2]. The algebraic formalism used in the above approach provides a rich variety of results on
stability, control and computational problems arising in both deterministic and stochastic
event graphs. The aim of the present paper is to show that a similar algebraic approach can
partially be generalized to free choice nets. The whole analysis is based on a decomposition
of the net into its maximal (max, +)-linear (i.e. event graph) subnetworks and a non-linear
“routing” subnet; this decomposition is introduced together with basic definitions on Petri
nets in Section 2. Several results obtained in the paper bear on general free choice nets,
including the decomposition and evolution equations for the timed case. However, the main
focus of the paper is the class of single-input free choice nets (SI-FCNets), where all event-
graph subnets arising in the decomposition are single-input (max, +)-linear systems.

This decomposition is first used in Section 3, in order to analyze structural properties of
unbounded free choice nets. In the case of SI-FCNets, we show that Commoner’s characte-
rization of liveness in terms of siphons and traps [5] (i.e. the network is live iff each siphon
contains a trap with a non-empty marking), when added to the above decomposition, leads
to polynomial time algorithms (in the size of the net) for checking liveness. The analysis is
mainly based on graph theory.

The decomposition is then used in Section 4 to derive the evolution equations for the
timed case. Up to a minor transformation, the dynamics of a free choice net admit a ca-
nonical representation in terms of a ‘coupling’ of two linear systems. The first one pertains
to the event graph components, and satisfies a non-autonomous (min, +)-linear evolution
equation with an input from the second system, whereas the second one is “essentially” a
nonautonomous (+, X )-linear system with an input from the first system. A few basic pro-
perties of this class of evolution equations are established, and in particular monotonicity
and conservation properties which play a key role in the analysis of stability.

The last problem which is analyzed in the paper is stability (Sections 5 and 6). Stability
is the property that a timed (resp. stochastic) unbounded Petri net may have, and which
implies that its marking remains bounded (resp. bounded in probability). This is not a struc-
tural property in the sense that it strongly depends on the initial marking and on the timing
variables used in the net. The main result is a set of quasi necessary and sufficient condi-
tions for stability for non-autonomous SI-FCNets. The conditions are expressed in terms
of inequalities between two types of linear characteristics of the net: the (max, +)-Perron
Frobenius maximal eigenvalues (resp. the Lyapunov exponents) of the (max, +)-linear sub-
systems on one side, and certain fixed points pertaining to the (+, X) subsystem on the other
side. Whenever this condition is fulfilled, we also show that the marking process converges
to a periodic (resp. stationary) integer-valued process (resp. stochastic process). The main
tools used in this part are the results already known for (max,+)-linear systems and an
ergodic theory construction which relies on the monotonicity properties of the evolution
equations. A few special cases of this stability result are already known in the literature: for
Jackson queueing networks, which happen to be SISO FCNets (in fact, all linear subsystems
are here single input, single output, one dimensional systems), the stability condition boils
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4 F. baccelli, S. Foss & B. Gaujal

down to comparing the mean service rate of each queue with the solution of the so called
traffic equation (see [3]). So, the set of inequalities which characterize stability in the general
SI-FCNet case can also be seen as a generalization of the well known conditions for stability
in the Jackson network case. First order ergodic theorems (showing the existence of rates
under general conditions) were also obtained in the SISO case in [6].

2 Timed Petri net

2.1 Dynamics of Petri Nets

A Petri net is a t-uple (P, 7,C, M) where P is the set of places, 7 is the set of transitions,
C the set of arcs between places and transitions or between transitions and places (C is a
subset of P x T U7 x P). M, is the initial marking in the places. We denote by *¢ the set
{p € P:(p,t) € C} (i.e. the set of all input places of t). We define similarly the sets t*, *p,
p* as the set of output places of ¢, the set of input transitions of p and the set of output
transitions of p, respectively.

A timed Petri net is a Petri net with temporal data attached to transition: o%(n) is a
data which gives the duration of the n-th firing of transition ¢. This means that if transition
t begins to fire for the n-th time at epoch e, this firing will end at epoch e + o?(n); tokens
are then taken out of input places and put into output places of ¢ according to the firing
rule of the untimed Petri net.

For more on the matter, and in particular for the definitions of deadlocks, liveness,
structural liveness etc. which are used in the paper, the reader is advised to consult the
survey paper by Murata [10].

2.2 Free Choice Nets

Free choice nets (FCNet) are Petri nets verifying the following conditions: Vp € P,t1,t5 €
p®, t1 # ta, *t1 = *ts = {p}. In other words, whenever two transitions share an input place,
they have no other input place.

Free choice nets have been extensively studied in the 70’s [5] and have regained interest
recently [7], [11] because they constitute a nice compromise between power of description
and tractability of problems.

Several ‘semantics’ can be used for the resolution of conflicts. The most common is called
the race policy. Another one called the routing policy was introduced in [1].

Let p be a place with several output transitions.

In the case of the race policy, the resolution of conflicts is purely based on the temporal
data. For free choice nets, this policy boils down to the following: as soon as the n-th token
enters place p, the transitions of p® immediately start their n-th firing (this is possible since
they have no other pre-conditions by hypothesis), which takes o%(n) for transition ¢. The
transition which completes first wins the race for the n-th token, and consumes this token.

INRIA
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In the case of the routing policy, routing datae are attached with each place with several
output transitions. Place p has a routing sequence v? : N — p®, where v”(n) gives the
transition ¢ € p® to which the n-th token to enter place p is routed. The routing sequences
can be periodic or random. If this token is the k-th to be routed to transition ¢t € p°®, then
this token is immediately consumed by the transition (due to the FC property) where it
experiences a firing time of o’ (k).

In fact, in the free choice case, the race policy is a special case of routing policy. Assume
that the net evolves according to the race policy. Then the n-th token to enter place p is
routed to transition

vP(n) = argmintep.at(n),

(at least whenever this argument is unique). This function can also be seen as predefined
routing data which does not depend on the firing times of the transitions of the net, but for
those of p® of course. So, up to an adequate renumbering of the firing times of p®, one can
view race as a special case of routing. The converse construction is also easy to make.

In what follows, we shall adopt the routing semantics.

2.3 Decomposition into Marked Graph Components

A place p in a FCNet F' is serial if |*p| = |p®| = 1. Let A be the set of transitions such that
all their upstream places are serial, and let B be the set of transitions which do not belong
to A.

First we define a relation £ by: ¢,¢' € T, tLt' if there is a serial place p verifying
{*p,p*} = {t,t'}. Let K be the transitive closure of £. K is a parallelism relation. We
partition the set of transitions 7 into its maximal K-classes, 77, --,7,. We construct a
decomposition of F' in the following way: P; = {p € P|p serial and *p,p* € T;}, for all i.

The marked graph component (MGC) G; of F is the sub-Petri net of F (P;,7;,C N
('Pi x T; UT; x 'Pl)) One can easily check that G; is a marked graph and is maximal in the
sense that no marked graph included in F' contains G;, except G; itself. A marked graph
component G; is degenerated if G; is reduced to a single transition (with no places).

The places which do not belong to any component G; are the places with several input
transitions and/or several output transitions. These places will be called routing places in
the following. The set of routing places is denoted R.

In a first step, we will only consider networks with an exogeneous input into some places
(although the case when input can also take place in transitions, will also be used and
analyzed in the paper). Any place with such an input will be put into the set of routing
places, by definition.

Some examples of decompositions are given in figures 1 and 2.

2.4 The Routing Net

If F = (P,7,C) be a free choice net, we define its routing graph H = (R, G,C’,w) as follows:
R is the set of routing places, G is the set of MGC’s and C' is the set of arcs in C between

RR n°2411
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e e e e e —

Ga: MI

Figure 1: This FCNet is decomposed into two MGC’s.

routing places and MGC’s. The routing net is a weighted Petri net which is obtained by
replacing each MGC by a transition and keeping only the routing places. If there is an arc
from the routing place p to MGC G (resp. from G to p) in the original net, we put an arc
from p to transition G in the routing net (resp. from G to p). The weight wp g (resp. wa,p )
of this arc equals the number of arcs from p to G, i.e. #(p®* N G) (resp. from G to p) in the
original FCNet.

Note that G denotes a transition in the routing net as well as a MGC in the original net.
Similarly, p denotes a place in the routing net as well as in the original one. We also use the
notation G € p* ( resp. G € *p), if there is an arc from p to G (resp. from G to p) in the
routing net.

Finally, if F is a set of places in the original FCNet, E, denotes its projection on the
routing graph, i.e. E, = ENR.

The routing net of the FCNet depicted in Figure 2 is shown in Figure 3.

Note that the routing net of a FCNet is a FCNet.

2.5 Classification of Free Choice Nets

We propose a classification of the marked graph components of a FCNet based upon its
links with the routing places.

A MGC G is said Single Input (SI) if #{¢ € T;,°t ¢ P;} = 1. In this case, we will denote
(9 and call input transition this unique transition of G;. G; is said Multiple Input (MI) if
#{t € T;,*t ¢ P;} > 1. A MGC G; is said Single Output (SO) if #{t € T;,¢t* ¢ P;} = 1. A
MGC G; is said Multiple Output (MO) if #{t € T;,t* ¢ P} > 1.

INRIA
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______ K Ga: SIMO

Gs: SISO

Figure 2: This is a SI-FCNet. Indeed all its MGC’s are SL

3

Go G

P1 P2 p
D ) [ e

(en

Figure 3: Since the graph F'is a SI-FCNet, its routing graph can be interpreted as a weighted
free choice net. The default weight on an arc is one and only the weights different than 1
are explicitly written.
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8 F. baccelli, S. Foss & B. Gaujal

Thus all MGC’s of a FCNet can be put in one of the four classes, SISO, SIMO, MISO,
MIMO. A FCNet is said SI (resp. SO) if all its MGC’s are SI (resp. SO) and MI (resp. MO)
otherwise.

Note that if F'is a SI-FCNet, then its routing net H is a SI-FCNet.

3 Structural Properties of SI-FCNets

In this section we show that certain structural properties of a FCNet can be checked on its
routing net. We will mainly focus on structural liveness (see [10]), but other properties like
boundedness can also be tested at the routing net level only.

Note that if the FCNet is not in the SI class, the routing net does not help to decide
on the liveness of the original FCNet. We illustrate this property the example in Figure 4,
which depicts a FCNet and its routing net. The FCNet is not live whereas the routing net
is live.

3.1 Traps, Siphons and Commoner’s Liveness Condition

In [5], a necessary and sufficient condition of liveness for (simple') FCNets is given. This
condition uses the notions of siphons and traps.

Definition 1 A siphon is a set of places S verifying *S C S®. A trap is a set of places T
verifying T* C *T.

Commoner [5] established the following theorem:

Theorem 1 A (non-weighed) FCNet is live if and only if every siphon contains a marked
trap.

The structural liveness of a FCNet can be characterized by checking whether every siphon
contains a trap.?

