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Abstract: We describe a general theoretical framework for algorithms that
adaptively tune all their parameters during the restoration of a noisy image.
The adaptation procedure is based on a mean field approach which is known
as “Deterministic Annealing”, and is reminiscent of the “Deterministic Bolz-
mann Machine”. The algorithm is less time consuming in comparison with its
simulated annealing alternative. We apply the theory to several architectures
and compare their performances.
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Algorithmes autonomes pour la restauration
d’image

Résumé : Nous décrivons une famille d’algorithmes qui adaptent tous ses
parametres pendant la restauration d’une image bruitée. La procédure d’adap-
tation est basée sur une approche de type champ moyen, connu aussi sous le
nom de “Recuit Déterministe” et qui s’apparente a une “Machine de Bolz-
mann Déterministe”. Les algorithmes consomment moins de temps que leurs
analogues de type “Recuit Simulée”. Nous comparons les performances des
algorithmes fondés sur des architectures différentes.

Mots-clé : Traitement d’image, Mécanique statistique, Recuit déterministe.
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1 Introduction

In this paper we address the problem of image restoration. We are given a
matrix of grey levels (real numbers), and should decide which label, out of a
given set of possible labels, to assign to each pixel.

Our working assumption follows Geman and Geman [1]: we assume that
our image labels are produced by a Markov random field, and then corrupted
by an additive Gaussian noise. Each label type has a different corresponding
distribution of grey levels. If the couplings (interaction parameters) of the
Markov field and the noise parameters are given to us, then one can show that
the restoration problem becomes a minimization problem of an energy function
which is defined in the space of possible labeling configurations.

In this work we consider the more complicated case, where no information
is given about the couplings and noise distribution parameters. We present
algorithms that perform simultaneously both tasks: choosing the parameters
and assigning labels to pixels.

In the theoretical part of the paper we shall describe a Bayesian approach,
which leads to the formulation of the parameter estimation and labeling pro-
blem as an optimization problem in the combined space of parameters and
labels. The minimization of the resulting energy function is approached by
applying the machinery of statistical mechanics. More specifically, we use an
approach which is called “Deterministic Annealing”. The equations obtained
in this approach are then translated into iterative algorithms. The translation
is not unique or obvious. We discuss different possible algorithms, explain the
difference in their results, and choose a preferable one.

The equations we derive and the resulting algorithm are general, and apply
to different connectivity architecture of the underlying Markov field. In the
second part of the work we consider several specific neighborhood architectures
and show some results.

2 Theory

Following Geman and Geman [1], we assume that our image is a produced by
a Markov random field, and then corrupted by an additive Gaussian noise.
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The probability to get a set of image grey levels y is given therefore by:
P(y) =>_ P(yln)P(n) (1)
7

where 7) is a configuration of labels and y is a configuration of grey levels. Each
7; may take g different values, which correspond to ¢ classes. Since we assume
a Markov field in the origin of the image, the prior probability to get a pixel
configuration 7 is the Bolzmann distribution

P(n) = exp(—FE1(n))/Z1 (2)

E; is an energy function, which depends on the label configuration 7, on the
system of neighborhood, and on the size of coupling parameters. In this work
we consider energy functions only of the form

Ex(n) = = > Wi; 6(mi, ;) - (3)
(i5)
Where 4 is the Kronecker delta function, which is one if labels 7, and
n; are the same and zero otherwise. The sum runs over all pairs (ij). The
different models that we shall consider have different structures of the matrix
of couplings W'.
71 is the partition function associated with Fy:

Zy = ) exp(—Ex(n)) (4)

and

P(yln) = Hexp(—(% — pi)*/207) [V 2mo; ()

is the Gaussian additive noise. Each label type has different 1 and o. y; and o;
are the average and standard deviation of the distribution of the grey levels that
corresponds to the class of the pixel i. In other words: p; = u(n;), o; = o(m:).
The index ¢ runs over all image pixels. In what follows we always consider
image pixels that are organized in a two dimensional square lattice.

