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Abstract: Stochastic modeling is a flexible method for handling the large variability in
speech for recognition applications. In contrast to dynamic time warping where heuris-
tic training methods for estimating word templates are used, stochastic modeling allows
a probabilistic and automatic training for estimating models. This paper deals with the
improvement of stochastic techniques, especially for a better representation of time varying
phenomena.
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Contribution a la modélisation acoustique en
reconnaissance automatique de la parole

Résumé : La modélisation stochastique est une méthode souple pour tenir compte de
la grande variabilité de la parole. Contrairement a la programmation dynamique qui utilise
des méthodes heuristiques pour construire des formes de référence robustes, les modeéles
stochastiques permettent un apprentissage rigoureux reposant sur la théorie des probabilités.
Ce rapport décrit des techniques stochastiques adaptées aux phénomenes transitoires propres
a la parole. Il présente deux apports de ’équipe RF-IA au probléme : les modéles de Markov
du second-ordre et le modéle stochastique de trajectoire.

Mots-clé : Reconnaissance de la parole, Modéles de Markov, Modéle stochastique de
trajectoire
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1 Introduction

The design of an adequate modeling of speech patterns has been a constant concern since
the beginning of automatic speech recognition research. The first techniques proposed relied
on the use of acoustic, “vocoder-like” reference patterns together with dynamic time war-
ping comparison [Sakoe 78]. In such template methods, the acoustic variability modeling of
a vocabulary consisted in storing several references for the same lexical unit, or in deriving
typical sequences of acoustic frames resorting to some kind of averaging method. These so-
lutions were rather inefficient and expensive, even though they can provide a viable solution
for a variety of applications.

The idea of the statistical modeling of spectral properties of speech gave a new dimension
to the problem. The underlying assumption for all statistical methods is that speech can be
adequately characterized as a random process whose parameters can be estimated in a proper
way. The most widely used statistical method is the hidden Markov model (HMM) approach,
first implemented for speech recognition during the seventies [Baker 75], [Jelinek 76]. The
basic HMM model has led to very good performances in various domains of speech recogni-
tion. However, the intrinsic limitations of this model were progressively pointed out, as well
as the necessity of incorporating into the model some knowledge about the speech commu-
nication process. Some solutions were proposed to overcome these limitations, especially in
terms of frame correlation and trajectory modeling.

The use of artificial intelligence knowledge-based techniques was also proposed. Despite some
success in phonetic decoding, these techniques suffer from several drawbacks, especially with
respect to the lack of global criteria for parameter optimization and the severe difficulty of
acoustic-phonetic knowledge elicitation. They could again be used in the future maybe in
conjunction with other techniques once solutions are found for the preceding problems.

A great amount of effort has also been devoted to the development and the improvement
of the HMM at several levels. These include enhancing the models themselves, and search
techniques and finding methods for speaker representations [Levinson 86], [Schwartz 91],
[Normandin 94], [Bahl 93].

This paper presents two models developed by our group in acoustic modeling for speech
recognition, ie second-order HMM and stochastic trajectory models (STM). This paper is
organized as follows. In section 2, we present a second-order Markov model and compare
its performance with classical first-order models. We then propose in section 3 a new model
referred to in the sequel as Stochastic Trajectory Model (STM) and highlight its interest for
recognition. We conclude with a comparative study of different models.

2 Higher-order hidden Markov models

2.1 Increasing HMM order

HMM based speech modeling assumes that the input signal can be split into segments mo-
deled as states of an underlying Markov chain and that the waveform of each segment is
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4 Yifan Gong, Jean-Paul Haton, Jean-Francois Mari

a stationary random process. In a first-order hidden Markov Model (HMM1), the sequence
of states is assumed to be a first-order Markov chain. This assumption is mainly motivated
by the existence of efficient and tractable algorithms for model estimation and speech reco-
gnition. HMM1 does however suffer from several drawbacks. For instance, HMM]1 assume
segment frames to be independent, and does not include trajectory modeling (i.e. frame
correlation) in the frame space. By incorporating short term dynamic features to model
spectrum shape, HMM1 can be made to overcome this drawback. Modeling segment dura-
tion, which as a function of time, follows a geometric law, remains another major drawback
for HMM1. In a second-order Markov model (HMM?2), the underlying state sequence is a
second-order Markov chain. The state duration in this model is governed by two parameters
: the probability of entering a state only once, and the probability of visiting a state at least
twice, with the latter modeled as a geometric decay.