A siphon is minimal if it does not contain a smaller siphon. Since the union of two traps
is a trap, we can talk about the maximal trap included in a set of places. The structural
version of Theorem 1 can easily be reduced to the following equivalent version:

A simple FCNet is structurally live if and only if the mazimal trap included in every minimal
siphon is not the empty set.

LAll the nets which we considered in this paper are simple, in that arcs are not weighed; in a non-simple
net, each arc has an integer value which gives the number of tokens produced (resp. consumed) by the
transition at the origin (resp. end) of the arc. Simple nets are nets where all arcs have value 1.

2Unfortunately, checking this condition can be exponential in the size of the net. In [7], polynomial
conditions of liveness and boundedness of FCNets are derived under the form of an integer linear program.
However, to the best of our knowledge, nothing is known in the case of unbounded FCNets.

INRIA
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A non live MIMO-FCN

2
¢ T |
Itsrouting graphislive

Figure 4: This FCNet is composed by only one routing place p and one MGC G. The routing
net is live and the original net is not.
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10 F. baccelli, S. Foss & B. Gaujal

Once a siphon S is given, one can test in quadratic time (in the number of places of the
siphon) whether this siphon is structurally live (i.e. whether the maximal trap included in S
is the empty set or not), by running the following (at most quadratic) procedure on siphon

S:
1 Tag all the places which are not in S.

2 Tag all the places of S which have one downstream transition leading only to already
tagged places. (i.e. all the places p € S s.t. there exists one transition ¢ in p® with ¢*
made of tagged places only.

3 Repeat step 2 until no new place is tagged.

Lemma 1 The places which remain untagged when the run is complete form the mazximal
trap U included in siphon S.

Proof: First we prove that U is a trap. If U is empty, then U is a trap. If U is not empty,
let p € U. By construction of U, for each t € p®, t* N U # (). This is the definition of a trap.

Then, we prove that this trap is maximal. We prove that if p is tagged then no trap
containing p is included in S. The proof is by induction on 2, the step at which p has been
tagged.

If p was tagged at step 1, p does not belong to S, therefore, a trap containing p cannot
be included in S.

Suppose that a place that has been tagged at step j, 7 < ¢ does not belong to a trap
included in S. Let p be a place tagged at step ¢ + 1. Then by construction, there exists a
transition in p*® such that the whole set £* has been tagged at previous steps. But all traps
containing p must contain at least one place in ¢* and from the induction assumption, this
trap is not included in S. |

This lemma also allows one to test the liveness of a minimal siphon in quadratic time (in
the number of places included in the siphon). Indeed, for this, it is necessary and sufficient
to check whether the maximal trap included in the siphon is marked.

In the following section, we show that in the class of SI-FCNets, we can check (structural)
liveness by looking at the (structural) liveness of the routing net.

3.2 Liveness of SI-FCNets

In the following, we will focus on SI-FCNets. Let F = (P,7,C) be a SI-FCNet and H =
(R,G,C") its routing net. We distinguish two classes of minimal siphons in F'.

(K1) A minimal siphon S belongs to class Kj if it contains a cycle included in a MGC.
In this case, the siphon is reduced to this cycle since a cycle in a marked graph is a
siphon.

INRIA
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(K2) A minimal siphon S belongs to K> if it contains routing places. Note that a Ks-siphon
cannot contain a cycle included in a MGC, because it would not be minimal. So, the
set of places of such a siphon which belong to MGC G; can only consists of places in
acyclic paths of G; leading from the input-transition of G; to the output-transitions

in *S.

Lemma 2 If S is a minimal siphon in Ko, then Sy, its projection on the routing net (S, =
SNR)is a siphon.

Proof: Let p be a place in RN S and G a transition in *p. We have to prove that there is
a place ¢ such that

q belongs to RN S and G € ¢~. (1)

Since G belongs to *p, there is a transition ¢ which belongs to G N *p. Since S is a siphon,
there is a place go in S such that ¢§ contains ¢. If go is not in G, then G belongs to ¢; and
condition (1) is satisfied.

If go is in G then it is serial, and there exists a place ¢; in S such that ¢ € ¢7°. More
generaly, consider the sequence ga,++,¢gn,- -+, constructed in the same way (namely g is
a place of S, and g1 € ¢}*), and stopped at the first place which does not belong to G.
Since S cannot contain any cycle in G (S is a K»-siphon), the last sequence stops after a
finite number of steps, and so it ends with a place g,,, in S, which does not belong to G. So
G belongs to ¢, and place gy, satisfies condition (1).

This is true for all MCG in *p and for all places p in S,.. So S, is a siphon. ]

Lemma 3 Let S be a minimal siphon in the SI-FCNet F of type Ko and S, its restric-
tion to the routing net H. If U is a trap included in S for F, then U NR is a trap
included in S, for H. If V is trap included in S, for H, then U = VU {p € V* :
p belongs to a path in S from a place in V to a place in V }* is a trap included in S for F.

Proof: First we prove that if U is a trap included in S, then U, = U NR is a trap included
in S,.. The proof is similar to that of the previous lemma.

We have to prove that if p is a place in U,, then for all transitions G in H such that
G € p*, there is a place ¢ in U, s.t. G* contains q.

Let G be such that G € p*. Then there exists t € G s.t. ¢ belongs to p®. Since U is a trap,
there is a place in *¢tNU, say qo. If g is not in G, then G € *q¢ and so we can take ¢ = qo. If
qo is in G, then it is serial, and there exists a place g1 in U, such that qo € **g1. We construct
similarly a finite sequence q1,¢s2, - - -, qn, of places belonging to U, with q;_1 € **qg, and such
that all places of the sequence but the last, g, belong to G. (since S contains no cycle in G,
neither does U). We then take g = ¢n.

3By p € V* we mean that p belongs to a MGC G such that G € V*.

RR n°2411



12 F. baccelli, S. Foss & B. Gaujal

We now prove the second part of the lemma. Let p be a place in U and ¢ be any transition
in p*. In order to prove that U = VU{p € S : p € V*} is a trap, we have to show that there
is a place p' in U s.t. t belongs to *p’.

First consider the case when p belongs to R. In this case, there is a G in p* with t € G.
Now, since V is a trap, there is a place ¢ in V s.t. G € “q. From the definition of U, all the
places in GN S are in U. Since S is a siphon, for all transitions in G N *q, there is a place
go in S with g € ¢§°. If go is not in G, then by the single input property of G, ¢p = p and
p' = q answers the question. If g is in G, construct the sequence qp,---,gn—1 of places in
G NS with g1 € ¢3°. As noted previously, all these places are distinct because S does not
contain any cycle in G. So if » is such that g,,—; is the last place to be in G, then **g,_1 is
reduced to a single place: p and we can choose p' = ¢p_1.

If p does not belong to R, then p belongs to a MGC (say G) and to S. Note that since V
is a trap, *G € V and G* NV # (). The places in G N S form paths of G, each path leading
from the input transition of G to a transition in GN*S. Indeed let ¢ € GN S. If ¢** & S,
then S — {q} is a siphon and S would not be minimal.

Now, p belongs to one of those paths, leading to a place in V. Let p’ be the succes-
sor of p on this path. If p’ € G, then it verifies all the conditions of places of U. If p’ € G,
then p’ is a routing place and is in V' C U. Therefore, p has a successor in U, so U is a trap. m

Note from the definition that V = U,..

The previous lemmas also hold for general FCNets if we replace each MGC by a complete
bipartite graph between its entry-transitions and its exit-transitions instead of replacing it
by a single transition. Unfortunately, in this case, the following lemma does not hold which
makes this new kind of reduction quite useless to test liveness.

Lemma 4 The number of minimal siphons in H is polynomial in |R|.

Proof: Let S be a minimal siphon containing place p. Then for all input transitions of
p, S must contain one of their input places. Since H is SI, there is only one input place
per transition. Thus one has no choice and there is at most one siphon containing place p.
Therefore the number of siphons in the routing net is linear in the number of places and we
can find all the minimal siphons in O(|R|?). [

Theorem 2 Checking (structural) liveness of a SI-FCNet is polynomial.

Proof: For any minimal siphon S in F, S, is a siphon in H (Lemma 2) and S contain a trap
U is equivalent to S, contains a trap U, (Lemma 3). Therefore, the structural liveness of F'
and H are equivalent, since all the MGC which are marked graphs are always structurally
live.

The following algorithm checks the structural liveness of a SI-FCNet:

1 Construct the routing net. [O(IT )]

INRIA
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2 For each siphon in the routing net check whether the maximal included trap is not the
empty set. [O(|R]?) using Lemmas 1 and 4]

To check liveness, one has to go one more step:

3 Make sure that for each siphon its maximal trap is marked. If the trap in H is empty,
go back to the original graph, delete all places with tokens in each MGC and check
whether there is still a path from the entry-transition to all exit-transitions with at
least one place in the trap as output. [O(|7]*)]

4 Evolution Equations for Timed Free Choice Nets

In the following, we will focus on timed FCNets. A transition is in stervation if during the
evolution of the net, it fires only a finite number of times. A deadlock is a situation where all
the transitions are starving. In particular, a deadlock is a state of the system under which no
firing will ever take place. For a FCNet, a deadlock is a marking D under which no transition
is enabled (i.e V¢ € T', dp € *t, with Marking(p) = 0).

4.1 Transformation of a FCNet

The FC nets we will consider will be assumed to satisfy the following assumption:

A transition t € B with more than one incoming arc (i.c. with an and-convergence) is never
preceded by a place p with more than one incoming arc (i.e. with an or-convergence)

This restriction introduces no loss of generality as any FC net can be transformed into
an equivalent net which satisfies this assumption: because of the FC constraint, a transition
t as above cannot be preceded by a place with multiple outcoming arcs; so, each place p as
above can be replaced by a triple p’, ¢, p", where *p’ = *p, p"’* = p* = t, and where p'* = ¢t/,
*t' =p, t'"* =p", *p"” = t', without altering the time evolution of the net (provided ¢ is
given a firing time equal to zero).

Note that under the above assumption, each transition of B has exactly one upstream
place, and that this place is necessarily non-serial. This place may either have an or-
divergence (in which case it precedes several transitions of B) or an or-convergence, or
both.

4.2 State Vectors

Counters Let X*(u) denote the counter associated with ¢, namely, the number of firings
initiated by transition ¢ by time w. We will consider the version of this process which is
continuous to the right. Let Y (u) be the vector {X*(u), t € A, u € R}, where the transitions
are arranged in some order, and let Z(u) be the vector {X*(u), t € B, u € R}.
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14 F. baccelli, S. Foss & B. Gaujal

We shall first consider the case when firing times are constant, positive, and all multiple
of a common number, which will be taken equal to 1 without loss of generality. We will
show in Section 7 how to address the case with varying (and in particular stochastic) firing
times, which can be treated with a similar method. We will denote M the (integer-valued)
upper-bound on the firing times. We will denote v?(m) the m-th routing decision from place
p (vP(m) € p*) and II*(m) the sum

Ht("ﬂb) = Z ly't(l):ﬁ te B, (2)
=1

where v?(.) is the routing function associated with place p.

