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Abstract: In this paper, we apply the synchronous approach to real time active visual reconstruc-
tion. It illustrates the adequateness of SIGNAL, a synchronous data flow programming language and
environment, for the specification of a system dealing with various domains such as robot control,
computer vision and programmation of hierarchical parallel automaton. More precisely, one applica-
tion consists in the 3D structure estimation of a set of geometrical primitives using an active vision
paradigm. At the level of camera motion control, the visual servoing approach (a closed loop with
respect to vision data) is specified and implemented in SIGNAL as a function from sensor inputs to con-
trol outputs. Furthermore, the 3D reconstruction method is based on the “structure from controlled
motion” approach (constraining camera motion for optimal estimation). Its specification is made in
parallel to visual servoing, and involves the delay mechanism of SIGNAL for the specification of filters.
This reconstruction involves focusing on each object; we thus present a perception strategy for con-
necting up several estimations, using tasks hierarchies interruption and time intervals in SIGNAL. The
integration of these techniques is validated experimentally by their implementation on a robotic cell,
from which we present experimental results.
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Application de ’approche synchrone a la reconstruction de scéne
par vision active

Résumé : Dans cet article, nous utilisons I’approche synchrone pour la spécification et I'implémenta-
tion d’une application temps réel de reconstruction de scéne par vision active en utilisant une caméra
embarquée sur un robot manipulateur. Cette application illustre I'adéquation de SIGNAL, langage
synchrone a flots de données muni d’un environnement complet de programmation, pour la spéci-
fication de systemes basés sur des domaines aussi variés que la commande de robot, la vision par
ordinateur et la programmation d’automates paralléles hierarchiques. Plus précisément I’application
présentée concerne la reconstruction 3D d’un ensemble de primitives géométriques en controlant, par
vision active, le mouvement de la caméra. Concernant ces aspects de controle, nous utilisons les tech-
niques d’asservissement visuel qui sont spécifiées et mises en ceuvre en utilisant SIGNAL. On considere
I’asservissement comme une fonction dont les entrées sont fournies par le capteur de vision, et dont
la sortie est constituée des consignes a envoyer au controleur du robot. Par ailleurs, la méthode de
reconstruction 3D que nous avons développée est fondée sur la vision active, ce qui signifie que le
mouvement de la caméra est contraint afin d’obtenir une estimation optimale. Sa spécification est
faite en parallele avec le controle de mouvement du robot et fait intervenir le mécanisme de délai de
SIGNAL, notamment pour la spécification de filtres. Cette méthode de reconstruction, en raison des
contraintes introduites, nécessite une focalisation sur chaque objet de la scéne. Nous présentons donc
une stratégie de perception permettant d’enchainer plusieurs estimations en utilisant les hiérarchies
de préemption de taches et les intervalles de temps de SIGNAL. L’intégration de ces techniques a été
validée expérimentalement par leur mise en ceuvre sur une cellule de vision robotique, et nous présen-
tons des résultats expérimentaux d’asservissement visuel et de reconstruction de scénes obtenus sur
cette cellule.

Mots-clé : Langage synchrone, temps réel, asservissement visuel, reconstruction a partir du mouve-
ment, stratégies de perception
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1 Introduction

In this paper we apply the synchronous approach to real time active visual reconstruction. We present
the integration of different new techniques for the structure estimation of a robot environment by
means of an active vision scheme. Recovering 3D structure from images is one of the main issues
in computer vision [1][12][15][16][36][34][37]. The approach we have chosen to get an accurate three-
dimensional geometric description of a scene is based on the active vision paradigm and consists in
controlling the motion of a moving camera. The idea of using active schemes to address vision issues
has been recently introduced [3][5]. Here, the purpose of active vision is to constrain the camera motion
in order to improve the quality of the perceptual results. Such constraints are ensured using the visual
servoing approach [14] which is based on the task-function framework [30] to define the sensor-based
control of the robot; in our case, the sensor is a camera mounted on the end effector of a robot arm.

The technique involved for the integration is the synchronous approach to reactive real time sys-
tems [6]. One way of interpreting the synchrony hypothesis consists in considering that computations
produce values that are relevant within a single instant of time. A family of languages is based on this
hypothesis [18]. They are provided with environments featuring tools supporting specification, formal
verification and generation of executable code, all based on their formal semantics. Among them, Si-
GNAL is a real-time synchronized data-flow language [24]. Its model of time is based on instants, and
its actions are performed within the instants; extensions we propose in this paper provide constructs
for the specification of durational tasks.

The synchrony hypothesis clearly applies to the equations defining a sensor-based control law, and
benefits to the implementation of the corresponding control loop. Classical asynchronous languages
are less adapted to specify and program the algorithms involved in this vision problem because they do
not handle properly the simultaneousness of the values involved in equations. Therefore, we propose
the use of synchronous languages. This is illustrated by the application of SIGNAL to the specification
and implementation of the system, where the adequateness of this language is exploited at the various
levels of the application. Such an application allows us to show benefits of using SIGNAL in the following
domains involved in robotics and computer vision: robot control, estimation algorithms, and task level
programming. Indeed, the active visual reconstruction problem presented in this paper is handled at
three levels.

The lowest level concerns the control of the camera motion. A new approach to vision-based control
was introduced a few years ago [14]. The basic idea consists in considering a vision system as a specific
sensor dedicated to a task and included in a control servo loop. At this level, a robot task is seen as a
data flow function computing the flow of control values for the actuator from the flow of sensor input
data.

The second level concerns the structure estimation aspect. Embedded in the same formalism, the
“structure from controlled motion” paradigm allows us to give an optimal estimation of the parameters
of a 3D geometrical primitive [10]. Its specification involves parallelism with the motion control task,
as well as a dynamical aspect, in that it is defined in function of past measured values.

The high level deals with perception strategies. Since the proposed structure estimation method
involves to focus on the considered primitive, it has to be successively performed for each primitive of
the scene. Developing perception strategies to get the spatial organization of complex scenes is thus
necessary. There, the task-level programming consists in specifying different robot tasks and sequencing
them by associating them with modes on which they are enabled [25][29]. For the specification of such
hierarchical and parallel transition systems, we extend SIGNAL with the notions of task and time
interval [28].

