N

N
N

HAL

open science

Two Techniques for Compiling Lazy Pattern Matching

Luc Maranget

» To cite this version:

Luc Maranget. Two Techniques for Compiling Lazy Pattern Matching. [Research Report] RR-~2385,

INRIA. 1994. inria-00074292

HAL Id: inria-00074292
https://inria.hal.science/inria-00074292
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074292
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Two Techniques for Compiling Lazy Pattern Matching

Luc Maranget

N ° 2385
Octobre 1994

PROGRAMME 2

Calcul symbolique,
programmation
et génie logiciel

apport
derecherche

Zd INRIA

ROCQUENCOURT

Two Techniques for Compiling Lazy Pattern Matching

Luc Maranget *

Programme 2 — Calcul symbolique, programmation et génie logiciel

Projet Para

Rapport de recherche n° 2385 — Octobre 1994 — 37 pages

Abstract: In ML style pattern matching, pattern size is not constrained and ambiguous patterns
are allowed. This generality leads to a clear and concise programming style but is challenging in the
context of lazy evaluation. A first challenge concerns language designers: in lazy ML, the evaluation
order of expressions follows actual data dependencies. That is, only the computations that are
needed to produce the final result are performed. Once given a proper (that is, non-ambiguous)
semantics, pattern matching should be compiled in a similar spirit: any value matching a given
pattern should be recognized by performing only the minimal number of elementary tests needed
to do so. This challenge was first met by A. Laville.

A second challenge concerns compiler designers. As it stands, Laville’s compilation algorithm
cannot be incorporated in an actual lazy ML compiler for efficiency and completeness reasons. As
a matter of fact, Laville’s original algorithm did not fully treat the case of integers in patterns
and can lead to explosions both in compilation time and generated code size. This paper provides
a complete solution to that second challenge. In particular, the well-known (and size-efficient)
pattern matching compilation technique using backtracking automata is here introduced for the
first time into the world of lazy pattern matching.

(Résumé : tsup)

*Luc.Maranget@inria.fr

Unité de recherche INRIA Rocquencourt

Deux techniques de compilation du filtrage paresseux

Résumé : Le langage de programmation ML posséde une construction de filtrage tres générale, les
motifs & reconnaitre peuvent étre arbitrairement profonds et ambigus entre eux. Cette flexibilité
autorise un style de programmation clair et concis, mais elle souleve deux questions importantes
dans le contexte de I’évaluation paresseuse. La premiere question s’adresse aux concepteurs de ML :
dans les langages paresseux, I'ordre I’évaluation des expressions se fait selon les dépendances entre
données, c’est & dire que seuls les calculs utiles a la production du résultat final sont effectués.
Une fois une sémantique convenable (c’est & dire non-ambigiie) donnée au filtrage, il convient de le
compiler conformément & cette sémantique et dans un esprit “paresseux” : toute valeur filtrée doit
étre reconnues en effectuant le minimun possible de tests élémentaires. Cette question a été résolue
pour la premiere fois par A. Laville.

La seconde question est d’ordre plus pratique et concerne les concepteurs de compilateurs. Tel
quel, "algorithme d’A. Laville n’est pas utilisable dans dans un compilateur ML pour des raisons de
complétude et d’eflicacité. En effet, cet algorithme ne traite pas le cas du filtrage par des motifs de
type entier. En outre, il peut, dans certains cas, produire des automates de taille exponentielle en la
taille des motifs compilés. Ce travail résoud ces questions. Une approche plus simple que ’approche
initiale permet de traiter le cas des motifs de signature infinie. Ensuite, un nouvel algorithme de
compilation du filtrage paresseux est proposé. Les automates cibles du nouvel algorithme utilisent
une construction d’échappement qui autorise un partage de code suffisant pour garantir que leur
taille est linéaire en la taille des motifs compilés.

Two Techniques for Compiling Lazy Pattern Matching 3

1 Introduction

Pattern matching is a key feature of the ML language. It provides a way to discriminate between
values of structured types and to access their subparts. Pattern matching enhances the clarity and
readability of programs. Compare, for instance, the ML function computing the sum of an integers
list with its Lisp counterpart (all examples are in CAML [Weis, 1990, Leroy et al., 1993] syntax).

(defun sum (1)
(if (comsp 1)
(+ (car 1) (sum (cdr 1)))
0))

In ML, patterns can be nested arbitrarily. This means that pattern matching has to be compiled
into sequences of simple tests: a complicated pattern such as ((1,x),y::[]) cannot be recognized by
a single test. Usually, pattern matching compilers attempt to “factorize” tests as much as possible,

let rec sum xs = match xs with
L] — 0
| y::ys — y+sum ys

to avoid testing several times the same position in a term.

A pattern matching expression does not specify the order in which tests are performed. When
ML is given strict semantics, as in SML [Milner et al., 1991], all orders are correct, and choosing a
particular order is only a matter of code size and run-time efliciency. When ML is given lazy se-
mantics, as in LML [Augustsson, 1985], all testing orders are not semantically equivalent. Consider
for instance the ML definition:

let F x y = match (x,y) with
(true,true) — 1

| (_,false) — 2

| (false,true) — 3

The patterns can be checked from left to right, as it is usually the case (function Fq, below), or
from right to left (function Fy).

let F1 x y = let Foxy=
if x then if y then
if y then 1 else 2 if x then 1 else 3
else else
if y then 3 else 2 2

When the variable y is bound to false, the test on x is useless. This can be avoided by testing y
before x, as in Fo.

Worse, consider the application F | false, where L is a non-terminating computation. In
strict ML, function arguments are reduced before calling the functions, so that both compilations
Fi1 | falseand Fo 1 false do not terminate. In lazy ML, function arguments are not evaluated
until their values are actually needed. Therefore, F1 will loop by trying to evaluate x = L, whereas
Fo will give the answer 2. In the spirit of lazy evaluation, a result should be given whenever possible.
Thus, a lazy compiler should compile the function F as Fo, not as Fy.

In the previous example, there is a good reason to claim function Fy to be more “correct” than
function Fq. Indeed, both functions output the same result when given the same input, except in
one case, where Fq gives the result 2, whereas F; does not terminate. Unfortunately, things are not

RR n~2385

4 Luc Maranget

always that simple and there are pattern matching definitions that cannot be compiled correctly.
Consider, for instance, Berry’s famous example:

let B x y z = match (x,y,z) with

(true ,false,_) - 1
| (false,_ ,true) — 2
| (_ ,true ,false) — 3

One easily checks that there does not exist a correct compilation of B and that one cannot order
the possible compilation by their termination properties. By “possible” compilation, I mean here
some automaton that will examine all or some of the variables x, y and z, one after the other.
Let us consider for instance an automaton that examines x first. Because such an automaton
will always loop by engaging in the non-terminating computation 1, it cannot output the correct
value 3, when given the input x = 1, y = true and z = false, whereas other automata that start
by examining y can. Similarly no automata examining y first will ever produce the correct result 2
as a compilation of the function call B false 1| true, whereas some of the automata examining
x first will.

The task of a lazy ML compiler is thus twofold. When given a pattern matching definition,
it must both determine whether this definition can be compiled correctly or not and produce a
correct compilation when possible. This problem has first been solved in the case of non-overlapping
patterns by Huet and Lévy [Huet and Lévy, 1979]. Given a set of possibly overlapping patterns,
Laville [Laville, 1991] shows how to replace them, when possible, by an equivalent set of non-
overlapping patterns, compiled using Huet and Lévy’s technique. Laville’s method is not complete,
since it cannot treat the case of datatypes with infinite signatures (such as the type of integers). Asa
matter of fact, in presence of infinite signatures, Laville’s equivalent set of non-overlapping patterns
can also be infinite. Following a similar idea, Sudrez and Puel [Puel and Sudrez, 1990] translate
the initial set of overlapping patterns into an equivalent set of “constrained” patterns, which are
special patterns encoding the disambiguating rule of pattern matching on overlapping patterns.
Then, they compile the pattern matching on the constrained patterns with an extension of Huet
and Lévy’s technique. Although the Sudrez and Puel’s approach does consider infinite signatures,
its direct application in a compiler remains problematic, since the size of the constrained patterns
can be exponential in the size of the initial ambiguous patterns. I experimented such a misbehavior
while implementing Sudrez and Puel technique, even on very ordinary pattern matching definition.

In this paper, I take a simpler approach: compilation operates directly on overlapping patterns.
I first recall the semantics of lazy pattern matching, as given by Laville [Laville, 1991]. I then
present two direct compilation techniques that preserve this semantics whenever possible. These
technique are presented as source-to-source transformations. They differ by the nature of the target
automata they produce. The first technique produces tree-like automata. The main advantage of
tree-like automata is simplicity, so that the associated compilation scheme is straightforward and its
correctness proof is easy. Unfortunately, the price paid for this simplicity is a potential explosion in
size of the output automata. The second and more sophisticated technique produces automata with
failures. These automata possess a static exception construct that enables some code sharing. The
sharing introduced in automata with failures is suflicient to guarantee that the size of the output
automaton is linear in the size of the input pattern matching definition. Both compilation schemes
have been integrated into the GAML compiler [Maranget, 1991] for lazy ML. Finally, I compare

Inria

Two Techniques for Compiling Lazy Pattern Matching 5

these schemes one with another and with previous non-lazy approaches, both from the theoretical
and practical points of view.

This paper extends on [Maranget, 1992] in many important ways. In particular, the treatment of
automata with failures is entirely new (section 4). A thorough presentation of the full compilation
algorithm is given (section 5.2), as well as a discussion of the main theoretical an pragmatical
aspects of lazy pattern matching (section 6).

2 Values and patterns

Our intention is to model pattern matching as a function on the set of terms representing the results
of lazy ML programs.

2.1 Partial values

A constructor is a functional symbol with an arity. A constructor will often be represented by ¢
and its arity by a. Constructors are defined by data type declarations. Consider for instance the
type declaration:

type tree a = Leaf a | Node (tree a) a (tree «)

This declaration defines the type tree « of the binary trees of objects of type a. It introduces the
two constructors Leaf and Node, of respective arities 1 and 3. The set {Leaf, Node} is the signature
of the type tree a. There is at least one predefined type with an infinite signature: the integer
type int, all integers being seen as nullary constructors.

The distinguished nullary symbol © stands for the unknown parts of a value. The set Vg of
partial values is the set of terms built from constructors and the symbol €:

Partial values Vgo: V = Qe Vy V5.V,

Given a partial value V = ¢ Vq V;...V,, we say that constructor ¢ is the root constructor of V.. We
only consider values that are well typed in the standard sense, with the partial value {2 belonging
to all types. For instance, Node 2 1 (Leaf 2) has type tree int.

