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PREDICTIVE MAINTENANCE OF AN UNRELIABLE
TWO-UNIT SYSTEM -

Chengbin CHU!, Jean-Marie PROTH!.2, Philippe WOLFF!

Abstract. - We consider a system composed of two indepéndent and non-identical
units. This system is under periodic inspection. Each unit is characterized by a variable
whose value evolves from one inspection to the next one according to an exponeniial
distribution. The parameters of this distribution can be different for the two units.

The system breaks down if at least one of the two states exceeds a given value. These
limits are referred to as breakdown limits.

A preventive maintenance is applied on one unit if its state is less than the breakdown
limit but exceeds a given threshold, called maintenance limit. The cost of a maintenance is
much less than the cost of a repair.

If a repair or a maintenance is applied on one unit, while the state of the second unit is
less than the maintenance limit, a maintenance is performed on this second unit.

The goal of this study is to adjust the maintenance limits to minimize the long-run average
cost per unit of time. We study the probability density for the system to be in a given
state. We then give the analytical expression of the cost function according to the
maintenance limits. The values of these limits that minimize this function are then

calculated using gradient estimation.

Keywords : Ageing Process, Multi-Unit Maintenance Policy, Stochastic System,

Unreliable System.
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MAINTENANCE PREDICTIVE D'UN SYSTEME NON
FIABLE A DEUX UNITES

Chengbin CHU!, Jean-Marie PROTH!2, Philippe WOLFF!

Résumé. - Nous nous intéressons a un systéme composé de deux unités indépendantes
et non identiques. Chaque unité est caractérisée par une variable d'état dont I'évolution
suit une loi de probabilité exponentielle.

Le systéme tombe en panne si 1'état d'au moins une des deux unités dépasse une limite
donnée, appelée limite de panne.

Une maintenance préventive est effectuée sur une unité si son état devient supérieur a un
seuil, appelé limite de maintenance, tout en restant inférieur 2 la limite de panne.

Nous supposons que le coiit de maintenance est beaucoup plus faible que celui de
réparation. Si une opération de maintenance ou une réparation doit étre efféctuée sur une
unité tandis que 1'état de la seconde est inférieuf a sa limite de maintenance, oﬁ réalise
aussi une opération de maintenance sur cette deuxi¢me unité.

Le but de cette étude est d'ajuster les limites de maintenance afin de minimiser le coiit
moyen de cette politique. Nous donnons l'expression analytique de la fonction coiit puis
nous calculons, par une méthode d'estimation du gradient, la valeur des limites de
maintenance qui la minimisent. L'intérét de cette politique de maintenance prédictive est

illustré par une comparaison avec des politiques classiques de maintenance.

Mots clés : Politique de Maintenance pour Systeme 2 Plusieurs Unités, Processus de

Vieillissement, Systemes Non-Fiables, Processus Stochastiques.
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1. INTRODUCTION

Many'maintenance models' for multi-unit systems have been studied in the literature. These
models usually combine periodic replacement with a policy such that maintenance can only
be performed when a unit of the system fails. The deci.sion to perform a preventive
maintenance is usually based on the age of the componenfs and/or the number of failed
units in the system (ASSAF et al. 1], HAURIE et al. [6], RITCHKEN et al. [8],
VANNESTE et al. {10]). BERG [2][3] consider a two-unit system and investigafc the
preventive rcplacément of a unit upon the failure of tﬁe other one. A complete survey of
these models can be found in CHO and PARLAR (4].

The starting point of all these studies is the probability density of failure of the elements of
the system. For single-unit system, work has been done based on the transition probébility
of the state variable of the system (TAYLOR [9], CHU et al. [5]). In these models, a
preventive maintenance can be performed to avoid breakdowns. This intervention is called
predictive maintenance as it is based on the prediction of the evolution of the System.
Avoiding breakdowns result in a drastic reduction of the cost since corrective maintenance

cost is very high compared with the one of a preventive maintenance.