The remainder of this paper is organized as follows: Section 2 is devoted to image-based control
loop description and its specification. In Section 3, structure from motion aspects based on an active
vision paradigm are considered. Section 4 is devoted to perception strategies and their specification in
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terms of a hierarchy of tasks. Real-time experimental results dealing with the implementation of the
three described levels are finally presented in Section 5.

2 Equational Specification of Visual Servoing

Two main approaches are currently used in robot control based on visual data [35]: the position-
based control which is achieved by computing, from the visual data, the 3D position and orientation
of the camera with respect to its environment, and the image-based visual servoing, which consists
in specifying a task as the regulation in the image of a set of visual features [2][14][17][20][21][22].
In the remainder of this paper, we will only refer to this last approach since it is able to provide
robust and stable closed-loop control laws. This section recalls the application of the task function
approach to visual servoing and the expression of the resulting control law, before the presentation of
its specification in SIGNAL.

2.1 Visual Sensing - the Interaction Matrix

We first examine what data can be extracted from an image and incorporated in a vision-based control
scheme. In fact, it has been shown [14] that such an ability relies on the explicit knowledge of the
spatio-temporal evolution of a visual feature with respect to camera motion (in the following, we
represent this evolution by the interaction matriz related to the considered feature).

Let us model a camera by a perspective projection (see Fig. 1). Without loss of generality, th
camera focal length is assumed to be equal to 1, so that any point with coordinates z = (z, v, Z)T is
projected on the image plane as a point with coordinates X = (X, Y, 1)7 with:

X=-z (1)

1
z

Figure 1: A simple camera model

Let us consider a geometrical primitive P; of the scene; its configuration is specified by an equation
of the type:
h(z,p) =0 ,Vz € P, (2)

where h defines the kind of the primitive and the value of parameter vector p stands for its correspon-
ding configuration.

Using the perspective projection equation (1), we can define from (2) the two following func-
tions [14]:

{ !1]/2 = M(K, BO) (3)

where:
INRIA
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e P; denotes the projection in the image plane of P;
e g defines the kind of the image primitive and the value of parameter vector P its configuration.

o function p gives, for any point of P; with coordinates X, the depth of the point of Ps the
projection of which results in point X.

e parameters p, describe the configuration of s and are function of parameters p.

More precisely, for planar primitives (a circle for example), the function u represents the plane in
which the primitive lies. For volumetric primitives (sphere, cylinder, torus,...), function g represents
the projection in the image of the primitive limbs and function p defines the 3D surface in which the
limbs lie (see Fig. 2). Function p will be therefore called the limb surface.

-~ = limbs
\ ?
%>'/\

limb

surface

9(X,P)=0

Figure 2: Projection of the primitive in the image (¢) and limb surface (p)

Let T, = (V,2)" be the camera kinematic screw where V = (V,,V,, V) and Q = (Q,9Q,,Q,)
represent its translational and rotational components. The time variation of P, which links the motion
of the primitive in the image to the camera motion 7., can be explicitly derived [14] and we get:

P=1Lp(P,p,)T. (4)

where L]:Q(ﬂ, ﬂo)’ called the interaction matrix related to P, fully characterizes the interaction between
the camera and the considered primitive. involved in

In [35] and [19], an experimental learning approach is proposed to compute the interaction matrix
related to points. But it is also possible to derive it in an explicit way [17]. Indeed, in that case of a
point where P = (X,Y)T, the related interaction matrix is given by:

Li=<_1/z 0 X/z XY —(1+X?) Y)l

0 ~1/z Y/z 14Y? -XY -X (3)

More generally, in [14], a systematic method for computing the interaction matrix of any set of visual
features corresponding to geometrical primitives (lines, spheres, cylinders,. .. ) is proposed.

We may thus choose as visual features in a visual servoing framework the parameters P which
describe the configuration of one or several primitives observed in the image (such as the coordinates
of a point, the orientation and distance to origin of a line, the inertial moments of an ellipse, etc) or,
RR n 2383
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more generally, any differentiable expression obtained from P (such as the distance between a point
and a line, the orientation between two lines, etc).

The design of a vision-based task now consists in selecting the visual features P, able to realize the
specified task, and their desired value P; to be reached in the image. As shown in the next section,
the control law able to perform such a task is essentially based on the interaction matrix related to
P (we will see in Section 3 that the interaction matrix is also involved in our 3D structure estimation

method).

2.2 Expression of the Task Function and Control

Embedding visual servoing in the task function approach [30] allows us to take advantage of general
results helpful for analysis and synthesis of efficient closed loop control schemes. We only recall the
obtained results, all the developments being fully described in [30] and, in the particular case of
vision-based control, in [14]. We define a vision-based task, e;:

e1=C(2—-Py) (6)
where:
e P, is the desired value of the selected visual features;
e P is their current value, measured from the image at each iteration of the control law;
e (C is called combination matrix and can be defined as:

- C = WL%T (£7é5) if the 3D parameters p , involved in the interaction matrix, can be
estimated on-line (using for example the 3D structure estimation method we present in
Section 3). In that case, W is defined as a full rank matrix such that Ker W = Ker LT.

- C = WLT+(Pd,pOd) if the value of the interaction matrix can not be updated at each
iteration of the control law. Assumptions on the shape and on the geometry of the considered
primitives in the scene have thus generally to be done in order to compute the desired values

Py, Such a choice allows us to avoid the on-line estimation of parameters p . In that case,

we set W as a full rank matrix such that Ker W = Ker LP(Pd,pOd)

When the vision-based task does not constrain all the six camera degrees of freedom, a secondary task,
such as a trajectory tracking, can be combined with e;. It can be expressed as the minimization of a
cost function hg, with gradient function g, The task function e, minimizing h; under the constraint
e, = 0, takes the form:

e= Whe, + (Is - WHW) g7 (7)

where W+ and g — WTW are two projection operators which guarantee that the camera motion due
to the secondary task is compatible with the regulation of P to P,.

A general control scheme aimed at minimizing the task function e is described in [30]. We here only
present the simplified control scheme that we have used to perform the experimentations described in
the final section of this paper. Similar control approaches can be found in [20] and [26].