A lazy language distinguishes between totally unknown values and partially unknown values.
Consider, for instance, a list of two unknown values, represented as ::Q::[]. We can refer to the
length of such a partial list. In a lazy language, we should even be able to compute it. As to the
totally unknow value 2, it does not carry any information at all. This suggests that partial values
may be considered as more or less precise approximations of computations results. The definition
ordering captures this intuition.

Definition 2.1 (Definition Ordering) Let U and V' be two partial values of the same type. The
partial value U is said to be less defined than V, written U <V, if and only if :

U=
or
U=cUy..Uy, V=cV1...V,
and

foralliin[l...a], U; 2 V;

RR n~2385

6 Luc Maranget

Two partial values U and V are said to be compatible, written U TV, when they can be refined
towards the same partial value, that is, when there exists a common upper bound of U and V.
When this is not the case, U and V are incompatible, written U # V.

We also consider the set 7q of well-typed partial terms built from constructors, the symbol Q
and a set of variables (typical element v).

Partial terms Tg: M == Q|v|e My My.. M,

A substitution, written o, is a morphism on partial terms, that is, a function on partial terms
such that: o(¢ My My.. . M,) = c o(My) o(My)...0(M,). Thus, a substitution is totally defined by
its values on variables. The domain of a substitution o is the set of variables » such that we have
o(v) # v. In practice, only substitutions with finite domains are considered. Such a substitution
will often be written as the environment [v1\ My, vo\ M, ..., v,\M,] binding, for any integer i in
[1...n], the variable v; to the partial term M;. Application of an environment to a partial term is
written N[o;\ My, v2\Ms,...,v,\M,]. For any partial term M, the partial value Mg, is obtained by
substituting for all variables in M (that is, Mq = M[v1\Q, v2\Q, ..., v,\Q], where vy, v,,..., 0,
are the variables of term M).

Given two substitutions ¢ and p with disjoint domains, the union ¢ U p is the substitution
whose domain is the set union of the domains of ¢ and p and that coincides with ¢ and p on their
respective domains.

2.2 Patterns

Patterns are strict linear terms, that is, partial terms without €2 such that the same variable does
not appear more than once in them. Pattern variables are written as x.

Patterns P: pu=x|cpy pa...py pis linear

A pattern can be seen as representing a set of (partial) terms sharing a common prefix. Addi-
tionally, subterms located under this prefix are bound to pattern variables.

Definition 2.2 (Instantiation relation) Lel p be a paltern and M be a partial term belonging
to a common type. The term M is an instance of the pattern p, written p < M, if and only if there
exists a substitution o such that o(p) = M.

Note that if M is an instance of p, then there exists an unique substitution o such that o(p) = M
and whose domain is minimal. In the following, this unique substitution will be implicitly selected,
when I talk about “the” substitution o such that o(p) = M.

The instantiation relation is closely related to the definition ordering.

Lemma 2.1 Let p be a pattern and M be a partial term. The following equivalence holds:
p 2 M if and only if pg < Mq

Proof: Easy induction on p, using the linearity of patterns. a

Inria

Two Techniques for Compiling Lazy Pattern Matching 7

A pattern p and a partial term M are incompatible, and we write p# M, when M is sufficiently
defined to ensure that it is not an instance of p. That is p # M holds, if and only if

p=cpr...pas, M =¢ My.. My with ¢ # ¢
or
p=cpr..peg, M =c¢cM.. M,
and
there exists ¢ such that p; # M;

When pattern p and partial term M are not incompatible, we write p| M. The following equivalence
properties, holding for any pattern p and any partial term M, directly follow from lemma 2.1:

p#HFMiff po# Mg and plT M iff po | Mg

The partial term M can be a pattern ¢. If p and ¢ are compatible, then they are also said to be
ambiguous or overlapping. Indeed, as a consequence of lemma 2.1, two patterns are compatible if
and only if they admit a common instance.

2.3 The matching function

Pattern matching is usually formalized as a predicate on partial values [Huet and Lévy, 1979,
Laville, 1991]. We prefer a representation as a function over partial values, closer to pattern match-
ing in ML.

A clause is a triple (4, p,), where ¢ is an integer, p is a pattern and e is a partial term, such that
all variables in term e are variables of pattern p. Integer ¢ is the number of the clause, whereas term
e is its result. To simplify notations, we shall write clauses as p':e;. We consider sets of clauses
meeting the following three conditions:

1. All clause numbers are distinct.
2. All patterns belong to a common type.
3. All results belong to a common type.

Sets of clauses are written £ = {p':e; | i € I'}, where I is a set of numbers. These sets are ordered
by the ordering on the clause numbers. The pattern matching function takes this ordering into
account to resolve possible ambiguities between patterns. To simplify, first assume that clause
numbers just express the natural textual clause ordering meant by the programmers, when they
write one clause after (under) another.

Definition 2.3 (Matching predicate (Laville)) Let £ = {p':es, p*:eq,...,p" e} be a set of
clauses. LetV be a partial value. The value V matches clause number i in E, written match;[E|(V),
if and only if the following two conditions are satisfied:

PPV and Yj<i, pP#V.

Notice that the matching predicates defined by two distinct clause numbers are mutually ex-
clusive, because p’ # V excludes p/ < V.

RR n~2385

8 Luc Maranget

Definition 2.4 (Matching function) Let F be a set of clauses. For any partial value V', we
define the partial value match[E](V) as follows:

o If the value V matches clause number i, we take match[E|(V) = o(e;), where o is the substi-

tution such that o(p') = V.

o Otherwise, V is a non-matching value and we take match[E)(V) = Q.

Observe that match[P], the traditional matching predicate defined by the indexed set of patterns
P = {p',p?,...,p"} can be simulated by the matching function maich[FE], where E is the set of
clauses {p': true,p’:true,...,p": true}. Obviously, any value V matches some pattern in P, if
and only if we have match[E](V) = true.

It is easy to show that, given a set of clauses E, the match[E] function is monotonic over
partial values. Other rules than the textual priority rule (definition 2.3) can be used to resolve
ambiguity in patterns: in particular, the specificity rule [Kennaway, 1990]. We do not consider
this alternative, since the textual priority ordering mimics the familiar “if condition, then resully
else if conditiony then resulty ...” construct. Furthermore, both schemes have the same expressive
power [Laville, 1991].

Pattern matching expressions can also be written as ML programs. If a pattern variable does
not appear in the corresponding result expression, then its name is unimportant and the pattern
variable is replaced by the symbol “_”. Consider, for instance, the set of clauses F = {(z1, true):
true, (true,z;) : true, (z3,24) : false} and the function or(V) = match[E](V) (Here “,”is the
pair constructor, the sole constructor of the pair type). In ML syntax, we have:

or(V) = match V with

_,true — true
| true,_ — true
| _,_ — false

There is a finite number of partial values of type bool X bool. From definition 2.4, we get:

1% or(V)
Q(Q2,9) (2, false) (true, Q) (false,) Q

(2, true) (false,true) (true,true)(true,false) | true

(false,false) false

Note that or is not the “parallel or” function por, since, by definition, we have por(€2,true) =
por(true, () = true.

It may seem that the definition of pattern matching might be simplified by replacing the second
condition Vj < i, p/ # V by the new and less strict condition Vj < i, p’ £ V. Such a change is not
advisable though, since it would imply loosing monotonicity. Consider, for instance, the pattern

matching match[E](V) defined by:
match V with 1 — Q | — 2

The above modified definition of the matching function would give us: match[F](2) = 2 £
match[F](1) = Q.

Inria

Two Techniques for Compiling Lazy Pattern Matching 9

2.4 Pattern matching on vectors

In the next section, we shall consider “intermediate” matchings. In these matchings, the value
to match and the patterns have a common prefix: the part of the value examined so far. More
precisely, let n be a positive integer, let vy, vy ...v, be n variables and let N be a linear partial
term whose variables are vy, vy ...v,. An intermediate matching is a pattern matching of the
format:
match N[v1\Vi, v\ Vs, ..., v,\V,] with
N{vi\pis v2\P3s - - > v \py] — €1

I A/V[Ul\priny 7)2\p§na RS Un\p?] — €m

Obviously, the result of such a matching does not depend on the prefix N, but only on the partial
values V; and patterns p! that are substituted for the variables v;.

The n partial values may be seen as a vector V= (V1 V3...V,), whereas each clause may be
seen as a vector clause consisting of a number ¢, of a vector of n patterns 7' and of a result term
e;. The set of clauses is replaced by a pattern matriz (P) and a term vector (E) written as:

piopy..ph e1
2 2 2
P P2 ---Pn €2
(P)= . ()=
prtopye. €m

In pattern pé, the index 7 is the clause or row number, whereas j is the column index.
The instantiation and the incompatibility relations on patterns and values trivially extend to
vectors:
(Prp2--pn) 2 (V1 V2. V)
if and only if
forall 7in 1...n, we have p; < V;

(Prp2...p)#F W1 Vo V)
if and only if
there exists 7 in 1...n such that p; # V;

It is then straightforward to extend the definition of the matching predicate to vectors of partial
values V' and pattern matrices (P):

) PRV
match;[(P)](V) iff and
for all j < i, we have j’ #17

Finally, once substitutions are extended to operate on vectors in the natural way: o(p) =
(o(p1) o(p2) . ..0(pn)), the matching function also extends to vectors: if V matches the row number i
in matrix (P), then there exists a substitution o such that o(5*) = V and take match[(P), (E)|(V) =
o(e;). Otherwise, vector V does not match any clause in (P), (E) and take match[(P), (E)(V) = Q.

Another natural use of pattern matching on vectors is getting rid of superfluous tuples. As we
just saw, a pattern matching definition can be given by a pattern matrix (P) of size n X m and a

RR n~ 2385

10 Luc Maranget

result vector (£) of size m. For instance, the or function of the previous section can be simplified,
provided the value of or(2) is of no importance.

- true true
or(z y) = maltch][| true ,| true |](zy)

false

Here also, an alternative formulation as a ML definition exists:

let or _ true = true
| or true _ = true
| or = false

If the names of the arguments of the function or are significant, it can equivalently be written as

follows:
let or x y = match (x,y) with

(_,true) — true
| (true,_.) — true
I (., 0) — false

3 First technique

3.1 Tree-like automata

Tree-like automata are the simplest and most natural among sequential automata. Other authors
call them decision trees or matching trees. Every state in a tree-like automata is characterized
by some position u to examine and some already examined prefix /V; both position and prefix are
relative to the currently examined term. Every transition coming out of a state is labelled by some
constructor symbol ¢, that can take place at position u. These automata are described here as ML
programs. These particular ML programs are nested simple matchings, simple matching being the
natural representation of elementary comparison in ML.