Thus, HMM2 can explicitly model the event that a state can be visited just one time,
and eliminate singular alignments given by the Viterbi algorithm in the recognition process
when a state captures just one frame whereas all other speech frames fall into the neighboring
states.

2.2 Second-order HMM

Unlike the first-order Markov chain where the stochastic process is specified by a 2-dimensional
matrix of a priori transition probabilities a;; between states s; and s;, the second-order Mar-
kov chain is specified by a 3 dimensional matrix a;;3. Thus, in a second-order Markov chain,
we have :

Pmb(% = Sk/Qt—l = Sj,qt—2 = Si, -3 = ) =

Prob(q; = sp/qi—1 = sj,q1—2 = i) = Qijk (1)
with the constraints :
N
D ajr=1 with1<i<N,1<j<N
k=1

The probability of the state sequence @ 2 41,492, ..., qr 1s defined as :

T
PT’OZ)(Q) = H<11 a41l]2 H a<1t—2l]t—1l]t

t=3

where II; is the probability of state s; at time t = 1 and a;; is the probability of the transition
s; — s; at time t = 2. Each state is associated with a mixture of Gaussian distributions :

M M
b;(O:) S Z CimN (Oy; pim, Lim),  with Z eim =1 (2)
m=1 m=1
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where Oy is the input vector (the frame) at time t. Given a sequence of observed vectors
0% 01, O3, ..., Op the joint state-output probability Prob(@,O/X), is defined as :

Prob(Q,0/X) =

T
g, b4, (O1)ag, 4,04, (02) H Qgi—291-14:0q:(O1) (3)

t=3
Basically, HMM2 suffers from two major theoretical drawbacks : i) it is computationnally
less efficient than HMM1 since most of iterations run on the 2-fold product space S x S,
and ii) each second-order Markov model has an equivalent first-order model on the 2-fold
product space S x S. The first drawback is overcome by considering only the couples of
states that are transitions in the model rather than considering the entire set S x S. In
the model depicted in figure 1 this number is 2 times the number of states of the model.
Point ii) is true when we have infinite data to train a model, since going back to first-order
increases dramatically the number of states in the model. Figures 2 shows the equivalent
model associated with the model depicted in figure 1. Moreover, there is a strong similarity
between this process and the process of expanding a state of a conventional HMM and
considering it as a sub-HMM | as in [Levinson 86], [Russell 87]. In the model depicted in

figure 2, the duration in state j may be defined as :

d;(0) = 0
di(l) = ayr, i#jFk
dj(n) = (1—ayp)-df;* - (1—aj;), n > 2

It is interesting to note that HMM2 converges naturally to Ferguson-like models, [Mari 94]
hence improving the capability of state duration modeling.

@& @
DD QQ

Figure 1: original second-order model

Figure 2: first-order equivalent model

2.3 Duration model

Even if the duration of a segment is better modeled by two parameters in a HMM2, thus
avoiding singular state assignment as mentioned in 2.1, it is necessary to implement duration
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6 Yifan Gong, Jean-Paul Haton, Jean-Francois Mari

constraints based on the relative duration of the segments corresponding to successive states
as in [Suaudeau 93]. The reason is that most of the errors of our HMM2-based word recogni-
tion system come from singular alignments given by the Viterbi algorithm. We conducted an
experiment on the training corpus to get statistics on the state duration of each HMM2. We
observed that state durations were strongly correlated for states in a model. In order to take
this correlation into account, we have specified a set of classes of correct alignments on one
class per model basis. Given an utterance, an alignment between a model and the utterance
is defined by a vector of relative duration of the states of the model. This alignment is found
using the Viterbi algorithm. We denote by:

e w, a d-frame long word which has been aligned with HMM A. Each state i among the NV
states of A captures d; frames. If all states must be visited, we have: d = di+ds+...+dn

(4)

e g,, the mean vector associated with the class of A, and V) the covariance matrix

. deﬂ/)\l/q, a normalizing factor that ensures that all matrices have a determinant equal
to one.

