N

N

Prototyping of VLSI Components from a Formal
Specification
Roderick Mcconnell

» To cite this version:

Roderick Mcconnell. Prototyping of VLSI Components from a Formal Specification. [Research Report]
RR-2363, INRIA. 1994. inria-00074315

HAL 1d: inria-00074315
https://inria.hal.science/inria-00074315
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074315
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Prototyping of VLSI Components
from a Formal Specification

Roderick McConndll

N° 2363
septembre 1994

PROGRAMME 1

apport
derecherche

%I INRIA

RENNES

Prototyping of VLSI Components

from a Formal Specification *
Roderick McConnell **
Programme 1 — Architectures paralleles, bases de données, réseaux
et systemes distribués
Projet API

Rapport de recherche n® 2363 — septembre 1994 — 30 pages

Abstract: We present a trajectory from formal specification to component, which can
be used to prototype applications which combine off-the-shelf components and custom
hardware, provided they meet the constraints of Synchronous Data Flow. The formal
specification allows us to prove that custom components will be correctly synchronized
in a system context. We first introduce VLSI Synchronous Data Flow, elaborate the
constraints it imposes, and define functions relevant to constructing a system. Then we
describe the construction of a simulation model. Finally, we develop a component for
motion video coding in VHDL, starting from a formal specification.

Key-words: motion video coding, synchronous data flow, VLSI simulation

(Résumé : tsvp)

*This work was partially funded by the French Coordinated Research Program ANM of the French
Ministry of Research and Space, by the Esprit BRA project No 6632 NANA-2, and by the Doctoral-
candidate Network for System and Machine Architecture of the DRED.

**rod@irisa.fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Tééphone: (33) 9984 71 00 — Téécopie: (33)9984 7171

Developpement systématic d’un composant VLSI
a partir d’une spécification formelle

Résumé : Nous developpons un composant lié au codage d’image vidéo, en nous ap-
puyant sur une spécification formelle avec le modele flot de données synchrone VLsI. Cette
spécification nous permet d’établir les bonnes propriétes de synchronisation, une fois le
composant inséré dans son environnement. Une notation temporelle ainsi que les fonc-
tions nécessaires a son utilisation pour la modélisation des événements dans un systeme
périodique sont introduits. Ensuite nous décrivons la construction d’un composant de si-
mulation. Enfin, nous donnons un exemple d’un systeme pour ’estimation de mouvement,
ainsi que des résultats de synthese avec les outils de Synopsys.

Mots-clé : conception de systemes spécialisés, VLSI, codage d’image vidéo

Prototyping of VLSI Components from a Formal Specification 3

1 Introduction

The transition between a behavioral model of a system and a Register Transfer Level
(RTL) model is often a difficult step, involving a complete re-write of each component. In
addition, it is often the source of errors: according to E.E. legend, “Fifty percent of ASIC
prototypes don’t work in the system environment because of chip specification errors, chip
interaction problems or electrical effects related to board implementation.” [3].

In this article we propose a systematic approach to prototyping a system at the Re-
gister Transfer level, starting from a formal specification of the system timing in VLSI
Synchronous Data Flow (VSDF) [12] [14] [13]. Our approach is based on a formal spe-
cification notation and a simulation model, positioned between Synchronous Data Flow
(SDF) graphs and a synchronous system built of synchronous circuits. As in SDF, the
number of input and output values per operation per period are known. In addition, the
moments at which they exist relative to a common clock are specified, in order to properly
model synchronous circuits [28]. The temporal specification permits the designer to better
define input and output functions, and in particular to model pipelined operators at the
Register Transfer level. In most cases this eliminates buffers between pipelined operators.

The Synchronous Data Flow graph [20] [21] offers an elegant representation for certain
real-time Digital Signal Processing (DSP) applications. If, in order to implement a cer-
tain application, high throughput will also be required, specialized VLSI circuits are often
targeted. Typically, these circuits are synchronous, and are linked by dedicated commu-
nications paths - the wires of a PCB or Multi-Chip Module, for example. Although there
are clear similarities between the SDF graph and a system of synchronous circuits, there is
also a large gap in terms of modeling the implementation details. To help bridge this gap,
we propose a Formal Specification notation and a component model, which can represent
a target application both at an SDF level and at the level of synchronous circuits.

There exist several systems which compile Synchronous Data Flow graphs for mul-
tiprocessor implementations, such as PTOLEMY [4], GRAPE-II [15] or Alta/Cadence’s
“Signal Processing WorkStation”[9]. If a pipelined hardware implementation is envisaged,
these systems suffer from the disadvantage that blocks of data are buffered between ope-
rations. Our approach also differs from existing systems for developing periodic circuits,
such as CATHEDRAL [8], PHIDEO [30], Mentor Graphic’s “DSP Station” [25] or GAUT
[23]; these systems are based on synthesis, and use a description of the internal operations
to determine the synchronization of the data from the data dependency. We instead use
the formal specification of synchronization in VSDF to prove correctness.

RR n~°2363

4 R.McConnell

The remainder of the article is organized as follows. In section 2 we review the prin-
ciples of Synchronous Data Flow. We then introduce VLSI Synchronous Data Flow and
its associated operators in section 3. We also define necessary conditions for functional
hardware, which are an extension to the necessary conditions given in [20], [21], and apply
these to components in section 4. A component model which aids in applying VSDF to the
development of an RTL system simulation, is also presented. We finish by applying VSDF
to synchronous circuits and system design in section 5, using VHDL and the Synopsys
synthesis tools. Examples, in general taken from video coding, are given throughout the
article to illustrate key points.

2 Synchronous Data Flow

For applications which meet its strict constraints on periodicity, the Synchronous Data
Flow graph offers a powerful model for static analysis and simplified implementation. Data
Flow graphs [1] [7] are often used in signal processing to model real-time applications
because they offer an intuitive and visually-oriented approach [6]. SDF is a variant of the
traditional Data Flow graph; the amount of data consumed and produced by each node
for all its inputs and outputs, is fixed in advance.

2.1 The SDF model

In the SDF model, a signal processing application is described in terms of static transfers
and operations. The number of consume elements needed for an operation to commence,
and the number of produce elements resulting from an operation, are fixed at design
time. Furthermore, the nature of these produce and consume elements is not fixed - their
granularity can vary from single words or pixels, to blocks of arbitrary size, representing
for example entire images [19]. The consume elements are buffered at the input to an
operator until an input threshold is reached; the operator is then fired, or started. In the
abstract model, the results are then available immediately, i.e. the produce elements are
produced with no delay.