Until now we have described our assumptions about the probabilistic pro-
cess which leads to the matrix of grey levels. However, our task is to do the
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inverse: we are given the set of grey levels and we would like to find the most
probable parameters and labelings. The quantity that we would like to maxi-
mize is the conditional probability P(n,0|y). Using Bayes theorem we have:

P(n,0ly) = P(n,0,y)/ P(y) = P(yln,0)P(n|0)P(0)/P(y)
where 6 stands for p,0 and the coupling parameters. assuming that P(6) is
constant our problem becomes the maximization of the expression

P(y|n,0)P(n|0) (6)

with respect to n and 6. The first term is given in Eq. 5 and the second in Eq.
2.

2.1 Prior models used in this work

The simplest model considered in this work is the two dimensional Potts model:

Ey(n) = =W _é(ni m;) (7)
(15)
where the sum is over the nearest neighbors on the square lattice. In this
case all parameters W;,; are equal to W. The magnitude of W controls the
tendency of nearby pixels to have the same label. The bigger W the bigger is
the Bolzmann probability for homogeneous configurations. Generalizations of
the Potts model allow for interactions between pixels that are farther away.
We consider the following generalizations:

e A multirange model: Closest neighbors on the square lattice are coupled
with strength Wi,second closest with strength W, etc.

e A hierarchical model: The image pixels are grouped into groups of four
(each forming a square), each group interacts with a single pixel of a
second group (second “layer”) of pixels, with a coupling strength W;.
the second layer, which has four times less pixels, is also organized into
groups of four, and each of these groups interacts with a single pixel of
a third layer, with a coupling strength W5 and so on. Note that only
the first layer of pixels are image pixels, while the other are “service”
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pixels, who serve as intermediators among the image pixels. This model
is reminiscent of the model of Kato et al [5)].

e Layered multirange model: each group of four pixels of the image inter-
acts with one pixel of a second layer with coupling W;. four groups of
four pixels of the first layer (the image layer) interacts with one pixel
of a third layer with strength W5 etc. This model is different from the
previous one since there is no direct interaction among “service” pixels.
This model has been proposed originally by F. Heitz et al [2]

2.2 The effective energy function

Coming back to expression 6, and using Eqs. 2, 3 and 5, the maximization
of the logarithm of this probability is equivalent to the minimization of the
following effective energy function

E(n,0) = —log P(y|n,0) — log(n|f) = Ey + By +log Z1 + C* (8)

FEy comes from the Gaussian term

Eo(n) = = > _(y: — mi)* /207 — log(a:)

)

where p; = u(n;), o; = o(n;), as explained earlier. Z; is the partition function
of the prior model (eq. 4) and C* is a constant that does not depend on the
labelings and parameters. This is similar to the expression arrived at [3] with
the exception that here the parameters ;1 and o should be estimated as well.
We explain now the significance of the different terms. The energy term Ej
tends to choose for each pixel the label whose associated average grey level ()
is the closest to the given grey level y. The term F; is lower when neighboring
pixels have similar labels. These two terms might be conflicting, and their
competition defines the form of the restored image. The size of the couplings
(W for the Potts case, Wy, Wy etc. for other models) defines which of the
two terms will win. If W is very big (and positive) then E; always wins over
E, simply by choosing a configuration with all labels the same. This effect is
controlled by the term log Z;. In contrast to the other terms, this term has no
dependence on the label configuration, only on the coupling parameters.
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2.3 Minimization using a Mean Field approach

In this work we approach the minimization of E(n,6) (Eq. 8) using Deter-
ministic Annealing ([6],[7],[8]). In this approach, one minimizes the mean field
approximation to the free energy at finite temperature, while gradually decrea-
sing the temperature. One hopes that in this way local minima will be avoided
and the resulting parameter and labeling configuration at zero temperature
will minimize the energy. This approach, although not proven to converge to
the global minimum, has been found to be an effective, computer time saving,
alternative to simulated annealing [4].

First we write the partition function, at inverse temperature 3, that cor-
responds to the energy function at Eq. 8

=>_exp(~fE(n,0 2259 (9)
7,6
the sum is over all labelling configurations, and possible parameters 6.

Zexp (—BE(n,0)) .

The free energy of the system is related to the partition function by

F(B) = —log(Z(B))/ .