Given a word model and the class of correct alignments of this model, we measure the
distance between alignments using the Mahalanobis distance :

(2, 92) = detVa/1(x — g2)'Va " (x — ga) (5)

This distance weights the probability of the Viterbi’s alignment during a post-processing
step where the N best ! answers given by the recognition algorithm [Schwartz 91] are resco-
red.

FinalScore = A -d*(x,gu) + B - log(P(O/)\y)) (6)

A and B are normalizing constants determined empirically on the training set.

2.4 Test Protocol

First-order HMM and second-order HMM have been comparatively assessed using the same
database of digits, i.e. the adult part of the TI-NIST database [Leonard 84]. This database
contains connected digits strings from 225 adult speakers divided into a group of 112 to be
used for training only and a group of 113 to be used for testing. Note that the sequence “zero
oh” which causes most insertions errors is not present in this corpus. However our system
accepts this sequence.

The vocabulary is made up of 23 models, one per digit and gender, and one for the back-
ground noise. The state output densities are mixtures of 9 Gaussian estimates with full

IN does not refer to the number of states of a model but rather to the number of alignments
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covariance matrices. For the comparison, we have used models with the same topology and
same number of pdfs. In particular, digit models have 6 states with 5 self loops and no skip
transition, whereas the background noise model has only 2 states and one self loop. For
computational convenience 2 extra states were added in HMM?2 but no pdf was asssociated
with them.

2.5 Parameterization

The speech signal in the TI-NIST database was recorded in a quiet laboratory environment
and sampled at 20 kHz. Using a frame shift of 12 ms and a 25 ms window, we computed
12 cepstral coefficients corresponding to an approximate Mel-frequency warped spectrum.
The first coefficient, called loudness, was removed. In some experiments we stack dynamic
coefficients (usually called A, AE, AA and AAFE) over the 11 higher order static coefficients.
Thus, each frame captures events in an overall window of 102 ms duration. Two analysis
feature vectors incorporating dynamic features, have been specified in order to explore the
capability of HMM2 to capture frame correlations :

o 24 coefficients : 11 static, 12 dynamic first-order coefficients plus the second-order
energy coefficient AAE.

e 35 coeflicients : 11 static, 12 dynamic first-order coefficients plus 12 dynamic second-
order coefficients.

2.6 HMM1/HMM2 comparison

Tables 1 and 2 summarize the recognition results. In these tables, we give the string error
rates and the 95% confidence intervals. Table 3 gives the results at the word level. In the
different experiments, we used the 8700 strings from the test part of the TI-NIST database
containing 28383 digits.

Three major conclusions can be drawn from these results:

1. HMM2 outperforms HMM]1 in the absence of post-processing, and HMM2 without
post-processing is almost equivalent in performances to HMM1 with post-processing
(see tables 1 and 2).

2. Acceleration coefficients do not significantly improve performance, especially with
HMM2 (see table 1).

3. The offset in performances is greatly reduced when a post-processor is used to take
into account the duration constraints.

Point 1 can be explained by the capability of HMM2 to model the probability that the
hidden Markov process stays only one time in specific states. Thus, the trajectory of speech,
in terms of state sequence, is better modeled by HMM2.

