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Abstract: A main concern of scientific computing is the validation of numerical
simulations. Indeed, several factors contribute to the degradation of accuracy in the
final result. This thesis deals with new tools to control the accuracy for the following
eigenproblem :

Problem (P) : Given A € C"*", find some XA € C and/or x € C" such that :
A is an eigenvalue of A and x is the associated eigenvector.

We present in the first part of this thesis an expert system called SESAME,
which can either select the sequence of LAPACK routines solving the given problem
(P) or validate a user choice of routines. It can eventually give an estimation of the
accuracy of the result. The spectral portrait of a matrix provides useful informations
about it. Usually, the spectral portrait is computed using a Singular Value Decom-
position, but this approach is not suitable for large sparse matrices. The second
part of the thesis is devoted to the computation of the spectral portrait for large
sparse matrices. Krylov subspaces have an important place in sparse linear algebra,
since numerous iterative methods in linear algebra dealing with large sparse matrices
require these subspaces. In the third part of the thesis, we study theoretically the
condition number of Krylov bases and subspaces.
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trait, Condition number, Krylov basis and subspace.
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Quelques outils d’aide au contrdle de précision en
calcul scientifique

Résumé : Une des principales préoccupations des scientifiques est de déterminer
le niveau de confiance de leurs simulations numériques. En effet, plusieurs facteurs
concourent a la dégradation de la précision du résultat obtenu. Cette thése propose
de nouveaux outils pour contréler la précision du probleme aux valeurs propres sui-
vant :

Probleme (P) : Etant donnée A € C*", trouver des éléments A € C el/ouz € C"
tels que :
A soit une valeur propre de A et x soit un vecteur propre de A associ€ a \.

On présente dans la premiere partie un systeme expert, appelé SESAME, qui dé-
termine la séquence de procédures LAPACK & appeler pour résoudre un probleme
(P) donné. Le systeme peut également valider un choix de procédures fait par 1'uti-
lisateur et donner une estimation de l’erreur commise sur le résultat. Le portrait
spectral d’une matrice donne des renseignements tres utiles. La méthode de calcul
du portrait spectral fondée sur la décomposition en valeurs singulieres de matrices
n’est pas utilisable pour une grande matrice creuse. La seconde partie est consa-
crée au calcul du portrait spectral d’une grande matrice creuse. Les sous-espaces de
Krylov jouent un role trés important pour les méthodes itératives d’algebre linéaire
traitant des grandes matrices creuses. La troisiéme partie est une étude du condi-
tionnement des bases et sous-espaces de Krylov.

Mots-clé : Probleme aux valeurs propres, Systeme a base de connaissance, Matrice
creuse, Portrait spectral, Conditionnement, Base et sous-espace de Krylov.
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Part 1

Introduction






A main concern of scientific computing is the validation of numerical simulations.
Indeed, several factors contribute to the degradation of accuracy in the final result.
Firstly, the modelisation error (translation from the physical problem to mathema-
tical equations) and the method error (discretisation of equations). These errors are
due to the approximation of the initial problem (physical problem). Next, the error
due to the choice of an iterative method, since the computed solution satisfies the
problem only up to a tolerance threshold. Finally, the finite precision of computation
generates rounding errors increasing highly when the initial problem is unstable or
ill-conditioned (a problem is said ill-conditioned when its result is very sensitive to
a data perturbation [49]). Therefore, we have to be concerned with the quality of
scientific software and in particular with the numerical quality of the results. The
toolbox AQUARELS [18] gathers into a consistent and user-friendly structure some
solutions to control or improve the accuracy of scientific computations. This thesis
deals with new tools that can be included in AQUARELS.

We have chosen to study the following problem (P) :

Given a square complex matriz A € C**", find some X\ € C and/or x € C" such
that :

A is an eigenvalue of A (i.e. det(A— AI)=0)
and x is the associated eigenvector (i.e. Ax = Az ).

This problem arises in particular in the computation of the eigenmodes in struc-
tural mechanics as well as in the study of the stability of dynamic systems which
needs, for instance, to find precisely at which side of the imaginary axis the ei-
genvalues are located. The condition number of the problem (P) (measure of the
sensitivity of the problem (P) to a data perturbation) is now well known [10, 45],
but the computation of error bounds is complicated.

As far as small matrices are concerned, the methods of resolution for the pro-
blem (P) [13, 21, 25, 38, 50] are quite efficient. Indeed, a theoretical study of these
methods shows that they are numerically stable (the effect of the rounding errors
can be bounded) [50]. Moreover, it is possible to estimate condition numbers [3].
The spectral portrait [31, 46] (picture of the eigenvalues of the nearest matrices)
provides useful information about the result. For instance, some dynamic systems
are stable only when all the eigenvalues have a negative real part. The spectral por-
trait is useful in this case, since it enables on one hand to locate the eigenvalues
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and on another hand to measure the distance between the matrix and the nearest
matrix which does not satisfy this condition. Similarly, the spectrum dichotomy [35]
enables to find precisely which part of the spectrum is located on one side of the
imaginary axis.

For large sparse matrices, we are faced to the problem of memory size and CPU
time. The methods used to solve the problem (P) with small matrices require some
matrix transformations which destroy the sparsity. Therefore, these methods cannot
be used efficiently for large sparse matrices so that new methods have been desi-
gned. For instance, methods that require the matrix only in matrix-vector products,
as in the power method, Lanczos method [33], or Arnoldi method [2]. Moreover, the
control of accuracy for small matrices, such as the study of stability (sensitivity to
rounding errors) and convergence of the methods, the condition number estimate,
the computation of spectral portrait and spectrum dichotomy, are not suitable for
large sparse matrices, because of memory size and computation time.

In order to ensure a good numerical quality when solving the problem (P), we
advise to use the LAPACK library [1] for small matrices. Since the LAPACK routines
are stable, the accuracy of the result depends only upon the condition number.
The condition number is well known in the symmetric (or hermitian) case and is
estimated with a few LAPACK routines in the nonsymmetric (or nonhermitian)
case.

However, the use of a library requires help by means of artificial intelligence, for
instance, as the NAG society is doing for its various libraries [5, 20, 28]. In the first
part of this thesis, we present an expert system called SESAME [6], which can either
select the LAPACK routines sequence to solve the given problem (P) or validate
a user choice of routines. Finally, it can give an estimate of the accuracy of the result.

Two new tools are described in this thesis in order to analyze methods of reso-
lution for the problem (P) in the case of large sparse matrices.

The spectral portrait of a matrix [31, 46] provides useful information. For ins-
tance, the measure of its distance to singularity or an estimate of the eigenvalue
condition numbers. Usually spectral portraits are computed using a Singular Va-
lue Decomposition, but this approach is not suitable for large sparse matrices. The
second part of the thesis is devoted to the computation of a spectral portrait for
large sparse matrices [7]. It is based on a modification of the Davidson’s algorithm
[15, 39].
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Krylov subspaces [32] have an important place in sparse linear algebra, since
numerous iterative methods in linear algebra dealing with large sparse matrices
require these subspaces. They are used in projection methods such as the Lanczos
method [33], or the Arnoldi method [2], for the eigenproblem. The third part of the
thesis is devoted to a theoretical study of the condition number of Krylov bases and
subspaces [8].
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Chapter 1

Introduction

Because scientific libraries grow rapidly, it becomes difficult for the user to select
the best routine to solve a given problem. Therefore, it is necessary to provide
intelligent software for guiding the user. For instance, the NAG society is developing
expert systems to help the user for selecting a routine from its various libraries
[5, 20, 28]. A prototype for solving linear equations has been realized at the CNES
[44]. The calling sequence for the selected routines can also be generated as, for
instance, in the expert system for the MODULEF library [34].

Conversely, it might happen that the user wants to check whether a selected
routine can solve the given problem, for instance whether the data are in the domain
of the chosen numerical method. An expert system will have to work in the opposite
sense, i.e. validate the correctness of the routine selection for the solution of a given
problem.

The accuracy of a result in scientific computing depends upon the error in the
data, the numerical stability of the algorithm, and the condition number of the pro-
blem. A few tools can now give an estimate of the error in the result. For instance, the
expert system in [30] selects and executes some routines that use interval arithmetic
to provide a result interval with guaranteed accuracy. The toolbox AQUARELS [18]
collects some solutions to control or improve the accuracy of scientific computations
into a consistent and user-friendly structure. An expert system might suggest the
use of such tools for the estimate of the final error.

We have developed a first prototype at IRISA, called SESAME (Expert System
for the Selection and vAlidation of numerical MEthods) [6]. Our expert system deals
with the three following tasks :

e selection of routine,
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e validation of routine,

e validation of result.

We have chosen to deal with the LAPACK library [1] and more precisely with a
subset devoted to eigenproblems and containing about hundred routines. We claim
however that this domain is sufficiently large and complex to show the capabilities
of our system.

The choice of the LAPACK library allows us to simplify and conclude the vali-
dation of results. Indeed, since the algorithms used in LAPACK are stable, we do
not worry about the rounding errors. Moreover, the library provides routines to esti-
mate the condition number for the computation of the eigenvalues and eigenvectors,
which allow to estimate the error in the result, given the error in the initial matrix.

For several reasons, the system is based on artificial intelligence techniques.
Firstly, an advantage of an expert system is to explain how it finds the wanted
result. Further, an interface facilitates its use. Moreover, the knowledge modelisa-
tion is easier and can relatively grow easily.

The numerical framework is modeled with a knowledge base of objects descri-
bing the mathematical entities to be manipulated. These objects are organized into
hierarchies which can be complex due to the multiple inheritance. The basic infe-
rence mechanism is the classification process which is very efficient in the context of
scientific computing. During the classification, some attribute values can be inferred
from default values or attached procedures. Thus, the functioning of the selection
of routine is nearly the same as for a decision tree. We only need to infer the name
of the routine to use in the leaf which has been classified as ”sure”. But the same
knowledge base allows also to check the validity of a routine, thanks to the attribute
classes. In this case, the classification takes into account the name of the routine
and the routine is valid if and only if a leaf is classified "sure”.

Our system is based on the development shell SHIRKA [41], written in Le-Lisp,
which provides means to describe knowledge bases and to apply a classification me-
chanism upon them.

The second chapter describes the numerical problem and formalizes it to obtain

a modelisation by objects. The third chapter is devoted to the software SHIRKA
and to the way it is used.
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Chapter 2

Numerical expertise

The user’s problem is the following : Given a square complex matrix A, find
some A € C and/or z € C™ such that :

A is an eigenvalue of A (i.e. det(A — AI) = 0)
and z is the associated eigenvector (i.e. Az = Az).

For the moment we only consider matrices that can be treated with LAPACK,
i.e. relatively small order matrices (say of order less than 5000), and with dense, pa-
cked or band storage. The case of large sparse matrices is not treated in LAPACK.
We do not discuss here the generalized eigenvalue problem. Of course, it could be
an extension of the knowledge base.

Our expert system executes the following different tasks :

e Find the sequence of routines to use for solving a given eigenproblem.

e Check the validity of a sequence of routines for solving a given eigenvalue
problem.

e Provide the numerical quality of the result.

2.1 Selection and validation of routine

The goal of this section is to give the different methods of resolution of this pro-
blem and the corresponding LAPACK routines. These methods depend upon some
properties of the data. Since the first letter of the routine names depends only on
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the type of computation (single or double precision) and on the storage of the ma-
trix elements (real or complex storage), we change it to an "x”. Indeed, this first
letter is a ”S” for single real precision computation, a ”D” for double real precision
computation, a ”C” for single complex precision computation and a ”7Z” for double
complex precision computation.

2.1.1 Eigenvalue computation

When computing eigenvalues, we have first to reduce the matrix A to a matrix
which has the same eigenvalues but with more null elements, in order to reduce the
time of computation. This is usually achieved by applying the Householder method
[13, 50], which constructs a unitary matrix S (S* = S~!) such that H = S*AS is an
upper Hessenberg matrix, i.e. a matrix with null elements below the subdiagonal.
The Householder method respects the symmetry, i.e. if A is a symmetric matrix
(resp. hermitian) then the reduced matrix will be a tridiagonal symmetric matrix
(resp. tridiagonal hermitian). In the hermitian case, we can transform the tridiago-
nal hermitian matrix into a real tridiagonal symmetric matrix.

If the matrix is nonsymmetric then the LAPACK routine for this reduction is
xGEHRD, and in the real symmetric case (resp. hermitian), it is xSYTRD (resp.
xHETRD) for a dense storage, xSPTRD (resp. xHPTRD) for a packed storage and
xSBTRD (resp. xHBTRD) for a band matrix.

We have now constructed a matrix H = S*AS with more null elements than A
and which has the same eigenvalues. Therefore, we can restrict our discussion to one
of the two following types of matrices :

1. Upper Hessenberg
2. Real tridiagonal symmetric

There does not exist an efficient method to compute only a part of the spec-
trum of a Hessenberg matrix (real or complex), therefore, we always compute all
the eigenvalues. We use the double-shift QR method [21, 25] (routine xHSEQR).
This method is an iterative method which consists in the construction of a matrices
sequence Hj unitary similar (i.e. for all k£ it exists a unitary matrix Qj such that
Hjp = Q7 HQp). This sequence converges to an upper block triangular matrix called
Schur form of H. Each of the diagonal submatrices correspond to eigenvalues with
the same modulus. The shifts enable to accelerate the convergence to the Schur
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form.
Practically, the size of the diagonal blocks is 1 (single eigenvalue) or 2 (complex
conjugate eigenvalues).

If the matrix is real tridiagonal symmetric, we can compute the eigenvalues
one by one by using the method of bisection (routine xSTEBZ), which enables
to approach as close as desired the wanted eigenvalue. If all the eigenvalues are
desired, we use the QL method (routine xSTEQR if we want to compute some
eigenvectors and routine xXSTERF which is more efficient if we only want to compute
the eigenvalues). This method is the QR method in which L is a lower triangular
matrix. It is prefered for its advantages of programming.

We remark heuristically that it is more efficient to use the method QL as soon
as we want to compute more than 25% of the eigenvalues.

When using the QR (or QL) method, we construct a unitary matrix @ ((Q* =
@71, such that 7 = Q*HQ is in Schur form.

Remark 2.1 The Schur form of a symmetric matriz is a diagonal matriz.

2.1.2 Eigenvector computation

After computing the eigenvalues of A by the QR (or QL) method, we can com-
pute all its eigenvectors by the backward substitution method (routine xXTREVC in
the nonsymmetric case and xSTEQR in the symmetric case) which we describe now :
let T in Schur form constructed with the QR method, we compute its eigenvectors
(easy and efficient) and multiply then by SQ : these new vectors are the eigenvectors
of A. S and @ have been defined in subsection 2.1.1. Therefore, after computation
of these two matrices we have to store them.