It is important to distinguish between the two types of variables: the
“small” variables, n, and the “big” ones 6. The theta’s are treated as order
parameters, which means that Z(3,0) is sharply peaked around some value 6*,
and one can consider only this value:

F(B) = max F(6,0) = F(f,60%) = —1og(Z(5,0))/5 -

On the other hand, the summation over the labeling configurations should be
actually performed. This summation (which can not be done exactly) can be
evaluated approximately by a variational approach (see for example [9]) which
leads to a mean field theory.

For completeness we outline here the variational approach. Given Q(n), a
probability distribution over the space of label configurations, and an energy
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function F(n), we define the following functional of the probability distribution:

= QnE(n) - 5(Q)/8 (10)

ZQ )log Q(n

S(Q) is the entropy associated with Q(n) One can straightforwardly prove that
of all probability distributions, the one which minimizes F' is the Bolzmann
distribution Q(n) = exp(—BE(n))/Z. Moreover, the value of the minimal F
is just the free energy of the system, These relations serve as a basis for a
variational approach: since we can not calculate Z accurately, we essay to
minimize F(Q) with respect to a restricted group of probability distributions,
which have a factorization property: Q(n;....nx) = IT; Pi(m:)-

The probability of 7; to have the label « is denoted P*. Plugging this into
eq. 10 and using the explicit form of our energy function, Eq. 8, we obtain

F(P,0) = =Y Wy Y PPP) =3 PP ((yi — 1a)’/20% + log(0w))
(45) a,pB i,

+3° P log(PR) /B + log(Zy) - (11)

1,0

This expression holds for all the architectures considered in this work. The
double sum runs over all pairs of labels (i7). In the first single sum ¢ runs over
all image pixels, which are those that obtain the y information. The second
single sum runs over all pixels (the multirange model has only image pixels,
while the hierarchical model, for example, has also pixels which do not receive
grey level information).

The resulting mean field equations for the probabilities are given by taking
the derivative of F' with respect to P and equating to zero. For image pixels
we obtain the following equations

o exp(Bh{)
pr— PP
Y X, exp(Bh])

with b = 5, Wiy PP + (i — a)?/20% + log(c)
For additlonal pixels we have the same equations, but hj* = 37, W;; P/*.

(12)
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The mean field equations for the parameters # are obtained by differentia-
ting F' with respect to p, 0 and W and equating to zero. Note that there is
no entropy term associated with this variables in F'. This is because we treat
them as order parameters, and assume they have no fluctuations. The resulting
equations for p and o are very natural:

Ha = Zyz})za/zpza ) (13)
7 = 3w - waV P TP (14)

2

The equations for the W’s involve differentiation of log Z; with respect to
W. Z; is also a partition function, with an energy function £; and temperature
(B =1, and is therefore calculated by the same variational approach.

The result is

Fi=—log(Z) = =Y Wy Y MM + 5" M log(My) . (15)

ij B it
The equations for M, the probability that pixel : has the label o, are

e _exp(5H2)

" S () "

where hj" =32, Wi; M}*

In the models that we consider the W;; are not all different (if we allow
all W’s to be different our model will be too flexible, and there will be no
restoration of the image). For instance in the Potts model all W’s are the
same. In a hierarchical model with three layers all connections from the first
layer to the second are the same, and all connections from the second to the
third are also the same. Differentiating with respect to weights of type | we
have

dlog(Zy)/dW, = Y MM
ijel,a
where the sum runs over all pairs of pixels that are connected by W;. THe
equation for W is obtained by differentiating F' with respect to it and equating
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to zero. We obtain finally the equations that determine the values of the W’s:

> PrPY = > MM . (17)
ijela ijel,a
Note that 3, M;*M;" is the probability that pixel ¢ and pixel j have the same
label. The last equations are therefore reminiscent of the learning equations for
the deterministic Bolzmann machine [10, 11]. One compares the (mean field
approximation for the) correlations among pixels with (P’s) and without (M’s)
the information about the image, which is conveyed by the y’s.