Since the beginning of this study in 1990, several sytems have produced better performances
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Parameterization Male + Female
HMMI1 HMM2
1IMFCC+ 11A+ 4.5% 2.4%
AE+ AAE (4.15.0) | (2.12.7)
1IMFCC+ 11A+ 3.7% 2.4%
AE+ AAE+ 11AA || (3.34.1) | (2.12.7)

Table 1: String error rates (without post-

processing)
Parameterization Male + Female
HMM1 HMM?2
1IMFCC+ 11A+ 2.8% 2.2%
AF+ AAE (2.53.2) | (1.9 2.5)
1IMFCC+ 11A+ 2.3% 2.1%
AE 4+ AAE+ 11AA || (2.02.6) | (1.8 2.4)

Table 2: String error rates (with post-processing)

HMM1 | HMM2
Insertions 174 159
Deletions 14 20
Substitutions 31 34
String error rate | 2.3% | 24 %
% correct 99.8 99.8
Accuracy 99.2 99.2

Table 3: Comparison between HMM1 (with post-processing) and HMM2 (without post-
processing)

on the TI-NIST corpus [Haeb-Umbach 93], [Cardin 93]. These systems involve sophisticated
parameterization and training techniques. Our word recognition system, based on HMM1
models, which serves as the reference system to which the HMM2-based system was com-
pared, gives results similar to the system described by Wilpon in 1993 [Wilpon 93], ie 2.4
% string error rate with a 10 state model with 9 Gaussian pdf per mixture and telephone
bandwith speech. In our system, we have 6 states per model (no frame is consumed in extra
states) but 2 models per digit. This keeps the number of parameters slightly constant.
Point 2 has already been mentioned in relation to clean speech and HMM1 models [Hanson 90].
The analysis of errors in HHM1 and HMM?2 show that most are insertion errors. 60 % inser-
tion errors are due to the insertion of “oh” after a “zero” and 20 % are insertion of “eight”
between a word and a silence. We guess that such errors could be avoided with an appro-
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Issues in acoustic modeling of speech for automatic speech recognition 9

priate energy modeling at the state level. Almost all the deletion errors involve “oh”. The
small number of confusion errors does not allow any conclusion regarding the discriminative
power of both methods.

3 Stochastic trajectory modeling

3.1 Motivation

In a parametric space (e.g. cepstral space), a speech signal can be represented as a point
which moves as articulatory configuration changes during continuous speech production. The
sequence of moving points is called the trajectory of speech. Since a given point can belong
to different trajectories, models for speech recognition should rely more on the trajectory of
speech rather than on the geometrical position of observations in the parameter space. As
already mentioned in section-2, the inherent state independency assumption in basic hidden
Markov models cannot preserve trajectory information. Particularly, the pdf of different
groups of trajectories are mixed up and clusters of trajectories cannot be well represented,
because the information on the continuity of each individual trajectory is lost. Trajectories
are folded, leading to a poor discriminability in complex phonetic contexts (cf. Figure-3).

T(s’
M (s")
= Ov>T(S)
\‘\~
.
\\\
n
R e P
BTN 5 AN AT
},:’"-./\M /‘}“-.M/\,:’"‘-.M}
\ m xture density nodel of s \
- J

Figure 3: Illustration of trajectory folding with a three state HMM phoneme model. The
trajectories of s, T(s), in different phonetic contexts are modeled by mixture probability
densities. For the given trajectory of s’ # s, T((s’), never appeared in training data, p(T'(s")|s)
will be as high as p(T(s)|s).

Explicit statistical dependency between the current observation vector and the last ob-
served vector can be modeled by Gaussian estimates as in [Wellekens 87]. The correlation
between observation vectors can also be modeled by a bigram constraint [Paliwal 93]. The
state observation probability can be conditioned on the previous observation vectors, as well
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10 Yifan Gong, Jean-Paul Haton, Jean-Francois Mari

as on the current vector [Takahashi 93]. The sequential constraints can also be captured by
recurrent neural networks [Robinson 92]. The previously proposed stochastic segment mo-
dels handle segmental information by modeling the pdf of a grand vector, made up of the
concatenation of resampled frames of the observation vector sequence, by a multi-variate
Gaussian distribution [Ostendorf 89]. However, no mixture probability density notion is
used, that implies the impossibility of modeling trajectory clusters.

We consider trajectories as observations of a random variable and propose a stochastic
mixture trajectory model (STM) [Gong 94] for its recognition. We model phoneme-based
speech units as clusters of trajectories in their parameter space. The trajectories are modeled
by mixture of state sequences of multi-variate Gaussian density functions, optimized at the
state sequence level. Duration of trajectories are integrated in the model.