If we are only interested by computing an eigenvector associated to an eigenva-
lue for which we know a good approximation X/, or if the eigenvalues have not been
computed by the QR (or QL) method, we may use the method of inverse iterations
[38] (routine xSTEIN in the symmetric case and xHSEIN in the nonsymmetric case).
This iterative method is defined in the following way (Power method for (T—\T)71):

e Let ug be a non-null arbitrary vector

e For k > 0, we define ugqq by ("= N1 )ugy1 = ug
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It is proved that u; converges toward the eigenvector associated to the nearest
eigenvalue of )/, except if ug is orthogonal to this eigenvector.

We decide heuristically to use the method of inverse iterations if we want to
compute less than 25% of the eigenvectors.

2.1.3 Formalization

We just have seen that the method of choice depends upon certain properties of
the matrix (symmetric or not, real or complex, ...) and the number of eigenvalues
and vectors wanted.

Here are the different steps to solve the eigenproblem along with the names of
LAPACK’s routines implementing those steps.

1. Symmetric matrix :

(a) Matrix transformation : (Householder method)
i. Dense storage : xXSYTRD (real), xHETRD (complex).
ii. Packed storage : xSPTRD (real), xHPTRD (complex).
ili. Band storage : xXSBTRD (real), xHBTRD (complex).
(b) Eigenvalue computation :
i. Less than 25% : xSTEBZ (Bisection method)
ii. More than 25% (QR method)
A. More than 25% of the eigenvectors are desired : xSTEQR
B. Less than 25% of the eigenvectors are desired : xSTERF
(c) Eigenvector computation :
i. Less than 25% : xSTEIN (Inverse Iterations)
ii. More than 25%

A. Eigenvalues computed with xSTEBZ : xSTEIN (Inverse Itera-
tions)

B. FEigenvalues computed with xSTEQR : xSTEQR (Backward Sub-
stitution)

2. Nonsymmetric matrix :

(a) Matrix transformation : xGEHRD (Householder method)
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(b) Eigenvalue computation : xHSEQR (QR method)
(c) Eigenvector computation :

i. Less than 25% : xHSEIN (Inverse Iterations)
ii. More than 25% : xXTREVC (Backward Substitution)

In the case 1(c)iiA we consider that a part of the eigenvalues is given by the user.

2.1.4 The driver and expert routines

For standard eigenproblems, we can also use driver or expert routines calling
directly a sequence of these previous routines. In the symmetric case, we have 28
routines (14 to compute a few eigenvalues and, if required, its associated eigenvec-
tors and 14 routines to compute all of them) and 16 routines in the nonsymmetric
case (8 with condition number computation and 8 without). We present here these
standard eigenproblems and the names of the routines solving them.

1. Symmetric matrix :

(a) Computation of all the eigenvalues and, if required, all the ei-
genvectors :

i. Real dense storage : xSYEV
ii. Complex dense storage : xHEEV
iii. Real packed storage : xSPEV
iv. Complex packed storage : xHPEV
v. Real band storage : xSBEV
vi. Complex band storage : xHBEV
vii. Real tridiagonal storage : xSTEV

(b) Computation of a few eigenvalues and, if required, of the asso-
ciated eigenvectors :

i. Real dense storage : xSYEVX

ii. Complex dense storage : xHEEVX
iii. Real packed storage : xSPEVX
iv. Complex packed storage : xHPEVX
v. Real band storage : xSBEVX
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vi. Complex band storage : xHBEVX
vii. Real tridiagonal storage : xSTEVX

2. Nonsymmetric matrix :

(a) Computation of all the eigenvalues and, if required, all the ei-
genvectors :

i. Without computation of condition number : xGEEV.

ii. With computation of condition number : xGEEVX.

(b) Computation of all the eigenvalues and, if required, all the Schur
vectors :

i. Without computation of condition number : xGEES.

ii. With computation of condition number : xGEESX.

This presentation which looks like a decision tree allows to select a sequence
of routines for a given problem, but it does not enable to determine whether a se-
quence of routines can solve a given problem (validation of routine). Indeed, these
trees advise the best routine to solve a given problem but do not provide a list of all
the available routines. However, we can’t exclude the use of a routine for the reason
that it is not the best. Therefore, for the validation of routines, we have to create
a knowledge base in which we give all the available routines to solve a given problem.

2.1.5 Validation of routine

We want to remark that most of these routines have been implemented with
respect to a particular matrix storage (symmetric, band, packed, ...).
Therefore, we wish, for instance, to prevent the use of a routine treating nonsymme-
tric matrices if the matrix of the problem is symmetric, although it is mathematically
feasable.

Therefore, we will have to take into account that we can not exclude the use of
a routine computing all the eigenvalues (or all the eigenvectors), even if only a few

of them are required, or to compute all the eigenelements of a matrix one by one ...

Here are the different available routines (except the best one) to solve a given
problem :
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1. Symmetric matrix :

(a) Eigenvalue computation :

i. More than 25% : xSTEBZ.
ii. Less than 25% : xSTERF, xSTEQR.

(b) Eigenvector computation :

i. More than 25% : xSTEIN.

ii. Less than 25% : xSTEQR (if the eigenvalues have been computed by
this same routine).

2. Nonsymmetric matrix :

(a) Eigenvalue computation : None.
(b) Eigenvector computation :

i. More than 25% : xHSEIN.
ii. Less than 25% : xXTREVC if the matrix is on Schur form.

Here is the list of all the driver and expert routines available for a given problem
(except the best one) :

1. Symmetric matrix :

(a) Computation of all the eigenvalues (and eigenvectors)

i. Real dense storage : xSYEVX.

ii. Complex dense storage : xHEEVX.

iii. Real packed storage : xSPEVX.

iv. Complex packed storage : xHPEVX.
v. Real band storage : xSBEVX.

vi. Complex band storage : xHBEVX.

vii. Real tridiagonal storage : xSTEVX.

(b) Computation of a few eigenvalues (and associated eigenvectors)

i. Real dense storage : xSYEV.
ii. Complex dense storage : xHEEV.
iii. Real packed storage : xSPEV.
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iv. Complex packed storage : xHPEV.
v. Real band storage : xSBEV.

vi. Complex band storage : xHBEV.

vii. Real tridiagonal storage : xSTEV.

2. Nonsymmetric matrix : None.

2.2 Validation of the result

The solution of a given problem is more or less sensitive to data perturbations.
The condition number of the problem is a measure for this variation.
We will assume here that the computations themselves are done without rounding
errors. Thus, the computed results correspond exactly to the data.
A problem is said well-conditioned when its sensitivity to the data perturbation is
not high. On the same way, it is said ill-conditioned when it is very sensitive to the
perturbations.

The condition number of an eigenproblem consists of a measure of the variation
of the eigenvalues and vectors due to a matrix perturbation AA on A. This has
been studied in detail in [10]. We recall here the results used in LAPACK and in the
expert system.

2.2.1 Condition number in the symmetric case

The eigenvalues are well conditioned with a condition number equal to 1. The
condition number of the eigenvector or invariant subspace depends only upon the
distance between the cluster of eigenvalues associated to the computed invariant
subspace and the rest of the spectrum : let

e ) be an eigenvalue and z its associated eigenvector,

e 0 be a cluster of eigenvalues and M its associated invariant subspace.
then

cond(A) = 1
(cond(2))™" = dist (A, sp(4) = {A})
(cond (M))™" = dist [U, sp(A) — {U}]
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2.2.2 Condition number in the nonsymmetric case

The formulation of the condition number is complicated [10] and is related to the
Jordan form of the matrices. The computation of this Jordan form is very difficult
[26]. Therefore, we present here a method to estimate the condition numbers which
is more efficient than computing them exactly. This method [3] is for nonsymme-
tric matrices in Schur form (upper block triangular matrix given by the method QR).

Let T (n by n matrix) on Schur form :

Ty T
T = 11 112
0 Ty
where 111 (m by m matrix) is associated with m eigenvalues of the same modulus
for which we want to compute the condition number.

Remarks :
e [If the eigenvalues are complex conjugate then the matriz Ty will be 2 by 2.

o In practice, if the mulliplicily of the eigenvalue is m > 1 then Ty, will have m
distinct close eigenvalues (rounding errors). Therefore, we prefer to consider
clusters of eigenvalues rather than multiple eigenvalues.

We assume henceforth that AT is a matrix perturbation of T', e; = |[|[AT||; and

er = ||AT||F where ||T||F =

1. Single eigenvalue and associated eigenvector

(a) Single eigenvalue :

Let A be an eigenvalue of T', and )\’ the eigenvalue of T+ AT closest to
A, we can prove [50] :

A= N[ < & [[Pll2 + ()] with [[P]l; =

lz* |

l1zl2 |9l
respectively the right and left eigenvectors of 1" associated to A (T'z =

where z and y are
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Az, Ty = Ay).

Remark : In this case, the computation of || P||; requires only the right
and left eigenvectors associated with the considered eigenvalue.

Associated eigenvector :

Let = be the right eigenvector of T" associated to A and 2’ the correspon-
ding perturbed eigenvector of T'+ AT, we prove [16] :

2 e
b(z,2') < —————
( )< sep (Th1, T22)

where sep (111, 1532) is defined by :

+ O(e%)

i. if T11 is 1 by 1 (real eigenvalue), we have 777 = A and then [48] :

SEP (Tll,TQQ) = min |(AI— T22) .’E||2

l|z[l2=1 |

ii. if Th1 is a 2 by 2 block (complex eigenvalue), then we use a unitary
rotation to triangularize this block to get :

A
; 12
T—(o TZ;Q)

and sep (T11,Ta2) = min  |[(A T = T3,) z||2

ll=[l2=1

In both cases, | sep (T11,T22) = min [|[(A ] —T") z||2 | where T" = Ty if

l|z[l2=1 |

the eigenvalue is real and 7" = T}, if the eigenvalue is complex.

Remark : We can give an estimate of sep (T11, Taz) by computing || K|y
ott K = (T" — XI) because sep (T11,Ty2) = ||[K~Y|5" and

1 - o
\/m| K 1”2S n_ll

KMy < | K~
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2. Cluster of eigenvalues and associated invariant subspace

(a)

RR n"2382

Cluster of eigenvalues :

The computation of the condition number of an eigenvalue of multiplicity
m > 1 requires its index [10] (size of its largest Jordan block associated).
But practically, it is very difficult to compute the index. Therefore, we
consider the following quantities :

o \= Mcem@ the mean of the block of eigenvalues of 174,
e )\ the mean of the block of eigenvalues of T'+ AT corresponding to
A

bl

and we prove [29] that | |X — X'| < € || P||2 + O(2) | with the spectral pro-
jector P defined by :

where R is the solution of the Sylvester equation T711 R — RT3, = Tis.

Remark : We have ||P|l2 = \/1+ ||R]||3, bul its computation is quite
ezpensive. Therefore, we prefer to compute ||P||' = /1 + ||R||%. Indeed,

1 1 NG
IR[Z < [IR[F < n||IR[3 = < <

JIFIRIE P2 ™ /14 R

Associated invariant subspace :

Let :

e M be the right invariant subspace of T1; and M’ the corresponding
perturbed subspace,

® 00:(M, M') the angle between the subspaces M and M’ defined by :

0 X,Y)= in 6 = i 6
mee XY = B B T T B B 1Y)
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2
We prove [16] that | 0,4, (M, M') < r

<———— 1 0(&
sep (T117T22) ( F)

T X - XTa|le .
I 111, T52) = = Omin( K
where  sep (111, 132) pin Xl Omin(K)

with K =1, , @ Tyy — T, ® I,.

Omin designs the smallest singular value and A @ B is the tensorial pro-
duct (or Kronecker product) of the matrices A and B.

Remark : An estimate of sep (T11, Ts2), is given by || K77

K31

Indeed, sep(Ti1,T2) = Opmin(K) = |
1
— K™ o < yfm(n—
NI Iz < /(= m)]

2.2.3 Estimation of the condition number

and I(_1||1 S | I(_1||1

Let 7' (n by n nonsymmetric matrix) in Schur form :

T T
7= 11 412
where the eigenvalues of 771 (m by m matrix) define the considered cluster. For
instance, we group the eigenvalues which are equal at the machine precision.

Given the previous upper bounds of subsection 2.2.2, we only need to compute
| P||2 and m to estimate respectively the condition numbers of the eigenva-
lues and eigenvectors.

In practice, we prefer to estimate the reciprocals of the condition numbers (|| P||;*
and sep (T11,132)), because these two quantities lie between 0 and 1. The values
close to 0 correspond to large condition numbers.

The estimate of a single eigenvalue costs O(n) operations, and about O(n?) ope-
rations for the associated eigenvector. The LAPACK routine corresponding to these
estimates is XTRSNA. Thanks to a parameter of this routine, we can chose to esti-
mate only one of the two condition numbers (eigenvalue or eigenvector) or both.
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The computation of the condition number of a cluster of eigenvalues or of the
associated invariant subspace cost O(n®) operations or O(n?) if m < n. A LAPACK
routine estimates these condition numbers : it is xXTRSEN.

Remark : Since ||P||2 = 1 and sep (T11,T522) = dist (sp(T11), sp(T22)) when the
matrix is symmetric, we can compute in this case these quantities by hand.
2.2.4 The stability of the algorithms

The stability of an algorithm allows us to study the impact of rounding errors on
the result [19] : let us consider the following problem :

Compute & such that F(z,d) =0 (2.1)

The idea of the backward error [49] is to prove that the approximate solution T
is the exact solution of an approximate problem, i.e. F(Z,d) = 0 with ||d — d|| as
small as possible. We suppose that the floating-point system is consistent, i.e. for
any arithmetic operation or elementary function 7" and any operation or function g,
there exists constant K such that :

Ve, y e F |fl(zTy)—aTy| < Ke

Ve € F [fl(g(z)) —g(z)| < Ke

where F is a set of floating-point numbers and where € is defined by :

Vaz € R such that fl(z) exists |fl(z) — z| < |z]e

Definition 2.1 [11] An algorithm is numerically stable in V if for any d € V such
that F(x,d) = 0, the set D(d) = {d such that F(T,d) = 0} is non-emply and if there
exislts a constant K such that

Vd eV Cinf ||d—d|| < Ke
deD(d)

The backward error of a stable algorithm in 'V is given by :

Be = sup _inf ||d —d||
deV deD(d)
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Remark 2.2 Let Ad be a data perturbation. Taking into account the rounding er-
rors, we obtain the following error estimation :

[Az] < C(Be+[|Ad])

where AT = fl(z 4+ Az) — z, and C is the condition number of the problem 2.1.

Stability of the LAPACK routines

We can prove the following results [25, 50] :

1. Householder reduction of A to Hessenberg form
The computed matrix H satisfies H = Q* (A+ E) Q, with ||E||r < cn’e]|Al|r
where ¢ is a little constant and n is the dimension of the matrix A.