For making e exponentially decrease and then behave like a first order decoupled system, we
have [14]:

= _de — — 8
e~ 5 (8)
where:

o T is the desired camera velocity given as input to the robot controller;

INRIA



Applying the dSynchronous Approach jor neal Lime Aclive Visuai feconsiruction !

e ) is the proportional coefficient involved in the exponential convergence of ¢;

. g—% can be written under the form:
e dey agr
— =Wt = —Wrtw)—= 9
at at + s ) at (9)

a T
The choice of the secondary cost function generally allows us to know % On the other hand,

P

vector aa% represents an estimation of a possible autonomous target motion. If the target moves,
this estimation has to be introduced in the control law in order to suppress tracking errors. It can
be obtained using classical filtering techniques such as Kalman filter [22] [11] or a — [ —7 filter [2].
In our case, since we are interested in the 3D reconstruction of static scenes, we will assume that

In the next section, we give a concrete example dealing with a positionning task with respect to a
cylinder combined with a trajectory tracking.

2.3 Positionning with Respect to a Cylinder

We want to position the camera with respect to a static cylinder in order that the cylinder appears
centered and vertical in the image. When this position is reached, a camera trajectory around the
cylinder is performed. At a desired position, the cylinder equation is given by:

h(z,p)=a2*+(2—29)* =12 =0 (10)

where r is the radius of the cylinder and z; is the desired distance between the camera and the cylinder.
The image of the cylinder is characterized by two straight lines with equations:

Di: X—pg=0 . _ 22
{Dg: Xt py=0 with pg = —r/\/z42 — 7 (11)

By choosing for P the parameters py,61, p2 and 6, (such that Xcos#;+Ysin 6;—p;,=0,V(X,Y)eD;), we
obtain P; = (p4,0, pg, 7). Since the cylinder radius is here assumed to be known, we will choose C as

C= WL£|B=Bd' The interaction matrix related to P; can easily be derived and is given by [14]:
P 0 _/\ppd 0 —(1+Pd2) 0
. o 0 0 —ps 0 —1
LB'B:Bd Tl =X, 0 —Aps O 1+ pg? 0 (12)
0 0 0 pd 0 —1
with A, = —24/(24* —7%). Since this matrix is of full rank 4, we can choose W = L1:C|P—P . We therefore
—I=——=d
have:
e=WHE-Py)+ (s - WHW) g/ (13)
where:
Ap/21 0 -, /21 0
0 0 0 0
—1/2X,p4 0 —1/2X,p4 0
+ P o
W= 0 —1/2pq 0 1/2pq (14)
—(L+ps®)/20 0 (L+pd®)/20 0
0 ~1/2 0 ~1/2

RR n"2383
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(1+pa2)?/L 0 0 0 A(1+pg?)/l 0
0 100 0 0
0 000 0 0
_wt —
(Is = WHW) = 0 000 0 0 (15)
Ao(1+pa®)/1 0 0 0 A2/l 0
0 000 0 0

with [ = /\g +(1+ pd2)2.

In order that the camera turns around the cylinder, we have specified a secondary task consisting
in moving the camera with a constant velocity V,. along its ¥ axis. The secondary cost function is
then:

1
hs = 5@,(35 —xg — Vit)? (16)
where 3, is a positive scalar weight. We obtain:
ﬁz(x — 2o — Vz’t) ﬁer

0 0
T _ 0 8&3 _ 0 (17)

% = 0 arT 0

0 0

0 0

and the desired camera velocity T, is finally given by:

/ﬁzvz(l + pd2)2/l
0
0

T.=-Xe+ 0 (18)

ﬁsz(l + de)Ap/l
0

Now, by choosing 8, = I/(1+4p4*)?, the translational camera velocity along Z axis will have the desired
value V,, when e = 0.

Note that the effect of the camera translational motion along its & axis is perfectly compensated
by a rotational motion (see (18)) such that the cylinder always appears at its specified position in
the image. From the form of Iy — WTW in (15), we can see that an other trajectory tracking can
be performed: it consists in moving the camera along the ¥ axis. Experimental results showing the
realization of this task will be presented in Section 5.1

2.4 Towards implementation

From the point of view of programming, these algorithms have two specific features. First, they
have an equational nature: they express relations between various flows of data, in a declarative
way. In particular, the iterative aspect in the control loop (at each instant) is completely implicit.
Second, they are synchronous: the equations involve values of the different quantities within the
same instant. Classical programming methods are not well adapted to specify and program such
algorithms. Asynchronous imperative languages require the explicit management of low level aspects of
the implementation (like the sequencing of computations imposed by data dependencies). Furthermore,
there is no well-founded support or model of the temporal aspects. Hence, we use the synchronous
data flow language SIGNAL, providing the adequate high-level of abstraction for specification, as well
as a coherent model of time.
In the following, we first briefly present the synchronous language SIGNAL, then we show how the
control law presented before can be specified in this language.
INRIA
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2.5 Data Flow Equations in SIGNAL

SIGNAL [24] is a synchronous real-time language, data flow oriented (i.e., declarative) and built around
a minimal kernel of operators. This language manipulates signals, which are unbounded series of typed
values, with an associated clock determining the set of instants when values are present. For instance, a
signal X denotes the sequence (x;);e7 of data indexed by time ¢ in a time domain 7". Signals of a special
kind called event are characterized only by their clock i.e., their presence. Given a signal X, its clock
is noted event X, meaning the event present simultaneously with X. The constructs of the language
can be used in an equational style to specify relations between signals i.e., between their values and
between their clocks. Systems of equations on signals are built using a composition construct. Data
flow applications are activities executed over a set of instants in time: at each instant, input data
is acquired from the execution environment. QOutput values are produced according to the system of
equations considered as a network of operations.

The kernel of the SIGNAL language is based on four operations, defining elementary processes, and
a composition operation to build more elaborate ones.

e Functions are instantaneous transformations on the data. For example, signal Y;, defined by the

instantaneous function f in: V¢, Y; = f(X4,, Xo,,...,Xs,) is encoded in SIGNAL by:
Y := f{ X1, X2,..., Xn}. The signals Y, X1,..., Xn are required to have the same clock.
e Selection of a signal X according to a boolean condition Cis: Y := X when C. The operands and

the result do not generally have identical clock. Signal Y is present if and only if X and C are
present at the same time and C has the value true; when Y is present, its value is that of X.

o Deterministic merge: Z := X default Y defines the union of two signals of the same type. The
clock of Z is the union of that of X and that of Y. The value of Z is the value of X when it is
present, or otherwhise that of Y if it is present and X is not.

o Delay Operator, a “dynamic” process giving access to past values of a signal, will be presented
in Section III-C.