Simple matchings:
F o=
match z withp A {| p—A}* [| _ — A]

Simple patterns:

p = cx Ty...x, and pis linear
Automata:
= F nested matching
| M Partial term

A typical simple matching is thus written as follows:
match z with
€1 1 Z2..XLgqy — Al
F=1q
| ¢ 21 22...24, — A,

| _ — Ay

Inria

Two Techniques for Compiling Lazy Pattern Matching 11

We further enforce that all recognized constructors c¢1, cq,..., c, are different and belong to the
same type. When present, the last clause _ — Ay is the default clause.

The functions F; and Fy from the introduction are example of tree-like automata, provided
the if ... then ... else ... construct is translated into the equivalent match ... with true

— ... | false — ... construct.

The “semantics” of tree-like automata is given as a proof of some judgement o - A = U, read:
“automaton A gives value U as a result, when executed in environment ¢”. These proofs are built
from the following inference rules and axioms:

oUz\ep V.. Vo, JU [z \V1, .. 20 \Vo, | F A = U

(constr)
oU[z\eg Vi...V,,] Fmatch z with ... | ¢, 21...04, = Ap... > U
oUz\e Vi...V] F Ay = U, (where ¢ is not a recognized constructor)
(default)
oU[z\c V1...V,] Fmatch z with... | _ = A;=>U
ol [%\Q] F match 2 with...= Q (failure) oM = O'(Al) (success)

Simple matchings examine the value V bound to some variable z. There are three possible
cases:

e V has a root constructor ¢, which is recognized (rule (constr)). Analysis of the input values
will proceed by using the right-hand side of the matched clause ¢ zy z5...2, — Ag, after
some appropriate extension of the current environment.

e V has a root constructor, which is not recognized (rule (default)). Analysis of the input values
will proceed by using the right-hand side of the default clause. (Note that no default clause
is needed when the constructors recognized by a simple matching make up a full signature).

e V is not defined enough to make a decision (rule (failure)).

The last axiom (success) terminates any successful analysis, the running automaton is reduced
to a partial term, which is is returned, once its variables have been properly substituted.

A slightly technical point here deserves mention: the rules for evaluating simple matchings
assume some implicit correctness constraints. All judgements o - F = U must obey the following
constraints:

1. The examined variable z belongs to the domain of o.

2. Simple pattern variables z1, z5,... do not belong to the domain of o.

3.2 Compilation

Compilation is defined as a function C, mapping general pattern matching expressions to nested sim-
ple pattern matching expressions. More precisely, C takes three arguments and a typical call is writ-
ten C(Z,(P),(£)). The first argument Z is a linear vector of n variables (zq x5 ...z,), it abstracts
the partial value vectors given as arguments to the compiled matching. In other words, the value

RR n~2385

12 Luc Maranget

C(Vi Va...V,),(P),(F)) is defined by the execution of the automaton C((z1 z2...2,),(P),(E))

in the environment [21\V1, 22\Va, ..., 2,\V,]:

[21\V1,. ., 2, \Vo] FC((z1...2),(P),(E£))= C((V1...V,),(P),(E))

The second argument (P) is a pattern matrix of size n by m. Initially, (P) is the pattern matrix to
be compiled. Later on, it represents the yet unprocessed subparts of the initial patterns. Finally,
the third argument (£) is a term vector of size m. Initially, it is made of the right-hand sides of
the compiled clauses. Later on, it represents the result terms that still can be reached at some
compilation stage.

The function C is inductively defined as follows:

1. If & is of length zero (n = 0), then the compilation is finished. Either the pattern matrix is
empty (m = 0) and matching will always fail:

¢(0,0,0) =«

Otherwise (m > 0), there is at least one (empty) row in matrix (P) and the first result
expression is the result of the whole matching:

€1
€2

C(()v |) =€

2. If the first row of matrix (P) is made of variables only, then matching will always succeed
and give the first component of vector (F) as its result:

Y1 Y2 - Yn €1
2 2 2
pl p2 P p 62
C((z1 zg...2,), : ") :) = e[yi\T1, ¥2\T2, -, Yn \ T
Pl Py Py €m

3. If one column of patterns —the first one, for instance— contains only variables, then the
corresponding variable in vector ¥ does not need to be examined:

ytopy oo by €1

2 .2 2

Yy py - P €2
Cl(z1 z2...24),) " 0D

y"opy e py €m

pé - -pé 61[3/;\561]

P3P ea[y*\z1]
C((:EQ . .Tn), . " 9 .)

Py em[y"\21]

Inria

Two Techniques for Compiling Lazy Pattern Matching 13

4. Matching can also progress by examining one of the variables z; such that the column number ¢
in (P) possesses at least one non-variable pattern. Until otherwise stated, the choice of this
variable is arbitrary and the result of compilation depends a priori on it. When the variable z;
is chosen, we shall say that compilation progresses by following index i. To be more specific,
assume that the first variable zy is chosen. Let ¥ = {c; | 1 < k < z} be the set of the root
constructors of the patterns in the first column of (P). To each constructor ¢, of arity ag, a
new matrix (P) is associated. Matrix (Py) contains the rows of (P) that can match a value
vector of the format ((¢x Uy...U,y,) V... V,). More precisely, the following table shows how
each row of the new matrix (P;) and each component of the new vector (Ey) are built:

P row in (Pg) (Ex)
y S Pyl ely\ad]
ki gk, | dd, PyePh e
¢ G .qék, No row number ¢

If the set of constructors 3} is not a complete signature, that is, if there are other constructors
in the signature of the the type of the constructors in ¥, then some rows in matrix (P) can
match value vectors of the format ((¢ Uy...Uy) V;...V,,), where ¢ is a constructor that does
not belong to ¥. To treat these cases, a default matrix (Py) is built:

P row in (Pg) (Eq)
y Poreo bl eily\ed]
cqt gh. .. No row number ¢

Of course, the original ordering of the rows is preserved in the new matrices (£) and (Py), so
that the clauses are arranged by increasing numbers. Compilation then proceeds by emitting
an elementary test on variable z1. At run-time, this test will direct analysis towards the
appropriate subproblem.

Cl(zy z2...2,),(P),(F))

match zq1 with
Ay Yo, = C(Y1- - Yoy 22...20),(F1), (E1))
| e y1-- Yoy — -+

| e 1 o — C(Y1 Y. @2 n), (P), (E2)
| _ —>C(($2:L‘n),(Pd),(Ed))

RR n~ 2385

14

Luc Maranget

As a first exemple of the application of this inductive step 4, consider the following pattern
matrix and result vector:

true true 1
(P)=| false _ (E)=1] 2
3

First, assume that compilation progresses by following index number one. The set 3 of the
root constructors of the patterns in the first column is ¥ = {true, false}. The decomposition
procedure described above will therefore yield two matrices (P;) and (Pz), the matrix (Py)
being made of the rows of (P) that can be matched by a vector whose first component is true
(that is, the first and third rows of (P)), whereas (P;) is made of the rows of (P) that can
be matched by a vector whose first component is false (that is, the second and third rows
of (P)). More precisely, we get:

true 1 - 2
() e (3) () we(3)

Since the signature of the booleans does not comprise any other constructor than true and
false, there is no default matrix here. Thus, the elementary matching emitted here is like
the following;:

match x with

true — C((y), (true) , (;))
C(xy),(P),(E)) =)

| false — C((y),<:),(§))

Second, assume that compilation progresses by following index number two. Here we get
Y = {true}. Thus, only one matrix (Py) is built to take into account the value vectors
V = (V4 true). The set ¥’ does not make up a full signature. Thus, a default matrix (P}) is

built, to take into account the value vectors V = (V4 (¢ Uy...U,)), where ¢ is not true.

true 1
(P{)=| false |, (Ej)=| 2 (Fq) = (reee) , (Ey) = (2)

3 -

The emitted elementary matching is as follows:

match y with
true 1
true — C((x),| false |,| 2 |)
C((xy),(P),(E)) = } 3
. - c<<x>,(false),(§)>

Inria

Two Techniques for Compiling Lazy Pattern Matching 15

Compilation always terminates, since the size of (P) strictly decreases at each recursive call to
C. To see this, consider the lexicographic ordering on the pairs of positive integers (N.(P), Ny(P)),
where N.(P) and N,(P) are the sums for all the patterns in (P) of the n. and n, functions, defined
by:
ne(z) =10 ny(z) =1
ne(e pre.pa) = L4 ne(p1) + -+ ne(pa) ny(c pr...pa) =0
As an example of a full compilation, consider the or function from the end of section 2.4. The
initial call to function C is as follows:

- true true
C((xy),| true _ ,| true |)
false

There are two possible compilations for the or function, depending on which of the variables x
or y is examined first:
match x with
true true
true — C((y), - .| true |)
false

e (™) ()

match x with
ori(xy) = true — (match y with true — true | _ — true)
| _ — (match y with true — true | _ — false)

match y with
true

true — C((x), [true |,| true |)
false

true)
7\ false

[}

)
—
—

»

S—
TN
. ct
| H
[}
(0]
~—

match y with
ora(xy) = true — true
| _ — (match x with true — true | _ — false)

The or; and ory automata are syntactically different, they also differ semantically. Indeed,
we get here: ory(§ true) = 2 —since simple matching of variable z immediately fails—, whereas

RR n~ 2385

16 Luc Maranget

—

ory(true) = true. For all other values of the boolean vector V, we get ory(V) = ory(V) =
or(V). Thus, ors is the only automaton that implements correctly the function or.

There is some important point about the undefined term €2: it can be produced by compilation
only when (P) is empty (case 1). Such a situation can only be introduced by the non-trivial
inductive step 4, which can produce an empty default matrix (P;), when the considered column of
matrix (P) is made of non-variable patterns whose root constructors are not a complete signature.
The resulting automaton then has the ability to recognize some values that are incompatible with
all patterns.

3.3 Correctness

A compilation is correct when the execution of the output automaton implements exactly the input
pattern matching function.

Definition 3.1 Given a pattern matriz (P) and a resull vector (E), compilation C(Z,(P),(E)) is
correct, if and only if the following equality holds for all value vectors V :

C(V,(P),(E)) = match[(P), (E)](V)

As shown by the or; automaton from the previous section, the C compilation scheme may
not be correct. In this case, the problem can be traced back to the untimely examination of the
first component of (£ true). On the other hand, (2 true) clearly matches the first clause of the
function or. The idea is to select carefully column indices, in order to avoid such a situation.