2. Tridiagonalization of Householder
Let A be the n by n symmetric matrix to tridiagonalize and A;, 7 = 1,n
its eigenvalues. Let T the tridiagonal matrix computed with the Householder
method and p;, ¢ = 1, n its eigenvalues. We have then :

i = Ai)?
% < 40me(1420€)%
3. QR method

The Schur matrix 7' computed by the QR method satisfies T'= Q* (A + F)Q
with || E||2 = €]|4]|2

4. Method of bisection
Let T be a n by n symmetric tridiagonal matrix with diagonal elements
a;, t = 1,n and subdiagonal 3;, 1 = 1, n.
This method consists in approximating an eigenvalue of T" by successives va-
luation of the Sturm sequences in values u closer and closer to A.
It can be shown that for any u the computed values of the Sturm sequences :
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Po(f), ..., pu(p) are the exact ones of a tridiagonal matrix with diagonal ele-
ments «; + da;, i = 1,n and subdiagonal §8; + 603;, i = 1,n, where da; and 63;
satisfy for e = 1,n :

|dai| < (3.01) € (o] + |])

|66:] < (1.51) € (|6:])

5. Inverse iterations method
The computed eigenvector z is such that (A, z) is an eigenelement of a matrix
A+ E with ||F|s < c€||A]|co where ¢ is a constant of order unity.

Therefore, we may further assume that all the LAPACK routines are numerically
stable.

2.2.5 Error estimation

We want to validate a result of computation of eigenvalues and/or vectors, i.e.
we use a sequence of routines to solve the eigenproblem and we need to have an
estimate of the error done on the result.

We just saw that the quality of the result depends upon the condition number of
the computed eigenvalue or vector and the stability of the algorithm. We have also
to take into account that the result depends upon the data precision.

In order to estimate the error in the result, we will theoretically have to :

1. Evaluate the error in the matrix (AA)

2. Compute the arithmetic stability of the used algorithms and estimate the
backward error (B)

3. Estimate the condition number of the computed eigenvalue or vector if neces-
sary (C)

The system will use the following error formula : C x (Be + AA), where € repre-
sents the computer precision.

Taking into account that the used routines are stable and that it is very difficult
to estimate B, we have chosen the arbitrary value B = 1 for all the computations,
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that means we assume that major part of the error comes from errors on A.
Strictly speaking, we would have to estimate the error AH in the matrix reduction
and use this bound subsequently. Since this step is well conditioned, we assume for
simplification that AH = AA.

We obtain then the following simplified errors :
[AA < Cy(e+ [[AA]])

1m0z (M, M")| < Cg (e + ||AA]|)

where C and Cy are the estimates of the condition numbers of the eigenvalues and
vectors respectively, and where AX and 0,4, (M, M) represent the errors when com-
puting an eigenvalue and an invariant subspace, respectively.

The estimate for the condition numbers C and Cy depends upon the matrix :

e if the matrix is symmetric then the condition number of an eigenvalue is always
equal to 1 and the condition number of an invariant subspace of dimension m
is equal to the distance between the block of associated eigenvalues and the
rest of the spectrum. The choice of m depends upon the results ; in practice
we will group close eigenvalues.

e if the matrix is nonsymmetric, the condition numbers C and Cy can be esti-
mated by an expert routine of LAPACK when computing the eigenvalues and
vectors, or after computation with a LAPACK routine. The choice of the size
m still depends upon the results.
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Chapter 3

Choices for the modelisation

We will discuss in the first section of this chapter our motivations for the selec-
tion of the development shell SHIRKA [41] in order to model the numerical expertise
presented in Chapter 2. In the following section, we describe how SHIRKA is used
to design our expert system SESAME. And, in the last section, we describe some
problems encountered when developing SESAME.

3.1 Why did we choose SHIRKA ?

The prototype deals only with eigenproblems for dense matrices but we must
keep in mind that a true expert system should cover all the LAPACK library and
even more. Therefore we want a development shell allowing an easy extension and
evolution.

In particular, only dense matrices are treated in the LAPACK library but the field
of sparse linear algebra is very active nowadays. Hence an expert system including
large sparse eigenproblems should evolve easily and rapidly take into account new
algorithms and new results on convergence or accuracy.

The expert system should also provide an efficient interface for scientific users
and allow a natural modeling of the numerical expertise.

3.1.1 Presentation of SHIRKA

The development shell SHIRKA is written in Le-Lisp, and provides means to
describe knowledge bases and to apply a classification mechanism upon them. All
the knowledge is contained into the objects which are organized into hierarchies.
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We will now give a brief definition of some notions of artificial intelligence used in
SHIRKA.

An object, static entity, is a structured assembly of all the characteristics re-
lated to a concept. The specification of this assembly is done with the attributes.
These objects are organized into hierarchies in order to create a lattice of classes
which pass on some informations by the inheritance mechanism. The classifica-
tion mechanism provides the dynamic of the objects. A class is a mould from which
we create some specimen called instance of this class.

The inheritance mechanism enables the classes to pass on, during the classifi-
cation process, some information (the values of the attributes) to its subclasses or
to its instances. Inheritance can be single or multiple. With multiple inheritance,
a subclass inherits from several classes, it means that it inherits the union of the
information contained in these classes.

The classification process allows to locate the instance in the hierarchy in func-
tion of the values of its different attributes and to determine others by inference.

3.1.2 Motivations of this choice

We have chosen the artificial intelligence approach for its standard advantages.
The evolution of the base will be easier. Thanks to Al, the system can explain its
answer because it does not forget the way which led to its conclusion. Moreover,
the classification applied on the hierarchies provides a dynamic of them, contrary to
C+4+ for instance.

The modeling with hierarchies of objects and the multiple inheritance allow
to describe complex objects and are well suited to describe mathematical entities.
Each object represents a mathematical context, and the properties of this context
are the attributes. The inference rules are implicitly embedded into the knowledge
base because of the organization in hierarchies and to default values or attached
procedures. No explicit rule such as ”if-then-else” has to be written : the basic
inference mechanism is the classification process.

For all these reasons, it is easier to design and maintain a knowledge-base with
modeling by objects rather than by rules. Finally, we can both select and validate a
sequence of routines with the same hierarchy by the attributes classes, contrary to
a modeling by rules.

As we have seen, there are several advantages to prefer artificial intelligence over
a usual program, and to do a modeling by objects.
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3.2 SHIRKA for SESAME

We present here how we will use SHIRKA to create SESAME ; it means that we
indicate how we use the notions presented in subsection 3.1.1.

The mathematical contexts will be represented by the objects.

The attributes will represent the mathematical properties : information about
the matrix, about the number of eigenelements to compute, about the accuracy
wanted ...

We will create a hierarchy of classes with the different values that can be
taken by these attributes.

In some classes, we will have enough information about one single step of the
eigenproblem in order to find the name of the appropriate routine. This name will
be contained in an attribute.

In some cases, it is interesting to group some attributes. This is possible with the
attribute classes defined in SHIRKA. For instance, we will group all the attributes
dealing with the names of the routines in an attribute class. Indeed, to determine
routines names we will be able to classify our instance without taking into account
this attribute class, since we want here to infer the values of these attributes. On
the other hand, for the validation of routines we will have to take into account this
attribute class, because the names of the routines are here some data of the pro-
blem. These attribute classes enable us to define only one base for both selecting
and validating a sequence of routines.

The general idea of a base is to create a hierarchy composed by a first class :
a concept (for instance the name of a problem). It contains some attributes for its
characterization. Next, we define a hierarchy of classes by defining some subclasses
to this first class, and so on. When defining a subclass, we specify the value of some
attributes. Therefore, the deeper we go in the hierarchy, the more the problem is
defined. It means that the number of valuate attributes increases, when following
the tree away from the first class. When the problem is enough well defined, we can
conclude the name of the routine. As we will see next, this conclusion may appear
in the leafs of the hierarchy or just before for some modelings.
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3.3 The story of SESAME

The main objective is to prove the feasibility of an expert system in respect with

the following tasks :

e Find the sequence of routines to be executed for solving a given eigenproblem
e Check the validity of a sequence of routines for solving a given eigenproblem
e Provide the numerical quality of the result

e Can evolve easily

Remark : We do not intend here to generate code, since in scientific computing,

the computations are not always done on working stations but often on supercompu-

ters.

3.3.1

We will now formalize all the expertise described in Chapter 2.

A unique base for SESAME

The first idea is to create only one base with all the information. This idea is

very interesting for the simplicity of its use : we create only one instance, we classify

it and we get the results. However, this solution was rejected quickly, because we

were faced with several difficulties :

1. Size of the base : the base became so big that it was very difficult to add new

problems.

. Validation of a sequence of routines : to validate a sequence of routines, we

begin with a classification and then we have to interpret the results of the
classification. In fact, we have to count the number of classes where a result is
given (classes where a name of routine is determined) and which are classified
”sure”. But with a unique base, it was difficult to find these classes with a
result, and to make sure they would stay there after an evolution of the base.

. Duplication of knowledge : the solution paths of some different eigenproblems

coincide after a few steps of resolution.

For instance, whenever we consider the eigenvalue computation of a hermitian
matrix on one hand and of a real symmetric matrix on the other hand, we first
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reduce it to a real tridiagonal symmetric matrix. In this example, the routine
of matrix reduction is not the same since the storage of the matrix elements is
different. But after the matrix reduction, we have the same problem in both
cases : computation of eigenvalues of a real tridiagonal symmetric matrix.
Therefore, the same routines to solve it are detected.

We are faced with the following problem : to select the routine of matrix
reduction, we have to distinguish the two eigenproblems in the hierarchies and
SHIRKA does not allow to group together these two problems (hermitian case
on one hand, and real symmetric on the other hand) after the determination
of the routine for the matrix reduction, in order to select the routines for
eigenvalues and eigenvector computation.

For the solution of the last problem we have thought of several solutions :

e Duplicate the knowledge to select the routines for the eigenvalue and eigenvec-
tor computation. But this was quickly rejected : inappropriate and too difficult
to add some new objects if the base grows. Moreover, the first two problems
were not solved.

e Begin by selecting the routine of eigenvalues and eigenvectors computation
in the symmetric case and finally the routine of matrix reduction. This is
not realizable because some eigenproblems require a special method of matrix
reduction in order to select the method of eigenvector computation.

e Create several hierarchies : one for each step of the solution process. This is the
solution that we have adopted. It is more flexible but it requires an interface
for communication between each step.

3.3.2 Several bases

First, we create two hierarchies for the data : one to describe the matrix (symme-
tric or not, real or complex ...) and another for the problem (number of eigenvalues
wanted : none, a few or many ; similarly, for the eigenvectors).

Next, we create one hierarchy for each of the three steps : matrix reduction,
eigenvalue computation and eigenvector computation.

This modeling is of interest since it explains the numerical resolution of the eigen-
problem. Moreover, the different bases are small enough to allow the addition of new
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problems with little effort. The validation of routines will be straightforward because
the classes in which the results are given are always the leafs of the hierarchies. The-
refore, to validate a routine, we will only have to check if a leaf has been classified
”sure” by the classification. But as we mentioned in the previous subsection, the
system sometimes has to know the name of the routine for the matrix reduction in
order to find the name of the routine for the eigenvalue computation. But, as we
have here one hierarchy for each of the three steps, we must have a link between the
different hierarchies. We choose to create a new attribute to follow the form of the
matrix through the different steps of the resolution. This attribute will be helpful for
particular cases, such as eigenvalue computation of a reduced matrix. Indeed, if the
matrix is already reduced then the first step of the eigenproblem resolution (matrix
reduction) has to be omitted. Due to this attribute the system detects whether the
matrix reduction has to be done or not and only gives the names of the routines to
execute.

As we said at the beginning of section 2.1, the first letter of each routine name
only depends upon the type of arithmetic : real or complex, single or double preci-
sion. Therefore, in order to avoid the unnecessary duplication of the knowledge, we
have to determine and treat the first letter of the routine names independently. This
will be done by a new hierarchy which can be considered as data. But this letter
causes some problems. For instance, for the validation of selected routines, we have
to be sure that the user has not created nonexistent names, by combining the first
letter with forbidden remaining parts of names. Therefore, we have decided to create
a new hierarchy (Nom-routines) which provides the names of the existent routines
of LAPACK and for the validation of routines, the user has to select its name in the
proposed list of routine names.

INRIA



39

Chapter 4

Description of the knowledge
base

The user provides some information about a matrix (real or complex storage,
symmetric or not ...), the number of eigenvalues and vectors wanted and the com-
puter precision. Then, he can choose between :

o Selecting the sequence of LAPACK routines to solve this problem.
e Validating the selected sequence of LAPACK routines.

e Validating the result of a routine (executed outside the system) by computing
the condition number if necessary, and choosing another routine if the result
is not acceptable.

The different concepts of the knowledge base are subdivided into three groups,
described in the three following sections :

e Description of the problem : the matrix (object Matrice), the require-
ments (number of eigenvalues and eigenvectors) (object Pb), the environment
(precision) (object Type).

¢ Routines : the driver routine (object Driver-routine), the routine for the
matrix reduction (object Transfo-matrice), the routine for the eigenvalue com-
putation (object Calc-val-prop), the routine for the eigenvector computation
(object Calc-vect-prop), the routines names to check if the user’s routines be-
long to LAPACK (object Nom-routines).
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¢ Validation of the result : the routine to estimate the condition number
(object Calc-cond), the formula to estimate the error (object Precision), the
error analysis (object Qualite-resultat).

4.1 The concepts Matrice, Pb, Type

They enable to describe the problem (the data) :

e Matrice : defines the matrix thanks to three attributes : real, symmetric,
storage ;

— Real, boolean, is true if the matrix elements are real, false if they are
complex.

— Symmetric, boolean, is true if the matrix is symmetric, false if not. We
assume here that symmetric means hermitian in the complex case.

— Storage, string of characters which indicates the storage of the matrix :
Dense, Packed, Band, Tridiagonal.

o Pb : defines the number of eigenvalues and vectors wanted thanks to two
attributes nb-eigva et nb-eigve. These are two strings of characters which
valuable domain is : None, A few (less than 25%), Many (more than 25%).

e Type : defines the environment of arithmetic : real or complex, single or
double precision. The two first attributes are mat which represents the matrix
described previously and precision, a string of characters, which value domain
is single or double. The third attribute firstlet, string of characters (attribute
class : results), is inferred when classifying and it gives the first letter of the
LAPACK routines to execute.

4.2 The concepts Driver-routine, Transfo-matrice, Calc-val-
prop, Calc-vect-prop, Nom-routines

They enable to infer or validate the sequence of routines to execute for the
solution of the problem (attribute problem (concept Pb)) which uses the matrix
defined by the attribute mat (concept Matrice) :

For any of the first four concepts, we affect an attribute string of characters
for the name of the routine (respectively driver, met-reduc, met-eigva, met-eigve).
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This attribute (attribute class : results) is either inferred when classifying (routine
selection), or provided by the user (routine validation).