Composition of processes is the associative and commutative operator “|” denoting the union of

the underlying systems of equations. In SIGNAL, for processes P; and Py, it is written: (| P, | Py 1).

Hierarchy, modularity and re-use of processes are supported by the possibility of defining process
models, and invoking instances.

The SIGNAL compiler performs the analysis of the consistency of the system of equations, and
determines whether the synchronization constraints between the clocks of signals are verified or not.
This is based on an internal representation featuring a graph of data dependencies between operations,
augmented with temporal information coming from the clock calculus. If the program is constrained
so as to compute a deterministic solution, then executable code can be automatically produced (in
C or FORrRTRAN). The complete programming environment also contains a graphical, block-diagram
oriented user interface where processes are boxes linked by wires representing signals, as illustrated in
Fig. 3.

2.6 Application to Visual Servoing

A robot control law, at the relatively lowest level, consists in the regulation of a task function, which
is an equation ¢ = f(s) giving the value of the control ¢ to be applied to the actuator, in terms of the
values s acquired by the sensors. The control of the actuator is a continuous function f, more or less
complex. Such a task can be composed of several sub-tasks, with a priority order. The implementation
of such a control law is made by sampling sensor information s into a flow of values s;, which are used
to compute the flow of commands ¢;: Vi, ¢; = f(s¢). This kind of numerical, data flow computation

RR n"2383
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Figure 3: Modular description of a general visual servoing process,

is the traditional application domain of data flow languages in general, and of SIGNAL in particular.
Furthermore, as indicated by the time index ¢ in this schematical equation, the simultaneous presence
of the values involved is adequately handled by the synchrony hypothesis.

A modular description of the visual servoing process (in the case where C' = WL]:Q(ﬂd,BOd)) is
given in Fig. 3, also representing a block-diagram of the corresponding SIGNAL program. At a high
level, the visual servoing process is composed of three different sub-modules:

e a CAMERA OUTPUT module which provides a flow of image information at video rate: P.

e this information is received by the control module as input. This process computes the corres-
ponding camera velocity TC using the task function approach.

e this camera velocity is transmitted to the ROBOT_CONTROL module.

T

DESIRED_
POSITIONC )

F b+ SCREN( >

CAMERA_ ROBOT_ —
OUTPUT( ) CONTROL ¢ )
8
— [PERFORMING TRAJECTORY_[
_ERROR( ) TRACKINGC )

INTERACTION

PRIMARY_[|
TASKC )

CAMERA_ {1
YELOCITY
(oD

Y.

Figure 4: SIGNAL specification.

The control module itself is hierarchically decomposed into sub-modules : the PERFORMING_ERROR
process computes the error P — P, ; the INTERACTION SCREW process computes L%(ﬂd,%d); from the

INRIA
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output of the INTERACTION_SCREW module, a process computes the matrixes W, W+ and C which
are used with the PERFORMING_ERROR module to determine the camera velocity for the PRIMARY_TASK
(We,); a module performs a secondary task (here TRAJECTORY_TRACKING). This trajectory tracking
is performed only when the error P — P, is less that some threshold e, otherwise it is null. The final
CAMERA VELOCITY is then computed using the two flows of data coming from the PRIMARY TASK and
the secondary TRAJECTORY _TRACKING task.

In conclusion, a SIGNAL program of the control process can be written as in listing 1. Fig. 4 shows
the same program presented with the graphic interface of SIGNAL.

Listing 1. The equation of the whole control process.

(| P := CAMERA_OUTPUT{}
/(| L := INTERACTION SCREW{pd,Pd}
| error := PERFORMING_ERROR{P,Pd}
| tau := PRIMARY TASK{L,error}
| traj := TRAJECTORY_TRACKING{pd} when error < epsilon default NULL_MOTION{}
| Tc := CAMERA VELOCITY{tau,traj}
D,
| SEND_VELOCITY{Tc}
Dis

3 Data Flow Processes for Active 3D Reconstruction

The determination of the 3D description of a scene from 2D images is one of the main issues in
computer vision. The work presented in this section is concerned with the processing of a sequence
of images acquired by a moving camera to get an exact and complete description of geometrical
primitives [7][10]. The camera motion will be performed using the visual servoing approach presented
above. The estimation of the considered primitive will be achieved in parallel to the computation of
the control law. Furthermore, we will see that performing the control law needs the use of previous
values of the estimated parameters of the 3D primitive. This introduces the need for the other features
of SIGNAL, in order to specify delays and parallelism.

3.1 3D Structure Estimation Using Dynamic Vision

The observability of the camera motion which is necessary for the 3D structure estimation characterizes
a domain of research called dynamic vision. Approaches for 3-D structure recovery may be divided
into two main classes : the discrete approach, where images are acquired at distant time instants
[12][16][36] and the continuous approach, where images are considered at video rate [1][15][34][37]. The
method presented here is a continuous approach which stems from the interaction matrix related to
the considered primitive. Hence, this reconstruction method is embedded into the framework presented
in Section 2.

As previously stated, a geometrical primitive is defined by an equation h(z,p) = 0. Using the
relation between the time variation of P in the image sequence and the camera ;elocity T., we are
able to compute the value of the parameters p of the considered primitive [7][10].

First, from the resolution of a linear syst(;m derived from relation (4), we obtain the parameters
P, which represent the position of the limb surface:

Py = py(Te, P, P) (19)

RR n"2383
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Then, knowing the position of the primitive in the image described by (3) and using geometrical
constraints related to the considered primitive, we can estimate the parameters p which fully define
its 3D configuration:

p=rp(L,p,) (20)

From a geometric point of view, this approach leads to determine the intersection between the limb
surface and a generalized cone, defined by its vertex located at the optical center and by the image of
the primitive (see Fig. 5).

Limb surface

Imag Cone

Figure 5: Continuous approach for 3D structure estimation.

This approach has been applied to the most representative primitives (i.e, point, straight line,
circle, sphere and cylinder) [7][10]. Let us note that in the case of a cylinder, this method can be
applied using the projection of only one limb in the image (let us however note that more precise
results are obtained using the projections of the two limbs in the image). Such a method based on one
single limb will be used to determine in Section 4.1 the nature of the observed primitive (cylinder or
straight line).