3.2 Principle
3.2.1 Phoneme probability

Let us consider a phone segment parameterized as a sequence of N vectors : 0g, 01, ...04, ..., ON.
Each point o, € IR” is a D-dimensional vector in some parameter space. Let X,, be a se-
quence of @) vectors centered at time slot n. The ) vectors are linearly mapped from the o

sequence.
X, =x Q,X Q X X Q [
n n—2rtn—Z41 R 24 Q-1 ( )

It has been observed that non-linear mapping [Afify 94] results in a slight recognition impro-

vement, but it introduces additional computational cost. Let P 2 {51, 82, ..., s } be a set of
H symbols representing phonemes. In our formulation, it is assumed that each phoneme sym-
bol is associated with K stochastic trajectory generators, T1,7Ts,...,Tx. Let p(X,, Tk, d, s)
be the joint probability density function (pdf) of vector sequence X,,, component trajectory
source Ty, duration d and phoneme symbol s € IP:

p(Xn, Tk, d, s) = p(Xn|Tk, d, s) Pr(Tk|d, s)Pr(d|s) Pr(s) (8)

where p(X,|Tk, d, s) is the pdf of X, given Ty, d and s, Pr(Tx|d, s) the probability of T}
given d, and s, Pr(d|s) the probability of d given s, and Pr(s) the a priori probability of s.

We use p for continuous probability density functions and Pr for discrete probabili-
ties. The marginal pdf of p(X,,s) can be obtained by summing up p(X,, Tk, d, s) over all
trajectories T and all durations d:

K

P(Xn,5) = Pr(s) > > p(Xa|Tk, d,s)Pr(T}|d, s)Pr(d]s) 9)

The probability of phoneme s given the observation X,, is therefore:

p(Xn,s)  Pr(

Pr(s|X,) = pX) -~ p(X

S (Xl o) Pridl (10)
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where p(X,,|d, s) is the pdf of X,, given d and s:

K K
A
P(Xnld, s) = p(Xn|Ti,d, s)Pr(Tild,s) = > p(Xa|Tk, d, s)Pr(Ti|s) (11)
k=1 k=1
where we assume that the probability of a trajectory T; does not depend on durations, i.e.
for a given symbol different durations are tied together:

Pr(Ty|d, s) = Pr(Tx|s) (12)

The duration probability of each phoneme symbol Pr(d|s) is modeled by T'-distributions.

3.2.2 Component trajectory

The critical part in our formulation is the modeling of p(X,,|Tk, d, s) introduced in Eq-11.
Ty is a component trajectory in the mixture of pdfs of K trajectory generators.

Assuming that each of the @ points of the component trajectory T} is produced by an
independent distribution, the pdf of X,,, given T}, d and s is modeled as:

Q-1
A s s W
p(anTk: d, 5) = H N(Xn—%+i%;mk,ia kz) (13)
i=0

where N(x;m, X) is a Gaussian distribution with mean vector m and covariance matrix .
w; weights the pdf of each state on the trajectory to obtain larger contribution from the
center part.

3.2.3 Sentence recognition

Sentence recognition consists in evaluating a cumulated log-probability measure over all
possible sequences of phonemes and finding the most plausible sequences.
Let ' be the set of all grammatical sentences. A particular sentence w € FF' is made up

of L(w) symbols:

A
w = ag, a1, ...an, ---Gr(w)-1, Vh, ap € IP.

From Eg-10. the log-probability of symbol a; at time slot ¢ is available:

K an 2 log Pr(an]|Xy,), 0<n< N,0< h< Lw).