2.2 The Balance Equation

The SDF approach allows one to prove that a periodic system can operate indefinitely
with neither starvation nor buffer overflow, as demonstrated by means of the Topology
Matrix I'. This same constraint is expressed in [18] [19] as satisfying the balance equations.
If output ¢ is connected to input j, the arc which connects them must satisfy:

riOi = T]']j

where r; and r; are repetilion counts, i.e. the number of times that node ¢ or node 5 will
be repeated during one system period, O; is the number of output elements produced per

INRIA

Prototyping of VLSI Components from a Formal Specification 5

repetition of node;, and I; the number of input elements consumed per repetition of node;.
The vector T of r;’s gives the number of repetitions of each node during one system period.
The balance equation specifies an equivalence of the count of values, i.e. that the same
number of values are produced and consumed during one system period. This in turn
guarantees that the system can continue for any number of system periods with neither
starvation nor buffer overflow.

2.3 Limitations of SDF

The SDF representation has limitations, the most fundamental being that it can only be
applied to a limited sub-class of signal processing applications, namely those where the
data transfers can be statically specified. Given a suitable application, there is another
limitation which to us appears relevant: SDF as presented by Lee & Messerschmitt, and
implemented in the SDF domain of the design system PTOLEMY [4], appears better adap-
ted to modeling software than hardware. This is due to the block nature of the transfers
and operations, which correspond closely to an input or output buffer and a subroutine
call, respectively. While buffers and subroutines are well-suited for implementation using
one or more programmable DSP’s, they are poorly suited to a dedicated VLSI hardware
implementation.

It is clear that there can be a great deal of similarity between an SDF graph and an
RTL model of a hardware-based signal processing system. In an application such as motion
video compression in real time, complex operations such as a discrete cosine transform
are often performed by a single dedicated circuit, which takes a block of data at the input
and produces a block of data at the output. The principal difference for the designer is in
the timing of data transfers. Produce and consume thresholds in SDF must be replaced
by a stream of data, word by word, to reflect the operation of the hardware at a Register
Transfer level. It is basically a bandwidth and storage problem - there aren’t enough pins
on a chip to pass blocks of data at a time, nor does one want to store data unnecessarily.

2.4 Approaches for Hardware

One approach to modeling a hardware system at the Register Transfer level, is to break
down block-oriented operations into simpler sub-operations, until each operation works
on a single word of data. We discard this approach, as it yields an unwieldy and counte-
rintuitive graph, and is also a poor model for VLSI circuits.

We choose instead to model blocks of data at the Register Transfer level as being
transferred serially, word by word. Our formal specification notation, allows us to express
the timing of this serial transfer, and to statically verify that the transfers are properly
synchronized between producer and consumer. Nodes in our graph, and components in
our library, will be composed of two sub-elements, a timing component and an operator.
We use the timing component to represent the timing of a cyclic transfer, whether it be

RR n~°2363

6 R.McConnell

Input Input

1 Output 64 Output

1 64 \
Figure 1: SDF node at block and pixel level

at a block level (native SDF) or serial stream (circuit-level). In the following section, we
describe our formal specification notation.

3 VSDF': Synchronous Data Flow for VLSI

As indicated in the preceding section, the SDF model is a powerful tool for applications
which meet its rather strict constraints. We propose that, with some minor modifications,
it can be a powerful tool for modeling dedicated VLSI systems as well.

The number of consume elements needed to launch an operation, depends on the
operation and on the granularity of the elements. For example, a two-dimensional discrete
cosine transform (DCT) which requires a block of 8x8 pixels as input, may be represented
in coarse-grain data flow as consuming 1 block to start processing. Or, at a more fine
grain, the DCT may be represented as consuming 64 pixels before starting. The first
representation assures that all the input will arrive at the same instant, while the second
representation implies a buffering of input elements until all have been received. In Figure
1 an SDF node for a DCT is given at a block and at a pixel level.

At the pixel level, there is a clear similarity between the SDF DCT operator, and a
dedicated VLSI DCT processor such as the SGs-Thomson IMS-A121 8x8 DCT chip [10],
or the LSI Logic L64735 8x8 DCT chip [22]. There are 64 input pixels consumed per
operation, and 64 coefficients produced. The principal differences are in the timing of the
input and output events, and in the latency of the operation.

3.1 VLSI timing

The VLSI circuits have timing requirements, unlike the software operators used in SDF.
Even if we consider only the RTL constraints, VLSI circuits require that the inputs be
synchronized with the system clock, and that they arrive one value per clock cycle, without
interruption, until a complete block has been received. In the SDF model, there are no
constraints whatsoever on the timing of the input events. Likewise, the output values are
available immediately when the operation has finished. The VLSI circuits, on the other
hand, will produce the outputs after a certain latency, typically one per clock cycle, until
a complete block has been emitted.

INRIA

Prototyping of VLSI Components from a Formal Specification 7

We choose to express RTL timing as the “instant” at which an input or output occurs.
We take advantage of the fact that our system is synchronous to formalize the information
of a datasheet. If, in the specification, an input must be present at the clock rising edge,
we specify that the input event and the clock edge must occur at the same “instant”, and
likewise for the output. Given this description of inputs and outputs, we develop formal
expressions for correct operation in the following subsection.

Constraints for Hardware

As presented in [18], an SDF graph can be statically analyzed to determine if it is consis-
tent. We would like, in addition, to assure that all transfers occur at the “right” moment,
i.e. that the destination accepts a transfer at the same moment that the source generates
the transfer. This is in accordance with our hypothesis that a transfer can be considered
instantaneous if it terminates in one clock cycle.

Thus we start with the balance equations, and add the constraint that, if output ¢ is
connected to input j, a value is produced and consumed at the same instant. In section
4.3 we will also demand that the circuit have a constant latency, corresponding to our
vision of a component that repeats exactly the same operation with a constant period. In
the following text we introduce a notation for the moments, or instants in time, at which
a signal exists. In the circuit sense, this corresponds to the instants at which an output
is valid, or an input is latched. With this notation, we will formalize our constraint, and
introduce a method for static analysis.

3.2 A Temporal Notation

In order to formalize the constraints on the instants introduced above, we first introduce
a notation for temporal expressions. A complete description of the notation, along with
a more formal development of the associated proofs, is given in [14]. We begin with a
notation for describing an individual periodic event, then we extend this notation to
represent a set of periodic events with a common period and starting instant. We also
define a canonical form which eliminates possible redundancy in our temporal expressions.