4.3

Driver-routine : its attributes are mat, problem, driver(name of the
driver-routine). Moreover, in the case of a nonsymmetric matrix, we indi-
cate whether we want to estimate the condition numbers (attribute comp-
condition-number, boolean), and whether we want to keep the Schur vectors
(attribute Schur-vect, boolean).

Transfo-matrice : attributes mat, met-reduc(name of the routine for the
matrix reduction). A last attribute mat-state (attribute class : info) enables
to infer after classification the state of the reduced matrix (Hessenberg matrix
or real tridiagonal symmetric matrix).

Calc-val-prop : attributes mat, problem, mat-state and met-eigva(name
of the routine for the eigenvalue computation).

Calc-vect-prop : attributes mat, problem, mat-state, met-eigva and
met-eigve(name of the routine for the eigenvector computation).

Nom-routines : attributes typ, tree and proc(attribute class : results)(name
of all the LAPACK routines for the selected tree and the type of computation).

The concepts Calc-cond, Precision, Qualite-resultat

Calc-cond : determines whether the computation of the condition number of
the eigenvalues and/or vectors is required and by which routine this has to be
done. The inputs are the attributes mat (concept matrice), problem (concept
pb) and known-cond, boolean. Moreover, if the matrix is nonsymmetric, we
indicate the value of the attribute mat-state. We indicate, if required, the mul-
tiplicity of the eigenvalue via the attribute type-eigva, a string of characters.
We then know the appropriate computations by inspecting, after classification
with inference, the attribute computation (attribute class : results) and
the name of the routines to execute for these computations via the attribute
routine (attribute class : results)

Precision : estimates the error in the result from the values of the attribute
of real type cond, stab, delta and epsilon, by using the formula : cond *
(stab * epsilon + delta). The values of cond, delta, epsilon have to be specified
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by the user, with the possibility of excluding delta, but stab will be set to 1
in the system (if not specified). The estimated error is found in the attribute
prec of real type.

¢ Qualite-resultat : provides a diagnosis (attribute diagnosis, string of cha-
racters, attribute class : results) about the result. The attributes to know are
satisfied (boolean) and possibly firstlet (string of characters).

4.4 The knowledge base

All the objects contained in the knowledge base are pictured below ; we recall
that they are subdivided into three groups, corresponding to their use :

e Description of the problem : the matrix (object Matrice), the require-
ments (number of eigenvalues and eigenvectors) (object Pb), the environment
(precision) (object Type).

¢ Routines : the driver routine (object Driver-routine), the routine for the
matrix reduction (object Transfo-matrice), the routine for the eigenvalue com-
putation (object Calc-val-prop), the routine for the eigenvector computation

(object Calc-vect-prop), the routine names to check if the user’s routines belong
to LAPACK (object Nom-routines).

¢ Validation of the result : the routine to estimate the condition number
(object Calc-cond), the formula to estimate the error (object Precision), the
error analysis (object Qualite-resultat).
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matrice
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Object Driver-routine
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Objects Transfo-matrice, Calc-val-prop, Calc-vect-prop
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Object Nom-routines
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Objects Calc-cond, Precision,Qualite-resultat
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Chapter 5

Use of SESAME

5.1 Selection of routine

The user’s problem is to compute some eigenvalues and/or vectors of a given
matrix.

With the concepts that we have described, we will be able to identify and se-
lect the sequence of routines that has to be executed for the resolution of his problem.

We identify here the different steps to find the sequence of routines.
All the classification will have to be done with inference and without taking into
account the attribute class resulls.

1. Create an instance of the concept matrice, in order to get the properties of
the matrix which will be necessary for the following.

2. Create an instance of the concept pb, in order to know the number of desired
eigenvalues and/or vectors.

3. Create an instance of the concept type ; it defines the environment of compu-
tation. After classification of this instance, we know the attribute firstlet.

4. Create and classify an instance of the concept driver-routine, where the
attributes mat and problem are two instances of the concepts matrice, and pb,
respectively.

Two cases might appear :
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¢ A leaf of the tree is classified ”sure” : that means that the attribute
driver has been inferred. Therefore, there exists a driver-routine which solves
the given problem. The system only needs then to retrieve the value of the
attribute driver, which is the wanted result.

e No leaf has been classified ”sure” : there is no driver-routine that solves
the problem. We have to create and classify successively :

1. An instance of the concept transfo-matrice. Along with the attribute
class results, the attribute class info is ignored when classifying. When
the instance will be classified, the value of the attribute mat-state will be
inferred in order to use it as attribute of the following instance.

2. An instance of the concept calc-val-prop. We retrieve the value of the
attribute mat-state too which may have been changed.

3. An instance of the concept calc-vect-prop.

For each of these three instances, at most one leaf has been classified ”sure”.
We have to visualize the attributes of these leafs, in order to get the possible
values of the attributes met-mat, met-eigva and met-eigve, and we have to
display these attributes.

According to the particular case, we may have to display either only one routine
name (attribute driver) or more (attributes met-mat, met-eigva and met-eigve).
However, these attributes only contain the end of the routines name, since the first
letter of the name was detained by the attribute firstlet.

Therefore, for each routine name, we will have to display its first letter with the
attribute firstlet, then the rest of the name which will be contained, according to
the case, in the attribute driver, met-mat, met-eigva or met-eigve.

However, we would like to mention here a problem with our approach. After
reducing a symmetric or hermitian matrix, in order to compute eigenvalues and/or
eigenvectors, we obtain in both cases a real symmetric tridiagonal matrix. The li-
brary LAPACK takes this fact into account and there is no specific routine for the
computation of the eigenvalues and/or eigenvectors in the complex hermitian case,
since the routines for the real case are available, and after reduction, the hermitian
matrix is stored in real form.
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For instance, if we want to compute a few eigenvalues of a dense stored hermitian
matrix in single precision, we will have to use the following sequence of routines :
CHETRD 4 SSTEBZ. But the system will give the answer CHETRD + CSTEBZ,
since the first letter is determined from the storage of the input matrix numbers
(here a complex number). In the same way the system will advise ZSTEBZ, CS-
TERF and ZSTERF instead of DSTEBZ, SSTERF and DSTERF respectively. This
problem must be solved by an interface between the system and the user.

5.2 Validation of routine

The goal here is to establish whether a routine sequence, given by the user, really
solves the given problem. Therefore, the user specifies a routine sequence besides the
matrix and the problem.

In order to realize this we proceed as follows :

1. Create the instances of the concepts matrice and pb.

2. Create and classify (with inference and without taking into account the
attribute class results) an instance of the concept type, where the attributes
mat and problem will be given as input.

3. Create and classify (with inference and without taking into account the
attribute class results) four instances of the concept nom-routines, where typ
(concept type) and the attribute {ree are given as input. We get back the list
of existent routines for the selected tree (attribute tree) and the required type
of computations (attribute typ) as value of the attributeproc (attribute class
results). We create four instances in order to determine :

(a) the driver-routines (tree = ”driver-routine”)

C

)

b) the routines of reduction of matrix ({ree = "transfo-matrice”)
) the routines for the computation of the eigenvalues ({ree = "eigva-comp”)
)

(
(d) the routines for the computation of the eigenvectors (tree = "eigve-comp”)

In contrast to the routines selection, all the following classifications have to
be done without inference and with taking into account the attribute class
resulls.
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4. If the user has a driver-routine : create and classify an instance of the concept
driver-routine, where we will also value the attribute driver.

If a leaf is classified ”sure”, we can solve the given problem with the proposed
driver-routine : the choice of the routine is correct.

Otherwise, the user cannot solve the problem with this driver-routine : his
choice is false.

In both cases, it is useless to do the following step, because we can already
answer the user.

5. If the user has a routine of matrix reduction (otherwise go to the next step ;
indeed, the matrix may be already in reduced form, therefore he can directly
compute the eigenvalues and/or vectors) : create and classify an instance of the
concept transfo-matrice, where we have to valuate the attribute met-mat.
We will not valuate mat-state which will be inferred during the classification.

If a leaf is classified ”sure”, we can reduce the matrix with the proposed routine,
and we proceed with the next step.

Otherwise, this routine does not solve the given problem. It is the useless to
continue, since this choice of routine is false.

6. If the user has a routine for eigenvalue computation (otherwise, we go to the
next step :indeed, the user may desire only the computation of the eigenvectors
if he already knows the eigenvalues) : create and classify an instance of the
concept calc-val-prop, where we have to valuate the attribute met-eigva.

If a leaf has been classified ”sure”, then we may compute the eigenvalues with
the proposed routine : proceed with the next step.
Otherwise, the choice of the routine has been wrong : it is useless to continue.

7. If the user has a routine for eigenvector computation : create and classify an
instance of the concept cale-vect-prop, where we have to valuate the attribute
met-eigue.

If a leaf is classified ”sure”, we may compute the eigenvectors with the proposed
routine. The choice of routines has been good.
Otherwise, this routine is not acceptable for the problem.
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5.3 Result validation

Here we deal with the following problem : a computation of eigenvalues and/or
vectors has been done with a sequence of LAPACK routines and the user wants to
know the accuracy in the result (see subsection 2.2.5).

We will accomplish this as follows :

1. In order to know whether an estimate of the condition numbers has to be done

or not and, if yes, by which routine :

Create an instance of the concept cale-cond without valuating the at-
tribute of the class results.

Classify this instance (classification with inference and without taking
into account the attributes of the class results).

Return the attributes computation and routine

2. In order to know whether the solution is acceptable :

Create an instance of the concept precision without valuating the attri-
bute prec.

Classify this instance (classification with inference).
Return the attribute prec.

Create an instance of the concept qualite-resultat with no value for the
attribute of the class resulls.

Classify this instance (classification with inference and without taking
into account the attribute of the class results).

Return the attribute diagnosis.
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Chapter 6

Conclusion

We have proposed in this part an expert system, SESAME, based on artificial
intelligence techniques and dealing with the following tasks :

e Pind the sequence of routines for the solution of a given eigenproblem
e Check the validity of a sequence of routines for solving a given eigenproblem
e Provide a measure for the numerical quality of the result

The main advantage of such a system is in its flexibility to extend the knowledge
base without changing the existing base. Indeed, the work done already corresponds
to existing problems. If, in the future, new situations arise then, we only will have to
add them to the existing base. These additions might consist in an enlargement of
the value domain of some attributes and in creating some subclasses corresponding
to these news values. For instance, the system does not include the case of large
sparse matrices because this is not yet covered by LAPACK. However, it will be
covered in the future, and then we will have to insert it in the expert system. To
realize this, we only will have to enlarge the value domain of the attribute storage
of the concept matrice, by adding the value sparse in order to create a subclass
sparse-matrixz for the classification of sparse matrices, and in the concepts of routine
selection, we will add some subclasses corresponding to sparse matrices.

This modeling by objects enables us to use only one base for both selection
and validation of routines. Thus, the knowledge is not unnecessarily duplicated.
Moreover, this modeling by objects is natural because each object represents a ma-
thematical context.
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However, in its present state, the use of the system is close to artificial intelligence
and it requires some knowledge on the domain. Therefore, it would be interesting to
have an interface between the system and the user in order to improve the use by
a scientist. Moreover, when a routine is declared improper, the artificial intelligence
enables us to explain the reason for rejection. However, the explanations are in terms
of objects and classes and they are quite difficult to understand by a scientist who
ignores the system itself. It would be helpful to mask these artificial intelligence
aspects for the user.

We have decided not to generate the calling sequences for the selected routines,
because it would increase the complexity of the base enormously. Indeed, we have,
for instance, to treat the particular cases where the user only wants to compute
eigenvalues or vectors. Moreover, we have to take into account that the routine
sequence contains some routines which are uninteresting from the mathematical
point of view. These routines are at the moment advised in comments.

Our accuracy analysis is based on the numerical stability of the used algorithms
and on the estimates of the condition numbers provided by LAPACK. The case of
multiple eigenvalues is treated by the choice of a block size specified by the user. It
would be interesting to analyze this case more precisely, particularly for defective
eigenvalues, but our numerical knowledge in this area is not advanced enough yet
to include it into an expert system.

Some new tools such as spectral portraits are very promising and might help a
lot to assess the numerical quality of a result.

So the next chapters of the thesis will be devoted to the analysis and development
of new methods which might be integrated in the toolbox Aquarels and advised by
the expert system SESAME.
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Chapter 7

Introduction

In actual situations where we have to compute some eigenvalues of a large square
sparse matrix A € C"*", the matrix is quite often the result of a previous computa-
tion. Moreover, the backward analysis [49] of algorithms for computing eigenvalues
aims at characterizing these computed eigenvalues as the exact ones of a nearby
matrix. So, we have to consider that we compute some exact eigenvalues of a matrix
A+ A, A€ € such that ||Al|z is small, and we wish that these eigenvalues are
not too far from the eigenvalues of A. In other words, we want to bound the error
on an eigenvalue by some constant times the perturbation ||A||z. This perturbation
analysis leads to define and estimate, if it exists, the constant above, which is called
the condition number of the eigenvalue [10].

In the hermitian case, it is well-known that the condition number of an eigenvalue
is equal to one, so that the error in the computed eigenvalues is only of order ||Al|;.
In contrast, condition numbers can be very large in the non hermitian case. In par-
ticular, the condition number of defective eigenvalues is infinite. Several condition
number estimators have been designed, see [3] for example. Another approach to
study the eigenvalues of perturbed matrices is to create the spectral portrait of the
matrix. It amounts to estimate all the eigenvalues of all perturbed matrices A + A,
with ||Al|z varying in a prescribed range. This spectral portrait provides such infor-
mation and can be used in various problems [47], for example:

e To measure the distance to a singular matrix :

min{||E£||z such that A + F is singular}.
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e For the stability of some problems it is necessary that the eigenvalues have
negative real parts. With a spectral portrait, we can measure the quantity

min{||E||z such that the problem with A 4+ E is not stable}.

e Study the convergence of linear iterative solvers.

Some methods for the estimate of a spectral portrait already exist, but only for
small matrices [31, 47]. These methods are based on the Singular Value Decompo-
sition algorithm, see for example [25], but this algorithm cannot be applied to large
matrices because of the expense of storage requirements, and computational com-
plexity.

This part of the thesis has been organized as follows : in Chapter 8 we first recall
the link between the condition number and the spectral portrait ; then we propose
an algorithm for computing the spectral portrait of large matrices [7] based upon the
computation of the smallest singular value by a modification of Davidson’s method
[39], and in Chapter 9 we give some numerical examples.
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Chapter 8

Definitions and Algorithms

8.1 Condition number and spectral portrait

8.1.1 Condition number of the eigenvalue problem

The condition number of an eigenvalue consists in a measure of the variation of
this eigenvalue due to a matrix perturbation A [10].
If the eigenvalue A of A is not defective, then the error |AA| = |\ — A|, where X is
the nearest by an eigenvalue of A + A, can be bounded by |AX| < C) ||A||2, where
C) is the condition number of A.