The goal of this work is to extend this approach to two-unit systems.
We consider a system composed of two elemients stochastically independent (i.e. the
probability of transition of the state variable of a unit does not depend on the state of the
other unit). Furthermore, the possibility to combine interventions (maintenance or repair)
on both units generates an important cost reduction.
Indeed, the cost of the maintenance can be divided into two parts :

« the cost of the preventive maintenance or repair of a unit,

« the cost of the intervention on the system (i.e. cost incurred by the loss of

productivity if the system has to be stopped, maintenance staff, ...).



If the cost of the units are very small compared to the cost of intervention, it could be
interesting to performed a maintenance on the whole system when a maintenance on one

part is needed.

In section 2 we present the model of the system and define our predictive maintenance
policy. In section 3, we study the probability density for the system to be at a given state.
The analytical expression of the mean value of the cost function with regards to the
maintenance limits is given in section 4. In section 5, we propose a method based on
gradient estimation to compute the values of the maintenance limits that minimize this cost.
This policy is then compared with corrective maintenance and “classical” preventive

maintenance policies.

2. MODEL DESCRIPTION AND MAINTENANCE POLICY
2.1. Model of the system:

We consider an unreliable system composed of two components in series. The transition
probability from one value of the state variable to the next one, i.e. the one reached at the

next inspection, follows an exponential probability law with parameter u, for the first

unit and py for the second one (4, >0 and uy>0).

Xt

We denote by S; = ( ) the vector representing the state of the system after inspection t.

Yt

The first (respectively second) component of S; describes the state of the first

(respectively second) unit.

The transition probability from state S;_; to state S; depends on state S _,. This density is

denoted by f(S; /S;_;), and is expressed as :

~Hx(X=Xe-1)=py(Ye=yi-1) e Xg > Xg-jand yg >y

£(S, /S,y) = {HxHy©
0 otherwise



Since S¢ never decreases (i.e. Vt> 0, x;_; < x; and y,_ <y,), this system follows an

ageing process.

We assume that the system is in working order if x; €[0,L,) and y, [O,Ly) (L, and
Ly are the strictly positive breakdown limits). The system breaks down as soon as either

x; becomes greater than or equal to L, or y, becomes greater than or equal to Ly.

2.2. Predictive maintenance policy :
The maintenance policy is defined as follows :
« if the state of the first unit exceeds L, or the state of the second unit exceeds Ly,
the corresponding unit is repaired,
« if the state of the first (respectively second) unit exceeds a maintenance limit X
(X<Ly) (respectively Y (Y<Ly)) while remaining less than the breakdown limit, a
preventive maintenance is performed on it.
These interventions are instantaneous and put the unit in its original state.
As we have already seen in the introduction, we consider a system for which the cost of
the elements are very small compared to the cost incurred when stopping the system to
perform a repair or a maintenance. Thus, we decide to maintain a unit which is subject to
neither a repair nor a maintenance when the other unit must be repaired or maintained. We
can then add the following rule to the definition of the maintenance policy :
« if a repair or a maintenance is performed on one unit, and if the other unit is iﬁ
normal functioning, a maintenance is also done on it. These interventions are

' 0
instantaneous and put the unit in its original state, i.e. S; = ( 0).

Figure 1 shows the different domains of intervention and their cost in the state-plan.
The cost associated with a predictive maintenance is, of course, smaller than the cost of a

repair after a breakdown.
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Fig. 1: Domains of maintenance/repair and associated costs
3. PROBABILITY DENSITY OF THE STATE OF THE SYSTEM

The cost function depends on the probability density of the state of the system.

u X
Let A= ( ) and B= ( ) be two vectors representing the state of the system.
y

Vv

The density of probability for the state to be in (x,y) is denoted p(x,y).