3.2.1 A Periodic Event or Set of Events

Our temporal expression for a periodic event defines a mapping from integers to integers.
The resulting values denote the temporal index (or simply the time) at which events occur.
A simple temporal expression is denoted by (8, ¢, h), where 8 is the period, ¢ the phase,
and A the initial delay. We also often work with a union of events ¢ which represent the
phases of multiple (distinct) events during a period. Therefore we introduce the set ® to
represent a collection of k ¢’s during one period. We use the following notation for our
temporal expressions:

RR n~°2363

8 R.McConnell

Definition 1 (Temporal Expressions)

(0,6,h):t— 0t + ¢+ h

0t + do + h
(0,0, h):t+— Ot + g1+
0t + ¢r—1+ h
6,h € IN; p€4{0...60—1}
® = {¢o, ¢1,... br-1}
with
|®| = k.

If ¢ is taken as time, ¢t € IV, then the affine expression (6, ¢, h) or (0, ®, h) specifies an
infinite series.
An example: a simple periodic function

An example of a simple periodic expression might be (P, {0,..., P —1},0), with period
P and k = P events in a period, that is:

Vic0..(P—1),0=P ¢ =i h=0

The input to the DCT at a pixel level, shown in Figure 1, would have the parameter
P = 64. The clock expression would be:

(0,®,h) = (64,{0,1,...63},0)

(0,®,h) : t — {641 + k|0 < k < 64}.

Since this also represents an event at every clock tick, it is equivalent to the expression

(0,¢,h) =(1,0,0):
t {641 + k0 <k <64} =1+ t.

This example shows that there are multiple expressions which represent the same
set of clock events. Hence it is necessary to develop certain rules for manipulating clock
expressions. As a prelude to the introduction of these rules, we propose the following
canonical form, which eliminates ambiguity in the notation.

INRIA

Prototyping of VLSI Components from a Formal Specification 9

3.2.2 A Canonical Form

We eliminate redundancy in temporal expressions by differentiating between ¢ or ®, and
h. We will use h exclusively to establish the delay before the periodic behavior commences.
We define the beginning of a period by the initial event in a period. In other words, we
set the minimum of the ¢; = 0, and use h to specify the initial delay. For temporal
expressions, this yields:

Definition 2 (Canonical Form) An expression is in canonical form iff
(0,6,h) = ¢=0
(0,0, h) = ¢o =0, < pit1.

Proposition 1 An expression (0,¢,h) can be put into canonical form by subtracting ¢
from the phase, and adding it to the initial delay:

(0,¢6,h) — (6,0,h + ¢)

Henceforth, we will use expressions in a canonical form to avoid any possible confusion.

3.3 Operations on Temporal Expressions

In order to manipulate temporal expressions, we will make use of two operations and a
condition of equivalence. The operations are scaling, and delay. Scaling corresponds to
extending the period of observation of a temporal expression, while delay corresponds to
adding a constant to the initial delay h. We also introduce a condition for equivalence
between two temporal expressions, in the case where they describe the same instants. We
detail these two operations and the condition of equivalence below.

3.3.1 Scaling: Repeating the Period

Because our systems are periodic, the events of a period will repeat, with the same phase,
in following periods. If a clock expression (8, ®, k) describes the events of a system du-
ring one base period, it is also possible to view the events as periodic with the per-
iod any multiple of the base period. We have already encountered an example where
(64,{0,1,...63},0) and (1,0,0) represented the same instants. We now introduce a more
formal specification for the generation of a new periodic system with longer periods. One
new period will now contain r repetitions of the base period. This is done by calculating
the phases of events of r base periods which make up one new period, given the k phases
of one base period, {¢y...¢r_1}. Likewise, if the base period contains a set of k£ phases
®, we define the scaling ro (6, ®, h) as the union of the scalings of the & individual phases
¢;. The initial delay h does not change:

RR n~°2363

10 R.McConnell

Definition 3 (Scaling) scaling of a unitary clock expression by a repetition factor r
yields
ro(0,é,h)=(r,® h)

where

O ={¢,04+6,20+6,...,(r —1)0 + ¢}
@)=
The scaling ro (0,9, h) is the union of the scalings of the k individual phases ¢; € @
ro(0,0,h) = (rh,® h)

where

o = | {650+ 6...,(r—1)0+ ¢}
0<i<k

7

@] = r|®].

Examples: multi-event periodic operations

We can now demonstrate the equivalence of the clock expressions (1,0,0) and
(64,{0...63},0), the second being merely a scaling of the first by 64 (i.e. 64 repetitions
of the period):

ro(0,¢,h)=(r,® h)

640 (1,0,0) = (64,9 ,0)

o= J k
0<k<64
We might then continue to scale this new expression (64, {0...63},0) by 2, to get a period
which is twice as long:

20(64, |J k,00=(128, [(J &,0).

0<k<64 0<k<128

3.3.2 Increasing the Initial Delay

Our notation is intended to model real circuits, which require time to calculate their
results. There is necessarily a latency between the instant when the data enters a circuit,
and the instant when the results are available at the output. For a system composed of
multiple circuits, the latency as the data passes through the system will be cumulative,
i.e. a circuit which takes its input from the output of another circuit, must wait until the
output is available, which will in turn dictate the instant at which its own output will be
available. We model this latency by adding a constant delay to a temporal expression.
All events are calibrated by a common clock, and all instants when a transfer occurs are
identified by the temporal expressions. Additional latency, therefore, is simply a constant

INRIA

Prototyping of VLSI Components from a Formal Specification 11

which defines the number of additional system clock cycles during which no events occur.
This latency added to a temporal expression corresponds to adding a (positive) constant
to the initial delay h:

Definition 4 (Delay)
An expression (8, ¢, h) delayed by a constant 6 € IN yields:

(0,6,h)+ 66— (0,9, h+96).
An expression (0,9, h) delayed by a constant 6 € IN yields:

(0,8,h) + 6 —> (0,8, h+6).

An example: delaying an expression

In a motion video coding system, an 8x8 DCT may be performed by a circuit which
implements one-dimensional transforms on all rows and then on all columns. If the rows
and then the columns are transformed sequentially, this operation will have a latency of at
least 128 cycles. Assuming the circuit performs the transform in 128 cycles, the temporal
expression for the output will be delayed by ¢ = 128 with respect to the input:

hout — hzn + 1928

(Oper, @™, ™) = (64, {0,1,...,63},0)
(Opcr, @7, b)) = (64,{0,1,...,63},128).

We remark that as a result of our restrictions on the application domain, a given circuit,
or node in the graph, will always have a constant latency.

3.3.3 Equivalence of Clock Expressions

Two clock expressions are equivalent if they describe the same set of instants. Clearly
two expressions are equivalent if they are identical, term by term. Two expressions may
also describe the same set of instants, but over a different period. We consider two clock
expressions to be equivalent if they can each be scaled in such a way that their events
all “match”, i.e. they both share a common scaled period, and all of the scaled phases
(events) are the same. We remark that two expressions are equivalent when they define
the same instants, even if this happens over different periods.