3.2 3D Structure Estimation Using Active Vision

Active vision is defined in [5] as an intelligent data acquisition process. Since the major shortcomings
which limit the performance of vision systems are their sensitivity to noise and their low accuracy, the
aim of active vision is generally to elaborate control strategies for adaptively setting camera parameters
(position, velocity,...) in order to improve the knowledge of the environment [3][31].

In our particular case, when no particular strategy concerning camera motion is defined, important
errors on the 3D structure estimation can be observed. This is due to the fact that the quality of the
estimation is very sensitive to the nature of the successive motions of the camera [15]. An active vision
paradigm is thus necessary to improve the accuracy of the estimation results by generating adequate
camera motions.

As seen on equation (19), the 3D structure estimation method is based on the measurement of P
the temporal derivative of P. However, the exact value of Pis generally unreachable, and the image
measurements only supply AP, the “displacement” of P between two successive images. Using AP /Al
instead of P generally induces errors in the 3D reconstruction. A sufficient and general condition that
suppresses the discretization errors is to constrain the camera motion such that [10]:

P =0, and p, = 0,V¢ (21)

These constraints mean that a fixation task is required. More precisely, the primitive must constantly

appear at the same position in the image while the camera is moving.
Furthermore, the effect of the measurement errors on the estimation depends on the position of
the projection of the primitive in the image. Therefore, the camera motion has to be constrained
INRIA



Applying the dSynchronous Approach jor neal Lime Aclive Visuai feconsiruction

in order to minimize the effects of these measurement errors. Such a minimization is obtained by a
focusing task that consists in constantly observing the primitive at a particular position in the image.
For example, a cylinder must appear vertical (or horizontal) and centered in the image.

A control law in closed-loop with respect to visual data is perfectly suitable to generate such a
motion. In the visual servoing framework presented in Section 2, the focusing task can be expressed
as the regulation of a primary task e; = C(P. — P,) to zero where P, is the optimal position of the
primitive in the image and where C is chosen as C = LJTD(ﬂ,]_)AO) (let us note that the interaction
matrix is now updated at each iteration of the control loop using the measured value of P and the
estimated value ]_)AO of the parameters describing the limb surface). Then, a trajectory tracking has to
be performed in order to realize the fixation task that suppresses the discretization error.

3.3 Parallel Dynamical Processes in SIGNAL

The described estimation scheme involves computations on the past values of signals, performed in
parallel with the camera motion control. This introduces the need for constructs in the language
enabling the expression of dynamical behaviors, as well as parallel ones. As mentioned in Section 2.5,
the language comprises constructs enabling this:

o delay on the values of a signal gives access to the past value of a signal. For example, equation
ZX; = X;_q, with initial value V defines a dynamic process which is encoded in SIGNALby:
ZX := X$1 with initialization ZX init VO. Signals X and ZX have the same clock.

Derived operators include delays on N instants ($N), and a window M operation giving access
to a whole window in the past values (from times ¢ — M to t), as well as combinations of both
operators.

For example, a filter defined by equation y; = (2t + z4-1 + 2¢—2)/3 can also be written y; =
(z¢ + zx¢ + 2284) /3,284 = T4_1, 2224 = T4_3, which is written in SIGNAL:
(J Y := (X +2ZX + 2ZX)/3 | ZX := X$1 | ZZX := X$2 |).

4('77

e parallelism between processes is obtained simply with the composition operator , which can

be interpreted as parallelism between processes communicating through the signals.

Let us also point out that the SIGNAL environment includes a proof system, called SIGALI, to verify
dynamic properties of programs, involving state information (in the delayed signals) and transitions
in reaction to occurrences of other signals.

3.4 Application to 3D Structure Estimation

1) Access to past values The estimation method used here is based on the use of the current and the
past values of the position of the primitive in the image (i.e P, and P,_; to measure £) Furthermore,
a measure of the camera position between these two instants ¢ and ¢ — 1 is necessary to measure 1.
(See relation (19)).

The past value of P and the camera velocity can be expressed using the delay operators. If P
is a signal carrying the position of the primitive in the image and Tc the velocity of the camera,
the estimation p of the 3D primitive parameters p is expressed as in Listing 2. Thus, the language
structures meet the data flow nature of the estimation algorithm which uses at each time ¢ the value
of parameters P at time ¢ and ¢ — 1.

Besides, we smooth the output of this process, by computing the mean value of the current esti-
mation and of the two previous ones. As already stated, such a filter can also be expressed in SIGNAL
with the delay operator.
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Listing 2. Using the DELAY operator for the estimation.

(| p := ESTIMATION{P,ZP,ZTc}
| ZP := P$1

| ZTc := Tc$1

D,

2) Parallelism The estimation process is added to the control process of Section 2 in such a way that
it is executed in parallel with the control law, as shown in Fig. 6. Textually and schematically, we have
(| TC := CONTROL{P,P4,po} | p := ESTIMATION{P,ZP,TC}|).

3) Synchronous aspect We give here another example of the interest of the synchronous hypothesis.
The interaction matrix is computed for each new value provided by the measurement and the estima-
tion processes. In the previous section (visual servoing without estimation), assumptions on the shape
of the primitive had to be made; here the geometrical structure of the primitive is estimated on-line.
According to the synchrony hypothesis, the value at instant ¢ of the interaction matrix is updated
using the estimated parameters and the current position of the primitive in the image at the same
logical instant .

TC

CAMERA_ ROBOT_ —
OUTPUTC D CONTROLC )

Y-

VISUAL _SERYOINGC )

FD

P_EST

DESTIRED_
POSITIONC )

P_E$T

FILTERC >

ESTIMATIONC > *

Figure 6: Control and estimation in parallel.

4 Task Sequencing for Scene Reconstruction

We are now interested in investigating the problem of recovering a precise description of a 3D scene
containing several objects using the visual reconstruction scheme presented above. As already stated,
this scheme involves focusing on and fixating at the considered primitive in the scene. This can be
done on only one primitive at a time, hence reconstructions have to be performed in sequence. We
present in this section the specification of such a sequencing which is stated in terms of a hierarchical
parallel automaton [25].
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Sequencings of data flow tasks are handled in an extension to SIGNAL using the notion of time
interval. This enables the specification of hierarchical interruption structures, associating data flow
computations to execution intervals, and making transitions from the one to the other in reaction to
events.