Exogeneous Arrival Process As mentioned in the introduction, our main focus concer-
ning stability will be the non-autonomous case, namely the case of nets with an exogeneous
input process. We will denote {7}, }nen this input process:

0=T < <..<Tp<Thy1 <...

We will consider the case when the arrival times T;, (or equivalently the jump times of
the associated counter) are integer-valued. The associated counters are defined as follows:
for all t € B, we denote R'(k) the cumulated exogeneous input in place *¢ (this place is
uniquely defined as observed in the last subsection) up to time k. So these counters satisfy
the evolution equation

RYk) = R*(k — 1) + I*(k), k>0, (3)

where I*(k) = j iff k € {T},}» and the exogeneous arrival at k brings j tokens to place
*t. We will denote R(k) the NIBl_vector R'(k), t € B. Note that this vector may carry
redundant information (for instance whenever two B transitions admit the same non-serial
place as input place). The initial condition of this recursion, R(—1), is the NIBl_vector of
initial markings in the routing places of *B: R(—1)(t) = c if t € B is such that *¢ has an
M-marking (prior to any exogeneous arrival) of c.

Theorem 3 Under the above assumptions, for all k € Z, the counting vectors {Y (k), Z(k)}
satisfy the following evolution equation:

Y(k)=0, Z(k)=0, Vk<O0, (4)

and, for k>0,

=
=

I
P=

(AiY(k-1l)® B ®Z(k-1)) (5)
l

M
Z(k) = 1 <Z (Prx Z(k—1)+Q xY(k—l))—i—R(k)). (6)

=

1

Y
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Structural, temporal and stochastic properties of unbounded free-choice Petri nets 15

In this evolution equation, (®,®) respectively denote matriz products and additions in the
(min, +) semi-ring (see [2]), whereas (4, X) denote the same operations but in the conventio-
nal algebra. The matrices used in the recurrence equations are defined from the net structure
as follows:

o The matriz A; on A x A is defined by Ai(t,t') = c if the firing time of t € A is
1 and there is a serial place between t' € A and t, with Mo-marking equal to c; oo
otherwise. If there are more than one serial places between t' and t, we take c equal to
the minimum of their Mg-markings.

e The matriz B, on AX B is defined by By(t,t') = c if the firing time of t € A isl and if
there is a serial place between t' € B and t, with Mg-marking equal to c; oo otherwise.

e The matriz P, on B X B is defined by Pi(t,t') = 1 if the firing time of ¢t € B is | and
there is a place connecting t' to t; 0 otherwise.

e The matriz Q; on B X A is defined by Qi(t,t") = 1 if the firing time of t € B is | and

there is a place connecting t' to t; 0 otherwise.

e For all vectors of integers Z = (Z*,...,Z1), where q = |B|, I[(Z) is the vector of
integers:

n(z) = (I*(zY),...,04(z9)).

Proof: Equation (5) is obtained in a way which is similar to that used for establishing the
evolution equation for event graphs in [2]. For instance, the number of firings initiated by
transition ¢ € A at time k cannot exceed the minimum of the number of tokens arrived in
the places of *¢ by time k, which is exactly

M
PAeyk-loB e Zk-1).
=1

Furthermore, Y*(k) is equal to this quantity because transitions are assumed to fire as soon
as they are enabled. For obtaining Equation (6), the key observation is that, due to our
preliminary assumption, a transition ¢ which belongs to B has at most one input arc, which
allows us to write (6), and so the number of firings it initiates by time k is simply the
‘II*-filtering’ of the total number of arrivals into place *t up to time k, that is

M t
(Z (Pox Z(k=1)+ Qi x Y(k— l))+R(k)> :

=1
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16 F. baccelli, S. Foss & B. Gaujal

Remark: Constructiveness. Even if the initial net is such that all its firing times are
positive, the transformation of FC nets which was made at the beginning of § 4 may make
it necessary to consider the case with some zero firing time transitions; this may translate
into an extra term of the form By ® Z(k) in (5). Such an additional term preserves the
‘constructiveness’ of the evolution equation. By constructiveness of the generalized equation:

Y(k) = @AieY(k-l)eBioZ(k-1) (7)
=0
Z(k) = I <Z (PxZk=D)+Q xY(k=1))+ R(k)) (8)

(it generalizes the evolution equations of the theorem because | now ranges from 0 to M),
we mean that there exists an ordering of the coordinates of X (k) = (Y (k), Z(k)), say
X1 (k),...,X471(k), such that, for all j = 1,...,|7|, the line corresponding to X% (k) in

(7)-(8) is such that no term of the form X% (k), I > j can be found in the right hand side.
There is an easy algebraic characterization of this property: let S be the 7 x 7 matrix

defined by
S < supp (4o) supp (Bo) ) )
supp (Po) supp (Qo)
where the support, supp (4), of a (&, ®)-matrix A is a matrix of the same size and such
that (supp(A);; = 11if A;; # €, and 0 otherwise; similarly the support, supp (P), of a
(4, x)-matrix P is a matrix of the same size and such that (supp(P);; = 1 if F;; # 0,
and 0 otherwise. The equations are constructive iff there exists a permutation U such that
U~ x § x U is strictly lower triangular.
All the results that we prove in this paper can be extended to nets with constructive
evolution equations.

Remark: Localization. From the above equations, it is easily checked by induction that
the state variables X (k) satisfy the following ‘localization’ property: if R(k) and R'(k), k > 0
are two functions which coincide up to time K, then two nets which would only differ in
their input counters R and R’ are such that their state variables X (k) and X'(k) coincide
up to time K.

Remark: Linearity. The II function satisfies the relation
' (m +n) = ' (m) + I (n) 0 7y, (10)

where IT*(.) 0 7y, is the II* function associated with the shifted sequence 7,,v/(.), namely the

sequence
Tmup(‘n) = Up(n + 'm). (11)

INRIA



Structural, temporal and stochastic properties of unbounded free-choice Petri nets 17

For instance, whenever the sequence v?(.) is random and i.i.d. (i.e. made of random variables
which are independent and identically distributed), then E[II*(n) o 7,,] = E[II*(n)], so that

E[II*(m + n)] = E[II*(m)] + E[II*(n)]. (12)

So in this case, II is ‘linear in expectation’.

4.3 Total Number of Firings

Let Y = Y(o0) and Z = Z(o0) denote the vectors counting the total number of firings of the
transitions. One can characterize the presence or the absence of deadlocks (see the beginning
of Section 4 for the definition of deadlocks) and related properties, like starvation, directly
from Y and Z: for instance, given an initial marking My such that R(—1) — 0, the system
without exogeneous input (i.e. R(k) = R(—1) = 0, Vk) is deadlocked if and only if the Z
and Y vectors associated with this R(k) function are both equal to 0.

Lemma 5 The integer-valued vectors Z and Y satisfy the system of equations

Y = AQY®B®Z (13)
Z = M(PxZ+QxY+R), (14)

where A = @fil A;, B = @;‘il B;, P= E;\il P, Q= E;‘il Q; and R =limy_, R(k)

Remark: Independence on timing A striking property is that this system does not de-
pend on the variables 0! anymore: in other words, all properties like starvation, liveness,
deadlock and intermediates are associated with the switching functions, the topology, the
initial marking and the R vector only, and not with timing variables (neither firing times
nor arrival epochs of exogeneous tokens).

This property holds true in the case when the firing times are non-constant but finite
(see §7).

This property allows us to establish relations between the liveness of the underlying
untimed Petri net and the absence of deadlock or starvation in the timed version of the net.

In particular, if the untimed FCNet is live, then the timed version never reaches a dead-
lock (this is not true for general Petri nets). Furthermore, if the untimed net is live and if all
the functions II* are equitable* then, there will be no starvation in the timed version, that
is, all the transitions will fire infinitely often. For more on this see [8]. ]

Lemma 6 The system of equations (13)-(14) admits a minimal non-negative solution (for
the coordinatewise partial order). It admits a finite non-negative solution if and only if the
net reaches a deadlock. Futhermore, the vector counting the total numbers of events in the
deadlock is the minimal non-negative solution of this system.

4The function I, ¢ € 7 is equitable if II*(m) goes to infinity when m goes to infinity
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18 F. baccelli, S. Foss & B. Gaujal

Proof: The operator

d: NA x NBl o N x NIB
(Y, 2) - (AQY@®B®Z II(PxZ+QxY +R))

is componentwise non-decreasing and integer-valued. Any finite non-negative solution (S1, S2)
of (13)-(14) is a finite fixed point of ®: (S1,52) = ®(S1,S2).
Let us now define the sequence of vectors (a(k), B8(k))rew in NI x NIB by («(0), 8(0)) =
(0,0) and
(a(k +1),8(k+1)) = @(a(k), B(K))-

This sequence is componentwise non-decreasing and so, it has a limit when k goes to infinity
denoted (a, ). The vector (a,(3) is a fixed point of @ (actually, whenever (a,3) is finite,
the limit vector is reached in a finite number of steps).

A straightforward induction on n shows that for all other non-negative fixed point (57, S2)
of @, (a,8) < (S1,52), where the order relation is componentwise, which proves the first
assertion of the lemma.

If the net reaches a deadlock, the total firing vector X = (Y, Z) is finite and non-negative
and Lemma 5 states that this vector is a solution of (13)-(14).

Conversely, let us assume that this system admits a finite solution. Then (a, 3) is ne-
cessarily finite. Consider the sequences (Y'(k), Z'(k)) defined by (Y'(k), Z'(k)) = (0,0), for
k <0 and

Y'(k) = @AY k-)eB oz (k-1)
=1 ”
Z'(k) = T <Z (PxZ'(k=1)+Q xY'(k=1))+ R)
=1

for k > 0. We get (Y(k),Z(k)) < (Y'(k),Z'(k)) by induction. Similarly, we verify by in-
duction that for all k € N, (Y'(k—1),Z'(k—1)) < (a(k),8(k)) componentwise. Therefore,
(Y(o0), Z(o0)) < (a, B) which is finite, Therefore (Y (o0), Z(o0)) = (a, B). [

Remark:  Total number of firings. This proof also provides another way of computing
the total number of firings in the case when the system reaches a deadlock. Indeed, we can
iterate the operator ® on a null vector until convergence to a fixed point which will be the
total number of firings. [ |

The system of equations (13)-(14) can be separated. Let

o)
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Structural, temporal and stochastic properties of unbounded free-choice Petri nets 19

(the series always converges) and let C' be the transfer matrix

C=A"@B. (16)

We get the system (E):
Y = Ccoz (17)
Z = I(PxZ+Qx(C®Z)+R). (18)

Note that the equation for the total number of events only depends on A and B via the
transfer matrix C; in other words, all properties pertaining to the total number of events
(e.g. deadlocks, liveness etc.) only depend on C,II, P and Q).