As illustrated above, the expressions (64,{0,..., 63},0) and (1,0,0) are equivalent, be-
cause they define the same instants. In general, expressions are equivalent if there exists a
common multiple of their periods, over which the two expressions always define the same
instants. More formally, two clock expressions are equivalent if there exist scalings rq, 7,
such that the two scaled expressions are equal, term by term [14] [12] :

RR n~°2363

12 R.McConnell

Definition 5 (Equivalence)

(glaq)lvhl) = (927q)27h2) =
r o (917 (I)h hl) =720 (927 @27 h2)

In the following section, we show how this condition of equivalence can be applied to
statically verify that the synchronization of transfers is correct.

4 Proving Correct Synchronization

A Synchronous Data Flow graph can be statically analyzed to determine if it is consistent,
as presented in [18], and to derive a periodic schedule from the Topology Matrix. We would
like, in addition, to ensure that all transfers occur at the “right” moment, i.e. that the
destination accepts a transfer at the same moment that the source generates the transfer.
We start with the balance equations, and add the constraint that, if output 2 is connected
to input j, a value is produced and consumed at the same instant. We call our new
constraint the augmented balance equations. We then show how the notation can be used
to specify VLSI components, and sketch how this can be applied to static verification
of synchronization. Finally, we discuss simulation components for simulating complete
systems at a Register Transfer level.

4.1 Application to SDF

SDF requires that each “actor”, or node in the processing graph, be synchronous and
periodic, with one “firing” per base period of that node. This “firing” represents one
execution of the operation of that node, including the consumption of a fixed number
of input elements, and the production of a fixed number of output elements. In order to
model our constraints, we associate with a node ¢ a constant 6;, corresponding to the basic
periodic operation of that node. During one repetition of the period 6;, there will be [,
inputs and O; outputs. Each individual input or output instant corresponds to a certain
phase ¢. For the moment we present each node as if it has only one input and one output;
this is only to avoid a clutter of indices in our notation. The periodic set of instants of
any one input of a node is assigned the temporal expression:

InputInstants = (0;, @, h'™)

with _
|| = I.

Likewise, the periodic set of outputs of a node is assigned the temporal expression:
OutputInstants = (6;, @, h**)

with
|<I>°“t| = 0,.

INRIA

Prototyping of VLSI Components from a Formal Specification 13

/
\

'

Figure 2: Two SDF Nodes

4.2 Additional Constraints

We now apply our notation to augment the balance equation, so that it will include
temporal constraints, and in particular that every produce instant is matched by a consume
instant. Let Output; and Input; be connected. Node ¢ has a period 6;, during which O;
distinct emissions occur; node j has a period 6;, during which [; distinct receptions occur
(as in Figure 2). We express the set of output phases of the O; emissions as ®¢*, and
the set of input phases of the I; receptions as ®;7. We wish to augment the balance
equation to express the fact that the emissions from ¢ should occur at the same instants
as the receptions at j, i.e. that their timing expressions must be equivalent. We write an

augmented balance equation as follows:
Definition 6 (Augmented Balance Equation)
riO; =r;l; (1)
(0:, @7, hI) = (0, P hm) (2)

1y YR
In other words, not only are the number of items produced and consumed equal, but also
the produce instants and the consume instants are identical. In order to simplify the task
of static verification, we now show that, if the consume and produce instants are always

identical, then their count is equal:

Proposition 2 If r; and r; are solutions to the balance equation determined from the
Topology Matriz T' [20] [21], and there exists a suitable 0;,0; such that the augmented
balance equation (2) is satisfied, then (2) is a sufficient condition for the balance equation

(1):

o (0;, @, k") = 1y 0 (05, @7, b) = 1i0; = r;
Proof:
|(I)out| —
7] = I,
T,Z|(I)2n| _ T,]|(I)out
O

RR n~°2363

14 R.McConnell

An example: a DCT

If we take a source node which emits a value every clock cycle, and connect it to a DCT
which consumes 64 values in 64 cycles, we have:

Osrc = 17]DCT = 64
TSTCOSTC =64x1=1x%x64 = TDCTIDCT
(Osre, 0, h““) = (1,0,0) = 7r4c 0 (Ogrc, 6°, h7) = 64 0 (1,0,0)

(GDCT,(I)m,hm) U k 0 :> TpoT O (HDCT,(I)M hm =1 O 64 U k 0
0§k<64 0<k<64
U k,0)=(64, [J k,0).
0<k<64 0<k<64

We note that this is once again the scaling by 64 demonstrated in the previous section.

4.3 Specifying a Synchronous Circuit

The temporal expressions introduced in section 3 describe the synchronization of transfers
between circuits. We now describe how these are applied to the inputs and outputs of a
node, in order to model a given component. In particular, the equations presented in the
above subsections make no assumptions about the relation between the input events and
the output events of a given node. In Synchronous Data Flow, the results of a calculation
are available immediately after a node is “fired”, i.e. there is no latency for calculations.
Time, insofar as it exists, is related to the number of times the different nodes in a system
obtain all their inputs and generate their outputs i.e. the number of times the sources
are “fired”. In the case of a synchronous VLSI circuit, this is not realistic, as the output
events are a direct function of the common clock, and only exist after the start-up latency
of the circuit. In addition, we will only consider the case where the latency is constant,
and in particular is not data-dependent.

4.3.1 A VsDF Node

A VSDF node is specified by its latency 6 (always a constant), the set of all its inputs
(6,0 h'™), the set of all its outputs (6, ®°*!, h°“!), and the period 6:

VSDF; = (6,{Vl € Inputs, (0, ®;", h;")}, {Vm € Outputs, (0, ®, h2*)}, 0)

We will identify the ®’s and the &’s by their termination nodes. Thus if nodes 1,2,3
are connected in that order, as in Figure 3, node 2 will have an input expression on the
link to node 1:

(027 (I)Zl?m hle,LL))
and an output expression on the link to node 3:

out out
(027 @2,37 h2,3)7

INRIA

Prototyping of VLSI Components from a Formal Specification 15

017 (I)Tu2t7 h?g) 027 (I)gu?f7 hgu?f)
(927 Oy, hiy)

Figure 3: Temporal expressions for VSDF nodes

4.3.2 h_.n and h_out

In order to simplify the process of assembling VSDF nodes, we synthesize a “smallest
initial delay” h_in such that all the inputs A" are either at the same time or later:

VI € Inputs,3n € IN h)" =h_in + n.

We remark that this synthetic input h_in is often very close in practical terms to a RESET
pin.

We make the assumption that the initial delay between input and output is fixed by
the characteristics of the circuit. We call this delay the latency of a node, marked 6. If we
synthesize a “smallest initial delay” h_out such that all the outputs A°“* are either at the
same time or later :

h_out =h_in + 4.