The duration of a symbol is considered as a random variable 7, and the probability of symbol
ap with duration 7 = d is Pr(d|as) introduced in section-3.2.1. Let ¢ be a time slot index
of the vector sequence of ap. We introduce the cumulated log-probability for aj, which is
the sum of plausibilities cumulated for the symbol ap from t5 to th41 — 1, weighted by the
4" power of the corresponding duration probability:

g(h) = Pr(thsr —talan)’ D finas (14)

thln<tpg1
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12 Yifan Gong, Jean-Paul Haton, Jean-Francois Mari

where v > 0 is constant during recognition. The log-probability of a sentence is defined as
the normalized non-overlapping sum of cumulated log-probability of its composing symbols:

9(w|t0,t1,...tL(w)):% > qh) (15)

0<h< L(w)

where to = 0,%p < th41, and () = N — 1. This log-probability is therefore a function of
ty,Yh € [0, L(w)]. We optimize t3’s so that §(w) is maximized:

O(w) = max O(wlto,t1, .. tr(w)) (16)

to,t1,- T (w)

The t, Yh which maximize Eq-16 are the starting time slots of the symbol ap’s. A backtra-
cking can be applied to obtain % Vh if necessary.

Sentence recognition consists in evaluating ©(w) for all possible sentences, and in assi-
gning the most probable sentence as the recognized sentence w:

W = argmax O(w) (17)
weIF

To evaluate O(w), we introduce the following auxiliary function of ! (frame slot) and j
(phoneme order) [Gong 94]:

N , I ,
(l, j) = O?aﬁl{n(k,j — 1) + Pr(l — klaj) z;lun,aj 0<I<N,0<j<L}  (18)

We have )
Ow) = NH(N’ L(w) —1)).

3.3 Experimental Results

We have tested the STM model for French using a 1010 word vocabulary grammar with a
word-pair perplexity of 26. The same grammar was used for two tasks : Newspaper real-
estate ads dictation ( “real-estate”) and working report dictation for nuclear power plant
inspection ( “working report”). 33 context-independent phoneme models were used for all
tests. 13 mel-cepstral coefficients were computed. Previous experiments showed that time
derivatives did not improve recognition performance. Each model has 5 states with up to 8
components in a mixture. Table-refTR summerizes the results for two male speakers.

3.4 Comparison with HMM

The basic idea of HMM consists in modeling speech variabilities. HMMs use a sequence of
states to capture speech variability. Typically, each state is associated with a mixture of
Gaussian distributions. On the other hand, STM is designed to avoid the trajectory folding
phenomenon, and thereby to improve the ability to deal with complex phonetic contexts.

INRIA
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| real estate | working report |

speaker lar vfg

training style vocabulary-dependent | vocabulary-independent
training speech (sentences/minutes) 140/4 80/3
number of pdfs 700 655
number of training phone tokens 2773 2353

microphone sun-desk shure M10
signal to noise ratio 15dB 40dB
test speech (sentences/words) 241/1482 161/685

word recognition rate 98% 96%

Table 4: Recognition accuracy on two tasks by stochastic trajectory models

STM uses a mixture of sequences of states. Each state has one Gaussian distribution. While
the number of parameters in the two schemes are basically identical, there is a fundamental
difference between the two: in STM, the mixture of densities is defined on the state sequence
whereas in HMM it is defined on individual states. In addition, STM exploits an accurate
explicit phone duration probability modeling in phoneme recognition. It takes into account
the fact that the center of a segment has a smaller variance than its extremities by weigthing
state observation probabilities.

Based on context-independent phoneme models, STM gives equivalent recognition accu-
racy than context-dependent HMM on similar tasks (i.e.: ARPA RM task), with much less
training data.

4 Conclusion

We have presented in this paper two contributions of our group to the difficult problem of
acoustic modeling for automatic speech recognition.

These two contributions address the problem differently. The first one consists in modeling
speech by second-order Markov models instead of the usual first-order model. Experiments
with the TI-NIST database show that HMM2 outperform basic HMM1, and give comparable
results to HMM1 plus post-processing for duration.

The second approach deals with the explicit modeling of speech trajectories in some pa-
rametric space. We propose a Stochastic Trajectory Model based on a stochastic mixture
representation. Results obtained in continuous speech recogniton for French with 3-4 mi-
nutes of training speech prove the relevance of STM for modeling contextual variations of
phones.
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