4.1 Vision Tasks for Complex Scene Reconstruction

In order to successively perform the estimation of the 3D structure of each primitive of the scene, a
database containing 2D visual data is first created. With this database, a selection process focuses
on a chosen primitive, and after a recognition process which estimates the nature of the considered
primitive (segment or cylinder), an optimal estimation of its 3D structure is performed. After the
reconstruction of the selected primitive, the database is updated, then, a new selection is done. The
scene reconstruction process ends when the database is empty. We now detail the different steps
involved in this strategy.

1) Selection of a primitive We assume that the scene is only composed of polyhedral objects and
cylinders, so that the contours of all the objects projected in the image plane form a set of segments.
The first step in the whole scene reconstruction process is to build a 2D database composed of the set
of segments in the image for the initial camera position. The database is simply obtained by extracting
the edges in the image with a Shen Castan filter [32], and applying a Hough transform on the edge
image which computes the equation of the different segments. A weight is given to each element of
the database. This weight is function of the length and the position of the corresponding segments in
the image in accordance with a given strategy. The segment with the highest weight is extracted from
the database, then, an optimal estimation based on this segment is performed.

2) A mazimum likelihood ratio test for primitive recognition The only information we initially have
on the considered scene is composed by the set of 2D segments. We assume that these segments
correspond to the projection in the image of either a limb of a cylinder, or of a 3D segment. Since the
structure estimation method is specific to each kind of primitives, a preliminary recognition process
is required. In order to obtain a robust criterion, we have developed the following method [25].

To determine the nature of the observed primitive, we first assume that it is a cylinder, and a one
limb-based estimation is performed. When this estimation is done, two competing hypotheses can be
acting, respectively:

e Hy: the observed primitive is a straight line. This hypothesis implies that we have to find a
radius 7 close to 0 ;

e Hi: the observed primitive is a cylinder. This hypothesis implies that we have to find r = r;
with 71 > 0 ;

A maximum likelihood ratio test is used to determine which one of these two hypotheses is the
right one. Let us denote Ly and L; the likelihood functions associated with hypothesis Hy and H;.
Assuming that the cylinder radius follows a Gaussian law of mean r and variance o2, we obtain after
N estimations r;,t =1...N :

S rimr)?

1 N Ei\‘:l T’Z 1 _
2 € 252 (22)

€ 202 ,and Ly = (

&

Lo = ( )

2mwo? 2mwo?
The likelihood ratio £ is given by £ = log é—é [9]. Substituting for expressions given in (22) in this

equation leads to:
1 N

N
(=550 (ri-m)’ - Erf) (23)
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The resulting criterion for determining the nature of the primitive can be stated as follows:
Hy
>
max
r1 ¢ < ¢
Ho

where ( is a predetermined threshold. The optimal parameter 71 must satisfy the relation % =0,

which leads to 71 = 7 where 7 = % Ef\;l r;. Using this relation, £ can finally be expressed in the simple
form: -
&= 202
Clearly, hypothesis H; (cylinder) is selected versus hypothesis Hy (segment) if the obtained value for
likelihood ratio £ is greater than ¢ (this threshold can be easily determined by experiment). Indeed,
when the primitive is a segment, the reconstruction process using one limb gives a low radius, with a
very high variance (leading to a small value of £). On the other hand, when the primitive is a cylinder,
the estimated radius is close to its real value and its variance is small (leading to a high value of £).

(24)

3) Optimal estimation In order to get the 3D spatial structure of a primitive, we obviously use the
3D reconstruction method described in Section 3. Dealing with the cylinder case, this method can be
applied using only the projection of one limb [7]. A two limbs based estimation provides a more robust
and precise estimation. However, it is impossible without a priori knowledge on the structure of a
cylinder to determine the position in the image of its second limb. To solve this problem, we use the
results obtained with the one limb-based estimation involved in the previous recognition process (if the
primitive has been selected as a cylinder). These results are good enough to predict the position of the
second limb in the image by projecting the 3D estimated cylinder in the image. Then, after a simple
matching step, a robust estimation based on the two limbs can be performed. Each optimal estimation
ends when all the primitive parameters have been accurately computed with a sufficient precision. In
parallel with an optimal estimation, we can also realize a coarse estimation of other primitives selected
in the 2D database. It is coarse since the camera motion is not adequate for these primitives. Therefore
this leads to inaccurate results. Fach coarse estimation ends when the corresponding segment gets out
from the image or when the optimal estimation ends. The interest of this estimation is that it provides
3D informations about the scene which can be used if the application does not necessitate a precise
estimation for all the primitives present in the scene (such an application is for example the grasping
of an object, whose 3D location has to be accurately determined, while avoiding obstacles, whose 3D
exact location around this object is generally less critical).

Furthermore, the optimal estimation described in Section 3 considers that the primitive has an
infinite length. In order to determine its length, the vertices of the primitives have to be observed in the
image, which generally implies a complementary camera motion. For accuracy issues, this motion is
performed in the direction of the primitive axis, at a constant range, and until one of the two endpoints
of the primitive appears at the image center. Once the camera has reached its desired position, the
3D position of the corresponding end point is computed as the intersection between the primitive axis
and the camera optical axis. A motion in the opposite direction is then generated to determine the
position of the other endpoint. Such a camera motion, based on visual data, is again performed using
the visual servoing approach described in Section 2.

4.2 A Hierarchical Parallel Automaton as Controller

This kind of complex robotics strategy involves the use of several subsystems (such as the different tasks
described in the previous section). Achieving the complete operation requires a dynamic scheduling
of these elementary subsystems. An object oriented approach, based on the ESTEREL synchronous
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language [8] and the ORCCAD system, has been presented to model such a controller in [33][13].
Other approaches formalize reactive behaviors of vision “guided” robot with Discrete Event Systems
(DES) [4][27]. Since SIGNAL is an equational synchronous language based on DES, programming such
a state transition network with this language remains in the DES framework and enables us to use the
same formal tools. Furthermore, it allows us to specify combinations of tasks. Indeed, we can combine
the effects of several tasks executed in parallel (e.g., a primary vision-based task combined with a
trajectory tracking. Another example used here is the coarse estimation of some primitives performed
in parallel with the optimal estimation of an other primitive).