We remark that the input h_in and the output h_out make it easy to compose a series of
nodes, the initial output delay of one being the initial input delay of the next.

4.4 Static Verification of Synchronization

Correct synchronization of transfers on every arc of the system graph, can be verified
using the augmented balance equations. If, for every arc in the graph, the augmented
balance equation 2 is satisfied, then the transfers will be correctly synchronized during
the operation of the system. The equations ensure that not only will the number of valued
consumed and produced on each arc be equal after a certain number of node firings, but
also that the instants at which these values are produced or consumed are the same.

The techniques for finding the periodic schedule or repetition vector ¥ of all r;’s for a
Topology Matrix I' are given in [20] [21]; we do not repeat them here. Static verification
of synchronization can be accomplished by verifying that the temporal expressions #; and
¢; on both ends of a link, when scaled by r;, satisty the augmented balance equation, and
by determining appropriate initial delays & on inputs and outputs.

RR n~°2363

16 R.McConnell

We remark that part of the constraint implied by the augmented balance equation 2
is that each node only begins processing when its input data is available. Because the
operation of scaling does not change the initial delay A [14], the initial delays h at both
ends of a link must be equal in order for the augmented balance equations to be satisfied.
Therefore, in all cases, the initial delay on a link between nodes ¢ and 5 must be identical:

= b (3)

It is important to note that this per-node latency has no impact on the augmented balance
equations; we still insist that inputs be received at the same time as the corresponding
outputs are emitted.

4.5 Constructing Simulation Components

We prototype components at the Register Transfer level using a synchronous timing sub-
element. We completely separate timing aspects of a component from operational aspects,
reflecting the usual conceptual distinction between the function of a circuit and the timing
of a circuit. The timing sub-element determines the moments at which the inputs and
outputs exist, and is used to transition between an SDF graph and an RTL model. The
operation sub-element performs the actual calculation, i.e. the behavior of a component.
The operator is treated as a “black box”, without regard for its implementation.

In order to simulate entire systems at a Register Transfer level, we first construct RTL
simulation components from the timing and behavioral sub-elements. We have chosen
this composition because it permits us to preserve the behavioral aspect of components,
while adding the necessary timing for RTL simulation. This approach differs from existing
systems for developing periodic circuits, such as CATHEDRAL [27], PHIDEO [30], Amical
[11] [26] or GAUT [23], which use knowledge of the internal operations to perform synthesis,
allocation and optimization.

Initialization and termination sequences are an important part of a prototype, par-
ticularly when working with complex VLSI circuits. On the other hand, when working
with a behavioral model, these timing considerations either are ignored or are expressed
differently. We model the hardware initialization sequence using the timing sub-element
of the component.

We use a three-part maquette as the starting point for each component. The maquette
includes the timing sub-element, the operation sub-element, and interface “glue” between
the input/output and the operation, as shown in Figure 4. The part labeled operator
specifies the behavior of a component. The timing diagram of the component, i.e. the
VSDF temporal expressions, is presented to the exterior by the timing sub-element. The
timing includes a check on all inputs, and an explicit control of the instants when the
output will exist. An interface is used to handle any differences in format between the
timing sub-element and the operation; this interface, for example, handles the buffering
of a stream of words for a block-oriented operator.

INRIA

Prototyping of VLSI Components from a Formal Specification 17

interface

inputs outputs

operator
check exist
(0, ¢in’ hzn) (9’ CDOUt, hout)

| i / timing pout |
\ initialization information /

Figure 4: The Simulation Model

5 A Case Study: a motion-estimation subsystem

We now present a detailed case study of VSDF used to prototype a motion-estimation
subsystem. We will apply two SGs-Thomson ST13220 motion-estimation processors to
allow an enlarged search window. The ST13220 processor performs an exhaustive search
for the best possible movement vector, trying all possible displacements for a given block
of pixels; we will use two processors to evaluate two different search windows, together
with a component to select the better of the two results.

The specifications and timing information for the STi3220 are taken from the data-
book [29]. The component which selects the better of the two vectors does not exist, so
we will follow a top-down methodology to develop a prototype from a formal specification
in VSDF. The necessary synchronization will be specified in VSDF, and the augmented
balance equations will be verified. A simulation component which meets the VSDF spe-
cification will then be developed in VHDL. After simulation to insure correct operation,
the component is synthesized using the Synopsys tools.

The ST13220: principle of operation

The equation used to evaluate a given displacement vector (z,7) for an MaN reference
block is given by (Equation 4) [2].
N-1M-1
distortion; ; = Z Z | SearchWingyiyy; — RefWing, | (4)

y=0 z=0

The ST13220 contains 256 systolic processors, which are used to simultaneously evaluate
the 256 different displacement vectors.

RR n~°2363

18 R.McConnell

Search Window ——_

Reference] \ Reference
Block Block
j-8 = j+8 —

Figure 5: Displacement of the reference block

In order to keep our example simple, we do not consider interpolated pixels, nor do we
generate synthetic pixels for a search window which extends outside the physical image;
instead, we will use edge control signals to limit the search to the physical image.

5.1 Enlarging the search window

We would like to enlarge the search window in the horizontal direction, corresponding to
enlarging the set of motion vectors to be evaluated. In video sequences, movement in the
horizontal direction is more common than movement in the vertical direction (due both to
the movement of objects across the screen, and to “panning” of the camera). If we double
the length of the search window, we will require twice as many calculations in order to
perform the exhaustive search. Since the ST13220 is limited to a horizontal displacement
of -8/47 pixels, we will require a second ST13220 circuit to evaluate the enlarged search
window.

The principle of our approach is to use one Motion Estimation processor in the forward
direction and the other in the backwards direction, and to then choose the better of the
two vectors. We take advantage of the fact that the ST13220 provides as output not only
the movement vector, but also a measure of its quality, the distortion. The distortion
associated with each of the two vectors will be evaluated, and the vector associated with
the lesser of the two distortions will be retained.

This example allows us to demonstrate the elaboration of a multi-component sub-
system with relatively complex timing constraints. In addition, the selection of a motion
vector based on the distortion (and edge controls) represents an operation of moderate
complexity which is not available as a commercial circuit. We will develop this specialized
component in VHDL, using tools from our library, and then synthesize it using Synopsys.

We apply two Motion Estimation processors, the one for evaluating the vectors with
a negative displacement (j € {—16... — 1}), and the other for evaluating vectors with
a positive displacement (5 € {0...15}). The two resulting distortions will be compared,
and the vector associated with the lessor of the two distortions will be selected. The block

INRIA

Prototyping of VLSI Components from a Formal Specification 19

D=128
256

Source
SWA

Source
SWB

256

Source
swC

256

Source
EC(3:0) 1

i)

Figure 6: Estimation subsystem with two M.E. processors

size will be 16x16, for an image coded in format CCIR-601 4:2:2 [5]; we will use only
luminance information for the motion estimation.