There are two types of transitions from state A to state B :

* A was in the normal fl{nctionning domain, i.e. u<X and v<Y. Due to the fact that
the process we are studying is an ageing process, the previous state can not be
greater than B, i.e. u<x and v<y. The transition probability from A to B is then :

Habtyp(u e YO gy

* A was a repair or maintenance state of one or both units of the system (u>X

or/and v>Y). As we have seen in the definition of the maintenance policy, the state

: 0
of the system is immediately brought back to the original state,i.e. A = ( 0). The

transition probability from A to B is then :



Pabtyp(u,v)e 7 dudy

In steady state, the density p of the probability to be in state (x,y) is then given by the

following integral equation :

Min(x,X)Min(y,Y)

Py =ity | [ pave IO g4

o+ 0t
+00400
+j Ip(u,v)e_#"x_#yydvdu
X Y '
X+oo +ooY
+f jp(u,v)e_u"x-“yydvdu-i- J Ip(u,v)e—”"x—#"ydvdu) 1)
oY X0

p(x,y) is a probability density. We can then add the following constraints :
400400

j J p(u,v)dudv =1 )
ot ot
and p(u,v)20 V(u,v) € RtxR*

Due to the Min operator in the first term of equation (1), we have to consider four cases :

3.1. For 0<x<X and 0O<y<Y, the system is in the normal functionning domain.

Equation (1) can be written as :

Xy +00+00
P(X,y) = Hyhy( I jp(u,v)c_#"(x—u)—uy(y—v)dvdu + j Jp(u,v)e—uxx_uyydvdu
otot XY

X 400 +o0Y
+J Jp(u,v)c_#"x_”yydvdu+ J Jp(u,v)c_#"x_#yydvdu)
0Y X0



If we note by C(X,Y) the constant part of the right side of this equation, i.e.:
+o0 400 X+o0 +o0Y

CXY) = pypty( | [pCuvidvdu+ [ [pu,vidvau+ [ [p(u,v)dvdu),
XY 0Y X0

the equality can be rewritten as : .
Xy
pOy) = fatty | [puwie PO gy 4 oex, vye M HY
0* ot
ie:
. . .y )
P =y [ [puve™ Hr dvdu+ (X, )
' 0*o*
if we set q(x,y) = p(x,y)e?** ™YY we obtain :
Xy
(%) = ity | [a(u,v) dvdu+C(X,Y)
0*o*
On the compact (0,X)x(0,Y), this integral equation admits a unique solution in

Cl((O,X)x(O,Y)). This solution is obtained by using the Picard-Lindeldf iteration

method :

qy = (Uxiyxy + DCX,Y)

(fxbtyxy)?

qq = 4 +uxuyxy+lJC(X,Y)

\

4o = (z%i_‘yg‘_y’n cot ) =| Y ok vy
= (1)

qpconverges uniformly to the solution q(x,y) in Cl((O,X)x(O,Y)) .when n — +oo,

Thus for 0<x<X and O<y<Y, we have :

+o0 i
p(x,y) = [Zi‘i‘:;#)—)ax,we‘““’“yy 3)
i=0 :



3.2. For x>X and y>Y, the system has to be completely repaired due to failures on

both units. The probability density is then given by the followin g equation :

PX,Y) = Hxy j J plu,vye XTI O guqy

0*o*

X400 pxe +ooY oxe
+f jp(u,v)é MY qvdu + J Jp(u,v)e HxX=HyY 4y du)
0Y X0

Using the notations introduced in 3.1, we obtain :

XY
px,y) =ttty | [peuvie * O Vavau + ox, Yye T HYY
oo

In the domain 0<x<X and O<y<Y, the expression of the density p(x,y) is given by

equation (3). Then :

) XY +°°(u pyuv) pxe
p(x,y) = #x#yj I{ x(1'§2 dvdu |Ce Hxx=Hyy
i=0

o*to*

The solution of (1) for x>X and y>Y is thus :

A (THTID. ¢ o L S
sy = L ot @

3.3. For 0<x<X and Y>Y, one unit has failed and is repaired, while a maintenance is

performed on the other one. We have :

+ 00 +400
p(x,y) = ux#y(j jp(u ve BB Vgvqu s [ [peu,ve ™ “yydvdu
o*o* XY

X400 +ooY
+J’ jp(u v)e X HyY dydu + J Jp(u v)e THxx #"ydvdu)
0Y



Using the same notations as in 3.1, we obtain :