Definition 3.2 (Directions) Let (P) be a pattern matriz of width n. The column index d such
that 1 < d < n is a direction for the matching by (P), written d € Dir(P), if and only if the
following two conditions are met:

1. The vector Q does not match any row in (P).
2. There is no vector V.= (Vi Va...V,,), such that V matches a pattern row in (P) and Vy = Q.

The first condition above is just here to rule out the trivial case where any value vector matches
some row of matrix (P).

Directions are computable from the matrix (P). Consider the set Dir;(P) of directions towards
row number 1, defined as:

Diry(P) = {d € [1...n] | match[(P)(V)= Vg > Q}
Then, Dir(P) is the intersection of the sets Dir;(P). For instance, at the critical compilation step
for the function or, we have:

- true match [(P)(V) & true < Vi
(.

(P)=| true _ and malchy[(P)(V) < true < Vi A true# V;

—

matchg[(P)|(V) < true# Vi A true # V5

Thus, we get Diry(P) = {2}, Diro(P) = {1, 2}, Dirs(P) = {1, 2} and hence Dir(P) = {2}. In
section 5.1, I give a full description of a general and efficient method for computing directions.

It is now time to examine again the arbitrary choice of the variable to be tested at the critical
compilation step 4.

Inria

Two Techniques for Compiling Lazy Pattern Matching 17

Definition 3.3 Let F be a set of clauses. A given compilation of the matching by E is done by
following directions, when, at each inductive application of step 4, there exists a direclion d in
pattern matriz (P) and that compilation goes on by following index d.

Directions gives a sufficient condition to assert the correctness of a given compilation.

Proposition 3.1 (Correct compilation) Compilations that follow directions produce correct au-
tomala.

Proof: Proof is by induction on the definition of C. The proof requires some extension of the
matching function (end of section 2.4) and of the execution of an automaton (beginning of this
section). Both functions now operate on the full set 7g of partial terms. These extensions are
straightforward: any variable z behaves as {2 does.

Thus, given any compilation step C(Z, (P),(E)) and any term vector M = (M; M,...M,), we
show the correctness identity:

match[(P), (E)J(M) = C(M, (P), (E))
1. If (P) is empty (n = m = 0), then there are no pattern rows to match and we get:

match[(), 010 = € = €((), 0, ()

If (P) has at least one empty row (n = 0 and m > 0), then the first row always matches, that is,
there exists some substitution og with an empty domain such that oo(()) = oo(5') = M = ().
We finally get:

€1
match[| 2 |, [¢ () =ocoler) = e
€m
Whereas, by definition of C and the (success) rule, we get:
€1
C{O)[], ¢+ =@ and oo b e = opler) = 1

€m

2. If the first row of (P) is made of variables only, that is, if there exists n variables y', y?,...y",
such that 7' = (y1 y2...9,), then there exists a substitution o = [y;\Mj, ..., y,\M,], with
o(p') = M. Thus we get:

match[(P), (E)(M) = ey[y1\ My, . . ., y,\ M,]

On the other hand, like in the second subcase above, we get:

C(Z,(P),(E))=er[yi\z1,. ., Yn\Ts]

and
[wl\jwlv D) xn\Mn] = el[yl\xlv teey yn\xn] = el[yl\jwlv teey yn\Mn]

3. If a pattern column —the first one for instance— is made of variables only, then we get:
C(Z,(P),(E)) = C(@',(P),(E) (1)
Where I have written Z', (P’) and (E’) for:

RR n~2385

Luc Maranget

Py Py e1ly'\z1]

2 2 2

p .« s " e y x
7' = (z2...20) Py=|" (E') = 2| _\ 1

Py P emly™\z1]

One easily shows that the equality (1) on automata implies the following equality on automata
results. _
C(M,(P),(E))=C((My...M,),(P"),(E"z1\M])
(Proofs for these two judgements have exactly the same structure).
Moreover, by induction hypothesis applied to matrix (P’), we get:
C(IE, (P), (E)) = mateh[(P'), (ETa\ M]3 ") (2)

Given any valid row number 4, pattern p} is a variable that does not affect matching and the
following equivalences hold:

(y' py...ph) = (My My.. . M,) & (ph...ph) = (My...M,)
(4 Py pl) #(My My My) & (P .py) # (Mo .. My)

That is, M matches row number i in (P), if and only if M’ = (Mj...M,) matches row
number 7 in (P'). By making the additional remark that ¢’; is e;[y*\z1], we finally get:

—

match[(P"), (E’)[xl\lwl]](AZ’) = match[(P),(E)|(M)
Hence the correctness equality.

. We finally consider the case where some elementary test is emitted. We adopt the notations
from section 3.2 and assume that column index 1 is a direction of (P). Given some term

vector M of size n, there are three subcases to consider, depending on the first component
of M.

If the term M; does not have a root constructor (that is, M; = Q or M is a variable), then
the simple matching of M; will always fail and we get C(M,(P),(E)) = Q. On the other
hand, since ¢ is a direction of (P), no value vector with an undefined first component matches
some row of (P) and we get match[(P),(E)(M) = Q.

If My is of the form My = ¢ Ny...N,, where the constructor c is not one of the root construc-
tors appearing in the first column of (P), then, by rule (default) of simple matching, we get
the following equality:

C(M,(P),(E)) = C((My...My,),(Py),(Ea)z1\M]))

Therefore, by induction hypothesis, it follows that:

C(M,(P),(E)) = match|(Py), (Eg)[zi\M]|(Ms ... M,)

Inria

Two Techniques for Compiling Lazy Pattern Matching 19

Moreover, for any valid row number, the following equivalences hold:

7 < ((e Ni...N,)...M,)) & pi =y and (ph...p5) = (My... M,)

3
S
l

' ckqh.. .qék, where ¢ € 3
p'# (¢ Ni...No)... M) & _ or ' '
pi =y and (py...pL)# (My... M,)
Thus, in this case, the matching predicates defined by (P) and (P;) are equivalent and
correctness follows as in the case number 3 above.

Finally, consider the case M; = ¢ Ny...N,,, where the constructor ¢, is one of the root
constructors appearing in the first column of (P). Then, by rule (constr) of simple matching
and induction hypothesis, we get:

C(M,(P),(E)) = match[(Py), (Ex)[z1\cx Ni.. . NoJJ(N1...Noy My...M,)

Since the root constructor of M; is known, the following equivalences hold:
pi =y and (py...p,) < (M. My)
or
Fii M e Pi=ck i g,
and
(q{ .. .qék Py .. p;) <(Ny...Ny, My...M,)

pi =y and (ph...pL)# (My...M,)

or
, . Pli = Cp q{. . .qék,, where k # £/
PrHEM & or
ph= s di
and

(@ q, Py Po)F# (N1 Ny My... M,)

From here, we then get the equivalence between matchings by (P) and (Py) and correctness,
as in the previous cases.

a

As an application of proposition 3.1, in the case of the or function, the automaton ory can be
stated as correct without testing it on all partial values, since it always performs simple matchings
by following directions.

4 Second technique

Simplicity is the main advantage of tree-like automata. Unfortunately, these automata have a
major drawback: the size of output automata can be exponential in the size of the input pro-
grams — see [Maranget, 1992, Sekar et al., 1992]. This drawback is particularly annoying when

RR n~2385

20 Luc Maranget

one thinks of integrating the C pattern matching compilation scheme in an operational ML com-
piler. One has to notice though, that compilers as mature as SML/NJ [Appel and Macqueen, 1991]
and Caml V3.1 [Weis, 1990] use a similar compilation technique. Nevertheless, there already exists
a different kind of automata for implementing pattern matching, such automata are the targets
of the LML [Augustsson, 1985] and Caml Light [Leroy et al., 1993, Leroy, 1990] compilers. One
salient feature of these automata is a backtracking construct. Standard pattern matching compila-
tion schemes rely on it to guarantee that the size of output automaton is linear in the size of the
input program. The main contribution of the present paper is to show how lazy pattern matching
can be compiled correctly in this second framework, while preserving the highly desirable linear
bound on the size of output automata.

4.1 Automata with failures

From the syntactic point of view, there is little change between tree-like and automata with failures:
the right-hand side of a clause can now be a new default primitive.

Simple matchings:
F o=
match z withp A {|l p—A}* [| _ — A]

Simple patterns:

p = cx Ty...x, and pis linear
Automata:
= nested matching
| M partial term
| default default primitive

Semantically, when execution comes across a default primitive, control is transferred to the
closest enclosing default clause. This behavior is best described by automaton states and one-step
transition rules from one state to another. An automaton state is a triple (p, o, A), where A is an
automaton, o is a value environment and p is a control environment. A value environment is simply
a substitution, and a control environment is a list of partial automaton states <o, A>, where o
is a value environment and A is an automaton. The following one-step transitions describe the
run-time behavior of automata with failures.

Ifo(z)=cp V1...V,,,
(p,o,match z with ... | ¢ 1.2, — A ... | - — Ag) —
(<0', Ad).p,U U [.fl\‘/l, .. .,.Zak\‘/ak],Ak) (constr)

If o(z) = ¢ V4...V, where ¢ is not recognized,
p,o,match ¢ with ... | _ — Ay) — (p,0,A4, default
? 2 7 ? ()

(<¢p,A>.p,0,default) — (p,¢,A) (raise)

Observe that control environments are stacks. That is, the transition (constr) pushes the current
default clause on the stack, while the transition (raise) pops the closest enclosing default clause
from the stack. Here, as in the case of tree-like automata, some condition on variable names is

Inria

Two Techniques for Compiling Lazy Pattern Matching 21

implicitly assumed, so that we can safely perform the union of substitutions in the right-hand side
of rule (constr). Obviously, requiring the pattern variables to be all different is enough.

An automaton final stale is any state from which there are no transitions. The result V of
automaton A in the initial environments ¢ and p is computed as follows. First, repetitively apply
one-step transition rules, starting from the initial state (p, o, A), until some final state (p’, o', A")
is reached, thereby computing a complete transition. Second, consider the final automaton A’. If
A’ is a simple matching, then the execution of A failed and we take V' = Q. Otherwise, A is the
right-hand side of a clause and we define V' = o'(A’). As in the case of tree-like automata, the
value V' can in fact be a term, when o operates on terms.

4.2 Compilation

Thanks to the default primitive, automata with failures can directly implement pattern matching
with priorities: try to match against the first pattern, in case of failure, try to match against the
second pattern,... In practice, one seeks to “factorize” matching attempts, by trying to match
many patterns at the same time.