8.1.2 Spectral portrait in the complex plane

The spectral portrait of a matrix is the collection of its e-spectra for
€ € [e1, €], where the e-spectrum of A, denoted by A.(A), is, for fixed € > 0, the
union of all the eigenvalues of all the matrices A + A with [|A]|2 < €| 4]|2-

Definition 8.1 Let p € C, then p € A (A) if there exists a matriz A (||Allz <
€||A||2) such that det(A+ A — pl) = 0.

This definition is equivalent to the following :

Definition 8.2 Letu € C, then p € A(A) if 0in(A—pl) < €||Al|2 where 0,5, (A—
pl) is the smallest singular value of A — ul.
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8.1.3 Relation between condition number and spectral portrait

The spectral portrait can be used for the construction of an estimate for the
condition number of the eigenvalue problem. Indeed, for fixed €, A.(A) is the union
of patches around clusters of eigenvalues of A. For e = 0, Ag(A) = A(A) : the patches
are reduced to points (the different eigenvalues of A), and there is a value of € for
which A.(A) contains the convex hull of the eigenvalues of A (¢ = 2 ||A]|2). So, let A
be a non defective eigenvalue of A, then we can consider some € € ]0,¢,] for which
the cluster of eigenvalues of the patch I'c around A is restricted to A. For these values
of €, we can estimate the condition number by :

_ diam(T)

\ R with diam(I'.) = max_ |u1 — pa|

e[| All2 p1oiiz €T

The computation of the spectral portrait consists of the computation of e(y, A) =
Omin(A — ul) for p taking discrete values in describing a grid of the complex plane.

e(p, A)
1Al

Remark: € A (A) for all € >

8.2 Computation of 0,,;,(4,) where A, = (A — ul)

The following algorithm is an adaptation of the modified Davidson’s algorithm
which computes the smallest singular value v and the associated right singular vec-
tor z of a large sparse matrix [39]. In fact, it computes the smallest eigenvalue and
the associated eigenvector of the hermitian matrix AEA# (where Aﬁl is the conju-
gate transpose of A4, ).
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C} stands for a n x n preconditioning matrix whose choice is discussed in [39].
Here, C}. is an approximation of (AEAM)_1 (in fact, we realize an incomplete LU
decomposition of A,). MGS stands for Modified Gram Schmidt Procedure, and m
is an integer which limits the size of the basis V.

Algorithm 1 :

e Choose m and tol
e Choose an initial vector V5 € C™*!, such that ||[V4|]2 = 1

e for k=1,...do

1. Compute the matrix Uy := 4, Vi

2. Compute the matrix Wy := Af Uy

3. Compute the Rayleigh matrix Hy := VkH Wi

4. Compute the smallest eigenpair (v, yx) of Hy

5. Compute the Ritz vector zp := Vi yz

6. Compute the residual r; := Wy — 1/13 Ty

7. if ||r|| < tol then exit

8. Compute the new direction iy := Cp ry

9. if dim(Vy) <m -1
then Vi := [V, m] where t; := (I — VkaH)tk
else Viq1 := MGS(z, tk)

end if
end for

The idea behind this algorithm is to build gradually a dense hermitian matrix
Hy = VkH Af A, Vi (steps 1-3) using projection techniques, then we compute the
smallest eigenpair of the projected matrix Hy (step 4). If this eigenpair is a good
approximation of the smallest eigenpair of AfAM then we stop (step 6). Otherwise,
we increase the basis Vi (step 9) by incorporating a new direction (step 8) to the
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previous subspace. This algorithm is an algorithm with restart, this means that if
the size of the basis V} is greater than a fixed size m, we restart the algorithm with
the last Ritz vector z; and the corresponding direction ¢ (step 9).

The starting vector Vj is chosen randomly and it is unlikely that it contains

any singular vector of A — ul. At convergence, v and x} approximate the smallest
singular value and singular vector.
An important characteristic of Algorithm 1 is that the matrix Aﬁl A, is not required
explicitly. We only need two subroutines that compute A, u and Aﬁl v for given
and v. At step k, the basis V41 is obtained from V} by incorporating the vector
tr := Cpry after orthonormalization. The subspace spanned by Vi is not a Krylov
subspace, and since the matrix Cj is not diagonal, a linear system must be solved
at each iteration. The hope is to reach the convergence very quickly with a small
value of m, thus rewarding the extra cost involved by this system resolution. A
detailed convergence analysis of Algorithm 1 can be found in [14], and a simplified
convergence result for the smallest singular value in [39].

8.3 Computation of the spectral portrait

We cannot compute the spectral portrait of a matrix A "everywhere” (more pre-
cisely in the disk centered at 0 of radius ||A||2), because this computation would be
too expensive. So, we assume that we only want to know the spectral portrait in the
neighbourhood of a complex value, to check for example whether this value is a good
approximation for an eigenvalue of A. So, we define a grid on the complex plane over
which we want to obtain the spectral portrait. For this, we give two points of the
complex plane, (z1,y1) (bottom left point of the grid) and (zz, y2) (upper right one),
and the number of points in the two directions, nz and ny.

The spectral portrait computation consists merely in the computation of e(u, A) =
Omin(A — ul) for each =z + iy of the grid.

Algorithm 2 :

Ty — I =0
= - —
nr —1

o p=ua1+ 1y, slepy =

e for j = 1,nz do
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1. for £k = 1,ny do

(a) Compute 0 (A — pl) (by Algorithm 1)
(b) = p+tstep, (next p in the current column)
end for
2. =+ step, (next column)
3. step, = —step, (we change the direction of going through

the column)

end for

We see that we have to compute 0,,i,(A — pl) for nearby p. For that reason,
it is interesting that, in Algorithm 1, we compute not only the smallest singular
value but also the associated vector. Indeed, in the first step of Algorithm 1, we
have to choose an initial basis V' which is a vector. Now, during the computation
of 0,nin(A — pl) for one p, we increase the basis V' by adding at each iteration a
new direction, and the last z; provides convergence. So, if we take it as an initial
vector for the computation of 0,,;,(A — p'T) where p is near from g, then it should
improve the convergence since closed matrices have closed singular values and often
closed singular vectors.

For this reason, we go through the grid as described in Algorithm 2
(steps 1b, 2, 3). We make sweeps over the grid column by column and alternati-
vely from bottom to top and from top to bottom. This means that we always deal
with closed values pu.

Now we define a color map by subdividing the range [min{e(p, A)},
max{e(y, A)}] into intervals of equal length and by assigning a color to each inter-
val. Therefore each point p of the grid will be assigned to a color according to the
value €(u, A). Points of the same color correspond to an e-spectrum.

In fact, it would be very interesting to find an effective method, to compute only
the e-spectrum for a given €. Indeed, we can imagine that the user knows the error
in the computation of the matrix A, and with this error he wants only to know the
corresponding e-spectrum. To realize this, we might follow the level lines [31], but
the implementation of this does not seem to be efficient as far as we know.

RR n"2382



64

Chapter 9

Examples of spectral portraits

9.1 Comparison between the algorithm based on SVD
and Algorithm 2

We would like to show here the validity of Algorithm 2. We choose as an example
a matrix with two ill-conditioned eigenvalues, hence with a large e-spectrum even
for small e. The spectral portraits computed on one hand with the SVD algorithm
and on the other hand with Algorithm 2, are depicted in Figures 9.1, 9.2 for the
following triangular matrix A [22]:

-2 25 0 0 0 O 0
0 -3 10 3 3 0
0 o 2 15 3 3 0
A= 0 o 0 o0 15 3 0
0 o 0 o0 3 10 O
0 o 0 o0 0 -2 25
0 o 0 o o0 o0 -3
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Clearly, the eigenvalues are {—3,—2,0,2,3} where —3 and —2 are eigenvalues of
multiplicity 2, which are ill-conditioned as can be seen on the spectral portrait.
Even in this difficult case where very small singular values are attained at points of
the grid, Figures 9.1 and 9.2 are nearly the same.

The grid used in Figures 9.1, 9.2 and 9.3 is defined by:

(36173/1) = (_47 _1)7 (:EQ’?JQ) = (47 1)7 nr =ny = 100
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Figure 9.1: using Singular Value Decomposition

In order to estimate the condition number C) of an eigenvalue A of a matrix A
with a spectral portrait (see section 8.1.3), we consider the diameter of a patch I',
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around A, and the value of € corresponding to I'c. To estimate €, we look at the value
corresponding to the color of T, in the legend : this is the value of —Log10(¢) from
which we infer the value of €. An estimate of C) is then given by the ratio of the
diameter of I'. and e.

- Log10 { epsilon )
Lt R | 1 [
%:{5-/ e

e
N

Z height
Imaginary axis

P G

1]

Real axis

Figure 9.2: using Algorithm 2 with tol = 1072 and m = 2

As we can see in Figure 9.2, computed with Algorithm 2, some values are missing.
These values correspond to very small singular values of the order 107,108, that
is to say to small eigenvalues of AﬁIAM of the order 107,107, It is well-known
that ||vf —v?|| <||rx]|*> (see [37] for example). Hence the convergence threshold ol
must be very small to estimate small eigenvalues.
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- Log10 1 epsilon )
N

z height

Imaginary axis

legend —4 o -z 0 . o 7 4
Feal axis

Figure 9.3: using Algorithm 2 with tol = 107!* and m = 2

We plot in Figure 9.3 the same spectral portrait as in Figure 9.2 with tol = 10714
instead of 1073 and observe now only a few missing values, as expected. But the com-
putation time is very high. For example, in the previous example, with tol = 1074
the computation time is at least five times greater than for tol = 1072. So, we prefer
to keep tol not too small, because we have enough information with this value and
the time of computation is reduced.
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9.2 Spectral portrait of a few large matrices

We give here examples of spectral portraits for three non hermitian large sparse
matrices coming from the Harwell-Boeing set of test matrices [17]. We can deduce
from the three pictures that the eigenvalues are well conditioned, since the values of
—Log10(€) are not too large (see legend).

The following picture is the spectral portrait of the matrix HOR131. It arises
in a flow network problem. It is a square matrix of order 434 with 4710 nonzero
elements. The grid used is defined by:

(z1,11) = (—0.5,-0.2), (22,92) =(1,0.2), nz = 1000, ny = 10
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Figure 9.4: Matrix HOR131, tol = 1072, m = 40

In Figure 9.4, we see that the eigenvalues are close to each other, but still well
conditioned.
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The next picture was realized with the matrix PORES3. It arises from reservoir
simulation. It is a square matrix of order 532 and has 3474 nonzero elements. The
grid used is defined by:

(z1,31) = (—6150,-3.5), (22,¥y2) = (—6100,35), nz =50, ny = 100

- Log10 { epsilon )

P R R}
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Z height
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30 -B120

legend ~6150  -B140
Feal axis

Figure 9.5: Matrix PORES3, tol = 1074, m = 40

In Figure 9.5, two eigenvalues are plotted. We clearly see that the eigenvalue in
the top left corner is not as well-conditioned as the other one, because the patches
around it are bigger.
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Chapter 10

Conclusion

We have proposed an algorithm for estimating the spectral portrait of non her-
mitian large sparse matrices. The algorithm retains the advantage of Davidson’s
procedure in that the matrix A (resp. A7) is accessed only in the form of matrix
vector products. We would like to conclude with the following remarks :

e The algorithm we proposed can easily be parallelized. It involves sparse matrix-
vector products and BLAS primitives.

e The choice of the preconditioner (step 8 of Algorithm 1) is crucial for the
success of the method and it can be improved.

e We cannot easily reduce the number of grid points, because we must be sure
to capture all the eigenvalues.
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Chapter 11

Introduction

When using a computer for the solution of a numerical problem, we have to check
the accuracy of the result by computing the condition number of the problem, i.e.
to give a measure of the sensitivity of the result to a data perturbation. We deal,
in this part, with a method for the study of the condition number of a Krylov basis
and a subspace. The Krylov subspaces [32], built with a matrix A € R™*™ and an
arbitrary vector f € R", are often used in scientific computing with large sparse
matrices [2, 43]. In these problems, we need to project the large matrix onto a sub-
space in order to obtain a smaller matrix which is used to solve the initial problem.
We propose a method to measure the sensitivity of the Krylov basis and subspace
to a matrix or vector perturbation. This work was done in collaboration with S.K.
Godunov and S.V. Kuznetsov [8].

First, in chapter 12, we give the definitions of the distance between two bases
and two subspaces, the definition of the Krylov basis and subspace and the condi-
tion number of them. At the end of this chapter, we show that we can restrict
ourselves to the case of a matrix perturbation on a Hessenberg matrix with the
vector f = (1,0,...,0)T. In chapter 13, we give the method for the computation of
the condition numbers : we study the sensitivity, in first order (of small perturba-
tion), of the Krylov basis F' of dimension & constructed from A and f, to a matrix
perturbation A, i.e. we search X such that (/ + X)F is a Krylov basis of A + A.
Then, we show that X is solution of a Sylvester equation. More precisely, X can be
found from the solution of a linear system involving a large triangular matrix B(4:¥)
constructed from the elements of A. We prove then that the condition number for
the computation of the Krylov basis and subspace are deduced from the 2-norm of
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the inverse of B(F) . Chapter 15 is devoted to the stability of the algorithm for the
computation of the condition number and give some bounds to ensure the quality of
the result. Finally, in chapter 16, we illustrate this method by computing condition
numbers for several matrices and vectors.

INRIA



75

Chapter 12

Definitions and preliminaries

12.1 Distance between two bases and subspaces

Let F and G be two subspaces of R of dimension &, and let F’ and G be two or-
thonormal bases of F and G, respectively. Then, there exists some matrix W € R"*™,
such that W*W = I and G = W F. Let W be the set of such matrices, then VW € W,
there exists some unitary matrices U € R™*™ such that

coSw; — sinwq
sinwy  coswy

cosw; —sinw;
wW=U* sinw; cosw; U

0

+1

Definition 12.1

J
The distance between F and G is given by d(F,G) = min , Zw? where W =
Wwew =1
{W € R"™" such that G = WF and W*W = 1I}.
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The distance belween F and G is given by d(F,G) = r]gllél d(F,G) where F' and

G are respeclively two orthonormal bases of F and G.

If ¥ and G are close to each other, then G = WF with W = I + X + O(|| X||#)?
where || X||Fr < 1 and X* = —X. Let X be the set of all these matrices X. Then
VX € &,

0 —W1
oy e O

X =U" e U.