2.4 Mean Field motivated Algorithms

The mean field equations 12-17 serve as a basis for our labeling and parameter
estimation algorithm. The algorithms that we considered have two phases: in
one phase the P’s are varied, while the parameters 6 are fixed, as we solve
Eq.12. In the second phase, the P’s are kept constant while the 6 parameters
are varied. The re-estimation of the p and o parameters is given by writing
the mean field equations 13,14 as iterative equations

aln 1) = Y P2 S P (18)
Taln+ 1) = (o = )P/ 3P (19)

(2
when we are at the n + 1 estimation step, and the P parameters have been
estimated using the 6(n) variables.
the re-estimation of the W’s is done by transforming eqs. 17 into iterative
equations. Maximizing F' with respect to the algorithm:

AW, = edF[dW, = ¢(C} — C))

— apa 0 _
where C; = Yijeta b Pj and C] = Yijela
However, this procedure consumes too much computer time since at each ite-

Mf‘M;‘ and € is a small constant.

ration we have to solve eqs. 12 anew for the P’s. We therefore replace this
algorithm by another one:

AW, = e(CP(W) — C1(Wa)) - (20)

INRIA
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This means that we solve each time for the M’s with different W’s, but keep
the P’s constant, until we arrive at a solution CY(W) = Cy(W,,) for all Is, and
choose these W to be W, 1.

To summarize, our algorithm consists of iteratively solving eqgs. 12,18,19,20,
while decreasing the temperature. Our experience shows that there are several
possible solutions to these equations, and that the type of solution obtained
depends on the procedure of solution, and even on the initial conditions of the
order parameters. Generally speaking, we observe three types of solutions: the
first is what we call “W dominant”. in this case, pixels of neighbors tend to
have the same label, and effect of F\ term, which conveys information about
the grey levels, is secondary. The second type is “uo dominant”: labels are
determined mainly by the local y variable. In this case the resulting image is
almost as noisy as the original. The third type is a homogeneous solution: the
w's and the o’s of all labels are found to be equal. The W's are zero.

Subjectively, the solution that we call a “good” one is the W dominant.

In our first attempt we tried to solve all equations 12, 18,19,20 while decrea-
sing the temperature. The result of this algorithm was a homogeneous solution.
This algorithm is comparable with the one used by Geman [3]. The later is a
Simulated Annealing algorithm, where only the coupling parameters, but not
the noise parameters, are estimated. Geman reports that his algorithm is suc-
cessful. In our case, the freedom in the choice of the width of the noise leads
to overestimation of the width of one dominant group.

After numerous trials we have found an efficient way to achieve a W domi-
nant solution:

1. choose initially high values for W’s, then solve for the P’s, gradually
decreasing the temperature, and estimate the pu’s and o’s only at a very low
temperature. Keep W’s unchanged.

2. Start again at high temperature and cool down, solving only Eq. 12. p,
o, and W parameters are re-estimated only as one arrives to low temperature
by solving Eqgs. 18,19,20.

3. Repeat step 2 until the order parameters stabilize.

We found that the values of the order parameters stabilize after a few (of
order five) complete sweeps over the whole temperature range.

Our Mean Field algorithm offers advantages over the stochastic algorithm
both in the re-labeling and parameter re-estimation phases. In the first phase

RR n " 2405
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the mean field equations for the P’'s may be solved in parallel, in contrast to
the sequential update required by Simulated Annealing. In the second phase,
equation 20 is solved more easily in the mean field approach. Since the M’s
correspond to a homogeneous system (no external input) one can solve one or
a few mean field equations, in contrast to the simulated annealing approach,
where one should solve for the full system.

3 Experimental results

The first architecture that we considered was hierarchical. The connections
from the first layer to the second introduce effective interaction inside each
group of 2x2 pixels of the first layer. The connections between the second and
third layer introduce indirectly interaction between groups of 4x4 pixels of the
first layer, etc. We expected that if homogeneous regions of our image are,
for example, of size 8X8 then our adaptive algorithm will tend to enhance
the connections between the first and second layer, second and third, third to
fourth but not further.

The set of egs. 20 that define the connections have the following form here:

1/Ng Z 'PzaL jofi),L+1 = Z MpMrp,, (21)
where the P’s are solutions of the MF equations of the full system, N is the
number of pixels is the L’th layer, j(¢) is the pixel in the L + 1 layer that
is connected the pixel ¢ in the L’th layer. Taking advantage of the fact that
the system, in the absence of the term Fj, is homogeneous, we calculate the
M’s (solve eq. 16) assuming that the solution M is equal for all members of
the L’th layer. The number of equations that define the values of the M’s is
therefore reduced to the number of layers times the number of labels.