The new compilation function D takes four arguments. A typical call is written D(Z, (P), (E),d).
The first three arguments are as in section 3.2: Z is a variable vector of size n, (P) is a pattern
matrix of width n and height m and (F) is a term vector of size m. The fourth argument d is itself
an automaton and may be seen as the “failure continuation”of the compiled matching. Control
is to be transferred to the automaton d in case of matching failure. The initial call to D is thus
written as follows:

P €1

P2 €2
D((z),| + .| ¢+ |'®

p" €m

The function D is then inductively defined as follows:

1. base case: n = 0. If (P) has no rows (m = 0), then the output automata reduces to the
default automaton d.

D0, 0),0,d)=d

Otherwise, there is at least one empty row in (P) and the compilation result is the first
component of (£).

€1

€2

D(()v]) d‘) =€

2. If the matrix (P) has at least one column (n > 0), then select one column of (P) arbitrarily.
Let us assume for the moment that the first column of (P) is chosen. There are then two
subcases:

(a) If the pattern p} is a variable y', then let & be highest row number such that all patterns
pl, p?, ..., pf are variables y', y%, ..., y*. The matrix (P) is cut horizontally into two
new submatrices (()) and (R) of respective heights k and k — m:

RR n~ 2385

22 Luc Maranget

k+1 k+1
y; p%---pé Pﬁkﬁy)pi;--- 7’2“
+2
Yy py o Pn P P2 P
(Q)= : (R) = .
gk pf - pk pr Py P

Two nested inductive calls to D are then performed, where the main argument to the
outer call is (¢)) without its first column and the main argument to the inner call is (R).

D(T, (P),(E), d)
I

Py P e[y \z1] €r+1
2 2 2
P3Py e2ly*\z1] . €h+2
D(($2 $3---$n)7 : 9 . 9 D(ajv (R)7 . ’))
ps.. .k ex[yF\a1] €m

b) If the pattern p! has a root constructor, then let k& + 1 be the lowest row number such
P Y41 ’
that the pattern p’f“ is a variable. As above, (P) is cut into two new submatrices of
respective heights k£ and m — k:

L s
Q) = p1p2:"'pn (R) = n p.2 T Py
pyvspn 2 AN
Let ¢1, ¢3, ..., ¢, be the root constructors that appear in the first column of (@Q)). The

rows of (@)) are grouped according to the root constructor of their first pattern, yielding
the new matrices (Q1), (@Q2), ..., (@-). The decomposition process is exactly the same
as in the case of tree-like automata —section 3.2, case 4 of the definition of C—, it also
produces the result vectors (£1), (£2), ..., (£;). An important point is that no row
of () will ever be duplicated here, since there are no variables in the first column of (@Q).
A simple matching on variable z; is finally emitted:

D((z1 23 ...2n), (P),(E),d)
I

match zq with

€1 Y1+ Yo, — D((yl <o Yay T2 -xn)7 (Ql)v (E1)7 default)
291 Yay — -+

I o1 o, = D((y1 - Yo, T2...20),(Q2)

(Q:),(E,),default)
| - —D((z1 z2...2,),(R),(F),d)

At run-time, this simple matching will examine the root constructor of the value of z; and
will select the appropriate subproblem (Q1), (Q2),. ..(Q) or the default subproblem (R),
depending on whether this root constructor is one of the recognized constructors ¢y, ¢a,

Inria

Two Techniques for Compiling Lazy Pattern Matching 23

...c; or not. The failure continuation of the inductive calls (Q1), (Q2),...(Q) is the
default construct, so that control will be transferred to the default subproblem (R), in

case any selected subproblem (Q);) fails.

Compilation always terminates, since the sum of the sizes of the patterns in (P) strictly decreases
at every inductive call. Moreover, since no patterns ever get duplicated, the total number of non-
default clauses in the simple matchings produced is bounded by the sum of the sizes of the initial
patterns. Taking the default clauses into account, the size of the output automaton is bounded by
twice the size of the input program.

As an example, consider the following or’ function definition:

let or’ false false = false
| or’ true _ = true
| or’ _ true = true

The initial call to function D is as follows:

false false false
D((z y),| true _ ,| true |,Q)
true true

There are now two possibilities, depending on whether compilation proceeds left-to-right or
right-to-left. In the first case, x is examined first:

match x with
false — D((y), (false) , (false) ,default)

| true — D((y),(-) ,(true) ,default)
| - — D((= y),(_ true),(true),ﬂ)

This first left-to-right compilation finally yields the automaton or’4:

match x with

false — (match y with false — false | _ — default)
true — true
| _ — (match y with true — true | _ — Q)

The second compilation, which examines y before x, produces the following automaton or’,:

match y with
false — D((z), (false)) (false) ,default)

true _ true
I - — D((z y), (true) ’ (true) 9)

match y with
false — (match x with false — false | _ — default)
| _ — (match x with
true — true
| _ — (match y with true — true | _ — Q))

RR n~2385

24 Luc Maranget

By explicit computation of all cases, one easily shows that the function or’, the automaton or’4
and the automaton or’9 coincide on all possible value vectors V = (x y), except for the case vV =
(true Q), where we get or’(V) = or’1(V) = true and or’5(V) = 2. That is, automaton or’,
implements correctly function or’, whereas automaton or’4 does not. Observe that vV = (true Q)
matches the second clause of function or’ and that the non-correctness of automaton or’4¢ can
be tracked back to the untimely examination of the second component of V . In other words, the
automaton or’ is not correct because it is not generated by following a direction at the critical
initial step. In the following section this remark is generalized. More precisely, I use directions of
intermediate pattern matrices to state a sufficient condition for generating correct automata.

4.3 Correctness

Correctness will rely on following directions of some pattern matrices, just like in the case of tree-
like automata. But a slight complication arises here: the argument matrix (P) does not fully
account for the currently compiled matching. Therefore, the full D compilation scheme takes three
extra arguments and a typical call to D is now written D(Z,(P),(E),z’,(P'),(P"),d). The new
arguments are the variable vector #' of size n’, the pattern matrix (P’) of size n’ x m’ and the
pattern matrix (P") of size n’ x m”. At any stage in the compilation scheme, (P)" accounts for the
patterns that are already known to be incompatible with the currently examined values, whereas
(P") represents the totality of the patterns that can still be reached at that point. In some sense,
made precise in the safety conditions below, (P") includes (P).

Definition 4.1 Consider any call D(Z,(P),(E),Z',(P"),(P"),d). Two safety conditions are de-
fined as follows:

1. The vector ¥ is a subvector of the vector ¥'. That is, there exists an injective mapping T
from the interval [1...n] into the interval [1...n'] such that, for all integer i in the interval
[1...n], we get x; = x/I(i)'

2. The matriz (P) is a submatriz of the matriz (P"). That is, we have m < m" and, for any
column index © in the interval [1...n] and any row number j in the interval [1...m], we have

the equality p! = p”JI(Z.). Furthermore, for any row number j in the interval [1...m] and any

column index 1" that is not the image of some integer by the mapping I, the pattern p”‘g,,j is
a variable.

As we shall see later in correctness proof, the main reason for the safety condition is to guarantee
that any vector matching the row number ¢ in (P”) (where ¢ < m) also matches the row number ¢
in (P).

The initial call to D is now written as follows:

Inria

Two Techniques for Compiling Lazy Pattern Matching 25

Now return to the inductive cases of the definition of D, in order to make explicit the com-
putation of the new arguments. Still make the arbitrary choice of examining the first column

of (P).

2-(a) If pi is a variable, we then get the following two nested inductive calls (see section 4.2 for the
meaning of the ¥, (@), 2 and (R) notations):

D(7,(Q), (F),7",(Q),(Q"), D(Z,(R),(G), 7', (R'), (R"), d))

The new arguments for the outermost call are easily defined, we take 7' = ', (Q') = (P')
and (Q") = (P"). As to the innermost call, we first take ' = #’. Then, the matrix (R") is
built by removing the k top rows of (P”). Finally, these row are added at the bottom of (P’),
yielding the matrix (R') (remember that & is the highest row number such that pattern p} is
a variable).

71 71 71
P1 P2 Dy
. nk+1 | pk+1 nk+1
p 1 p 9 “ e p !
p/m' p/m' p/m .
n _ 1 2 TPt " _
(R) - 7l 7l . 7l (R) -
P P2 Pn
" 1" "
. 1nm nm 1m
: P1 Do Do
nk ik 1k

P1 Pg Dy

2-(b) If p{ has a root constructor, let i’ = Z(1) be the component index in #' such that z!, = ;.
Let also ¢q, ¢g, ..., ¢, be the root constructors appearing in the first row of (P). Without loss
of generality, I describe the inductive call D(7,(Q1),7,(Q}),(QY),default), which is to be
performed when constructor ¢; has been recognized (see case 2-(b) in section 4.2). Matrices
(P'") and (P") are decomposed according to their column number ¢’, in order to extract pattern
rows whose pattern number ¢’ can match values with ¢; as root constructor (see section 3.2,
case 4, for a complete description of this decomposition procedure). This process yields the
new matrices (Q1) and (Q7). Finally we take 5" = (y1...9a, 2"1... 2"y &l ... 2l).

As to the inductive call D(Z, (R), (), Z, (R'),(R"), d), which is to be performed in the default

case, matrices (R') and (R") are the same as the ones for the innermost inductive call in

case 2-(a) just above. That is, the first k rows of (P’) are transferred at the bottom of (P")

(remember that here, integer & is the highest row number such that p} is not a variable).

One easily checks that the safety conditions are met in the initial call. To see that they are
preserved across inductive calls, first notice that, in step 2-(a), whenever some rows are removed
from the top of (P), the same number of rows are removed from the top of (P”) and that whenever
a column is removed from (P) and not from (P”), this column consists solely of variables. Further-
more, in step 2-(b), (P) and (P") are decomposed according to the columns number 1 and ¢’ = Z(1)
respectively and we know from the safety conditions that pj equals p”/, for any row number j valid
both in (P) and (P"), so that (Q1), (Q2), ..., (@) are submatrices of (QY), (QY), ..., (QY).

The correctness property is simple to formulate: a compilation is correct when it produces an
automaton A = D(Z,(P),(F),...,Q), whose result in environments o = [z1\V1, z2\Va2,...,2,\V,]
and p equates the value match[(P), (E)](fi). The correctness proof will rely on a stronger property
and requires a few new concepts and notations.

