Perturbed optimization in Banach spaces III: Semi-infinite optimization

Abstract : This paper is devoted to the study of perturbed semi-infinite optimization problems, i.e. minimization over $\er^n$ with an infinite number of inequality constraints. We obtain the second order expansion of the optimal value function and the first order expansion of approximate optimal solutions in two cases: (i) when the number of binding constraints is finite, and (ii) when the inequality constraints are parametrized by a real scalar. These results are partly obtained by specializing the sensitivity theory for perturbed optimization developed in part I (cf. \citebc1), and deriving specific sharp lower estimates for the optimal value function which take into account the curvature of the positive cone in the space $C(\Omega)$ of continuous real-valued functions.
Type de document :
[Research Report] RR-2404, INRIA. 1994
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:54:25
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : dimanche 4 avril 2010 - 22:14:36



  • HAL Id : inria-00074271, version 1



J. Frederic Bonnans, Roberto Cominetti. Perturbed optimization in Banach spaces III: Semi-infinite optimization. [Research Report] RR-2404, INRIA. 1994. 〈inria-00074271〉



Consultations de la notice


Téléchargements de fichiers