5 Stability Analysis of FCNets

This section gives results on general FC nets. Some of the general results obtained here
translate into more practical results in the SI case, studied in the next section.

5.1 Reference Deadlock

In this section, we will consider the class of networks which admit a reference deadlock.
Roughly speaking, the initial marking of the network should be this reference deadlock, and
for all finite input processes, the network should eventually reach the reference deadlock.
More precisely, the following three assumptions are made:

Assumption 1 (A1) The initial marking is a deadlock, i.e. R = 0 implies that Y = 0 and
Z = 0.

Assumption 2 (Ay) For dll finite R, the net enters a deadlock, i.e. R finite implies that
Z and'Y are finite.

Assumption 3 (A43) For all R such that the network reaches a deadlock, then this deadlock
is the reference deadlock.

This last assumption can be formulated in terms of T-invariants. A T-invariant of a Petri
net is a firing vector V. = (4, ... , Vi7|) such that when transition i is fired V; times, for
all i € 7, then the marking is equal to the initial marking. Let us view for a moment the
total input R into place p =* ¢ as the total number of firings of an (extra) input transitions
which feeds p. Then, (A3) states that (X, R) is a T-invariant of this extended net.

5.2 Conditions for (A4;) — (A43); the non-Structural Case

This section focuses on sufficient (and sometimes necessary) conditions for (4;) — (4s) to
hold for a given II function. We call them non-structural in that they depend on the chosen
II function.
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5.2.1 Assumption (4;)

Assumption (A1) is easy to check via (E). Indeed, with R = 0, these equations become

Y = C®Z (19)
Z = I(PxZ+QxY). (20)

Lemma 7 Assumption (Ay) is satisfied if and only if the matriz C has at least one zero
element per line.

Proof: Using Lemma 6, Y = 0 and Z = 0 if and only if (0,0) is a solution of these
equations. Assume that (0,0) is a solution. This implies that the matrix C' has at least one
zero element on each line. Conversely, if C' has at least one zero element, using the fact that
I1(0) = 0, we see that (0,0) is solution of (E). [
This characterization of (Ai) is equivalent to the following property of the net: for any
transition of the net, there is an empty path from some routing place to this transition.

5.2.2 Assumption (A4;)

Since the total firing vector does not depend on the timing variables o?, (A,) is actually an
assumption on II (and the topology of the net of course).

In §6.2, we will give a sufficient and quasi necessary condition for (A2) to hold in the
SI-FCNet case, whenever the routing sequences are i.i.d. This condition is based on the
computation of the Perron-Frobenius eigenvalue of a certain matrix.

In the MI case, we can give a sufficient condition for (As) to hold that reduces to checking
(As2) in a SI-network associated to the original network, called a SI-projection of the net.

Let C be the support matriz of the transfer matrix C = A* ® B:

oo if (5 = oo,
ij =

0  otherwise.

C

We also define the SI-projections of the net. We define the set of matrices Cc,~, s €
{1,---, K} by picking only one zero element in each line of C, K being the total number of
possible combinations. Note that if the original net is SI and verifies (A1), then K =1 and
Ca>=C=C.

In the case when the original net is MI, for each s € {1,--- K}, the matrix C.s> corres-
ponds to a SI-FCNet derived from the original net which we call a SI-projection. Consider
row C[i]. Let us assume that the element C[i][j] = 0 and s is such that C«ss[i][j] = 0 and
that Ccss[i][k] = oo, for k # j. This transfer matrix corresponds to that of a SIFCNet where
for each transition ¢; in A, only transition ¢; in B remains connected to ¢;. All other transi-
tions ¢ are disconnected from ¢; by removing the place between the two transitions.Figure
5 illustrates this transformation. Note that this transformation may create transitions with
no output place, like in Figure 5. Their firings remove tokens from the system.

INRIA



Structural, temporal and stochastic properties of unbounded free-choice Petri nets 21

Figure 5: Transformation of the transfer matrix of the original net into that of a SI-FCNet,
by keeping only one connection for transition ¢;.
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The total firing equations of this new system (E<s) is:

Yeoo = Cess®Zcs> (21)
Z<s> = H(PXZ<3>+Q X (C<S>®Z<S>)+R). (22)

Since C<s> has only one finite element per line (which is zero), Ccs> @ Zcys, is just a
permutation U<S> of Z<S>: C<S> ® Z<S> = U<S> X Z<S>' Let Q<S> = Q X U<S> and
P.ys = P+ Q<s>. Equation (22) becomes

s> = II(P<s> X Zcs>+ R) = ¢<s>(z<s>)-

Lemma 8 Suppose that C = C. If there exists a SI-projection which verifies assumption
(Asz), then so does the original net.

Proof Let Ccss> be the transfer matrix of the SI-projection verifying assumption (A2)
and (Ycss, Z<s>) be the total firing vector of this system which is finite. If C' = C then,
C < Ccs> which implies that (Y, Z) < (Yess,Z<s>). Therefore (Y, Z) is finite and the

original net verifies assumption (As). ]

5.2.3 Assumption (4;)

In §6.1, we will also show that for SI-FCNets, assumption (As) is satisfied whenever (A4,)
holds.

As we show below, in the MI case, checking (As3) can be reduced to testing properties of
the set of the SI-projections of the original net. This is the consequence of three following
lemmas, where we assume that (4;) and (Az) hold.

Lemma 9 Assumption (As) is satisfied if and only if the X = (Y, Z) vector is constant on
each MGC, G:
Vi1, ts € G, X' = X" (23)

Proof: Since the network is assumed to reach a deadlock, then X is finite. If this is the
reference deadlock, then in any MGC G, all the transitions fire the same number of times and
(23) holds. Conversely if for all MGC G, Vt1,t2 € G, X* = X' then all the MGC’s reach
the reference deadlock and consequently, the whole network reaches the reference deadlock.
In order to see this last point, it is enough to show that for any deadlock, the number of
tokens in each routing place is necessarily zero. Let F' be the |B| x |B|-matrix defined by
F(t,t')=1if t € Band ¢ € (*t)*. Since for all finite vectors Z

FxI(Z)=Z,
then the solution of (13)-(14) satisfies

FxZ=PxZ+QxY+R, (24)
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which implies that the total number of tokens that ever leave place p is indeed equal to the
sum of the initial number of tokens in p plus the total number that ever enter p. [ |
This characterization is interesting because it can be checked on a set of SI-FCNets derived
from the original net using a projection presented below.

Support Matrix Condition We recall that C is the support matrix of the transfer matrix
C. Let (X,Y) be the smallest solution of Equations (E) for the total number of events in
the system with transfer matrix C in place of C:

Y = CoZ (25)
Z = I(PxZ+QxY+R). (26)

Equivalently, (X, Y) is the total firing vector in the net where the inital marking corresponds
to matrix C.

Lemma 10 The system with transfer matriz C verifies (As) if and only if the system with
transfer matriz C verifies (As).

Proof: First, we show that if (Y, Z) verifies (43) (or equivalently (23)), so does (Y, Z).
If Z satisfies (23), then C ® Z = C ® Z (because (A;) is assumed to hold), so that Z =
I(PxZ+Q x(C®Z)+ R). Therefore, Z > Z. But since C < C, Z < Z. Therefore, Z = Z
and Z satisfies (23). This implies that (Y, Z) also satisfies (23).

Now, we assume that (Y, Z) satisfies (23) for all input vectors R. Let (Y’,Z’) be the
minimal solution of

Y = (CeZeY (27)
7' = NPxZ'+Qx(C®Z')+R)d Z. (28)
Obviously, (Y',Z') < (Y, Z). On the other hand, (Y, Z) is the minimal solution of (25)-(26)
which can be rewritten as:
= (CeZ)oY
= II(PxZ+QxY+R)® Z.
Now, the fact that C < C implies that (Y',Z") > (¥, Z) and so (Y, Z) = (Y', Z").

This means that under a proper choice of the timing of the transitions (see the definition
of delayed networks in §6.3), the counters of the system with matrix C' can reach the value
(Y, Z) before the total firing vector (Y, Z) is reached. That is, (Y, Z) is firable under C.
Let M be the marking reached after having fired (Y, Z) under C'. Note that since (Y, Z) is
firable under C, M > M, (this is true because (Y, Z) can be fired without using the initial
tokens in the C-net). Let R’ and D be the input vector and transfer matrix associated with
M. We know that R’ > 0 and D > C. The fact that (¥, Z) is firable under C implies that
(Y —-Y,Z — Z) is the smallest solution of

Y-Y = Do -2) (29)
Z-2 = N(Px(Z-2)+Qx(D&(Z-2)+R). (30)

N =

RR n°2411



24 F. baccelli, S. Foss & B. Gaujal

But since D> C, D@ (Z—Z)+ R =C®(Z—Z)+ R with R' = R' + Q(D® (Z — Z) —
C®(Z-2))>R'. We get

Z-Z=M(Px(Z-2Z)+Qx (C®&(Z-Z))+R").

Now, this equation is the original equation with a different input vector. By assump-
tion, (Z — Z) verifies (23). This combined with the fact that Z verifies (23), implies that
Z =7 — (Z — Z) also verifies (23) and so (Y, Z) verifies (23). [

SI-projections Condition We recall that the vector (Ycys, Z<s> ) is the minimal solution
of the system F.,~ associated with the SI-projection of the net with transfer matrix C'c,~.

Lemma 11 Under (A1),(As), the variables (Y, Z) verify Condition (23) if and only if, for
all s, the variables (Ycss, Z<s~) verify Condition (23). °

Proof: First note that according to Lemma 7, an arbitrary vector (Y, Z) verifies (23) if
and only if Z verifies (23). Therefore in the following we will focus exclusively on vector Z.

First, we prove that if Z.s verifies (23) for all s, then Z verifies (23). If Z is a solution
of (E) then, we can find s € {1,---, K} such that Z is a solution of (E«<s>). For each line
of C, we choose the element corresponding to the minimal component of Z:

Cesslilli] = { 20 i)fthzgrwisrerzl,mk.Cm[k]_oZIC
so that Ccss ® Zcs> = C @ Z<s>. This shows that Z > Z.5, since Zs> is the minimal
solution of (E«s). But conversely, if Z > verifies (23), then Z,~ is also a solution of (E)
and therefore, Z«s> > Z, which implies Z = Z.> and so, Z verifies (23).
We now prove that if Z verifies (23), then so does Z.,>, for any s. We must introduce a
few notations. For each row ¢ of matrix C' (which corresponds to a transition, ¢; in A), we
denote ti<s> the only transition in B which remains connected to transition ¢; in the system

associated with matrix C,~. In order to keep notation simple, we also note Zt<<;>> = Z(<i1>.
We suppose that there exists s such that Z<> does not verify (23). We must distinguish
two cases:

tj

1. For all t; € A, for all £; € B such that C[i][j] = 0, 2}, < Z%,.. In this case, Z,> is
a solution of (E), so Z < Z.s. Since Z verifies (23), then C® Z = C<s> ® Z and so,
Z is also a solution of F.s~. Thus, Z = Z.s~, which contradicts the fact that Z.~
does not verify (23). This ends this case.