RR n~2385

26 Luc Maranget

Notation 4.1 Let (P') and (P") be two paltern matrices of same width n' and of respective
heights m' and m". The new matriz (P'QP") is defined as the n' x (m' + m") matriz build by
concatenating the rows of (P') and the rows of (P"). Furthermore a direction towards (P") in
(P'QP") is any column index d, such that there exists no value vector V whose component Vy
is the undefined term Q and that malches some row in (P'QP") whose number is strictly greater
than m'.

At any compilation stage, write A = D(&,(P), @, (P'),(P"),d) for the produced automaton and
consider some arbitrary term environment ¢ and control environment p. Then, define the following
two strong correctness properties:

() If there exists some integer ¢ in [1...m], such that the term vector o(Z’) matches the row
number m’ + ¢ in (P’@P") —and then we know that there exists some substitution ¢, such

that ¢(p") = o(Z") and match[(P),(E))(o(Z)) = ¢(e;)—, then the automaton state (p, o, A)
leads to the final state (p’, o', €!), where we get the equality o’(e}) = ¢(e;).

(B) If there exists some integer 7 in [m + 1...m"], such that the term vector o(Z') matches the
row number m’ 4 7 in (P’@QP"), then the automaton state (p, o, A) leads to the intermediate
state (p, o', d).

It should be noticed that the correctness condition (a) uses the safety conditions, when it
implicitely asserts that any vector matching the row number m' 4 ¢ in (P'@P") with ¢ < m also
matches the row number ¢ in (P).

Proposition 4.1 Any call D(Z,(P), &, (P'),(P"),d) obeys the () and () correctness properties,
provided that compilation follows some direction towards (P") in (P'QP") at every critical compi-
lation step 2-(b).

Proof: Proof is by induction on the definition of D.

1. If (P) is empty (n = 0, m = 0), then the output automaton A reduces to the failure continu-
ation d and the intermediate state (p, o, d) is already reached, regardless of o. Therefore, one
just has to check that case (a) is not possible here, which is obvious since an empty matrix
does not even have a single row to match.

If (P) has at least one empty row (n = 0, m > 0), then we get A = e; and the final state
(p,0,e1) is already reached, regardless of o. Moreover, the term vector (') cannot match
any row in (P") but the first, because the first row in (P”) is made of variables only (by the
safety condition). Therefore, cases (a) with ¢ > 1 and () are not possible.

2. If (P) possesses at least one pattern, then assume —for instance— that compilation progresses
by decomposing (P) along its first row and that we have Z(1) = 1 (that is, 2} =).

(a) If p} is a variable y!, then we have the following nested calls, (see case 2-(a) in the
previous descriptions of D):

D(y, (@), (F), ... D(,(R),(G), ..., d))

Inria

Two Techniques for Compiling Lazy Pattern Matching 27

RR n~ 2385

—

Let then o be an environment such that (2’) matches row number m’+17 (1 < i < m”)

in (P'QP"). Let ¢ be a substitution such that ¢(5"") = o(&'). There are three possible
cases:

If + < k —remember that here, k is the smallest row number such that pi_l_l is not
a variable—, then the transition (p,o, A) <* (p’,0’, f!) holds, where we have o'(f!) =
¢(fi), by direct application of the hypothesis (@) to the outermost call D(7, (Q), (F),...).
Moreover, we have f; = e;[y'\z1] (par definition of D), o/(z1) = o(z1) (environments
can only grow during transitions), and o(z1) = ¢(y') (by hypothesis). Therefore, we
finally get o'(f!) = &(e;).

If ¢ belongs to [k + 1...m], then, by application of the induction hypothesis () to the
outermost call D(¥,(Q),(F),...), followed by an application of the induction hypothesis
(@) to the innermost call D(Z,(R),(G),...), we get the transitions:

(,0, g, A) —* (,0, 0,7 D(f7 (R)7 (G)7 R d)) " (,0//, U//7gz/')

By induction hypothesis, we also have ¢(g;) = 0”(¢!). Thus, we directly get: ¢(e;) =
o'(g}), since g; = e; by construction of the term vector (G).
Finally, if ¢ is strictly greater than m, then, by a double application of the hypothesis

(B), we get:
(h20, 4) = (9, 0", DE, (R), (G, ..,) = (p, ")

If p! has a root constructor, then, keeping notations from the definition of D, consider
an environment o, such that o(7F') matches the row number m’ + i in (P'QP"). It is
important to notice that, by hypothesis, the index 1 is a direction in (P'@P"), so that
o(z1) has a root constructor c.

If ¢ belong to [1...k], then the constructor ¢ must be recognized by the elementary
matching emitted at this compilation stage — let ¢ be ¢y for instance. By defini-
tion of one-step transitions and application of the hypothesis (a) to the call A; =
D(...,(Q1),(E1),...,default), we get the transitions:

(pv g, A) — (p//7 UH? Al) —* (plv O-lv 6;)

Where ¢(e;) = o'(el).

If ¢ belongs to [k 4+ 1...m], then there are two subcases. If ¢ is recognized by the
elementary test emitted here —assume ¢ = ¢; for instance—, then the correctness result
follows by a one-step transition (constr), an application of the hypothesis () to the
call D(...,(Q1),(F1),...,default), a one-step transition (raise) and an application of
the hypothesis (a) to D(Z,(R), (F),...,d). Otherwise, we get correctness more directly,
by a one-step transition (default) and an application of the hypothesis (a) to the call
D(Z,(R),(F),...,d).

If ¢ is strictly greater than m, then the reasoning is exactly as above, but for the last

step which is replaced by an application of the hypothesis (5) to the default inductive
call D(Z,(R),(F),...,d).

28 Luc Maranget

5 Building a correct and efficient pattern matching compiler

The ultimate goal of this paper is to introduce a pattern matching compiler that outputs a correct
automaton whenever there exists one. Obviously, a first step is to compute directions, the next
section shows how to achieve this intermediate goal.

5.1 Efficient computation of directions

Given a pattern matrix (P), a row number ¢ and a column index d, we want to know whether d
is a direction towards row number 7 in (P) or not. This decision problem can be expressed as the
unused match case detection problem: is the last row of the matrix (Q(dﬂ-)) below satisfiable or not?

That is, does there exist a value vector V such that the predicate match;[(Q4,;)] holds on V7 The
matrix (€ (q4,5)) is the submatrix of (P) obtained by deleting the column d and the rows after row u:

pi.) .pél_l pél“.) .pé
Pi---Pi_1 Pipi-- P
(Qa,i)) :

PPy pil+1- LD,

Lemma 5.1 Let (P) be a pattern matriz. Let i be a row number and d be a column index in (P).
Let (Q(dﬂ')) be as described above. Then, the index d is not a direction for the matching by the
row number t in matriz (P), if and only if the pattern pY is a variable and the last clause of
matriz (Q(q,)) is satisfiable.

Proof: In the case where pil = ¢ q1...q, is not a variable, then any value vector (V; V;...V,) that
matches the row number ¢ in matrix (P) is such that Vj is an instance of ¢ ¢;...¢, and we have
Vi = Q. Otherwise, let V4, ..., Vi1, Va1, ..., Vi be any n — 1 partial values. The following
equality between matching predicates can be shown by expanding definitions:

matchz[(P)](Vl e Vd—l Q Vd_|_1 e Vn) = matchi[(Q(d@)](Vl . -Vd—l Vd_|_1 . Vn)

a

The following algorithm solves the unused match case detection problem in the general case.
Given a pattern matrix (P), of size n X m, it computes the truth value of the formula F(P) =
3V match,,[(P)](V). This algorithm closely follows the compilation scheme C itself (see section 3.2):

1. If the rows of (P) are empty, or if its first row contains only variables, then the value of F(P)
depends on the number m of rows in (P). If m = 1, then F(P) is true, since any instance of
7! matches the last (and only) row of matrix (P). Otherwise, F(P) is false.

2. In all the other cases, let us choose a column index. Assume that the index 1 is chosen. Let
Y ={ey,cq,...,¢,} be the set of the root constructors of the patterns in the first column of
(P). To each constructor ¢ in X, a new pattern matrix (Py) is associated, exactly as it is
done in the C scheme. If ¥ is not a complete signature or if X is the empty set, then a default
matrix (Py) is also considered. There are two subcases:

Inria

Two Techniques for Compiling Lazy Pattern Matching 29

(a) If pJ* = z, then let V be a value vector that matches the last row of (P). If V; has a root
constructor, then the matching by matrix (P) is equivalent to the matching by one of
the matrices (Py) or (Py). Otherwise, if V5 = €, then, because the matching predicate
is monotonic, any value vector U= (Uy Vy...V,) such that Uy > Q matches row m as
V does. Therefore, F(P) is true, if and only at one of the formulas F(P;), F(Py), ...,
F(P,) or F(Py) is.

(b) If pI* > =, then let ¢, be the root constructor of pj*. We easily show the equality
F(P)= F(Py).

Regarding the efficiency of this algorithm, it can be observed that the number of calls to function
F is bounded by the number of calls to function C, when compilation is done by making the same
choices at critical steps. As shown by the example given in [Maranget, 1992, Sekar et al., 1992],
the number of calls to function C can be quite large. Although I do not know whether this upper
bound is indeed reached or not in the worst cases, experiments showed that a naive implementation
of function F may lead to important computations. Fortunately, this misbehavior can be avoided
in practice by using the following three heuristics:

1. The matrix (P) itself can be reduced. Let 5* and §7 be two rows in (P), such that i < m,
7 < m and]3” < ﬁj. For any value vector V such that]3" # 17, we necessarily have ﬁj # 17,
by definition of the compatibility relation. That is, pattern vector 5 is useless for the
computation of F(P) and matrix (P) can be simplified by only retaining the pattern rows
that are minimal for the definition ordering. This simplification of matrix (P) is particularly
worthwhile when some pattern row contain a lot of variables.

2. When there is a default matrix (Py), it is tested first. This amounts to making the assumption
that, if there exists a value vector satisfying the last row of (P), then its components are likely
not to appear inside matrix (P).

3. I also attempt to minimize the size and number of the matrices (Py),(FPs),...,(P,), by a
good choice of the column to examine at step 2-(a). For each column, characterized by its
index 1, let z(¢) be the number of different root constructors in column ¢ and v(¢) be the
number of variables in column ¢. Let then r(7) be the total number of rows in the matrices
(P1),(P2), .., (Pyy)), we have r(i) = z(4)v(7) + m or r(i) = z(i)v(i) + m — v(i), depending on
whether there is a default matrix (Py) or not. I select a column with a minimal (7). If there
are several columns such that r(¢) is minimal, then I favor one with a minimal number of
different root constructors z(¢). Another, simpler, choice is first to minimize »(7) (in a attempt
to limit row duplication) and then to minimize z(¢) (in an attempt to limit the number of
matrices generated). Other size measures have been tested, including the surface of matrices
(number of rows x number of columns) and the function N, of section 3.2. Choosing a good
measure is not easy and this heuristic is less efficient than the two others.