The search space for the processor which evaluates the negative displacement vectors,
will be advanced by 8 columns with respect to the reference block. Likewise, the search
window for the positive processor will be retarded by 8 columns with respect to the
reference block. We present the view of the Motion Estimation processor in the negative
direction in (Figure 5).

We can represent this subsystem using an SDF graph, as shown in (Figure 6).

5.2 Specification of the ST13220 in VSDF

The ST13220 performs exhaustive-search motion estimation, in this case in a configuration
for MPEG. Only the luminance information will be used; it is in blocks of 16 by 16 pixels,
i.e. 256 pixels (or 256 cycles of the clock) per macro-block.

The specifications of the ST13220 [29] require an initialization phase of 144 cycles of the
pixel clock (equivalent to 9 columns of pixels), before the first pixel of the search window
arrives. Then, 7 columns of the search window must arrive before the first column of the
reference block. The total initialization time is therefore 256 cycles. The chronogramme
in the datasheet specifies a latency of 292 cycles between the arrival of the first pixel of
the reference block, and the output of the motion vector.

RR n~°2363

20 R.McConnell

A simplification of the output

The output of the STI3220 appears as a sequence of values on a one-byte-wide bus noted
10B. The distortion is a value which requires 16 bits, and so it is presented in two steps,
most significant byte (msb) followed by least significant byte (Isb). The three bytes of
output (vector, distortion.msb, distortion.lsb) appear during cycles 1, 3, and 4 of the
output sequence; during the second output cycle, no information is present on 10B. To
simplify the control, we assume a dummy value during the second cycle, which is not
used. This allows us to express the synchronization on 10B as a sequence of four events,
without intervening “holes”. The VSDF expressions for the ST13220 are thus:

Ix = 256

Igco = Igc1 = Ipce = Ipes =1

Iswa = Iswp = Iswc = 256

Orop =4
6 = 548
0 = 256

Input:
X: 00(1,0,0) + (256 + h'")
EC,,EC,,ECy, ECs . (6,0,0) + (256 + h'™)
SWy,SWg,SWe: 00(1,0,0) + (144 + h™)

Output:
I0B: (0,{k|0 <k <4},6+ h™).

We recall that the motion estimation processor ST13220 requires a time (256 4+ k") before
the first reference block arrives to complete its initialization.

5.3 Specifying the Selector

The motion vector selector is to our knowledge a component which is not commercially
available. We will therefore specify its operation and its synchronization, and then develop
the component using VHDL. We recall that this component should select the “better” of
two motion vectors, based on a criterium of minimum distortion, and taking into account
the horizontal edge controls. It should then provide the selected motion vector, adding
the appropriate displacement (positive or negative) depending on the relative position of
the search window of the Motion Estimation processor. The requirements are:

INRIA

Prototyping of VLSI Components from a Formal Specification 21

1. the component must accept on input both the movement vectors and their respective
distortions;

2. the distortion values to be compared will arrive in two cycles (msb followed by Isb);
3. edge control should be supported in a way that is compatible with the ST13220.

Analyzing the movement vectors requires that the displacements be stored while the
distortions are compared. In addition, the horizontal component of the movement vector,
which appears on bits 10B[7:4], must be adjusted to correspond to the displacement of
the search window: -8 for the negative displacement, and +8 for the positive displacement
(this also increases the number of bits in the movement vector by one, from 8 to 9)

The actual comparison of distortions occurs during two cycles, msb followed by Isb.
The priority is, in descending order, given to the edge controls, the msb of the distortion,
and finally to the lsb. The VSDF model requires that the latency of a component be
constant. Therefore, the result of the comparison will not be available until after the Isb
of the distortion has been evaluated, even if it is irrelevant.

The left and right edge controls EC1 and EC3 can no longer be applied directly to the
ST13220’s, because they assume that the search window is centered around the reference
block (we recall that the search window has been displaced, either to the left or to the
right). We must therefore suppress invalid vectors during the selection. We consider two
possible cases:

e EC1 ="1", which indicates the right edge of the image, and therefore the suppression
of the result of the processor which evaluates the positive displacement except in
the case of a zero horizontal displacement.

e EC3 =17, which indicates the left edge of the image, and therefore the suppression
of the result of the processor which evaluates the negative displacement.

A final consideration is that the edge control signals are synchronized to the beginning
of the processing by the ST13220’s. We must therefore save these values until the motion
vectors have been calculated. We save these values EC1 and EC3 inside the selection
component, in order to minimize the component count. The EC are synchronized with the
first pixel of the reference block X, which arrives at time A" + 256 as presented in section
5.2.

The vector selector component takes as input two sequences of four values (the sim-
plified 10B sequence) as well as the edge controls EC1 and EC3. The result is available one
cycle after the distortion 1sb. The VSDF specification is therefore:

RR n~°2363

22 R.McConnell

Input:
10Bpos, IOByge = (0,{k[0 < k < 4}, h'™)
EC,, ECs . (0,0,h™)

Output:
(0,0, R 4 6).

5.4 An RTL Model of the Subsystem

We now have a formal specification in VSDF of the different components which make
up the motion estimation subsystem. The next step is to describe the entire subsystem
at a register-transfer level, introducing the constraints relative to the system clock into
the SDF model (Figure 6). We would like to displace the search windows relative to the
reference block in each of the processors J_NEG and J_POS. We do this by changing the
arrival time of the search window relative to the reference block.

5.4.1 Shifting the Search Window

For the processor J_POs, we delay the search window by 8 columns, or 128 cycles of the
pixel clock, which corresponds to shifting the search window to the left relative to the
reference block:

Search Window:

SWy,SWg,SWe: 00(1,0,0) + 144 + h'™ + 128
=00(1,0,0) + (400 + h'™)
The motion estimation processor J_NEG will have its search window arrive earlier than

the reference window, which corresponds to shifting the search window to the right relative
to the reference block:

Search Window:

SWy,SWg,SWe 600 (1,0,0) + 144 + A™ — 128
=00(1,0,0) + (16 + &™)

5.4.2 The Complete System: Static Verification

We can now perform static verification of synchronization between the two Motion Es-
timation processors and the Vector Selector component. We will use the pixel clock to
synchronize all components; the period for a block of 256 pixels is therefore:

6 = 256.