PX,Y) = Hxh p(u ve BT Ogy gy 4 orx, e TR
y
0*o*

The solution of (1) for 0<x<X and y2Y is then:

2 (U pty YX)' pyx—
p(x,y){%—“—*(‘:—!’)z-f—]axx)e Hex=Hyy )

3.4. For x>X and 0<y<Y, the problem is the symmetric in y of the previous one,
i.e.: _
« (UxpyXy) - .
P(X.y) = (Z—%—JC(X Yye TRy ©)
i=0 :

To obtain the exact function p(x,y), we need the expression of C(X,Y). This is done in the

next subsection.
3.5. Constant C(X,Y) :

C(X,Y) is defined in 1.1 by the following equality :

+00 +o0 X400 +ooY
C(X Y) = ety ( j j p(u, v)dvdu+j jp(u vidvdu+ [ [p(u,v)dvdu) (7)
X0

Thus, C(X,Y) represents the probability to be either in breakdown or in preventive
maintenance for at least one unit.

By using constraint (2) with equality (7), we obtain :

XY
I J p(u’V)dudv+E(_w
0+ 0+ “x#y

=1
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If we replace p(x,y) by its expression for 0<x<X and 0<y<Y, we get :

X Y 400 v l _ _
[] 2——(“ 2 Y o, e P g dy + EX0
ot o*\i=0 (il HxHy

that is :

Hxhby _1++z°°_1_

= uleVdu- [vieVdv
C(X,Y) S (in? J J

[uxx . uyY
0 0

+o00
If we introduce the Euler Gamma function . I'(a) = Jta_le_tdt and the incomplete Euler
0

<400
Gamma function I'(a,z) = Jta_le_‘dt, the previous equality leads to :

A

Hxlt <l : - :
=14 Y —(TA+ D) -T+Lu X)) TG +1) - TG +1,1,Y))

CX,Y) 52
a—lzr
We know that if the parameter a is a positive integer, I'(a,z) = (a - e ? -
: o
Then : .
+o0 i r 1 r
_ X —uyY  (HyY)
Mty S cnx g @O oy 5 G4
C(X,Y) i=01! =0 r! =0 r!
Finally :

uxuy

+o0 i r _ i Y)f
1+2.1,(1—e‘“x"2(i’;,5’—11-e uszm]

i=o ! r=0

CX,Y)=
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4. EXPRESSION OF THE COST FUNCTION

We define the following cost associated with the different types of interventions on the
system : |

* M : cost of the preventive maintenance on both units.

* N : cost of the preventive maintenahce on one unit and the repair of the other.

* R : cost of the repair of both units.
As we notice before, M<N<R.
The long-run average cost per unit of time of the maintenance policy is equal to the sum of
the cost for each type of intervention multiplied by the probability to perform it. It is given

by the following function :

XL L, LL

g(X,Y)= J Jp(u v)dvdu + j Ip(u v)dvdu + J J’p(u v)dvdu
0Y X0 XY
Ly 400 oLy X+o0 +o0Y
+N I Jp(u v)dvdu + J jp(u v)dvdu+'[ Ip(u v)dvdu + f Ip(u v)dvdu
X L LxY OL Ly O
+oo+00 .
+RI J‘p(‘u,v)dvdu
Ly L,

Using results (3) to (6) and (8), the previous expression can be rewritten as :

i=0
xY +o00 i
+f ] (bt L ) C(X,Y)e "V dvdu
X 0\i=0 (i)
Laby (42 (e, XY .
+[ [ 3= e e ™ dvdu
x yl=o @
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oLy { 400
+J' Jy[+ (}tx#y JC(X Y)e HXUHYVydy
Lx Y \U= 0

(A Gty Y

L 1eX, e avau
0L, \i=0 s )