Regarding the efficiency of the computation of the set of directions Dir(P), it is usually not
necessary to compute all the Dir;(P) sets. First, if there is a column in matrix (P) which contains no
variable, then, by lemma 5.1, the index of this column is a direction. Such a direction is an obvious
direction and knowing just one direction is enough to apply the compilation schemes. Otherwise,
there is no obvious direction in (P) and Dir(P) has to be tested for emptyness. If some index d
does not belong to Dir;(P), then, for any other row number j, we need not check whether index

RR n~2385

30 Luc Maranget

d belongs to Dir;(P) or not, since we already know that d is not a direction for the whole matrix
(P). Of course, the Diry(P) sets are examined following increasing row numbers ¢, so that index
checkings are avoided when matrices (4, are large. That is, we compute D,, = Dir(P), where
Dy = Diry(P) and Djy1 = {d € D; | d € Dir;1(P) }. If matrix (P) has no direction, then there
exists a row number maz, such that D4, # 0 and D,,4,41 = 0. In such case, the column indices
in Dyuq. are called partial directions. Partial directions will be used later in section 6, in the process
of “not so incorrectly” compiling pattern matching definition that cannot be compiled correctly.

Previous approaches to lazy pattern matching compilation [Laville, 1991, Puel and Sudrez, 1990]
involve the explicit computation of the set of value vectors matching the rows of matrix (P). Let
M be this set. We have M = J7, M;, where M; = {V | match[(P)}(V)}. In [Laville, 1991] the
set M is described by its minimal generators, that is, by the subset of its least defined elements.
In [Puel and Sudrez, 1990] each set M, is represented by a normalized constrained pattern that
can be seen as the disjunctive normal form of the following characteristic proposition:

i—1 n) n)
X(Vi, Vo, Vi) = (A Ve #V) A (A pi 2 Vi)
7=1k=1 k=1

Direct implementation of these two representations for the set M leads to data structures whose
size grow exponentially with the size of the input matrix (P). Our approach, by directly computing
directions, avoids such an exponential space behavior.

5.2 The compilation algorithm

Both correctness criteria 3.1 and 4.1 apply at compile-time, so that incorrect automata are ruled
out before they are completely built. For instance, when compiling the G function given in the
introduction, the C and D compilation scheme find that this function cannot be compiled correctly
as soon as the first call to the compilation scheme, since this first call is performed with a (P)
matrix that has no directions.

The existence of these compile-time correctness criteria is not enough, though. If a matrix (P)
with many directions is discovered, the search for a correct automaton a priori necessitates to
try all the compilations that follow each of these possible directions. Namely, if, from that stage,
compilation goes on following a first direction and that a (P) matrix without a direction is discovered
later, we cannot be sure that such a situation would also have occurred, if another direction had
been selected in the first place. Therefore, to detect non-compilable matchings, a straightforward
compilation algorithm should check all existing directions. Such a technique can be extremely
expensive. The key idea for solving this problem is that backtracking as described above is useless,
because discovering a matrix without a direction at any compilation stage characterizes a pattern
matching function that cannot be implemented correctly.

More specifically, the matching functions that can be implemented correctly are described
by invoking the sequentiality theory, as introduced by [Kahn and Plotkin, 1978] and presented in
[Curien, 1986] or [Huet and Lévy, 1979][Part 1I]. I will only sketch this part, considering the case
of automata with failures; complete developments and proofs for the case of the tree-like automata
are in my thesis [Maranget, 1992]. From here, I assume some familiarity with basic notions on
terms such as occurrences and sublerms. The subterm located at occurrence u in some term M is
written M/u.

Inria

Two Techniques for Compiling Lazy Pattern Matching 31

Definition 5.1 ([Kahn and Plotkin, 1978]) Let P be a monotonic predicate over partial values.
An occurrence u is an index of P in U, if and only if we have U/u = Q and for all V such that
V = U, F(V) holds implies implies V/u > Q. Then, P is sequential at U, such that F(U) does not
hold, if and only if whenever there exists V = U such that F(V') holds, it follows that there exists
an index of P in U. Finally, P is sequential, if and only if it is sequential at every partial value on

which P does not hold.

Our first step is to introduce terms into the compilation process. Thus, the D compilation
scheme will now take an extra argument. This new argument N is a linear term and appears in
first position. At any compilation stage, it is to be understood as the already explored prefiz of the
examined term. Initially, nothing has been explored yet and the prefix N is a simple variable. The
first call to D is as follows:

p €m

Then, the argument N is inductively computed as follows (see the inductive definition of D,
that is, cases the cases 2-(a) in sections 4.2 and 4.3):

2-(a) If p} is a variable, then we get the following two nested inductive calls:
DN, (2. 2n),(Q): (F), &, (P"),(P"), D(N, 7, (R), (G), 7", (R'), (R"), d))

Observe that N does not change here, since the examination of the input term does not

progress at this stage.

2-(b) If pl has a root constructor, then let us assume that a simple matching of the variable z; =
is emitted and let ¢y, ¢q, ..., ¢, be the recognized constructors. Let us then consider —for
instance— the inductive call to be performed when constructor ¢; has been recognized:

D(jv['rll\cl Yi.. -?/al]v (yl <+ Yay T2 - --rn)v (Ql)v (yl Yy $/2 s 'x;z')v (Qll)v (Qlll)v default)
As to the default inductive call, it now yields:

D(N, %, (R),(F), &', (R), (R"),d)

In the following, we consider any call D(N, &, (P),(E),z',(P"),(P"),d) taken from the compi-
lation of the set of clauses E = {q':e1,¢* eg,..., ¢ ex}.

Lemma 5.2 For any substitution o, the following equivalence holds:

The vector (o(z}) o(zhy)...o(x!,)) malches some row in (P'QP")

0

The partial value o(N) matches some clause in E

RR n~2385

32 Luc Maranget

Proof: The proofis by induction on the definition of D. The key point is that the rows of (P'@QP")
are exactly the subpatterns ¢, ¢3, ...q, of one of the initial patterns ¢* that admits N as prefix,

(that iS, qi = jv[xll\qiv 'I/Q\qév .. .,.f;b;\q;,]). o

Lemma 5.3 At any inductive step during compilation, consider a column index d in (P'QP"). Let
uq be the occurrence of the variable x; in the prefix N. Then, we have the following equivalence:

ugq is an index for the matching predicate defined by E < d is a direction in (P'QP")

Proof: This lemma is a quite direct consequence of the previous lemma and of the fact that the
variables of the linear term N are exactly the components of &, a

Corollary 5.1 If some matriz (P'QP") without a direction is discovered during compilation of the
clause set F, then the matching predicate defined by F is not sequential.

Our second step is to show that the the recognition of matching values by an automaton defines
a sequential predicate. Now consider an extended version of the transition rules of automata
with failures. An extended automaton state is a four-tuple (N, p, 0, A), where N is a linear term.
Initially, the term NV is the same single variable as the one given as first argument to the compilation
function D. Later on, during transitions, the term N records the part of the input term that has
already been examined, in the sense made clear by the following extended transition rules:

If o(z) =ci V1...V,,,
(N,p,o,match @ with ... | ¢; 21...24, — Ap ... | - — Ag) — .
(N[x\ck x.. .xak], <o, Ad>.p, oU [561\"[1, e .’Eak\‘/ak], Ak) (constr)

If o(z) = ¢ V...V, where ¢ is not recognized,
(N,p,o,match z with ... | _ — Ag) — (N[z\cQ...9Q],p,0,A4) (default)

(N,<¢,A>.p,0,default) — (N,p,¢,A) (raise)

To compute the result of the execution of the automaton A on the value U, we just compute
the complete transition starting from the initial state (z,(),[z\U], A), thereby reaching some final
state (N',p',0’, A"). Then, we say that U has been recognized, if and only if B is some clause
right-hand side. Otherwise, U has not been recognized and B is either a simple matching or the
undefined value . Observe that, at any intermediate state (N", p”, 0", A"”), we have U » N} and
o"(N") = U. Also observe that the recognized prefix is increasing at each one-step transition.

Lemma 5.4 The execution of the automaton A on the value U defines a sequential predicate.

Proof: Consider some value U which is not reconized by A. There exists a complete transition
(z,(),[z\U],A) —=* (N',p',0', A"), where A’ is not a clause right-hand side. Observe that the
execution of A on any value V' = U will yield the following complete transition (z, (), [z\V], 4) —*
(N, 1! ¢/ A") —=* (N", 7" 9" A"), because N’ is also a prefix of V. We now have two subcases:

1. If A’ equals €2, then we necessarily get A” = A’ and and A cannot recognize V.

Inria

Two Techniques for Compiling Lazy Pattern Matching 33

2. If A’ is some simple matching, then let u be the occurrence in N’ of the variable z tested by
A’. Since (N',p',0’, A’} is a final state, with have ¢'(z) = Q, that is, U/u = Q. Since A" is not
a simple matching there is at least one transition of type (constr) or (default) starting from
(N', 7', ¢, A"). Thus, the subterm N"/u has a root constructor and so does V/u > N§j/u. O

Note that the above proof also applies to the case of tree-like automata, provided tree-like automata
are given the appropriate (and straightforward) semantics based upon states and transitions.

I can now formulate the main result of this section and present two efficient, correct and complete
algorithms for compiling pattern matching.

Proposition 5.1 Consider the two following compilation algorithms: use the C or D scheme fol-
lowing direclions of appropriate matrices whenever an elementary lest is emitled. When a matriz
with no directions is discovered, then fail.

Given a clause set E, both algorithms produce an automaton that implements correctly the
matching by F, if and only if the matching predicate defined by the patterns of F is sequential in
the Kahn-Plotkin sense.

Proof: The direct sense of the proof comes from the fact that discovering a directionless matrix
during compilation implies the existence of a value U, such that the matching predicate defined by F
is not sequential at U (corollary 5.1). Conversely, automata of both kind define sequential predicates
(lemma 5.4). Therefore, in case the compilation algorithm succeeds, the matching predicate defined
by F is sequential, by correctness property 3.1 or 4.1. a

6 Conclusion

In this paper, I have fully described two pattern matching compilation schemes. Moreover, 1
showed that both schemes can serve as a basis for a realistic and correct compilation of lazy
pattern matching, this result is entirely new for the second scheme. The main advantage of lazy
pattern matching is maximization of the termination properties of programs. More precisely, a
standard supercombinator-based compiler extended with the correct compilation of lazy pattern
matching described here implements a correct reduction strategy for ML considered as a rewriting
system [Maranget, 1992]. The implemented strategy is correct in the sense that it terminates and
produces a result whenever any other strategy does.