Since || X||F = /2 Zw?, we get the following:

1
L 12.1 d(F,G) = min —||X O(||X||7)?, wh
emma 12.1 d(F, G) = iy —5||1X[p + O(|X [p)?, where
X ={X such that || X||p € 1,X*=-X and G = (I + X + O(||X||r)?) F}

12.2 Krylov subspace and basis

Let A € R"*™ and f € R”, ||f||z2 = 1. The Krylov subspaces are, for 1 < k < n,
the subspaces Ki(A, f) = span[f, Af, A%f,..., A*=1 f] of dimension < k.

Let [ be the dimension of K,(A, f) = span[f,Af,..., A" f] : in fact, we have
}Cn(A7 f) = Span[fv Af7 T Al_lf] = }CZ(A7 f)
Definition 12.2 For 1 < k < I, the natural orthonormal Krylov basis of Ki(A, f)
is an orthonormal basis Fy, = {f1, fa,..., fx} such that for 1 < j < k, F; is the
Krylov basis of K;(A, ). F}, is unique except for the sign. In particular f; = £f.

Remark Fj, can be constructed by the Arnoldi process for example [2].
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Let V be an orthonormal basis of R” such that V' = (F}, F’), where F’ is an
orthonormal basis of Ki(A, f), and such that, in this basis, f = (1,0,...,0)T then
A is a Hessenberg matrix, where a;y1; =0 and a;41; #0 for 1 < < [.

Remark Ifl < n —1 then V is notl unique.

12.3 Condition number of Krylov subspace and basis

We give here the definitions for the condition numbers of the Krylov subspace
Ki(A, f) for 1 < k < [ and of its natural orthonormal Krylov basis through a
matrix perturbation A. These condition numbers are denoted by u{Ky(A4, f)} and

e {Kr(A, f)}, respectively.

Let
o K =Ki(A, f), and F its natural orthonormal Krylov basis. Since k <[, F'is
of dimension k.

o K=Kr(A+A,f),and F its natural orthonormal Krylov basis.

We assume that ||A|| is small enough to ensure that F is also of dimension k.
We apply the usual definition of condition number [49], where the metric on the set
of subspaces is defined by Definition 12.1 and we choose the Frobenius norm on the
space of matrices.

Definition 12.3

sa ) =iag{ s (G|

llAllF<e

and

i {Kk(A, )} = inf { sup (d(F’ 4 )||A||F)}
| |AllF

>0 LJjallr<e

Remarks
o [t is trivial to see that u{K1(A, f)} = m{K1(A, f)} = 0, since K1(A, f)={[}.

o Ifl=n, then M{}Cn(Avf)} =0 and :ub{lcn(Avf)} = Mb{}Cn—l(Avf)} because

in this case, the last vector is uniquely defined up to the sign.
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12.4 Simplification of the problem

We saw in section 12.2 that there exists some orthonormal bases V of R™, such
that H = V*AV is a Hessenberg matrix, and V*f = (1,0,...,0)7 = e;. The follo-
wing theorem shows that the condition number does not depend on the orthogonal
basis in which A and f are expressed.

Theorem 12.1 For 1<k </,
p{Ke(H,e1)} = p{Ki(A, f)}  and  m{Kr(H,e1)} = p{Kr(4, f)}
Lemma 12.2 Let U be an orthonormal basis of R™,
o Let X € R™*™, then |U*XU||lr = || X||F.

o Let G be an orthonormal basis of Ki(A, f), then UG is an orthonormal basis

Proof of the theorem

Ki(H,e1) = Kp(V*AV,V*f)
span[V* fL VAL, VAL, ..V ARLf]
V*Ki(A, f)

Let F and F be the natural orthonormal basis of Ki(A, f)and Kr(A+ A, f), then
V*F and V*F are the natural orthonormal basis of V*Ki(A4, f) and V*Kr(A +
A f)=Kip(H + V*AV,ey) = Kp(H + A, e1) where ||A'||r = ||A||r. By construc-
tion, we have

d(V*F,V*F) = mm —||Y||F7 where

o
{VstVp< 1,y ==Y and Vi = (T+Y + 0(||Y||% ) VR

b)) £

y

= Vst Vlr <1,y ==Y and F = (1+VYV”

{VstVp<1,y" ==Y and F = (I+Y + O(||Y||F )F}

Hence from Lemma 12.1 d(V*F,V*F)=d(F,F) and

eiKk(H,e1)} = up{Ki(A, f)}.
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A(Kp(H,e1), Kp(H + A'Jer)) = d(V'Ki(A, f),V*Kp(A+ A, f))
= mind(V*F,V*F)
FF

= mind(F,F)
FF

= d(Kr(A, ), Ke(A+ A, f))

Therefore p{Kr(H,e1)} = p{Kr(A, f)}.

12.5 Condition number through a vector perturbation

We can relate the condition number for the computation of the Krylov subspace
(v{Ki(A, f)}) and basis (1, {Ki(A, f)}) through a vector perturbation to the condi-
tion number for the computation of the Krylov subspace (u{Kx(A, f)}) and basis
({Kr(A, f)}) through a matrix perturbation.

Theorem 12.2 Let

o K =Ki(A,f), and F its natural orthonormal Krylov basis.

o K=Kr(A, f+6), and F ils natural orthonormal Krylov basis.
Then,

PAKK(A, )} = inf{ sup (d(F’ F))} <14 2V KAL)

>0 Jsl<e \ [16]]2

and

vKK(A, )} = mf{ sup (d(’c”a))} <1422 {Ke(A, 1)}

>0 | |1s)la<e \ I[0]l2

Proof We saw in the previous section that the condition number does not depend
on the basis in which A and f are expressed. Therefore, we assume here that f =
(1,0,...,0)T. Let é be a small vector perturbation of f such that || f 4 é||; = 1. We
would like to measure d(F, F) and d(K,K). There exists some rotation matrices R
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such that R*R = I and Rf = (f+6). Let 6 be the angle between f and f + §, then
16]|2 = 2sin &. Moreover, there exists some orthonormal bases in which R = I + §
where

8
. sin? —cosg
cosf—1 —sinb 2

5 = sin @ cosf — 1 - _94in -

O 2 cos% sing
Then ||S||F = 2v/2sin & = v/2||6|| < 1. Hence, R* = I — S at first order. Moreover,

K=Kp(A, f+8) = span[f+86A(f+6),...,A" ([ +6)]
= span[Rf,R(R*AR)f,...,R(R*AR)*1f]
= RKy(R*AR, f)= RKi(A+ A, f)

where A = R*AR — A= AS — SA at first order in ||5]|r.

Then d(K,K) = d(Ki(A, f),RKL(A+ A, f)). Let G be the natural orthonormal
1

basis of Kr(A+ A, f), then we know that, at first order, d(F,G) = —2||X||F7 where

X is such that || X|| < 1,X*=—-X and G = ({ + X)F.

At first order, F = (I4+ 8)G = (I + S)(I+ X)F = (I + S + X)F then

oy ISl IX]e
ar b= s+ xle < B IV o ar )
A
< 16lla + KA, pyIAlE

1Al

We remark that ||A||r < 2||A]|r||S]|F = 2V2||A||F ||6]]2, hence
d(F, F) < (14 2V2 m{Ku(A, 1)}) [8]]2
Then, Vb{}Ck(Avf)} <1+ Qﬂub{lck(Av f)}

The same technique applies for v{Ky(A4, f)}. O
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Chapter 13

Method to compute the
condition numbers of Krylov
subspace and basis

We want here to give a method to compute the condition number of the Krylov
subspace Kr(A, f) and of its natural orthonormal basis.
We saw in section 12.4 that we can assume that A is an Hessenberg matrix and that
f=1(1,0,...,0)T. Let us assume now that ‘2 <k <min(l,n—1)

Remark [ is such that aj4q, is the first zero of the subdiagonal of A, therefore [ is
the dimension of KC,(A, f).

Let ' = [f1,..., fk] be the natural orthonormal basis of K¢(A, f) where f; =
f=1(1,0,...,0)" and let F" = [f1, fa,..., fx] be the natural orthonormal basis of

Ki(A, f) where A = A+ A+ O(|A]Y) (|A|| < 1) and f; = f; = (1,0,...,0)7.

Then, in a basis obtained by completion of F’, the matrices of F and F are given by

If we find all matrices X € R™*™ (|| X|| < 1) such that F' = (I+ X + o(lal*)F
with X* = —X, then, due to Lemma 12.1, we will be able to compute d(F, F'), and
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then, the condition number of the Krylov subspace and basis (see Definition 12.3).

13.1 Structure of the matrix X

Definition 13.1 (Definition of the operator Ly )
Let M € R™" then Ly{M} denotes the first k — 1 columns below the subdiagonal of

m3 e O
M, ie L {M}y=| + - :

MmE41,k—1 0 ... 0

Mp1 oo My k1 0o ... 0

Remark £ is linear and its kernel is the subspace of Hessenberg matrices for the
first k — 1 columns.

We have to find X such that X* = —X, f; = f;, . Therefore X has the
following structure :

0 0 ..o 0
0 0 —L3,2 e —Zn,2
X = T32 0
: —ZTn,n-1
0 T2 vennn Tnn—1 0

Moreover, X has to be such that F=(I+X+O0(|A]*)F is an orthonormal
basis of Ki(4, f), i.e.
(1=x+o(Ia1») (A+a+o(a®)) (1+ X +o(alH) = 4 + o(|a]*)

where A is a Hessenberg matrix for the first £ — 1 columns. This previous equation
is equivalent to :

ce{(1-x+o(al)) (A+a+o(al®) (1+x +o(|al?)} = oA
thatis  £;{A+A+AX - XA+0(|A|H)} = o(|a]?)
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= Lp{XA-AX} =L {A} +0(]|A]P) (13.1)

In particular, the part under the diagonal of the n — k last columns of X can be
arbitrarily chosen. We take z; ; = 0 for j > k and ¢ > k, yielding :

0 0 e 0
0 0 L3 e —Tp2
T32
X = : 0 —Thi1k —Tp (5Tx)
Tk41,k O

13.2 Computation of X

For A given, we are searching X with the structure (57x) and solution of (13.1).
Therefore, in first order of ||Al|, we are searching X, the solution of :

{ X has the structure (S7x) defined in section 13.1 (13.2)

Le{XA—AX)} = £,{A}

Let m be the number of unknown components of X, given by
m=(k-1n+1-kk+1)/2,
and introduce the vectors
2B = (232, s Tna | Tazye oo | oo | Thgr - s Tng)) €R™

and (5(k) = ((5371, Ceey 6n,1 | .. | 6k+1,k—17 R (5n7k_1)T e R™
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Then, we can prove (see Chapter 14) that

X solution of (13.2) if and only if z*) solution of BA*) (k) = ()

where BAK) ¢ R™*™ s a triangular matrix built with the elements of A.

Lemma 13.1 B“*) s non singular because ils diagonal elements (@415, J
1,...,k— 1) are non zero.

13.3 Condition number of Krylov subspace and basis

Let us write X = X,gl) + XIEQ) + XIEB) where

0 0 ... 0
0 0 —.’E372 ...... —.Ik’g
) 13,2 0 O is such that I + X,gl)
Xlg )= : : . — 2k k-1 is a rotation
0 zp2 ..... Tk k—1 0 in }Ck(A, f)
0 0
—lL‘]H_LQ . —l‘mg
) : :
X}E ) —Tgy1k ... —Tpk | moves Kr(A, f)
0 Zpy12 o0 Thyrk
0w, cee Tk

XIES) =X - X,gl) — XIEQ) is such that I + XIES) is a rotation in K (A4, f)

Remark In section 13.1, we decided to take XIEB) = 0. Indeed, I + XIEB) s a ro-
tation in Kit(A, f), so it does not perturb the computation of Kr(A, f) and of ils
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Krylov basis.

We give here the condition numbers of the Krylov subspace and of its natural
orthonormal basis defined in Definition 12.3.

Theorem 13.1 Let | be the dimension of KC,(A, f), then for k € [2, min(l,n — 1)],
-1
the matriz C(A*) = (B(A’k)) exists (see Lemma 13.1), and then :

The condition number of the natural orthonormal basis of Ki(A, f) is
s {KK(A, 1)} = |CAP ]| Al
The condition number of Ki(A, f) is
k(A )} < [CAP Al
where CAF) s the matriz composed by the rows of CAF) such that
FO) = (pg12s e Tna | oo | Thgtky e ey ap)t = CAR§E)

with z(F) = C(Ak)§(k)

Proof Definition 12.3 gives us :

;%{Kkpafd}:inf{ up (ﬁjﬁé?nAnF)}.

>0 Lljallr<e

We have to remark that if A is a Hessenberg matrix for the £ — 1 first columns (i.e.

Lr{A} = 0) then d(F, F') = 0. Therefore

I A
st =i o (GG )

Then, using Lemma 12.1 and the equality ||§()]|y = ||[£{A}||r, we find

Lx+ x|
. \/5|| k E NF
Kr(A, inf su A
1e{Ke(A, )} €>0{||6<k)||p2§e( 164 |All 7

k
_jﬁ{ mp'wﬂbbmwzndAmwmw.
>0 |18k |o<e 16)]]2
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Thus, we find p{Ky(A4, f)} = inf { sup (d(}c’}C)HAHF)}

>0 (jjaflr<e \ 1AllF
: d(K,K)
= inf sup 7||A||F)}
>0 {Hﬁk{A}HFSe (Ilﬁk{A}IIF
1

But d(K,K) = mind(F, F) = min — X(l)—I—X(Q) , then
(€.K) = mind(F. F) = min ]| X + X

211X
Kr(A, < inf su S —— |4
N{ k( f)} e>0 ||§(k)||2§5 ||(5(k)||2 || ”F

~(k
~ag{ o Lled g - gt
>0 {50 <e 180)]]2

where 2(8) and C(4#%) are defined in the theorem. O

A
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Chapter 14

The matrix B(4:F)

Let A,A,§%) and the operator £j, be defined as in chapter 13. We are going
to prove that X solution of (13.2) is equivalent to z(¥) solution of B(A#)z(#) = §(k)
where B(4#%) ¢ R™*™ is a non singular triangular matrix built with the elements

of A.