INRIA

Prototyping of VLSI Components from a Formal Specification 23

SEL_MIN
[[CE FosTo > 10B_POS(7:0) '
— —— oaNEarS) MINIMUM(8:0) |- MINIMUM(E:0)
pouti)——t+——ec1
ECL D_IN1 . D_IN(L:0) EC3
D_OUT(L:0) =7 S b_outo}——
EC3 D_IN0 3 - o
a1 g | oK H_ouT
i S
DC_VECT2 s SEL_MIN1
D_IN(1:0) D_OUT(1:0) v
LK %‘
o
AN H_IN H_OU s
D EC \
EC1, EC3
Select
DELAY 1
LK Vector
HIN H_ouT|
H 1B _NEG
DH_VECT8
TOB_NEG(7:0) > D_IN(7:0) D_OUT(7:0)|-——
CLK
-
_IN H_ouTf——=—| De ay
D I0B NEG ——
IOB_NEG
cik — H_IN

Figure 7: Complete Vector Selector component

The repetition counts will all be 1, corresponding to one block per period. We take the
input h_in to the Vector Selector as h_out of a Motion Estimation processor. The Aug-
mented Balance Equations are therefore:

TOB% OB . - IOB™ .

(97{k|0 S k < 4}7h051%1) = (07{k|0 S k < 4}7h§\2m)
(256, {k]|0 < k < 4}, 6571 + hiy,) = (256, {k|0 < k < 4}, 6571 + hidy).

This configuration assumes that the search window and reference block are appropria-
tely synchronized with the initialization input h_in. We also assume that the values for
the edge controls ECO ... EC3 are calculated elsewhere. One could use the specification
above to create a working motion-estimation subsystem. However, by simple displacement
of the delays, we will show below how to create a system which requires less storage.

5.4.3 An Improved Subsystem

In the implementation specified above, every search-window input sw of the Motion Es-
timation processor j_pos is delayed, which in turn implies substantial delay storage. Since
there are three times as many data in the search window as in the reference block, it is
desirable to delay the reference block instead of the search window. In order to reduce the
delay storage, we will modify the formal specification, while maintaining the synchroniza-
tion across connections. This will imply a modification of the specification for the Vector
Selector component (but not the ST13220). The resulting formal specification for the
Vector Selector will still satisfy the augmented balance equations, and will also describe
directly a usable component.

RR n°2363

24 R.McConnell

Changing the delay scheme can be accomplished by delaying all inputs (the search
window SWA, SWB, SWC, the reference block X, the edge controls ECO .. EC3 and the
initialization input H} y) to the processor j_neg by one block, i.e. 256 cycles of the pixel
clock. The result is that the search windows of the two Motion Estimation processors are
“aligned”, eliminating the extra delay on SWA, SWB, SWC.

We express this operation in VSDF using Delay (addition of 256) on all the input
expressions of the Motion Estimation processor j_neg. The new expressions are:

T nvpa = hys + 256

Inputs:
X: 00(1,0,0) + (256 + A v o)
=(0,{0...0 —1},512 + A%)
EC,,EC,; ECy, ECs: (6,0,0) + (256 4+ hin nEc)
= (0,0,512 + A% o)
SWy,SWg,SWe: 00(1,0,0) + (16 + A7 v we)
=(0,{0...0 —1},272 + b)

Outputs:
I0B (0,{k|0 <k < 4},8)+ (128 + b).

In the simulation model, the delays on the values are implemented by tools for synchronous
delays presented in [24].

The advantage of the new configuration is that the volume of data to be delayed is
much reduced: the edge controls are one bit each, once per block of 256 pixels; and the
reference block X represents one-third the volume of the search window swa, SWB, swc.

5.4.4 Specifying the Modified Selector

We must modify the Vector Selector in order to take into account the delays displaced to
the inputs. We use the augmented balance equations to determine the synchronization of
the revised component. We take advantage of the delay introduced on the edge controls
ECO .. EC3, by taking them and A%, from the input to j_neg. We calculate all inputs

relative to hi%; :
0 = 256

ser, = Ry npa = hgys + 256

INRIA

Prototyping of VLSI Components from a Formal Specification 25

Inputs:
EC,,ECs: 00(1,0,0) 4+ A,

= (9a07 ?EL) _

I0Bpos : (9, {k|0 <k< 4},0) + ?YS + 05713220
= (0,{k|0 < k < 4},0) + (hgyy — 512) + 05713220
= (0,{k[0 < k < 4}, k5, + 36)

[OBNEG . (9, {k|0 S k< 4}, 0) + hgbys + (5ST13220 + 256)
- (9, {k|0 S k < 4},0) —|— (hngL - 512) —|— ((55T]3220 —|— 256)
= (0, {k[0 < k < 4}, ki +292)

The latency of this component will still be 4 cycles after the arrival of the second
vector, in this case the input T0Bygg:

bspr,. = max{hge, k1o pos: hioB_nEa) +4
= 296

Since the inputs have been calculated from the augmented balance equation, it is trival
to prove that the equations are satisfied for the subsystem:.

5.4.5 Synthesizing the Modified Selector

As the operator of the Vector Selector takes all inputs at the same time, we add physical
delays corresponding to the addition (4 256) on the edge controls EC1 and EC3, and on
the output of the Motion Estimation processor j_pos. The complete component with these
improved specifications is shown in (Figure 7). We remark two boxes, “split” and “join”,
which are simply bus rippers. The result of automatic synthesis of the Vector Selector
operator with Synopsys is shown in (Figure 8).

6 Conclusion

We have presented a way to rapidly prototype a synchronous system composed of spe-
cialized VLSI circuits, starting from a formal specification notation. Our notation can
be used to formally specify a system, and statically verify correct synchronization at a
Register-transfer level. Our component model provides a consistent format to ease the
transition between a block-level Synchronous Data Flow graph, and an RTL description
of synchronous circuits. Software tools for this approach, written in SIGNAL or VHDL,
allow us to check that proper synchronization is maintained. We have also presented a
prototyping example, taken from motion video coding.

RR n~°2363

26 R.McConnell

= T
e EF;E&’E[% = S — |
|||C f ||||
T [= =R .
Ll | S 3
il iﬂ% * i
- - H
o] | | T
= A 1 SR
il
™1

| [Hl

L[

Figure 8: Vector Selector operator after synthesis

Our simulation model offers the advantages typical of multi-level simulations, both in
the modularity of a component and in the efficiency of system-level simulation. The com-
ponents need not be described internally at a gate level, speeding the prototyping process
for a system. And the separation of functions make it easy to change the “technology”
of the simulation library. It also adapts well to the typical stages in the design process,
beginning at a block-level and finishing as circuit-specific.