2. There exists t; € A and t; € B with C[i][j] = 0 such that Z(<il> > Z28.>. Then we

construct u € {1,---, K} by picking t; instead of t°. . We have t& _ =1to . Vk#i

5By this, we mean that Xt _ = X*

o> %, for all transitions £ and u which belong to the same MGC of the

original net.
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and %, = t;. We have:

Zess = I[(PZcss+Q(Ces> ® Zes> + R)
> I(PZ<ss +Q(Cou> ® Zoos + R).

This implies Z<g> > Z<y> using the fixed point theorem of Knapster-Tarsky for
increasing functions in the |B| dimensional cube [0, Z.s].

Now, we consider Z<,>. Note that Z.,> does not verify (23), otherwise we would
have Z<u> 2 Z<s>.
o If Z,> falls in case 1, then Z.,» > Z and if Z verifies (23), then Z.\s» = Z
and cannot verify (23). Therefore, in this case, Z does not verify (23).

o If Z.,~ falls in case 2, then we repeat the previous construction but for Z.,~
this time. We get Z.,s, Z<y> > Z<,> and the proof continues with Z.,~. The
sequence Zcgs > Zeys > Z<ys > -+ s necessarily finite and the last term of
the sequence necessarily falls in case 1. This implies that Z does not verify (23).

This ends the proof of the lemma and gives a characterization of ( A3) using the SI-projections
of the net. [

5.3 Conditions for (A4;) — (A3); the Structural Case

This sections focuses on conditions ensuring (A;) — (A43) for all II.

5.3.1 (4,)

Assumption (As) has a structural counterpart which reads:

For all finite R, the net enters a deadlock for all possible routing.

In Petri net theory, this property in also called promptness with respect to the input. In the
SI-FCNet case, it is easily checked that this promptness condition boils down to the absence
of circuits containing routing places in the net.

5.3.2 (4;)

The structural counterpart of (As) reads:
If the network reaches a deadlock, then this deadlock is the reference deadlock, for all possible
routing 1L, i.e. the net admits a unique deadlock (if any).

All the SI-FCNets satisfy this condition (see §6.2). Some MI-FCNets also satisfy this condi-

tion as exemplified in §7.
Lemma 12 In a SI-FCNet, the set of all minimal solutions of the equations

Z=I(PZ+Q(C®Z)+ R), (31)
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for all the functions 11 coincide with the minimal solutions of the equation
FZ=PZ+Q(C®Z)+R. (32)

Proof: First note that in a SI-FCNet, the expression PZ + Q(C' ® Z) + R can be rewritten
P'Z + R, for some P’; this is true because C has only one zero element per line. If FZ =
P'Z+ R and Z is minimal for (32), then one can construct IIz such that Z = IIz(P, Z + R).
Z is also a minimal solution of this equation, because for any other solution Z' we have
7' =1z(P'Z' + R) and therefore FZ' = P'Z' + R which implies Z' > Z.

Conversely, let Z be a minimal solution of (31). Then Z verifies (32). We show that
Z is minimal for (32) as well. Let us suppose that there exists Z’ < Z and verifying
FZ' = P'Z' + R. We have, F(Z — Z') = P'(Z — Z'), which means that Z — Z' is a T-
invariant of the routing net associated with the FCNet. Suppose that II(P'Z’' + R); < Z|.
This means that Z; < Z! which is impossible. Therefore, H(P'Z' +R)> Z'. But this means
that Z' is firable in the system with routing II and this implies Z' = Z since the markings
after having fired Z or Z’ are the same, and this marking is a deadlock. [

Theorem 4 Under (A1) and (Az) a FCNet verifies the structural version of (As) if and

only if the minimal solutions of all the systems:
FZcss>=PessZes>+ R, s€{l,-- K}
verify Condition (23).

Proof: This result is a direct consequence of Lemmas 10, 11 and 12. [ |

Remark: Complezity. The system FZ 4~ = PossZcs> + R is linear, and one can find
its solutions in polynomial time. Then, testing (23) is done in linear time. The only problem
with this characterization is that K, the total number of SI-projections, can be exponential
in the size of the original net. [ |

Remark: Non minimal solutions. We have seen in the proof of Lemma 12 that the equa-
tion FF’Z = P'Z + R has non-minimal solutions. Let U be a non zero T-invariant of the net.
Then F(Z+U) = P'(Z+U)+ R. Conversely, if Z' > Z is a solution of the equation, then,
Z' — Z is a T-invariant of the net. [

5.4 Restriction of the Arrival Process

Let m and n be two integers such that 0 < m < n. Let Nj, 5 be the [m, n]-restriction of
the point process N, namely the point process {T}},<i<n. For instance, Nyg o has only one
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point at Ty = 0. Let R’Em n be the counter of the exogeneous arrivals to place *¢, for Nj,
t _ t M
kEZ

where Ifm’n](k) =TI'(k) if k € {T1}m<i<n and 0 otherwise.

Starting from 0 Let us first discuss the processes associated with Ny ;. Assumption (As)
allows us to say that the network with the input process (R[Ov"](k))keN reaches a deadlock.
We denote by Zjg ) and Y[p ) the total firing vectors for this system. With Iljy o) = II, they

verify the equations
Yiou = A®Yon® B Zpy
Zom) = To,ec) (P % Zoyn) + Q X Yo, + Rpoym) -
If t € B, we denote by S[tO’n] the total number of tokens that enter place ®t. Finally, let

Sion) = {S[tO.n]’ t € B}. By definition, we have

Sto,n) = P X Zjo.n) + Q X Yjo,n] + Rpo,n) = F X Zjg - (34)

Since Z[g ) is finite, so is S[g -

Starting from m Now, we introduce the system generated by the restricted input process
(R[m,n](k))kENa with 0 < m < n. We assume that this system is in its reference deadlock
at time T,,. We connect this system with the original one by taking the following routing
sequences:

UED Oo}(k) =vP(k+ SFO,m—l}) = Tgt vP(k), (35)

m, [0,m—1]

for all p =* ¢, where the last equality makes use of the notation introduced in Equation (11).
This definition states that routing sequences are ‘marks’ of the arrival point process.

With this definition, it is easy to check that the function IIj,, o is actually defined from
IT by the relation

k
Hfm,oo}(k) = lu['ni,oc](l):t = II*(k + S[t(),m—l]) - Ht(S[t(),m—l]) . (36)
=1
Finally we define the vectors Xpy nj(k), ¥im,n)(k) and Zj, n)(k), by the equations
M

D (A1 © Yy (k= 1) & B1 © Zymy(: ~ 1)
=1

Yim,n (K)

M

=1

with the initial conditions : V& < Ty, Y ) (k + 1) = 0 and Zj,,, (k) = 0.
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5.5 The Separability and Monotonicity Properties

In this section, we prove that under the three assumptions (A;)-(As), the variables X, (k)
satisfy a set of monotonicity and conservation properties (which are known as the ‘monotone-
separable properties’ - see Appendix 1) which form the basis for analyzing stability. Let
Am,n) denote the mazimal dater of the net with input Ny, ), i.e. the firts time larger than
T,, at which this net reaches the reference deadlock again (see Appendix 1). We need a
preliminary lemma.

Lemma 13 Let 0 < m < n If Ty > Xom-1) + M, then for all k > T, Xjon(k) =
Xio,m—1] + X[m,n] ().

Proof: The proof is by induction on k. For k > T, the assumption Ty, > Ao, m-1) + M

implies that
X[qu_l](k _ l) = X[qu_l] V]. S l S M

In addition, from the localization property, for £k =T, and any [ > 1
Xio,m—11(k — 1) = Xjo,n)(k = 1)
Sofor k=T, and 1 <I< M,
Xion)(k = 1) = Xjo,m—1)-

Therefore, we obtain from Equation (6) that for k =T,

lf[ovn] (k) = YV[O,m—l]
Zom(k) = I ((PZ[O,m—l] + QY[o,m-1] + Rjom—11 + I(Tm)) .
So, using the fact that Y[m, »)(T:n) = 0 and the definition of Iljy, o (Equation (36)), we
obtain the desired relations for k = T},:
Yion (k) = Yom-1]+ ¥imm)(k)
Ziom (k) = Zpom-1] + Zimm (k).

For k > T,,, the induction assumption, which we assume to hold up to rank k — 1, gives

M

You (k) = DA1® Vo1 +Yimm (k=) ® Br® (Zjo,m—1] + Zinul (k = 1))
=1 u
Zom(k) = 1 (Z (Pi(Zo,m—1] + Zgn,m (k = 1))
=1

+Qi(Yo,m—1) + Yimun (k= 1)) + Rjo,m-1) + Rpm,n) (k))-

INRIA



Structural, temporal and stochastic properties of unbounded free-choice Petri nets 29

Using the result of Lemma 9 and Relation (36), we get

M
Yio(k) = Yom-_y+ @ (Al ® Yimn(k = 1) ® Bi ® Zpy ) (k — l))
u =1
Zpn(k) = H(Z(Plz[m,n](k — 1)+ QY (k= 1)) + Sjo,m—1) + Rimn) (k).
=1
This shows that
Y[Oan](k) = Y[qu—l] + Y[m,n](k)
Z[O-n] (k) = Z[O,m—l] + Z[m,n] (k) -

Corollary 1 X[g ) = Xjo,m—1] + X[m.n]-

Proof: This is an immediate corollary of the previous lemma, considering the fact that
X[o,n) does not depend on T),. [ ]

Lemma 14 (External Monotonicity) If the two arrival counting measures R and R’

satisfy the inequality Rfm,n} (k) > Ry ) (k) for all k, then X[’m’n](k) > Xm,n)(k) for all k.
Proof: The vector X[, ,j(k) is an increasing function of (X[m,n](k - l))lzl___M and of
Ry, n)(E)- The proof follows by a straightforward induction. ]

Lemma 15 (Conservation) X, . is finite and independent of the arrival times.

Proof: Corollary 1 says that Xj,;, nj = X[o,n] — X[o,m—1]- Therefore, X[, ) is finite and
independent of the arrival times. [ |

Lemma 16 (Separability) Let m < r < n. Suppose that T, > X 1] + M. Then
if k < Ty, then X[mm](k) = X[m‘r,l](k),
if k> Ty, then X[m,n](k) = X[m,r—l] + X[r,n](k)

Proof: The case k < T, follows from the localization property. For k > T,., the proof holds
by induction on k. It is very similar to the proof of Lemma 13 (in fact, for m = 0, it is
exactly the same). [

Lemma 17 (Homogeneity) Let REm n be the arrival process shifted by a constant C,
R| (k) = R[m‘n](k + C). Then, X! ](k) = X[mm}(k +C).