We thus have developed a method for connecting up several estimations based on the definition
of a hierarchical parallel automaton. This automaton is able to connect up the different stages of the
reconstruction process: selection, focusing, optimal estimation of the selected primitive and concur-
rently, coarse estimation. Each state of our automata is associated with a certain task such as the
creation or the update of the database, the structure estimation process, the camera motion control
using visual servoing, etc (see Fig. 7). The transitions between the states are discrete events and are
function of the image data, the value of the estimated parameters of the primitives, and the state of
the database.

A framework to schedule such tasks and to program such automata is now presented.

ﬁeconstruction

structure estimation w

Primitive estimation

recoinition
estimatio

£<¢

database end
estimation|

empty

cylinder
estimation

RD database segment

creation
selection

database k_%

selected

not empty

Figure 7: Hierarchical parallel automaton for the application.

4.3 Sequencing Data Flow Tasks in SIGNAL

This section introduces recent extensions to SIGNAL, handling tasks execution over time intervals and
their sequencing [28]. A data flow application is executed from an initial state of its memory at an
initial instant «, which is before the first event of the reactive execution. A data flow process has no
termination specified in itself; therefore its end at an instant w can only be decided in reaction to
external events or the reaching of given values. Hence, w is part of the execution, and the time interval
on which the application executes is the left-open, right-closed interval Ja,w].

1) Time intervals They are introduced in order to enable the structured decomposition of the interval
Ja,w] into sub-intervals as illustrated in Fig. 8, and their association with processes [28]. Such a sub-
interval I is delimited by occurrences of bounding events at the beginning B and end E: I := ]B, E].
It has the value inside between the next occurrence of B and the next occurrence of E, and outside
otherwise.
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Figure 8: Time intervals sub-dividing Ja,w].

Like Ja,w], sub-intervals are left-open and right-closed. This choice is coherent with the behavior
expected from reactive automata: a transition is made according to a received event occurrence and a
current state, which results in a new state. Hence, the instant where the event occurs belongs to the
time interval of the current state, not to that of the new state.

The operator compl I defines the complement of an interval I, which is inside when I is outside
and conversely. Operators open I and close I respectively give the opening and closing occurrences
of the bounding events. Occurrences of a signal X inside interval I can be selected by X in I, and
reciprocally outside by X out I. In this framework, open Iis B out I, and close IisE in I.

2)Tasks They consist in associating a given (sub)process of the application with a given (sub)interval
of Ja,w] on which it is executed. Tasks which are active on Ja,w] represent the default case: they
are remanent throughout the whole application. Inside the task interval, the task process is active
i.e., present and executing normally. Outside the interval, the process is inexistent i.e., absent and the
values it keeps in its internal state are unavailable. In some sense, it is out of time, its clock being cut.

Tasks are defined by the process P to be executed, the execution interval I, and the starting state
(current, or initial) when (re-)entering the interval. More precisely, the latter means that, when re-
entering the task interval, the process can be re-started at its current state at the instant where the
task was suspended (i.e., in a temporary fashion); this is written in SIGNAL P on I. Alternately, it can
be re-started at its initial state, as defined by the declaration of all its state variables, if the task was
interrupted (i.e., aborted in a definitive fashion); this is written P each I. The processes associated
with intervals can themselves be decomposed into sub-tasks. Hence, the specification of hierarchies of
complex behaviors is possible.

3) Task control Task control is achieved as a result of constraining intervals and their bounding events,
and associating activities to them. Parallelism between several tasks is obtained naturally when tasks
share the same interval, or overlapping intervals. Sequencing tasks then amounts to constraining the
intervals of the tasks. Using on and each, as defined above, enables to control activities and more
elaborate behaviors can be specified. Hence, it is possible to specify hierarchical parallel automata or
place/transition systems.

A E

st =
N

B

Figure 9: Transitions between states.

Each time interval holds some state information, and events cause transitions between these states.
In the simple timeout behavior illustrated in Fig. 9, a transition leads from state S1 to state S2 on the
occurrence of an event E, except if the event C occurs before, leading elsewhere. This can be coded
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by two intervals such that the closing of the one, on the occurrence of event E, is the opening of the
other, as in listing 3.

Listing 3. Example of time intervals

(] 81 :=]JA , E default ¢] | S2 := ]E in S1, B] |)

An encoding of intervals and tasks into the SIGNAL kernel is implemented as a pre-processor to the
SIGNAL compiler, called SIGNALGT:. Data flow and sequencing aspects are both in the same language
framework, thus relying on the same model for their execution and the verification of correctness
of programs. An approach related to ours integrates ARGOs (hierarchical parallel automata) with
LusTrE (data flow) [23]; we have tried to specify sequencing in a more declarative style.

4.4 Application to the Reconstruction Strategy

The visual reconstruction process based on the hierarchical parallel automaton proposed in Sections
4.1 and 4.2 has been implemented using the notion of task and time intervals defined above. This
automaton is able to sequence the different vision tasks (selection, focusing, optimal estimation of
the selected primitive and concurrently, coarse estimation of the other ones) and to provide a robust
estimation of the spatial organization of the scene [29].

Once the automaton specification is completed, programming such an automaton is quite easy
using the presented tasks sequencing framework. The source code, in SIGNAL, of the application is
very close to the specification because programming is performed via the specification of constraints
or relations between all the involved signals. At this step of the description, we show in Listing 4 a
part of the SIGNAL code to illustrate the feasibility of encoding such a hierarchical parallel automaton
with our approach based on time interval description. We illustrate these points by concrete examples:

1) Termination A data-flow process defines, like our vision tasks, a behavior, but not a termination
: this aspect must be defined separately. One way of deciding on termination of a task is to apply
criteria for reaching a goal : when a certain value P, is acquired by the sensor, the task is considered
to have reached its goal, hence it ends. Let us consider the case of the length computation. We have a
trajectory tracking task, and the goal is defined by a certain position of the endpoint of the primitive
in the image (in fact, it must appear in the center of the image). In fact, we have to minimize the error
(P — P4) between the current position of the endpoint and its desired position. The goal is reached
with a precision e when condition ||P — Py|| < e is satisfied. The evaluation of this condition must
be performed at all instants: hence, this evaluation is another data flow treatment. The instant when
the condition is satisfied can be marked by a discrete event, which, causing termination of the task,
can also cause a transition to another task at a higher level of the reactive sequencing. In this sense,
this event can be used to specify the end of the execution interval of the task. Evaluation of such
conditions can be made following a dynamic evolution: a sequence of modes of evaluation of P, or of
the criterion, can be defined, becoming finer (and possibly more costly) when close to interesting or
important values.