X has the structure (57 ) defined in section 13.1, therefore we can write X =
X1, + Xy where

0 0 0 .......... 0

0 0 0 —z32 .. —Zn2
AXVL = I32 0 O ,AXU = 0

: : O —ZTn,n—1

0 Tn,2 .. Tpnn—1 0 0

As A is a Hessenberg matrix, we see that Xy A — AXy is an upper triangular
matrix, then L{XpyA — AXy} = 0, and therefore

Lr{XA—- AX} = Lp{A} isequivalent to Li{XpA— AXp}= L {A}

which writes

J+1 n

meam — Z a; 1x] ;= (52'7]‘ Vi<j<k—-land j+2<i<m
=1 {=1—1
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But Vi, ;1 =0,s0 V1<j<k-1and 74+2<i<n, wehave:

7—1 n
Sagirig | + |ajzig— > aigwr |+ (aj4,5705401) = i
(=2

{=1—1
j—1 Ti41,l
equivalent to Vj € [1,k — 1], Zald’ ( Oj—l-l—l ‘ In_]._l ) :
=2 Tn,l
0 Qjp2, 541 ceeeeennnn ai42.n Tj41,5
+laii| : In_]-_l :
0 O Gy on—1 GUpon Tn,j
Tjt2,5+1 djt2,j
+aj+1,jIn—j—1 E = '
Tn,j+1 bn,
This is equivalent to
-1 Li41,1 Lj+1,5
_gn—l . N ] J+2
ZamJn—j—l : + (amJn—j—l - Al ))
(=2
Tn,l Tn,j
Tjt2,i+1 djt2,5
T B : = : ;o Vie[Lk-1]
Tn,j+1 bn,j
J_ ]
where J; = ( Oj—i L ) eR
Gii—1  eveeneann An
and A0 — : € Rn—i+1)x(n—i+2)

O Upn—1 Gpn
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This last system of equations is equivalent to B z(*) = §(k) where B4+ ig

the following triangular matrix built with the elements of A :

a2,1In-2
2 4
a2,2']§_3 — A® aS,QIn-S

. 3 3 0
a5} : :

2 k42 k41 k+1
s k1 Jrrll_k e Gy 2 k1 Jrrll_k [ Jrrll_k — ACH+D) ak,k-lln-k
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Chapter 15

The algorithm and its stability

Let A € R™*™ and f € R"™. We propose here an algorithm to compute the condi-
tion numbers of the Krylov subspaces K(A, f) and of their natural orthonormal
bases, for k from 2 to n — 1.

This algorithm consists in the construction of a large triangular matrix B(47~1),

for which we have to estimate the norm of its inverse. We want to compute the norm
precisely in order to bound the result. Therefore, we compute the inverse by using
a special technique for scalar products. This technique enables us in most cases to
avoid underflow and overflow.

In the second part, we study the stability of the algorithm in order to provide
lower and upper bounds for the computed condition numbers.

15.1 Algorithms

First, we give the algorithm for computation of the condition numbers (Algo-
rithm 1) and then we give in detail the algorithm for computation of the inverse
matrix (Algorithm 2).
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15.1.1 Algorithm 1 : computation of the condition numbers

1. Compute the Householder reflections Py, Pi,...,P,_9 such that
Pof = (1,0,...,0), and PTAP is a Hessenberg matrix, where
P=FP...P, .

Let A:= PTAP and f:=(1,0,...,0)T.

2. Compute the lower triangular matrix B(4»=1) (Chapter 14).
-1
3. Compute the matrix C(44) = (B(A’l)) by Algorithm 2.

4. For k= 2...1, give the condition numbers (Section 13.3) :

e For the basis : ||C(A’k)||27

o For the subspace Ki(A4, f) : [[C(AHR)||y, where C(4F) is defined in section
13.3.

15.1.2 Computation of the inverse

Let B = (b; ;)72 = BWA»=1) land C = (eij)z1 = CAn=1) Classically, the
c; ; are computed as follows :

for :=1,m do

1¢;=+—

bi;
2. for j=1,7—1do
i—1
Cij = % (; bi,kck,j)
end for

end for
We have to take into account that the diagonal of the matrix B may contain ele-

ments which are very close to 0 : if there exists an ig such that b;, ;, & 0 then the
computation of ¢;; ; may fail if E}f:_jl b, kCk,; is very small too (underflow). On the
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~ 0). There-

fore, for i1 > 1, 221:—],1 b, kck,; can be very big (overflow). The following alternative
method for the computation of the ¢; ; has been designed to avoid such problems.

other hand, if Z};O:_jl b, kCk,; is not small, then ¢;, ; is very big (b;, i,

Algorithm 2
for :=1,m do

1
bi;

)

27’
2. for j=1,72—1do

1. ¢, = 27"

3 lik ks

L g

¢ ;= —2te) 2L (15.1)
bi;

or

where r =1+ [log, |b;il|, p=14 max |log,|b;xl]
j<k<i-1
d ¢g=1 1 1.
and ¢ + jgrlrclgix—l L 0g9 |Ck7J|J
end for

end for

15.2 Stability

Since floating-point computation is not exact, we have to bound the error in the
computation of the matrix C(4*) = (B(4#))=1 (see the following theorem) in order
to ensure the validity of the result (norm of the inverse matrix). Because of Theorem
15.1, we can bound (see Remark 15.1) the exact norm of the inverse matrix by using
the norm of the computed inverse.

Let B = (bij)l= = BWK) ¢ = (cij)lz1 = CUAH) and Cpuqen the inverse
computed with Algorithm 2.
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Theorem 15.1 Suppose that the computed operations satisfy :

(a4 b)mac = a®b = (a+b)(1+¢)+¢
(@ b)mach a®b (ab)(1+71)+¢
(a/b)mach aQb (a/b)(l + qb) +x

where ||, |n], |¢| < €1 (computer precision) and ||, |C], |x| < € (smallest number in
the machine).

If me <1 and 6=

BCoach =1+ Q  where ||Q||F < 36||B||F||Cmach||F-

Remark 15.1 If 36||B||r||Crmachllr <1  then
gl i
C ——— < ||B < || _
|| mllChH2 1_ ||Q||F > || ||2 > || maChH?l — ||Q||F

Proof of the remark
We assume that 36||B||r||Cracn|lr < 1 then |||z < ||Q||F < 1. We deduce that
(I 4+ Q)71 exists and then B™! = Cpuen (I + Q)71

€212
L=l ~

12|~

807 ||B_1 - C’mach 27
1—[|9f|r

2 S ||Cmach||2 ||Cmach||

but ||Cmach||2_||B_1_CmachHQ S ||B_1||2 S ||B_1_CmachHQ‘I’HCmachHQ-

1 - 2[|Qf|r
1—[|QflF

1

< B! < C —_—
= || ||2 || maChH?l — ||Q||F

Finally, ||Ciachll2

Proof of the theorem
The proof consists in two parts.

1. First, we will prove that the ¢; ; computed with Algorithm 2 are such that

1
(Ci,i)mach =27 (%ﬁb + X)

2,2
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and, assuming that me; < 1,

i—1 7 =~ ~
b; 1CL ; Ch i o~
(cighmach = =207 | 37 2ot (1) 2 (i, o+ o)
kk;kjo 2,1 2,0
(m+ 1)e

where Vj < k<4, |6 <6=
1 —me

2. Finally, we will prove that these computed ¢; ; are the solution of the equation
BCrach = I+ Q where ||Q||F < 36||B||F||Cmach||F-

1
Part I : In fact, we compute (¢ ;)mach = 27" (~—) and
mach

i bk g
(Ci,j)mach — _2(p+q—r) (( B ' )mach (152)
ot mach
. b o . .
where  b; ), = 22;9]9, Chj = % and b;; = %, (p,q,r) defined as in

(15.1).

- 1
It is easy to show that | (¢;:)mach =27 (1 @ b;;) = 27" (j + X)

We consider now (¢; ;)mach- First, we assume that

big @ Exj = binér; (14 mp) + Cr
bik ®Cr; D bigy1 ® g1, = (bi,k @ Cr; + bigs1 ® 5k+1,j) (14 ¥r) + &

where  |ni|,|¥r] < e and (x|, |€k] < €o.  Then

(Z Bi,kgk,j) = I;m’ ®@¢c;; @ Bi,j+1 @Ciy1,;, ... 0 32',2'—1 ® 1,5
=J mach

I=k—1 l=k+1

1—2 1—2
—Z{(m%] 1+ k) +Ck) II O+v)+& 1 (1+¢z)}
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where we assume that §_1 =1;_1 =0.

Let us assume also that

i1 i1
e - = 1+ ¢
(E bi,kck,j) ©b;; = (E bi,kck,j) ( 7 ) + Xi,
k=j mach k=j mach bi

Equation (15.2) gives :

i—1 B —2 1 + ¢
(Ci,j)mach — _9lpte—r) Z bi,kék,j(l + k) H 14+ ) ( — 2)
k:] (=k—-1 2,2

k=3 I=k—1 I=k+1 1,0

Y (gk I (1400 +6& ﬁ (1+w1)) (1b+¢)}

Let ko be such that ¢ = 1+ [log, |k, ;|| then  cgy; = €, ;27  where 0.5 <
|€ky.;| <1 and we find that :

"\ b grj Choj
(Ci,j)mach = _2(p+q—7°) Z {C. .kd (1 + 6k) + g(-)’_] (bi,ko + 6/'00) ’
kk;kjo 2,1 2,2

1—2
where &= (1+¢)(1+m) [[ (1 +v) -1,
(=k—-1

1—2
and 0, = Bi,ko ((1 + Mo )(1 + ;) H (L+ ) - 1)

{=ko—1

i i1 i—2 i—2
+>§Z—b2"2—|-1~+q‘b22( IT (14 ¢+ & H(H—?ﬁz))
l=k—

Cko,j Cko,j k=j 1 I=k+1
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with 0.5 < [ég, |, [bisl <1, &1 =0 and ;5 =0.

] 1
We will now prove that if me; < 1, then Vj <k <i : |6 <6 = (;n—l—i)el
— me€y
First, we note that if Np < 1 and |p;| < p, Vi € [1, N], then
N N N
1 i) — 11 < - d 1 il <
g( i) ~—1—Np at g( +p)_1—Np

1. k # ko, then
(i—Jj4+ e < _ma
—(i—J+1)a ~ 1-—me

il Imel 9 < ex implies that (6] < 5

<2, |xil, Ckls [€R] < eo,

S 1
2. k=ko, then |b;|,|bigl <1, ‘5

ko,J
o (i—j+ 1) S 26
lies that O, | < 2 2(1 .
implies tha |k°|_1—(i—j+1)€1+ €0+ 2( +€1)]§ —(i- ke
2e0(1 + 2 ’
implies that [0k, | < mer + 2eo(l + 2m + mer) <é
1 —me

Part II : Let Q = (w; ;)7_,, then

|wi7i| = |bi,i(ci,i)mach - 1| <€+ €6 < )

< 36][biwll2ll(ex,j)machll2,  for j <

;
> " bik(ck ;) mach

jwi | =
k=3
2 . j
Indeed, (¢;i)mach = 7 (1 + o+ bi,iX) is equivalent to b; ;(¢; i )mach — 1 = ¢ + biix

but |¢| < €1, |x| < € and |l~)m| < 1 (by construction) so |w; ;| = ¢ + I;i,iX| <€ +e
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i—1

For j < iy (€ij)mach = —204077) [ $7 PukChi (g gy ng‘(@,ko +61y)
= b i
is equivalent to
i1
bii(Cij)mack = — | D bik(Chj)mach(L+ 8k) + (Ckoj)mach (biky + 276k,
kk;kjo
; i1
equivalent to E bi,k(ck,j)mach = — Z bi,k(ck,j)machék + (Cko,j)mach2p6k0
k=73 kk¢:k]0
i1
Therefore, |wij| <& | Y [bill(chj)mach| + |(Ck0,j)mach|2jr£1]§§i|bi,k|
k=j >
k#Eg
m ™
then |wi ] < 35\l > b?,kJ D (k)2 iaen = 361[bixll2ll (e j)machl2-
k=1 k=1

We conclude that

m m m 1—1 m
1Q0lF = | 0wy = 2owii + 2D wi; <] D 96%1bisl3 (e i)macnll3
7,7=1 =1 =1 j7=1 7,7=1

then 1€2]]F < 35J D bill3 D ex dmackll3 = 3611BI £l Conachll-

=1 71=1
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Chapter 16

Examples

We give here some examples of the computation of the condition numbers of
Krylov bases and subspaces. For each example, we made a picture showing the va-
lues of the condition numbers for increasing sizes of the Krylov bases and subspaces.
We also give a table in which we list the lower and upper bounds for the condi-
tion numbers of the basis (M is an upper bound of |||z computed with result in
Theorem 15.1) :

1
1

2M
4]

Lower bound = [|Cachl|2 — 3

and Upper bound = [|Cpuachl|2 | A|| 7

1-M

Indeed, let B = B{4#) and ¢ = C(4#) then we have to be sure that the computed
matrix Cy,qep is not too far from B!, Therefore, we computed these bounds which
allow us to validate the result when they are enough close from each other. These
bounds can only be safely computed if M < 0.5. If not, we put ”??” in the table.
Moreover, we compute the quantity ||Q||2 = || BCnach — I||2 in order to give an idea
of the reliability in the result.
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16.1 Example 1

We consider the following matrix A € R?°%2% and f € R?° :

14

-7

36
o . 0
f=
36
-1 0

Condition number of the Krylov basis (*) and subspace (full line)

12

=
[©) o] o
T T T

Log10(Condition number)

IN
T

RR n"2382

| | |
8 10 12 14
Size of the Krylov subspace

16

18

20
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size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|2),10ch
2 1.571e4-02 1.571e4-02 1.571e4-02 1.571e4-02 0
3 5.809e+403 5.809e+4-03 5.809e+03 5.809e+03 0
4 2.092e+405 2.092e+4-05 2.092e+405 2.092e+405 0
5 7.525e406 7.525e4-06 7.525e4+06 7.525e4+06 0
6 2.706e+08 2.706e+08 2.707e+08 2.706e+08 0
7 9.685e+409 9.728e+09 9.770e+09 9.728e+09 0
8 2.793e+11 3.492e+411 4.192e+11 3.492e+411 0
9 7? 1.250e+13 7?7 1.250e+13 0
10 7? 4.440e+14 7?7 4.440e+14 0
11 7? 7.180e+14 77 6.276e+14 0
12 7? 7.180e+14 7?7 2.466e+13 0
13 7? 7.180e+14 7?7 8.392e+11 0
14 7? 7.180e+14 7?7 2.693e+10 0
15 7? 7.180e+14 77 8.366e+408 0
16 7? 7.180e+14 7?7 2.547e+07 0
17 7? 7.180e+14 7?7 7.643e4+05 0
18 7? 7.180e+14 77 2.271e+04 0
19 7? 7.180e+14 7?7 6.667e+02 0
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We now take the transposed previous matrix and the same vector :

S =

A= o EROX and f=| . | eR®

-
w
=]
o
o

Condition number of the Krylov basis (*) and subspace (full line)
'04 T T T T T T T T

1 Io
= [es)

Log10(Condition number)

1
=
N

-1.4

2 4 6 8 10 12 14 16 18 20
Size of the Krylov subspace

-1.6 ‘ ‘ ‘

RR n"2382



102

size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|2),10ch
2 4.365e+00 4.365e+00 4.365e+00 4.365e+00 0