[m,n]\™ [m,n
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Proof: By induction on k. [ ]

So, under assumptions (A;)-(Asz), the counters X*(k) of a FCNet satisfy the conditions
of the monotone-separable framework given in the Appendix 1.
Let

Wimnm) = Ama) — T
t — t t
W) = Xt =Xt (Tat+ k), k>0,

The variable W, ) gives the residual time to deadlock, whereas W ](k) gives the residual
number of firings of transition ¢ after time k; both definitions assume tha.t the arrival process
is stopped at time T5,.

Since the counters X*(k) satisfy the conditions of the monotone-separable framework,
the following theorem holds (see [4]):

Theorem 5 For alln, Wim_1,n] 2 Wimn); for allk >0, t and n, wt
so that

(k) > Wi, o (),

[m—1,n]

3 im T Wi =Wy 3 hm TWmn](t) Oon(t) (37)

m—— 00

where the notation limy,—._ oo 1 x(m) indicates that x(m) is a non-decreasing function of m.

5.6 Stochastic Assumptions

All the random variables defined in what follows are assumed to be carried by some probabi-
lity space (2, F, P,8), where @ is a shift on Q which is P-ergodic and such that P[fof] = P[f]
for all measurable functions f: 2 — R™ (see [2] for more details on this formalism).

We assume that the point process associated with the counting measure R[_oo7+oo](k)
is @-stationary and ergodic, and that it has a finite intensity. When taking {Tp, = 0}, this
f-stationarity assumption here means that

for all £k € R and n € N. Actually, this relation also allows us to continue the point process
to the left, i.e. to define a stationary ergodic point process { Ny }nez.

Consider the T-valued sequences vjg o] = {l/[% Oo](k)}, p € R,k € N} describing the
routing decisions; we also assume that the following compatibility relation holds for all n.

V[n,oo] = V[O,oo] of™. (39)

This equation also allows to continue the routing sequences to negative indices.
Let 7sv denote the sequences (7s:v't, t € B). Equation (35) and the above relation
imply the compatibility relation:

V[(),oo] 00" = TS[O,n—l] V[(),oo} (40)
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where Sfo n) is the function defined in Equation (34).

It should be clear that under the above assumptions, the functions II
compatibility property

i
[7,00]

satisfy the
Wi o) = Myo,oc] © 6" (41)
so that the following compatibility relations also hold:
W[n,n—l—k} = W[O,k] o 0”,
Wog(k) = Who(k)oo™, k20,

Since all the firing times are positive, one can easily check that condition (42) below
{W[—n,o] —n—oo oo} &t {EIi/W[Z;mO] — oo oc} (42)

is satisfied.
Therefore, the following theorem holds (see [4]):

Theorem 6 Under the above statistical assumptions, the following a.s. limit takes place for
all c-dilationS c¢.N of N, with ¢ > 0:

W e
3 f V0N
n

n—oo

I'(c) (43)

where I'(c) is a constant. If the intensity A of the input point process is such that AT'(0) < 1,
then the limits Wi_ oo n](1.N) = Wi_so,n] and W} (k) are a.s. finite for alln, k and t.

[—oo,n]

So, under the condition AI'(0) < 1, the residual processes W[t_oo'n] (.) admit a finite stationary
regime which is given by the relation

Wi omy () = W[ () 0 0™, (44)
More precisely

Corollary 2 Whenever AL'(0) < 1, if the initial condition is the reference deadlock, the
stochastic process W[% n]() converges in law to the stochastic process W[tfoo.o](')f for all

teT.
Proof: This follows from the relation
W[%,n](') = W[t—n,o}(-) 0"

and from the fact that
W 0)() 1= W g(-) < 00

6See Appendix 1 for the definition of dilations. Of course we have to limit ourselves to c rational in
order to stay within the framework of this paper, namely, up to a change of scale, all timing variables are
integer-valued.

RR n°2411



32 F. baccelli, S. Foss & B. Gaujal

which imply that
P[W (k) > z] = PIW[,, (k) > 2] < PIW[_ (k) > «],
for all z € RT and k& € N. [ ]

In other words, the residual processes W[ 7,0] (.) are bounded in probability indeed (in
fact, we proved more since we showed that they converge in law to finite stationary pro-
cesses).

It is easy to construct the stationary marking process out of the stationary residual
processes. The number of tokens M[I;nqn](k) in place p at time k + T, for the input process
Nim,n), 1s given by the relation

Nipy (k) = MP + > Wi (F) = > Wi,y (K), (45)

tep* t'E*p

where MP denotes the marking of p in the reference deadlock. So, if AT'(0) < 1, we have
constructed a stationary (f-compatible) version of the marking process in place p, say M?(.),
by taking
MP(T" + k) =M+ Z W[tfoo.n](k’) - Z W[tfoo,n](k% (46)
tep® t'eep
for k € [0, Tyy1 — T0n).

Remark: Continuation of the routing sequences. Let t € B and p =* t. Note that since
V[%,oo](k) = yﬁlvn] (1) for I = k — S[On g < St the infinite sequences vy o) are fully
determined by the finite sub-sequences

[n,n]’

(:z/[’;’n](k) peER, 0<k< S’ n])n>0

Thus, with our framework, for all nodes p, the whole routing sequence V[I(J],oo](k) is simply

the concatenation of the routing sequences 1/ (l) 1<1<L St

6 More on the Stability of SI-FCNets

Throughout this section, we will assume that the free choice net under consideration is SI,
and we will denote t*) the unique transition of B which is an input of G;.

6.1 Total Number of Events

If F is a SI-FCNet, the equations for the total number of events can be put in a simplified
form.
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We recall that the total number of events verify

Y = C®Zz (47)
Z = I(PxZ+Qx(C®Z)+R). (48)
Since the network is SI, the matrix C' has at most one finite element per line. Therefore,
we can define C'/,R" by C® Z+ R=C'"x Z+ R' and P' by P' = P+ @Q x C'. In this case,
the total number of firings verify the equations:

Z = I(P'xZ+R) (49)
Y = C®Z (50)

A MGC Gj is input-connected if for each transition in Gj, there is a path from ¢ to t.
This translates into the following algebraic criterion: all MGC’s are input-connected if
and only if the matrix C' = A” ® B has no line composed only of ¢’s, where ¢ = oo. Since

this matrix has at most one non-¢ element per line (from the SI assumption), all MGC’s are
input-connected if and only if C' has exactly one non-¢ element per line.

6.2 Reference Deadlock for SI-FCNets

Lemma 18 Let F be a SI-FCNet with all its MGC’s input-connected. If F' can reach a
deadlock, then this deadlock is unique.

Proof: If a routing place p contains a token, then one of the transitions in p*® is enabled,
thus this marking is not a deadlock. Let ¢ be a transition in G;, let us follow the longest
path in G; without tokens. This path leads to a transition which is enabled except if it is
the input transition. Now, a marking verifying these conditions is necessarily unique. [ |

Therefore, for SI-FCNets with input-connected components, assumption (A43) is redun-
dant for a reference deadlock to exist.

Lemma 19 Assume that the routing sequences {vP(i)} are i.i.d. in i and mutually indepen-
dent in p. Let U be the |B| x |B|-diagonal (conventional algebra) matriz with t-th diagonal
term equal to P[v"t(1) = t]. Then condition (As) is satisfied whenever the Perron-Frobenius
eigenvalue of the positive matriz WP’ is strictly less than 1.

Proof: Taking expectations on both sides of (49), we obtain (on line t)

(P'Z+R')?
E[Z'] = E| Z Lyoe(iy=d

=1

= ZE[l(P’Z+R’)t2i]-y't(i):t]

=1

= EE[l(P’Z+R')t>’L.—1]‘U.t(_i):t]'

=1
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But it is clear that the events {(P'Z + R')* < i — 1} and {v'*(i) = t} are independent, and

E[Z!] = i P[(P'Z + R")" > i —1]P[v"*(1) = 1]
= E[(P'Z+RY|Pp"(1) =1]
= (P'E[Z]+ R)'P[v"t(1) = 1].
Finally

E[Z] = WP'E[Z] + ¥R (51)

The fact that the Perron-Frobenius eigenvalue of ¥ P’ is strictly less than one implies that
(51) admits a unique finite solution Z. But this in turn implies that that the expectation
of the minimal solution Z of (49)-(50) is finite, and coincides in fact with the unique finite
solution of (51). In order to see this, consider sequence Z(k) of Lemma 6. It is easy to check
that

1. Z(k) converges monotonically to Z;
2. E(Z(k)) < oo for all k;
3. E(Z(k)) < YP'E[Z(k)] + ¥R

But (2) and (3) imply that E(Z(k) < Z, and so, when using (1) and the monotone conver-
gence theorem, we obtain that

E(Z) = E(lim Z(k)) = lim B(Z(k)) < Z.

Therefore E(Z) is finite (in fact since E(Z) is a solution of (51), then necessarily E(Z) = Z).
|

A branching process interpretation of this result is given in Appendix 2.

6.3 Stability Region

The aim of this section is the computation of the constant I'(0) defined in Theorem 6, which
allows us to characterize the stability region of the network, as we know from this theorem.

Delayed Networks We now consider a more general framework with inputs both on
routing places as above, but also on transitions. Inputs on transitions mean delays. Our
assumption will be that each transition is possibly delayed by an exogeneous integer-valued
input process, say Uj(k) for transition j, with the interpretation that this transition cannot
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initiate more than Uj(k) firings by time k. The evolution equations for such a network are
then given by

Y(k) = <@(Al®y(k—l)@Bl®Z(k—l))>@V(k) (52)

=1

Z(k) = I (Z (PxZ(k=1)4+QxY(k—-1))+ R(k)) & W(k), (53)

=1

where V (k) denotes the vector U’(k), j € A. and W (k) the vector U’(k), j € B.

The case with no inputs on transitions is a particular case obtained when taking Uj(k') =
oo for all j and k.

All the monotonicity properties extend to this more general framework. In addition,
we obtain by an immediate induction that the solution of the above system satisfies the
following property:

Lemma 20 If the two delay processes U and U’ satisfy the inequality U(k) > U’ (k) for all
k, then X (k) > X'(k) for all k.

Total Number of Firings We have the following generalization for the equations of
Lemma 5

Y = AQY@®BQZAV (54)
Z = II(PxZ+QxY+R)®W, (55)

with V = V(o0), W = W(oo). Note that the total number of events does only depend on
the delay process through V and W. In particular, whenever V = oo and W = oc, the total
numbers of events in the delayed network and the non-delayed one are the same.

