Quadratic growth and stability in convex programming problems

Abstract : Given a convex program with $C^2$ functions and a convex set $S$ of solutions to the problem, we give a second order condition which guarantees that the problem does not have solutions outside of $S$. This condition is interpreted as a characterization for the quadratic growth of the cost function. The crucial role in the proofs is played by a theorem describing a certain uniform regularity property of critical cones in smooth convex programs. We apply these results to the discussion of stability of solutions of a convex program under possibly nonconvex perturbations.
Type de document :
Rapport
[Research Report] RR-2403, INRIA. 1994
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00074272
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:54:32
Dernière modification le : mardi 17 avril 2018 - 11:28:37
Document(s) archivé(s) le : lundi 5 avril 2010 - 00:07:33

Fichiers

Identifiants

  • HAL Id : inria-00074272, version 1

Collections

Citation

J. Frederic Bonnans, Alexander D. Ioffe. Quadratic growth and stability in convex programming problems. [Research Report] RR-2403, INRIA. 1994. 〈inria-00074272〉

Partager

Métriques

Consultations de la notice

358

Téléchargements de fichiers

141