When designing a semantics or at least a precise definition for lazy functional languages such as
LML or Haskell [Johnsson, 1987, Hudak et al., 1992], the denotation of pattern matching expres-
sions should, in my view, be based upon a matching predicate very similar to the Laville’s definition
(definition 2.3). This definition of matching is appealing because of its simplicity and generality.
The compilers described in this paper are correct relatively to this definition of matching, but they
are not complete, since they only accept sequential pattern matching predicates. First, observe
that the sequential functions are widely accepted as the class of functions that can be computed
naturally on a sequential computer. On this topic, see, for instance, [Berry and Lévy 1979] and
[Plotkin, 1977]. In other words, it would be problematic to design a pattern matching compiler that
would be both correct and complete relatively to Laville’s semantics, unless the target automata of
this new hypothetical compiler run on a parallel computer, real or simulated. Thus, the compila-
tion algorithm 5.1 goes as far as can be expected of any compiler that produces code for ordinary,
sequential computers. Also observe that the compilers presented here detect all non-sequential

RR n~2385

34 Luc Maranget

matchings and can thus react appropriately when given such a matching as input. An appropriate
reaction is usually to issue a warning message before producing a non-correct automaton.

Published language definitions [Johnsson, 1987, Hudak et al., 1992] present a different seman-
tics for pattern matching: they select one particular sequential semantics (i.e., left-to-right). This
approach lacks the generality and elegance of Laville’s solution. First, there is no natural corre-
spondence between this left-to-right matching order and terminating rewriting strategies, as there
is one in the case of the lazy matching order. I already gave an intuition for this argument in the
introduction: the left-to-right semantics for the function F does not gives a non- result whenever
possible. Therefore, a left-to-right semantics can be seen as incorrect, at least, it is not as expressive
as possible.

Moreover, in my opinion, including a particular compilation technique for pattern matching in
the language definition is not useful to the programmers and may even prove undesirable. Pro-
grammers do not need such a precision and relying on non-obvious features does not usually lead
to a very clear programming style. In a slightly different context, observe that the definition of the
C language does not specify the evaluation order of the arguments to primitives such as “4”.

Furthermore, it is important not to overspecify the language definition. Doing so constraints
the compiler designers too much and prevents them from introducing some optimizations. As a
matter of fact, the correct compilation of the lazy semantics for pattern matching has some practical
benefits. Let us consider a slight generalization of the C-based compilation algorithm as introduced
under the name of “adaptive” compilation by [Sekar et al., 1992]: when a pattern matrix (P) with
directions is discovered, then select one direction, otherwise select column index 1. Sekar et al.
showed that such a compilation technique produces automata that are always smaller than the
automata compiled using the standard left-to-right technique. Although Sekar et al. measure of
automata size is not strictly correlated to output code size, experimental comparisons between
“adaptive” and left-to-right versions of the C and D compilation algorithm show that the adaptive
versions of compilation schemes usually produce shorter code.

Sekar et al. also showed the semantic correctness of their compiler: it produces automata that
detect matching values whenever left-to-right automata do. My view of correctness is different: I
only require that the sequential pattern matchings are compiled correctly, so that I leave room for
more aggressive optimizations. Consider the following “ultra-adaptive” algorithm: when a pattern
matrix (P) with directions is discovered, then select one direction, otherwise select some column
index following heuristics aimed at reducing automata size. A first and efficient heuristic, useful
both in C and D-based ultra-adaptive algorithms, consist in selecting a partial direction (see the
end of section 5.1), a partial direction being some column index that is a direction towards a
maximal number of consecutive rows in (P), starting from the top. If there are more than one
partial direction, they are further discriminated by using techniques that differ according to the
basic compilation scheme used. In the C-based algorithm, column indices are further selected by
following some of the heuristics introduced in the case 3 at the end of section 5.1. A simple
and reasonably satisfactory choice is here to first minimize the number of variables in the selected
columns (in an attempt to avoid row duplication) and then, if necessary, to minimize the number of
different root constructors (in an attempt to locally minimize automaton breadth). In the D-based
algorithm, the number of transitions between variable and non-variable patterns is minimized (in
an attempt to locally minimize control transfer possibilities). The same heuristics apply to select
one direction, when matrix (P) admits several directions.

Inria

Two Techniques for Compiling Lazy Pattern Matching 35

The choice of ultra-adaptive pattern matching has some additional benefits in term of running
time performance. When the compiled pattern matching defines a sequential matching predicate,
correct tree-like automata perform exactly the tests needed to identify a matching value (otherwise,
they would not be correct [Puel and Sudrez, 1990]), these tests being performed only once. In this
sense, correct tree-like automata have an optimal run-time behavior. As to correct automata with
failures, although they also perform exactly the tests needed to identify a matching value, these
tests can be performed several times. Nevertheless, correct automata with failures still do not
perform useless tests, so that they tend to run faster than incorrect automata. Furthermore, some
of the heuristics also tend to lower running time. This is the case of the partial directions in both
schemes (some of the matching values are found by performing only the elementary tests that are
indeed necessary) and of minimizing control transfer possibilities in the D scheme (tests are less
likely to be performed several times). However, it is fair to say that this kind of optimization lies
at the fine tuning level, since performing tests accounts for a small part of the running time of
a typical ML program. As a consequence, the gain in code size obtained by using some D-based
algorithm outweights the gain in run-time efficiency obtained by using the corresponding C-based
algorithm.

As an example, the following table describes the size (in kilo-bytes and percentage) of the GAML
compiler [Maranget, 1991] targeted for the sparc architecture (GAML is written in GAML), when
compiled using various pattern matching compilation techniques:

trees (C) failures (D)

left-to-right 1176 (110 %) 1080 (101 %)
lazy (ultra-adaptive) | 1128 (105 %) 1072 (100 %)

Thus, using the traditional left-to-right tree-based technique —as the SML/NJ and CAML V3.1
compilers do— means paying a penalty of 10 % in code size over the lazy dag-based technique. As
a final conclusion, these figures show the practical benefits of using automata with failures instead
of tree-like automata. These benefits can still be enjoyed when the lazy semantics for pattern
matching is preferred.

References

[Appel and Macqueen, 1991] A. W. Appel and D. B. MacQueen, “Standard ML of New Jersey”.
International Symposium on Programming Language Implementation and Logic Program-
ming 1991. LNCS 528.

[Augustsson, 1985] L. Augustsson, “Compiling pattern matching”. Conference Functional Pro-
gramming and Computer Architecture 1985.

[Berry and Lévy 1979] G. Berry and J.-J. Lévy. “A survey of some syntactic results in the \-
calculus”. Conference Mathematical Foundations of Computer Science, 1979. LNCS 74.

[Curien, 1986] P. L. Curien, “Categorical combinators, sequential algorithms and functional pro-
gramming”. Pitman, London, and John Wiley and Sons, 1986.

RR n~ 2385

36 Luc Maranget

[Hudak et al., 1992] P. Hudak, S. Peyton-Jones and P. Wadler, “Report on the Programming Lan-
guage Haskell, Version 1.2”. University of Yale technical report, March 1992.

[Huet and Lévy, 1979] G. Huet, J.-J. Lévy, “Call by Need Computations in Non-Ambiguous Linear
Term Rewriting Systems”. INRIA, technical report 359, 1979. Reprinted in, J.-L. Lassez and
G. Plotkin Editors, “Computational Logic, Essays in Honor of Alan Robinson”. The MIT
press, 1991.

[Johnsson, 1987] T. Johnsson, “Compiling Lazy Functional Languages”. Ph.D. thesis, Chalmers
University of Technology, Sweden, 1987.

[Kahn and Plotkin, 1978] G. Kahn, G. Plotkin, “Domaines concrets”, Rapport IRIA Laboria 336,
1978.

[Kennaway, 1990] R. Kennaway, “The Specificity Rule for Lazy Pattern Matching in Ambiguous
Term Rewriting Systems”. Conference Furopean Symposium On Programming 1990.

[Laville, 1991] A. Laville, “Comparison of Priority Rules in Pattern Matching and Term Rewriting”.
Journal of Symbolic Computation (1991) 11, 321-347.

€eroy, . Leroy, e Zinc experiment: an lconomical Implementation of the I an-
L 1990| X. L “The Zi i E ical Impl i f the ML L
guage”, INRIA Technical Report 117, février 1990.

[Leroy et al., 1993] X. Leroy et al. “The Caml Light system, release 0.6”, Software and documen-
tation distributed by anonymous FTP on ftp.inria.fr.

[Maranget, 1991] L. Maranget, “GAML: A Parallel Implementation of Lazy ML”. Conference Func-
tional Programming and Computer Architecture 1991.

[Maranget, 1992] L. Maranget, “Compiling Lazy Pattern Matching”. Conference Lisp and Func-
tional Programming 1992.

[Maranget, 1992] L. Maranget, “La stratégie paresseuse”. These de 1'université de Paris VII, July
6 1992 (In french).

[Milner et al., 1991] R. Milner, M. Tofte, R. Harper, “The Definition of Standard ML”. The MIT
Press, 1991.

[Plotkin, 1977] G. D. Plotkin, “LCF Considered as a Programming Language”. Theoretical Com-
puter Science, volume 5, pages 223-255, 1977.

[Puel and Sudrez, 1990] L. Puel, A. Suarez, “Compiling Pattern Matching by Term Decomposi-
tion”. Conference Lisp and Functional Programming 1990.

[Sekar et al., 1992] R.C. Sekar, R. Ramesh and I.V. Ramakrishnan,“Adaptive Pattern Matching”.
Conference international Colloquium on Automata Languages and Programming 1992.

[Wadler, 1987] P. Wadler, chapter on the compilation of pattern matching in: S. L. Peyton Jones,
“The Implementation of Functional Programming Languages”. Prentice-Hall, 1987.

[Weis, 1990] P. Weis, “The CAML Reference manual” Version 2.6.1, INRIA Technical Report 121,
1990.

Inria

JINRIA

Unité de recherche Inria Lorraine, Technopéle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 Villers Lés Nancy
Unité de recherche Inria Rennes, Irisa, Campus universitaire de Beaulieu, 35042 Rennes Cedex
Unité de recherche Inria Rhone-Alpes, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1
Unité de recherche Inria Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex
Unité de recherche Inria Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex

Editeur
Inria, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
ISSN 0249-6399