6.3.1 Computation of I'(0)

Consider a SI network, where all MGC’s are input-connected. Assumption (A1) and (44)
are assumed to hold (so that (As) also holds, and the net is separable). The constant I'(0)
is that associated with the network with arrival point process 0.N. Thus, in the following,
all exogeneous arrivals take place at time 0.

For all m < n, let

(1) _ i ; .
X[m’n] = X[m‘n], 7 € Gy, (56)

denote the total number of firings of (any transition in) G;, whenever the input process is
0.Njm,n) (see the remark following Assumption (4s)). Let

b = 7' E[X[ ], (57)
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where 7% denotes the maximal (max, +)-Lyapunov exponent of the event-graph G; (see below

and [2], Chapter 7), and finally let
b= max b (58)

The parameter b* will be referred to as the load factor of MGC Gj.
Lemma 21 Under the foregoing assumptions, I'(0) > b.

Proof: For all i = 1,...,1I, the total number of tokens to arrive in *¢(Y) and dedicated to

G, is X[(ll?n] (whenever the input is 0. N[y ). This and external monotonicity (applied to G;)
imply that
() @)

r(0) > lim —=1 L1,
n n z
Xiin)
where .5?[(12')"] denotes the maximal dater of the MGC G in isolation, with an initial number

(1)
(1,n]"
Using the additive property for the total number of events (see Corollary 1) and the
strong law of large numbers (SLLN), we obtain that
(1)
Tim —27
n n

of tokens in its input place equal to X

— pix®
= E[x{))]

a.s.

From the first order ergodic theorem on marked graphs (see [2], Chapter 7)
()

& )

lim 2 — i

m 5
Xt n]

a.s.

Note that if the MGC G is acyclic, then 7* = 0.
So T(0) > b, for all i. [

The main result of this section is the following theorem:
Theorem 7 Under the foregoing assumptions, I'(0) = b.

The proof of this theorem is based on an induction on the number I of MGC’s, which
we will assume to be positive. So we start with:

Lemma 22 Theorem 7 holds for I =1.

Proof: Since we are in the SI case, whenever I = 1, there is exactly one routing place, that
isp ="t and the exogeneous input process is necessarily directed to this place. This place
necessarily has a unique successor, and so " is degenerate and equal to identity. This place
has no input arc either: if there were an input arc, it would originate from a transition of G,
and the net would not be separable. So the case I = 1 reduces to the case of an event graph. m

The induction requires the construction of two upper-bound networks.
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First Upper-Bound Network Assume that the expectation of the number of exogeneous
arrivals to MGC G is positive, that is

(€] (1)
B[’ (.Rfo,o])] > 0.

This is not a restriction, up to a change of numbering of MGC’s. The following lemma is an
immediate consequence of the first order ergodic theorems in [2], Chapter 7:

Lemma 23 When multipling all firing times in MGC G; by a common positive constant s,
its Lyapunov exponent becomes sy*.

There are two kinds of MGC’s: those which are acyclic (for instance single non recycled
transitions), and those which contain a cycle. The maximal (max, +)-Lyapunov exponent of
any MCG of the of the first kind is 0, and due to our assumption of positiveness on firing
times, that of any MGC of the second kind is positive.

In order to define the first upper bound network, we transform the MGC’s as follows:

e For each MGC Gj of the first kind, we replace its input transition (), with original
successor set P9 by the triple t), p() #') ¢ where *t¥) is unchanged, @0 = p®,
*t'() = {p() ¢}, and D = P, this transformation, which essentially consists
in adding a recycled transition just after the input transition of G;, leaves the net in
the class of SI input-connected FC nets and does not alter the time evolution of the net
provided the additional transition ¢(*) has firing time equal to zero. It transforms the
net into an equivalent net with MGC’s of the second kind only. This net is constructive
if the initial one is.

¢ For each MGC G;, © # I, which is originally of the second kind, we multiply all firing
times by the constant ¢; = b / ('yiE[X[(S)O
G is originally of the second kind, all firing times of transitions in G multiplied by

cr=(b+ d)/('yIE[X[(é?O]]), where d is some positive real number, so that sy > 1.

]]), which is larger than or equal to 1. If

e Foreach MGC G, 1 # I, which is originally of the first kind, we increase the firing times
of the additional transition ¢'(*) to the value s; = b / (E[X[(J?U}]), and if G is originally of
the first kind, we increase the firing times of #/(Y) to the value sy = (b+d) / (E[X[(OI)O] ),
where d is as above. 7

Lemma 23 and monotonicity with respect to firing times (see [1]), imply that this is an
upper bound network for the original one. Therefore, the constant I'(0) of the original net
is bounded from above by that of this first upper-bound network, where all MGC’s have a
load factor equal to b, but for G, the load factor of which is b + d.

"In order to keep the network in the class of nets with integer-valued firind times (up to a scaling), we
need that all ¢;’s and s;’s be rational, which we will assume from now on. If it is not the case, we have take
arbitrarily close rational parameters, and adapt slightly the rest of the proof.
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Thus, it is enough to prove that the constant associated with this upper-bound network
is bounded from above by b + d to conclude the proof of the theorem. Indeed, we will then
have I'(0) < b+ d for all d > 0, that is I'(0) < b.

In order to keep light notations, we will assume from now on that our initial network
satisfies the properties bf = b+d, b* = b, 7 # I (or equivalently, we will use the same
notations for the initial and the first upper-bound network).

Second Upper-Bound Network Let M and n be positive integers, and ¢ be a positive

real number such that ) 1)

0
ElXp,

Me < <1 (59)

Let &£, be the event
(1) , (D (I
En = {Ht ( f(),n]) > X[O,chn]} .

In view of (59), we obtain from the SLLN that
Imé&, =Q a.s. (60)

We now define a sequence Up,(k) of delay processes, all defined on the event &,. The
second upper-bound network is obtained by delaying the first upper-bound network with
the delay function Upr41(k). This sequence is defined by induction on m =1,..., M + 1 as
follows:

Definition of U;.
For all transitions j € G, we take

Ui (k) = X

0,cn]’

v k. (61)

On &,, the number of events of j € G, in the U;-delayed network, is exactly X[(I) and the

0,cn]’

associated daters, which will be denoted .?\?1] [0,n]” 7 € G, are not affected by the behavior of

the rest of the network (since, on &,, transition D is never blocked due to a lack of tokens
in place *#D before its last firing).
Let V1 be the maximal dater of G in this delayed subnetwork:

Vi=max &} (X[ )40l (62)

JjEGT ’
For all transitions j which do not belong to G, we define the delays Uy (k) by

. 0 for0 <k < Vy;
Ui (k) = {X7 for V; < k. (63)

[0,en]

We denote ff,[o,n]

counters for all j. In particular, &y [ ) is its maximal dater.

the daters of this delayed network and )?{ [0,7] the corresponding
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Lemma 24 For all transitions j, the total number of events X7 on j is such that

1,[0,n]
X{,[U,n] = X{O,cn]' (64)
Proof: With these delays, at most X[{) en] firings are allowed on transition 3. We have to

J
[0,¢cn]

the solutions 171’[07711 and Zl,[O,n] of Equations (54)-(55) for the delayed system, which read

prove that the total number of events on transition j is ezactly X . For this, we compare

Yijom = A®Yij0®B® Zy o, ® Yoen
Zyjom = 11 (P X Zyjo,m) +Q X Yi[o.n] + R[o,n]) ® Z[o,en)-

and of the non-delayed system with input process 0. N[y ¢y}, which can be rewritten as follows:

Yv[O,cn] = A® Yv[O‘cn] ®B® Z[O.cn] 7] Yv[O,cn}
Zoen) = TL(P X Zpgen) + Q X Yio,cn] + Rpo,en)) ® Zjo,en)
(the @-addition of the extra terms Y(o,en) and Zjg ¢n) leaves the solution of the system un-
changed). ®
Since Rjg n) > R[o,cn), We obtain from the monotonicity property of the solution Y, Z of
the system
Z = II(PxZ+Q xY+R)69Z[07m].

seen as a function of R, that }717[07"] 2 Yo,en and Zl,[O,n] 2 Zjo,cn)- But from the very
equation satisfied by )7'1‘[0‘”] and Zl,[O,n]v }N"l‘[o’n] < Yo,en) and Zl,[O,n] < Zjo,en); and so
Y1 10,n] = Y[o,en) and Z1 [0,n] = Z[0,cn)- u

So at time V3, for all transitions j which do not belong to G, no firing has yet taken

place, and exactly X[JO’M] firings still have to take place.

Lemma 25

lim N = c'yIE[X[(OI)O]] =c(b+d) a.s. (65)
n n ?

Proof: Immediate in view of the first-order ergodic theorem on marked graphs, the additive
property for total number, of events and the SLLN. [ |

8Note that the two systems are quite different. For instance, if Ht(IJ(RféI:l [t(;jc)n]

system is such that transition #7) is never blocked because of a lack of tokens in place *#(Z) before the
last firing of transition #(I), which is not necessarily the case in the non-delayed system with input process
0.Njg, en]-

]) >Z , then the delayed
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Lemma 26

X ) ; : .
lirrln y = Iglqéa;cc'ylE[X[(g?o]] =c(2b+d) a.s. (66)
Proof: Consider the subnetwork F' of the initial FC net F, which is composed of the set
of transitions 7 — G and of the set of places P — Pr. Network F' is a SI-FC net with less
than I input connected MGC’s. When considering F with the delays Uy (k), its subnetwork
F’ has all its exogeneous arrivals taking place at time Vi, and we know from Lemma 24
that the total number of events on transition j for this input is equal to X{O,cn]' Since this
is true for all ¢ and n, F' necessarily satisfies (4;) and (Az), and so we are in a position to
assume that Theorem 7 holds for this network (induction assumption). Thus

. A?l,[(),n] % i (4)
lim — = lim P maxy EXql =c2b+d) a.s.