+00Y( foo Xv i B _
+J J ZMLZ—-)— C(X,Y)e Hx4"ByY dvdu
A o\i=0 (i) y,
+004-00 oo
+R . (/»‘x.uy2
i= 0 ( )

)y ]C(X Yye P MV dvdu

The resolution of this integral equation gives the analytical expression of the cost function :

g(X,Y)= 400 1 i ( Y)r
: 1 - (1 X) “#yY 5 Wy 1)
gt o S
i=0 =0 r=0
= (/'l)(“yXY)i ~#xX _ a=BxLx o THyY _ o HyLy
{(i:z(’)—(i!)z ][M(e e )(e e )

+N((e-#xx — e Mxlx ) ~Hyly +( “HyY _ Hyly )e-ﬂxLx)

_*_'R(e‘llex —uyLy ):|

oo if i \
+[+Z (MYY) 1-e HX Zl:—(#")'()r J[Nc_uyl"' + M(c_#yY —e Wby )]

!
i=0 1! =0 r. )

[z (/Jxx) 1 — e_“)’Y iM]]{Ne_“XLX + M(c—“"x - C—'UXLX )]} (9)

!
i=0 ! \ =0 T

5. MINIMIZATION OF THE COST FUNCTION

we use a gradient approach to find an optimal solution to equation (9). Since we did not

succeed to prove that g(X,Y) is convex, the result of this approach could be a local
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optimum. To evaluate our result, we compare it with some classical approaches in
section 6.

We use an iterative approach to find the desirable solution: at each step of the computation,
~we try to evaluate the gradient Vg(Xk,Yk), where Xk and Yy are the values of the
parameters at the beginning of the k-th iteration. Let us denote by @g(Xk,Yk) the
evaluation of Vg(Xk,Yk).

The general formulation of the algorithm is :

oS (P RN
Sl=P - . Ve(X,, Y,
(Ykﬂ Y, kVE(Xy, Yi)

X .
where: - ( k+1) is the value of the parameters at the beginning of the (k+1)-th iteration.
k+1

- P is the projection of the parameter values on the set of feasible values of the

A\

parameters.
+o00 + o0
- {ay] is a series of parameters such that ) o, — +e0 an o oo,
{ok) fp t hthat > oy — +eoand » 02 <+
k=1 k=1

In practice, we decrease the value of ok only when the sign of the gradient estimated
through the simulation is different from the one used to estimate the criterion knowing the

Xn
values v of the parameters.

n

6. COMPARISON BETWEEN DIFFERENT MAINTENANCE. POLICIES
ON A NUMERICAL EXAMPLE

In this section, we compare the above policy with two other classical maintenance
policies.
We define the following cost associated with the different types of intervention on the
system :

» M : cost of the preventive maintenance on one unit.

* M : cost of the preventive maintenance on both units,

* N : cost of the preventive maintenance on one unit and repair of the other.
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* R} : cost of the repair of one unit.

* R : cost of the repair of both units.
Note : for the sake of simplicity, the cost of repair or maintenance has been considered
equal for both units. All the previous and following calculus could also be done without

additional difficulty with different costs for each unit.

6.1. Corrective maintenance :

This policy consists in repairing only failed units Without doing any preventive
maintenance.

Thus, the two units can be considered as independent of each other.

In CHU et al. [5], we have already studied a single-unit system whose state follows a

exponential distribution of parameter u. If L is the breakdown limit, the distribution of

probability of the state is :

H forx €L
1+ uL

p(x) = ue-#(x—L)

forx>L
1+uL

For a two unit system, if we use the same notation as in 2), we obtain :

—Hx (X;Lx)
e
Exbly forx>Lyand y<L,
(1+ L )1+ yLy)
~My(y-Ly)
e
p(x,y) =1 Exbly forx<Lyand y>L,
(1+puxLy)0 '*'#yLy)
Ty e_ﬂx(x;Lx)‘#y(y_Ly) ‘
et forx>Lyand y>L,
(I+pu L) +pyLy)