3 7.146e4-00 7.146e4-00 7.146e400 7.145e400 0

4 9.971e+00 9.971e+00 9.971e+00 9.969e+4-00 0

5 1.281e4-01 1.281e4-01 1.281e4-01 1.280e4-01 3.4e-21
6 1.565e4-01 1.565e4-01 1.565e4-01 1.564e4-01 5.6e-21
7 1.849e4-01 1.849e4-01 1.849e4-01 1.846e4-01 7.7e-21
8 2.133e+401 2.133e+401 2.133e+401 2.127e+01 9.8e-21
9 2.418e+4-01 2.418e4-01 2.418e+4-01 2.406e+4-01 1.1e-20
10 2.700e+01 2.700e+01 2.700e+01 2.677e+01 1.2e-20
11 2.985e+4-01 2.985e+4-01 2.985e+4-01 2.932e+4-01 1.2e-20
12 3.265e4-01 3.265e4-01 3.265e+4-01 3.142e4-01 1.2e-20
13 3.549e+4-01 3.549e+4-01 3.549e+4-01 3.275e+01 1.3e-20
14 3.824e+4-01 3.824e4-01 3.824e+4-01 3.322e+4-01 1.3e-20
15 4.106e+01 4.106e+01 4.106e+01 3.280e+4-01 1.3e-20
16 4.370e4-01 4.370e4-01 4.370e4-01 3.141e+401 1.3e-20
17 4.649e+01 4.649e+01 4.649e+01 2.889e+4-01 1.3e-20
18 4.879e4-01 4.879e4-01 4.879e4-01 2.490e+4-01 1.3e-20
19 5.149e4-01 5.149e4-01 5.149e4-01 1.852e4-01 1.3e-20
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16.2 Example 2

]RQOXQO

We now take the symmetric tridiagonal matrix A € such that :

e Subdiagonal = Superdiagonal = (1,...,1)

e Diagonal = (1000, 50,...,50,0,...,0,50,...,50,1000)
—_———— ——— ————
6 6 6

With f = (1,0,...,0)T € R?° we find :

Condition number of the Krylov basis (*) and subspace (full line)
60 T T T T T T T T

50 1

w »
o o
T T
I I

Log10(Condition number)

N
o
T
|

| | |
2 4 6 8 10 12 14 16 18 20
Size of the Krylov subspace
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size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|2),10ch
2 1.425e+03 1.425e+03 1.425e+03 1.425e+03 0
3 1.354e+06 1.354e+06 1.354e+406 1.354e+406 0
4 1.286e+09 1.286e+09 1.286e+09 1.286e+09 0
5 1.139e+12 1.222e+12 1.304e+12 1.222e+12 0
6 7? 1.161e+15 7?7 1.161e+15 0
7 7? 1.102e+18 7?7 1.102e+18 0
8 7? 1.047e4-21 77 1.047e4-21 0
9 7? 1.047e4-24 7?7 1.047e4-24 0
10 7? 1.047e4-27 7?7 1.047e4-27 0
11 7? 1.047e4-30 77 1.047e4-30 0
12 7? 1.047e4-33 7?7 1.047e4-33 0
13 7? 1.047e4-36 7?7 1.047e4-36 0
14 7? 1.047e4-39 7?7 1.047e4-39 0
15 7? 9.950e+41 77 9.950e+41 0
16 7? 9.452e+44 7?7 9.452e+44 0
17 7? 8.980e+47 7?7 8.980e+47 0
18 7? 8.531e+50 77 8.531e+50 0
19 7? 8.104e+453 7?7 8.104e+53 0
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We keep the same matrix but we take the vector

10
10

Condition number of the Krylov basis (*) and subspace (full line)

16

14

12

=
2] [o0] o
T T T

Log10(Condition number)
N
T

RR n"2382

| |
8 10 12 14
Size of the Krylov subspace

16

18

20
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size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|2),10ch
2 2.570e+01 2.570e+01 2.570e+01 2.570e+01 0
3 6.144e+401 6.144e+401 6.144e+401 6.144e+401 1.8e-15
4 3.250e+4-03 3.250e+4-03 3.250e+03 3.250e+03 1.8e-15
5 1.260e+05 1.260e+05 1.260e+05 1.260e+05 2.5e-13
6 6.878e+07 6.879e+07 6.879e+07 6.879e+07 1.5e-11
7 2.689e+409 2.690e+4-09 2.692e+409 2.690e+409 7.5e-09
8 3.233e+11 2.091e+12 3.859e+12 2.091e+12 1.5e-08
9 7? 2.075e+15 7?7 2.075e+15 2.7e-04
10 7? 2.076e+15 7?7 7.123e+13 5.1e-04
11 7? 2.076e+15 77 3.212e407 5.1e-04
12 7? 2.267e+17 7?7 2.267e+17 5.1e-04
13 7? 3.594e+17 7?7 3.043e+17 1.6e-02
14 7? 3.597e+17 7?7 3.982e+16 1.6e-02
15 7? 3.597e+17 77 1.272e417 1.6e-02
16 7? 3.597e+17 7?7 9.517e+16 1.6e-02
17 7? 3.597e+17 7?7 1.182e417 1.6e-02
18 7? 3.597e+17 77 1.077e417 1.6e-02
19 7? 3.597e+17 7?7 1.427e417 1.6e-02
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We still keep the same matrix, but we take the vector

Condition number of the Krylov basis (*) and subspace (full line)
14 T T T T T T T T

12

10

A [<2] o]

N

Log10(Condition number)

| |
2 4 6 8 10 12 14 16 18 20
Size of the Krylov subspace

4 I I I
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size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|2),10ch
2 4.261e+00 4.261e+00 4.261e+00 4.261e+00 0
3 6.521e+401 6.521e+401 6.521e401 6.521e+401 4.4e-16
4 2.365e+04 2.365e+04 2.365e+04 2.365e+04 4.4e-16
5 9.812e+405 9.812e4-05 9.812e+05 9.812e+05 1.1e-13
6 5.129e+4-08 5.130e+4-08 5.130e+4-08 5.130e+408 3.8e-12
7 2.114e+10 2.123e+10 2.131e+10 2.123e+10 1.5e-08
8 7? 2.262e+13 77 2.262e+13 1.2e-07
9 7? 9.078e+14 7?7 9.078e+14 9.9e-04
10 7? 9.427e+14 7?7 2.551e+14 2.0e-03
11 7? 9.427e+14 77 6.433e+12 2.0e-03
12 7? 9.427e+14 7?7 9.982e+409 2.0e-03
13 7? 9.427e+14 7?7 2.523e+408 2.0e-03
14 7? 9.427e+14 7?7 1.133e+405 2.0e-03
15 7? 9.427e+14 77 1.624e+14 2.0e-03
16 7? 9.427e+14 7?7 8.094e+13 2.0e-03
17 7? 9.427e+14 7?7 8.551e+13 2.0e-03
18 7? 1.956e+15 77 1.956e+15 2.0e-03
19 7? 3.104e+15 7?7 2.647e+15 2.0e-03
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16.3 Example 3

With Al = diag(1,2,2,2,3,3,4,4,5,6,6,6,6) € R13%13 and f1 =
(10712,107%2,1071°,1071°,107%,1078,107%,107%,107%,1072,1072, 1, 1)T € R'® we
construct A = Lanczos(Al, f1,20), and we give here the condition numbers for A
and f = (1,0,...,0)T.

Condition number of the Krylov basis (*) and subspace (full line)
35 T T T T T T T T

N N
o a1
T T

Log10(Condition number)

=
)
T

‘E’> | | | | | |
2 4 6 8 10 12 14 16 18 20

Size of the Krylov subspace

RR n"2382



110

size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|2),10ch
2 2.584e+405 2.584e+405 2.584e+05 2.584e+05 0
3 3.654e+07 3.654e+07 3.654e+07 3.654e+07 7.3e-12
4 3.652e+409 3.653e+409 3.654e+09 3.653e+09 7.3e-12
5 1.805e411 1.827e411 1.848e411 1.827e411 6.3e-08
6 2.019e+12 5.174e+12 1.237e413 5.174e+12 7.0e-08
7 7? 2.884e+416 7?7 2.884e+16 2.4e-04
8 7? 3.611e+17 77 3.611e+17 2.4e-04
9 7? 3.613e+17 7?7 3.613e+17 2.4e-04
10 7? 4.355e+4+17 7?7 4.355e417 2.0e-03
11 7? 1.031e+19 77 1.031e+19 4.0e4-00
12 7? 1.320e+20 7?7 1.320e+20 2.6e+402
13 7? 4.683e+23 7?7 4.683e+23 2.6e+402
14 7? 3.585e+4-29 7?7 3.585e+29 5.2e+05
15 7? 3.585e+4-29 77 3.585e+29 5.4e+408
16 7? 3.830e+429 7?7 3.830e+29 5.4e+408
17 7? 4.734e+30 7?7 4.734e430 2.7e411
18 7? 4.482e+31 77 4.482e+31 2.7e4+11
19 7? 2.339e+34 7?7 2.339e+34 1.4e+14

INRIA




111

16.4 Example 4

Let
0 1
12 0 2 O (1)
A= EIRISXIS and f: ] EIRIS
O 2 12 0
1 0
Condition number of the Krylov basis (*) and subspace (full line)
2 T T T T T T T T T

1.8

1.6

= =
. X N

Log10(Condition number)

o
o

0.6

0-4 | | | | | | | | |
2 3 4 5 6 7 8 9 10 11 12

Size of the Krylov subspace
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size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|2),10ch
2 3.005e+4-00 3.005e+4-00 3.005e+400 3.005e+400 0
3 5.364e+400 5.364e+4-00 5.364e+00 5.358e+400 1.4e-16
4 8.269e+400 8.269e+4-00 8.269e+400 8.239e+400 1.7e-16
5 1.188e4-01 1.188e4-01 1.188e4-01 1.178e4-01 1.9e-16
6 1.639e4-01 1.639e4-01 1.639e4-01 1.608e4-01 1.9e-16
7 2.189e4-01 2.189e4-01 2.189e+4-01 2.120e+4-01 3.2e-16
8 3.200e+4-01 3.200e+4-01 3.200e+4-01 3.170e+01 4.1e-16
9 5.043e+4-01 5.043e+4-01 5.043e+4-01 4.989e+01 4.1e-16
10 7.498e4-01 7.498e4-01 7.498e4-01 6.977e+01 4.1e-16
11 9.141e+4-01 9.141e+4-01 9.141e+4-01 7.194e4-01 4.1e-16
12 9.384e4-01 9.384e4-01 9.384e4-01 4.121e+01 4.1e-16

With the previous matrix but with f = (1..

.1)T € R'® we obtain :
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= P = = =
0 o N N o ©

Log10(Condition number)

(2]

Condition number of the Krylov basis (*) and subspace (full line)

T

T

T T

T T

T T

T

12

2 3 4 5 6 7 8 9 10 11
Size of the Krylov subspace
size || lower bound | pup{/Cx(A, f)} | upper bound | u{/x(A, £)} | (122),nach
2 7.687e400 7.687e400 7.687e4+00 7.687e4+00 0
3 1.152e4-01 1.152e4-01 1.152e4-01 1.152e4-01 4.6e-16
4 1.511e4-01 1.511e4-01 1.511e4-01 1.511e4-01 5.1le-16
5 1.891e4-01 1.891e4-01 1.891e4-01 1.891e4-01 5.6e-16
6 2.347e+01 2.347e+01 2.347e+01 2.347e+01 5.6e-16
7 3.325e+4-01 3.325e4-01 3.325e4-01 3.325e4-01 5.6e-16
8 7? 1.148e+16 7?7 1.148e+16 6.0e-16
9 7? 1.927e4-16 7?7 1.896e+16 1.7e-01
10 7? 2.928e+416 7?7 2.742e+16 1.7e-01
11 7? 2.935e+16 7?7 2.440e+16 1.7e-01
12 7? 7.038e+416 7?7 6.814e+16 1.7e-01
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Chapter 17

Conclusion

We have provided an algorithm to measure the sensitivity of the Krylov sub-
space and the basis to matrix perturbations. This tool may be very useful for un-
derstanding instabilities of a Krylov subspace or basis. We plan to use it in various
circumstances and to analyze the results thoroughly. Another direction of study is
to understand the links between the stability of the Krylov subspace and the conver-
gence of iterative methods in linear algebra exploiting these subspaces. For example,
this algorithm could be used in the future to validate the computation of an inva-
riant subspace by the Arnoldi process.
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An important problem in scientific computing is the validation of numerical simu-
lations. We have studied in this thesis how to control the accuracy for the following
eigenproblem :

Problem (P) :

Given a square complex matriz A € C"*", find some X\ € C and/or x € C™ such
that :

A is an eigenvalue of A (i.e. det(A— AI)=0)
and x # 0 is the associated eigenvector (i.e. Az = Az ).

We have designed three new tools to assist the scientist in solving the problem

(P).

Our first tool was SESAME (Expert System for the Selection and vAlidation of
numerical MEthods) [6]. It is a knowledge based system, for the numerical library
LAPACK [1], which can either select an adequate sequence of routines or validate
a sequence of routines specified by the user for the solution of a given problem (P).
Moreover, the system provides an estimate for the accuracy in the result. However,
concerning the numerical quality of the results, some difficulties remain, in particu-
lar for defective eigenvalues. A defective eigenvalue is an eigenvalue whose geometric
multiplicity (dimension of the largest associated invariant subspace) is strictly lower
than its algebraic multiplicity (multiplicity as solution of the characteristic polyno-
mial). The impact of defective eigenvalues on the resolution of the problem (P) is
well understood in theory [10, 11] : infinite condition number and notion of Hélder-
condition number. However, it is not easy to detect them practically since it requires
the computation of the Jordan canonical form of the matrix and this computation is
very difficult [24, 26]. Therefore, we cannot always explain a failure, like non conver-
gence, when solving the problem (P).

In order to study the quality of the results of problem (P) for large sparse ma-
trices, we developed in the second part of this thesis work a software tool for the
computation of the spectral portrait of a large sparse matrix [7]. Spectral portraits
[31, 46] are useful in numerous problems in scientific computing. Our tool relies on
an algorithm, that computes the smallest singular value, based on a modification
of Davidson’s algorithm [15, 39]. The convergence can be improved by choosing a
better preconditioner. Moreover, the computation time for a spectral portrait is re-
latively large and we have to find techniques to compute very quickly the interesting
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information : for instance a level line or the localization and magnitude of peaks ...

Finally, we discussed a theoretical tool for the measurment of the condition
number of Krylov bases and subspaces. These subspaces are essential for many
iterative methods in linear algebra [42], for instance, in the Arnoldi method [2] for
the eigenproblem or in the GMRES method [43] for linear systems. The computation
of these condition numbers cannot be guaranteed at this time. We then have to find
a method to improve the quality of the result [9]. After that, we will use this tool
in order to understand the reasons for a large condition number and to measure its
impact on the convergence of different methods that use these Krylov subspaces.
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