We applied the algorithm on a chessboard image, Fig. 1. The size of the
image is 128x128 pixels, and each single colored square is of size 32x32. The
average grey level in the white region is .58 and the RMS is .1, in the black
region the average grey level is .46 and the RMS fluctuation .1. we expected
that W, L = 1,5 will be positive, resulting in interactions inside each square.
We have found, however, that iteration of eqs. 21 leads to a solution where
only the W, is positive, while W is zero. Since the structure is hierarchical, the
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result is that only groups of four in the image layer (the first layer) interact,
whatever is the value of W3, W, etc. This interaction forces groups of four
pixels to have the same label, therefore eliminating the smallest defects, but
not eliminating defects of size four or bigger.

The problem of dependence of the interactions of longer range on the in-
teraction of shorter range is overcome in the layered multirange model. Here
groups of four pixels of the image layer interact among themselves effectively
via a single pixel in the second layer with coupling W2, while groups of sixteen
(four groups of four) interact via a pixel in the third layer with coupling W3
etc. equations 20 are written here

1/Nl Z Pflpjofi),L = Z MlaMg

7,

where L runs from two to the number of layers. We show here results for the
chessboard when the number of layers is three (Fig. 2) and four (Fig. 3). In the
case of three layers, groups of four times four pixels of the image are forced to
be the same, and we still find defects. In an architecture with four layers this
defects disappear, and the restoration is perfect.

The disadvantage of this architecture is evident as we try to process Fig. 4
(again 128 by 128 pixels, grey level distribution in the white region: .62+.22, in
the black region: .38 +.22). Here we see that with increasing number of layers,
the size of homogeneous regions increases, and the result is crude. Figures 5, 6,
7 correspond to architectures with three four and five layers respectively. The
conclusion is that the layered multirange model finds connections which are too
strong, and forces all pixels inside a square (whose size depends on the number
of layers) to have the same label, even if a “natural border” passes through it.
Another disadvantage of this model is the lack of translation invariance: the
division of the image into square regions of interacting pixels is arbitrary, and
when the interconnected squares are shifted the resulting processed image is
different.

We turn now to a description of the results for the simple short range model.
The results are surprisingly good. In Fig. 8 we see the processed chessboard,
and in Fig. 9 the quarter circle. The boundaries in both images are not in
right angles, in contrast to the previous model, and the results for the circle
are much finer.
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We have also experimented with a nonhierarchical multirange model. We
have found that in this case the system tends, in a manner reminiscent of
the hierarchical model, to diminish the long range interactions, and the final
results are the same as the short range case.

4 Discussion

In this paper we have shown how to transform the mean field equations into ite-
rative algorithms which effectively estimate parameters and restore an image.
There are two new ingredients in our approach. The first is the fact that all
the parameters are found autonomously by the algorithm. The second is the
use of deterministic annealing.

Our approach has two shortcomings. One is that the algorithms tend to
choose short range interactions in models where long range are possible (with
the exception of the layered multirange model). A second problem is that we
have not succeeded to classify correctly images with more than two types of
labels. In this case our algorithms tend to merge two or more groups into one.
The second problem can be solved if the widths of the distributions of grey
levels in each class are supplied. In this case, however, the algorithm is no more
“autonomous”.
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Figure 1: Noisy chessboard image.

Figure 2: Noisy chessboard treated with the layered multirange model with
three layers.
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Figure 3: Noisy chessboard treated with the layered multirange model with
four layers.
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Figure 4: Noisy quarter of a circle image.

Figure 5: Noisy quarter—circle treated with the layered multirange model with
three layers.
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Figure 6: Noisy quarter—circle treated with the layered multirange model with
four layers.

Figure 7: Noisy quarter—circle treated with the layered multirange model with
five layers.
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Figure 8: Noisy chessboard treated with the short range model.

Figure 9: Noisy quarter—circle treated with the short range model.
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