The first (respectively second) line corresponds to a state where the unit represented by the
state variable x (respectively y) has to be repaired. The last line give the density of

probability to be in a state where both units fail.
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The cost of this policy depends only on the breakdown limits and is given by the

following equation :

+ooLy Lx +o00 +o00+o00 |
g1 =Ry| [ [p(x.y)ydx+ [ [p(x.y)dydx [+R [ [p(x,y)dydx
Lyo* 0*Ly LyLy

The average cost per unit of time for the corrective maintenance policy is then :

_ Ry{pyLy +pyLy)+R
(1+pu L)+ pyLy)

g1

6.2, "Classical" preventive maintenance :

.In this policy, a maintenance limit exists for each unit. As in the previous case, a unit fails
if its state exceeds its breakdown limit. A maintenance is performed only if the state of a
unit exceeds the maintenance limit and is less than its breakdown limit.

The two units can then be considered as independent.

From CHU et al. [5], for a single-unit system whose state x follow a exponential
distribution of parameter u, with a breakdown limit L and a maintenance limit X, we have
the following probabilities : '

uX 1-e H({L-X) . e~ H(L-X)

 Pr(X<x<gLl)=—— — Pr(x>L)=

Prx = X)= 0% 1+ uX 1+ uX

For a two-unit system, the cost of this policy is :
g (X,Y) = Ml(Pr(X <x<L)Pr(y<Y)+Pr(Y <y<Ly)Pr(x < X)) _
+M(Pr(X < x SLy)Pr(Y <y< L))
+R1(Pr(x > Ly)Pr(y € Y)+Pr(y > Ly)Pr(x < X))
+N(Pr(X <x<L)Pr(y>Ly)+Pr(Y <y <Ly)Pr(x> Lx))

+R(Pr(x > Ly)Pr(y > Ly))
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The average cost per unit of time for the "classical” preventive maintenance policy is then :

1 1y (Ly—X) —py(Ly-Y)
g,(X,Y) = (M (u Y(1- e Hx(lx +U X(l—e ¥y ))
? I+ L)+ py L) U ( )

+M((1 - e‘#x(Lx‘x) )(1 - c_#)’ (Ly -Y) ))

(Lx_x)

+R1(pyYe_“" + U, Xe

+N((1 _e Hy@Ly=Y) )e—ux<Lx—X) #(1-e LX) Hy (Ly-Y>)

~tty (Ly=Y) )

+R(C_#x (Lx _x)_ﬂy (Ly —Y) ))

6.3. Comparison of the maintenance policies :
For this numerical example, we use the following values of the parameters :
Uy =1 Hy=1 L,=5 Ly=7
Nofc : it is always possible to modify the variables in order to have pi, =pu,=1.
The mean number of inspections before a breakdown is then S for the unit represented by
x and 7 for the other. |
The cost of intervention on the system is 20 u.c. (unity of cost). The cost of the
maintenance of a unit is 0.5 u.c. and the cost of the repair of a unit is 100 u.c.. The global

costs of maintenance and repair are then :

M1=20.5 u.c. M=21 u.c. N=120.5 u.c. R1=120 u.c. R=220 u.c.
Corrective Classical Predictive
X* (Lx=3) 2.34 2.21
y* (Ly=7) 3.75 3.61
Minimum Cost 34.58 12.09 10.46

Tab. I : Comparison of the different maintenance policies
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The values of the maintenance limits X* and Y* that minimize the cost function were
computed using perturbation analysis. The results are given in Table I. Predictive

maintenance reduces the cost of the classical maintenance by more than 13%.

7. CONCLUDING REMARKS

In this work, we propose a predictive maintenance policy for an unreliable two-unit
system. We assume that the repair cost is important compared to the cost of a maintenance.
Based on this assumption, we observe via an numerical example that the predictive
maintenance policy results in a smaller cost than the corrective and classical preventive
maintenance policies.

Although this assumption is not restrictive, we plan to extend this study to cases where the -
repair cost is not very important.

We also continue to work on the theoretical properties of the cost function and particularly

on its convexity.
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