2) Parallelism Parallelism between two tasks is transparent to the programmer using the composition
operator. This is the case, for example, of the coarse estimation processes and the optimal estimation
process. To perform these estimations, they both use the same information (i.e., the measure of
camera velocity, the measures performed in the image at current and previous instants), in such a
way, according to the synchronous hypothesis, that they can use it at the same logic instant. In fact,
we have here a parallelism of specification, and the compiler monitors all the synchronization and
communication problems.
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Listing 4. Program for the application

(| Ipgc ] when(database_empty), when(not database_empty)] init inside
| IgsT := comp Ipgc

| DATABASE CREATION each Ippc

| STRUCTURE ESTIMATION each Igsy |)

Process Structure_estimation

(| I¢ := 1 length estim, Segment chosen ] init inside

| Ig := comp I¢

| SEGMENT_SELECTION each Ig

| PRIMITIVE ESTIMATION each Ig |)
Process Primitive_estimation
(] OPTIMAL ESTIMATION

| (| COARSE_ESTIMATION; | ... | COARSE_ESTIMATION, |)|)
Process Coarse_estimation;
(| Ig, := ] Find new_segment, Segment lost ]

| COARSE_ESTIMATION each Iy |)
Process Optimal estimation
(] Irecognition := 1 close If ¢ default close I g, Accuracyreached ]

| Accuracy reached := when (|prec, |<e¢,)
| isDroite := RECOGNITION each Irecognition D]
|(| IcyL gsT := 1 (not isDroite) when close Irecognition» Accuracyreached, ]

| Accuracy reached,:= when |prec. |<ce. |
| CYLINDER ESTIMATION each Igyr gst)
|(] I, g := 1 isDroite when close Irecognition, end-seglength estim ]
| LENGTH_SEGMENT each I g |)
(| I ¢ := 1 close Igyr, gsT, end cyl length estim ]
| LENGTH CYLINDER each I ¢ |)
lenght estim := end cyl_ length_estim default end seg length estim |)

5 Experimental Results on a Robotic Cell

The whole application presented in this paper has been implemented with SIGNAL on an experimental
testbed composed of a CCD camera mounted on the end effector of a six degrees of freedom cartesian
robot (see Fig. 10). The image processing part is implemented in C and performed on a commercial
image processing board (EDIXIA TA 1000). The implementation of the control law, the 3D structure
estimation and the automata implemented using the SIGNAL language run on a SPARC Station 10.
Fig. 10 shows our robot architecture.

Bit3

i Bit 3
Bit3
sbus Camera CCD
EDIXIA IA 1000
Sun Sparc 10
ROBOT AFMA
SIGNAL VME Robot Control - 6dof

Figure 10: Experimental cell (camera mounted on a 6 dof robot) and architecture

Experimental results related to the realization of real-time visual servoing, cylinder structure esti-
mation using active vision and scene reconstruction are presented.
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5.1 Visual Servoing Results

We here present the results of the realization of the positionning task with respect to a cylinder,
described in Section 2.3.
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Figure 11: Positionning with respect to a cylinder and trajectory tracking.(a) initial image (b) image
acquired after convergence (c) error P — P, (d) camera trajectory (e) translational and (f) rotational
components of the camera velocity

Let us recall that we want the cylinder to appear centered and vertical in the image (note the
sperimposed white lines). After the convergence of the vision-based task, a first trajectory tracking
around the cylinder is performed along the # axis (as described in Section 2.3). A second trajectory
is considered consisting in moving the camera along the axis of the cylinder (i.e., with a velocity V,
along the camera ¥ axis. The secondary tasks is then: hy = %(y — yo — V,t)* which leads to a camera
velocity given by 1T, = —Xe + (0,V,,0,0, O,O)T). The complete trajectory tracking consists in moving
the camera with a velocity V, = 5em/s, V, = 10ecm/s, =V, and —V,, successively as drawn in Fig.
11.d.
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Fig. 11.a represents the initial image acquired by the camera and the selected cylinder. Fig. 11.b
contains the image acquired by the camera after the convergence of the vision-based task. In Fig. 11.c
are plotted the four components of P — P;. Let us point out the exponential decay of these evolutions
during the convergence phase (iteration 0 to 170). The graphics shown in Fig. 11.e (respectively
Fig. 11.f) represent the evolution, at each iteration of the control law, of the translational (resp.
rotational) components of the camera velocity 7. Let us note that a rotational motion compensates
for the translational motion along # axis, and makes the cylinder be static in the image plane during
the trajectory tracking.

5.2 Estimation of the Structure of a Cylinder

A cylinder can be represented by an equation of the type:

h(z,p) = (& = 20)* + (y — 90)* + (2 — 20)* = (az + by + c2)* — 1 = 0, (25)
. { a® + 0% + ¢? = 1
with
arg+byo+czg = 0,

where a, b, ¢ represent the direction of its axis and g, yo, 20 are the coordinates of a point belonging
to the cylinder axis. We use the proposed 3D reconstruction method to estimate those parameters.
More details about this derivation can be found in [10]. In order to obtain a non-biased and robust
estimation, as already stated, the cylinder must always appear centered (p; = —p3) and horizontal
(61 = 0; = 5) or vertical (6, = 0 = 0) in the image sequence during the camera motion (which here
consists in a motion V, as in the previous Section).
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Figure 12: Estimation of the parameters of a cylinder in the camera frame

Fig. 12.a and Fig. 12.b show the evolution of the estimation of the parameters of the cylinder
displayed in Fig.11.b. Fig. 12.a shows coordinates xg, yo, 20 and radius r . It is divided into two parts:
the estimation based on one limb and, then, the estimation based on the two limbs of the cylinder. This
second estimation is far better than the first one. Let us note that the cylinder radius r is determined
with an accuracy less than 0.5 mm whereas the camera is one meter away from the cylinder (and even
less than 0.1 mm with good ligthting conditions). Fig. 12.b reports the error between the true value
of the radius and its estimated value. As far as depth zp is concerned, the standard deviation is less
than 1.5 mm (that is 0.15%).

Fig. 13 shows first the coarse estimation of the parameters of a second cylinder (located on the
left of the image given in Fig. 11.b) obtained while performing in parallel an optimal reconstruction
of the central cylinder, then the optimal reconstruction of the second cylinder. The coarse estimation
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