Definition of Uy, 1 <m < M. B
Assume that the function Up(k), p < m, and the parameters Vy, and &}, 9.5, p < m, are
defined for some 1 < m < M, and are such that

v, . .
lim £ = cep(b+d) a.s. (67)
n n

and

. Xp,[O.n] . . N
lim — = c(p(b+d)+b) a.s. (68)

n

for all p=1,...,m, so that the event
]:m,n =&y ﬂ {/’%/pfl,[ﬂ,n] < Vp’ Vp < m} (69)

tends to  a.s. when n goes to co. This holds for m = 1 when taking A?o,[o.n] = cb.
We define the same quantities for m + 1, on the event 7, ,, as follows:
For j € G, we take
Ufr]n—i-l (k) = X[]07(m+1)cn]7 Vk (70)
Since we are on &,, the total number of events of j € G in this delayed network is exactly
x and the associated daters X’

[0,(m+1)en]’ m+1,[0,n
of the rest of the network. So we can define

1’ 7 € Gy are not affected by the behavior

Vi1 = ;rel%}f Xr]n+1,[0,n] (X|:]0,(m+1)cn]) + 0’ (71)
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By the same arguments as in the case m = 1, we prove that:

lim Y1 = (m+ l)cyIE[X(I)]] =(m+1)c(b+d) a.s.

el [0,0

Since d > 0, this, Equation (68) and the SLLN allow us to prove that lim, Frq1,n = © a.s.
For j ¢ G, we take

' U, (k) for 0 < k < Vi

Uil = { d : ’ 72

2l X[JO,(mH)cn] for Vipq < E. (72)

Let /’F;+1.[07n] an(i )Er{hq,[o,n] respectively denote the daters and counters in this delayed

network, and let X, 11 o,n) be its maximal dater.
By the same arguments as those in the proof of Lemma 24, we show that on F, .,
the total number of events to take place on transition j from time V,,11 on is exactly

X[]mcm_1 (mt1)en]” This, plus arguments similar to those in the proof of Lemma 26 allow us
to show that -~
X, n .
1im$=(m+1)(b+d)+b a.s. (73)

Definition of UM+1'
The last delay functions are defined on the event F,, = Fias . Let
Wi = X [0, = max X3, 0. (Xio teny) + 07 (74)
]eGI LYy Ll

For all 5, we take

. Ul (k) for0< k< Whp;
J _ M = 3
UM+1(k;) - {X[Jo,n] for Wl’l < k. (75)
By the same arguments as above, on the event Fyz
)% :
lim — = M(b+d)+b as. (76)
n  ne

Proof of Theorem 7 From Lemma 20, adding the delay process Upr41(k) to the first
upper-bound network leads to a second upper-bound network, the variables of which will be

denoted Yi and ?ﬁl From Lemma 20, we have
Xjo,n] < [o,m)- (77)

By the same argument as in Lemma 22, at time Wy, the serial places all have the marking
of the reference deadlock, whereas for all ¢ € B, the routing place p =* ¢ has a marking
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equal to Rme+1 n]* So, from time Wp on, the Ups41-delayed network coincides with the
network with arrival point process Wn + 0.N[¢py1,5)- So in view of homogeneity

[0,n] = Wn + X[cn+1,n} . (78)
From (77) and (78), we finally obtain the relation:
Aomlr, < (Wn + Xuengin)) 17, (79)

Since the sequence 1z, tends to 1 with coupling (i.e. from some finite random number on,
it is constant and equal to 1), by dividing both sides by n and letting n go to co, we obtain
from Equation (76) that

F(O) < Mc(b+ d) + be + (1 — MC)F(_O).

This in turn implies

. MB+d)+0b
I'o) < —————.
(0 < T
Since this holds for all d and since M can be taken arbitrarily large, we finally obtain that
I'(0) <b. |

6.4 Multiple Stationary Regimes

The marking process may admit several stationary regimes. Here is a simple example. Consi-
der the FCnet of Figure 6. The routing in place p» is the periodic sequence: (2, t3,t2, t3,...)
In the separated version, each external token is first consumed by ¢;, then by 2, then once
more by t;, and after that it leaves the network via t3. The arrival epochs are at time
0,1,2,..., and each arrival brings a single token to place p;. The firing times o1, 02, o3 are
rational, with g3 = 0 and 207 + 03 = 1.

This is clearly a separable model which satisfies all the assumptions of the previous
section. Let us call workload at time w in place p; or ps the time for the downstream
transitions to clear the tokens present in this place at time u. Then Vd, such that 0 < d < o1,
we have the following stationary regime: if the initial workload at time 0— is (d,0) (i.e.
transition ¢; can only start serving the first token at time d), then we will have the same
workload at time 1—.

7 Generalization to Variable Firing Times

Variable Firing Times We now consider the case when firing times are still integer-
valued and bounded, but variable with time. Let o(m) be the firing time of the m-th firing
of transition ¢. Let ¢*(k) be the minimum of M and the time which elapsed since the last
time ¢t has started firing before time k. If we consider the variables to be left-continuous, we
have:
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Lemma 27

Y(h = @Mk oY (k-1 Bk o Z(k-1) (80)

M
Z(k) = 10 (Z (Pi(k) x Z(E=1)+Qi(k) x Y (k= 1))+ R(k)) : (81)

=1

with Aj(k)(t,t') = ¢, the number of tokens in the initial marking of the place between t'
and t if 1 = C(k) A o? (X¥ (k — 1)), co otherwise (with a similar definition for B) and
P(k)(t,t") = 1, if there is a place between t' and t and I = t(k) A o (X' (k — 1)), 0

otherwise (with a similar definition for Q).

Finally, one can notice that a system with bounded stochastic firing times with integer
values can be transformed into a system with constant firing times by replacing every timed
transition with a random firing time by a subnetwork as in figure 7.

Indeed, let o(n) be an integer-valued random process bounded by M. Then, the distri-
bution of o(n) is determined by the sequence Py(n),---, Py(n), with P(¢(n) = i) = Pi(n).

Note that if the original net was a SI-FCNet, the net obtained after transformation is
a MI-FCNet. However this particular MI-FCNet falls within the separable and monotone
framework because it verifies assumptions (Ay), (A2) and (Aj) if a similar net with constant
firing times does so. For see this, just apply Lemma 9 to transitions ¢, ¢t and t3 which form
a MI-MGC.

However, one should note that the computation of 4y has to be different for MI —
FCNets.
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p1 t1 j2) ta

t3

Figure 6: An example of a SI separable network with multiple stationary regimes.

Original transition Transformation into a constant firing time

with a variable firing time subnetwork

Figure 7: Transformation of a random firing time transition into a subnetwork composed
with constant firing time transitions
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Appendix

Appendix 1: Separable-Monotone Framework for Counters and Da-
ters

The framework summarized in this section is that of [4]. We consider a discrete event system
composed of a set of nodes, and submitted to an input point process N = {T,,}nez. Let ¢.N
be the c-dilation of N, namely the point process with arrivals ¢.N = {cT}, }nez. Let Nim,n)
be the [m,n]-restriction of the point process N, namely the point process {T}}m<i<n. We
will say that N, , < N['m‘n] if Ty < T7 for all m <1 < n. In what follows, this point process
will also be characterized through its counting measure Ry, : R — N, where R}, (t)
counts the number of points of N[, ) which are less than .
The discrete event system is characterized by two equivalent sets of variables:

e The daters: X[im’n](_k) € R will denote the epoch of the k-th event on node 2, when the
system is submitted to Nip, ) (here, we take k& € N and X[’;n ] (k) = oc if there are less
than k events on node ).

e The counters: X[im.n]

i before time ¢t (we will take this function left-continuous).

(t) € N will denote the number of events which take place on node

Note that counters and daters are related by

S OEDY Lixg, <y - (82)
keN

The separable-monotone framework consists of the following set of assumptions:

External Monotonicity If Ny, < N/, . then for all k and i (with obvious notations),
Xi

[m,n] (k) < {X’}fm’n} (k), which is equivalent to the property that for all ¢ and % X[imm](t) >

Conservation Let . _
X[Z = lim X[, (t). (83)

mn] = 0 K[ )

This limit exists since the function is non-decreasing. In words, X[im n counts the total
%

number of events on node i for N, . We assume that X[m n]

is finite and independent of

the values taken by the variables 77, n < I < m (provided m,n and {T}} are finite of course).
Of particular interest to us will be the mazimal dater defined by:

Xm,n) = m?XX[in,n] (Xfmn)) - (84)

m,n)
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Separability The separability assumption states that if Tj11 > Ay, + M, for some
non-negative M, then

. X[im,@](k) = X[Z:m,z](k)a k< X'[m, 1]
X (E+ X[ n) = Aiprm(k), k21 (85)
or equivalently
X[Zm,n] (t) = X[im,l} (t)7 t< Tl+1
X[lm,n] (t) = X[lm,l} + X[ZH—l,m](t)’ t2> fZ1H’l' (86)

It is easy to check that the separation and the conservation properties imply that for all

m<1<mn, X[im.n] = Xf:m,l] + X[il+1,n} regardless of {T7}.

Homogeneity The homogeneity assumption states that if 7] = Tj+c, then {X'}fm‘n] (k) =
At (k)4 cfor all k and i or equivalently that {X'}fm n] (t+c)= X[im ] (t) for all ¢ and i.

[m.n]

Appendix 2: A Branching Process Interpretation

This appendix focuses on a multitype branching process interpretation of the equations of
Lemma 19. The assumptions are that the net is SI. For all input transition ¢ of a MGC, let
O be the set

o' = {q eER |E|t’ € G;st.q= t'.},

where ¢ is counted with multiplicity n if there are n arcs going from G; to q. We will then
say that q is an offspring of ¢t with multiplicity n.

We now describe the dynamics of a pseudo marking process (this marking process is
different from the one in the real system) on the set of places of R, which is driven by the
routing functions only. Fix an arbitrary priority order on the places of R: p; has priority
over pj41 etc. Assume that the jump of R at Ty brings m"t tokens to place *t, for all t € B.
If mP1 > 0, one token of p; is moved following the routing decision ¢ = 1/[%170](1). Let nP:
be the multiplicity of the offspring p; of ¢ (this multiplicity is zero if p; does not belong to
O%"). By definition, such a move leads to the new marking defined by m?: 4+ n?i for all ¢ > 1
and mP1 4+ nP1 — 1 for py. If the new marking of p; is still positive, we move one token of
p1 as above, but according to the routing decision Vf’ofo](2)7 which leads to a new marking;
the procedure is repeated up to the time when no tokens are left in p; (this may never
happen in which case this first step of the procedure never stops). We then move one token
of type p2 according to the routing decision 11[%270](1), provided there is at least one token
in place py in the last obtained marking. This may possibly create new tokens of type p;.
The general rule is actually to move a token with highest priority at each step, according to
the residual routing decisions. The procedure stops whenever there are no tokens left in the
routing places.
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Lemma 28 Under the foregoing assumptions, (A1) (and therefore (As)) is satisfied if and
only if the above procedure stops after an almost surely finite number of steps.

The proofis omitted. It is based on a generalization of the Euler property for directed graphs
called the Euler-Ordered property, which is introduced in [3]. Note that if the above stopping
property holds for this specific ordering of the moves, it will hold for any other ordering.
In the particular case of i.i.d. routing decisions, independent on different nodes, one can
naturally associate a multitype branching process with the set R by saying that an individual
of type p has a set of offspring O* with probability P = P(v? = t). Properties (A1) (and
(Az)) will then a.s. hold whenever this multitype branching process is subcritical (namely
whenever its population dies out a.s. for all finite initial conditions). This property boils
down to checking that the maximal eigenvalue of the branching matrix is strictly less than

L ([9)-

Future Research The approach presented here can be extended in various ways. Here is
the list of the most obvious extensions that we intend to investigate in the future:

e Extension of the results to non-integer valued, random, unbounded firing times;
e Computation of I'(0) in the MI-separable case;
e Extension to the autonomous case (without input process);

e Extension to weighed nets.
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