We emphasize that our approach is targeted at system-level RTL design, and not at
individual component design, with the capacity to integrate existing components using
their functional and timing specification. In order to develop an RTL model, we require
detailed timing information for the VLSI circuits (such as that given on a datasheet) but
not the specifics of the internal implementation, making it practical to insert models of
commercially available circuits.

The notation and simulation model presented also propose a transition mechanism for
adding initialization and termination considerations to a Synchronous Data Flow graph.
These considerations are an important part of the detail work needed for a dedicated-
component implementation, particularly when working with complex VLSI circuits. The
VSDF notation and the model assume that each component performs a certain cyclic
operation independent of the data, and that the timing of input and output events can be
calculated relative to this cyclic operation using a single clock. This can be seen as a major
limitation; however, it simplifies our model and makes precise synchronization possible.
We also benefit from the work done on Synchronous Data Flow [20][21] and synchronous
circuit design.

INRIA

Prototyping of VLSI Components from a Formal Specification 27

Limitations

Our model and tools have many limitations. We do not yet have a tool to automatically
perform the transition between an SDF-level and a circuit-level synchronization; such a
tool should be possible for at least the simple cases. Our starting point is not, strictly
speaking, an SDF graph as defined by Lee and Messerschmitt, as we assume a “unitary”
delay for each operation (although we note that this does not change the Topology Matrix
I'). Nor do we offer the automatic optimization capabilities of the Silicon Compilers. In
order to simulate our system using SIGNAL, we also require a ’C’/Unix description for
each processor, or node in the SDF graph, whose behavior conforms to the model detailed
in [17] [16].

A more fundamental limitation of our model, is that we assume all input events oc-
cur at known instants relative to the known clock of a given node. This is in keeping
with our decision to consider synchronous systems, but nevertheless implies that timings
are carefully controlled. We point out that our equivalence expressions do not require a
system-wide clock, only that the input and output expressions common to a given link
are properly timed. Nevertheless, for practical implementations, a common system clock
(determined as presented in [14]) seems indicated.

Acknowledgments

We would like to thank Alain Kerihuel and Sanjay Rajopadhe for many fruitful discussions
and numerous insightful comments, and Mohammed Belhadj and Dominique Lavenier
for their assistance in giving this article its form. We would also like to thank Hamid
Bougayouu, Jaques Mahe, Arnaud Maitrehenry, and Bruno Pillerel for their behavioral
model of the SGs-Thomson STI3220 component.

RR n~°2363

28 R.McConnell
References
D. AcCKerinan. ala OW languages. Ompu 67’, . — 5 (& ruary .
1] W.B. Ack Data flow languages. C ter. 15:15-25. Feb 1982

2]

3]
[4]

A. Arteri and F. Jutand. A Versatile and Powerful chip for Real-time Motion Esti-
mation. In SPIE 88, Boston, 1989.

Bruce Bourbon. System-level Design. Computer Design, 19-21, December 1990.

Joseph Buck, Soonhoi Ha, Edward Lee, and David Messerschmitt. Ptolemy: A Fra-
mework for Simulating and Prototyping Heterogeneous Systems. Technical Report,
University of California, Berkely, August 1992.

CCIR. Parameétres de codage de télévision numérique pour studios. Technical Report,
Committée Cosultatif International pour la Radiotéléphonie, 1990. Recommendation
601-2.

A.L. Davis and R.M. Keller. Data flow program graphs. Computer, 15(15):26-47,
February 1982.

J.B. Dennis, J.B. Fosseen, and J.P. Linderman. Data FLow Schemas. Lecture Notes
in Computer Science, 5:187-216, 1972.

D.Lanneer, S.Note, F.Depuydt, M.Pauwels, F.Catthoor, G.Goossens, and H.De Man.
Architectural synthesis for medium and high throughput signal processing with the
new CATHEDRAL environment. Kluwer, Boston, April 1991. In R.Camposano and
W.Wolt, Trends in High-level Synthesis.

Comdisco Systems Inc. SPW - The DSP Framework. Data Sheet, 1993.

inmos. IMS A121 2-D Discrete Cosine Transform Image Processor. Data Sheet,
1991.

A. Jerraya, I. Park, and K. O’Brien. AMICAL: Interactive High-Level Synthesis
Environment. In EDAC 93, Paris, February 1993.

Alain Kerihuel, Roderick McConnell, and Sanjay Rajopadhye. Des graphes de flots
de données synchrones pour le VLSI. Actes de 6eme rencontres francophones du
parallaelisme, June 1994.

Alain Kerihuel, Roderick McConnell, and Sanjay Rajopadhye. VSDF: Synchronous
Data Flow for VLSI. In Proceedings of the 37th Midwest Symposium on Circuits and
Systems, Lafayette, Louisiana, August 1994.

Alain Kerihuel, Roderick McConnell, and Sanjay Rajopadhye. VSDF: Synchronous
Data Flow for VLSI. Technical Report 843, IRISA, Campus de Beaulieu, Rennes,
FRANCE, June 1994.

INRIA

Prototyping of VLSI Components from a Formal Specification 29

[15]

[16]

[17]

[18]

[19]

[20]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

R. Lauwereins, P. Wauters, M. Ad , and J.A. Peperstracte. Geometric Parallelism
and Cyclo-static Data Flow in Grape-11. In Proceedings of the 5th IEEE International
Workshop on Rapid System Prototyping, Grenoble, France, June 1994.

Dominique Lavenier and Roderick McConnell. From Behavioral to RTL Models: an
approach. Technical Report 822, IRISA, Campus de Beaulieu, Rennes, FRANCE,
May 1994.

Dominique Lavenier and Roderick McConnell. From Behavioral to RTL Models: an
approach. In Proceedings of the 5th IEEE International Workshop on Rapid System
Prototyping, Grenoble, France, June 1994.

Edward A. Lee. Consistency in Dataflow Graphs. In IEEE Transactions on Parallel
and Distributed Systems, pages 355-369, IEEE Computer Society, April 1991.

Edward A. Lee. Multidimensional Streams Rooted in DataFlow. In IFIP Working
Conference on Architectures and Compilation Techniques of Fine and Medium Grain
Parallelisim, North-Holland, January 1993. Orlando, Florida.

Edward A. Lee and David G. Messerschmitt. Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing. [IEEE Transactions on Computers,
C-36(1), January 1987.

Edward A. Lee and David G. Messerschmitt. Synchronous Data Flow. Proceedings
of the IEEE, 75(9), September 1987.

LSI Logic. 164735 dicrete cosine transform processor. Data Sheet, 1990.

E. Martin, O. Sentieys, H. Dubois, and J. Philippe. GAUT: an architectural tool
for dedicated signal processors. In Furo-DAC 93, pages 14-19, IEEE, Hamburg,
September 1993.

Roderick McConnell, Alain Kerihuel, and Frédéric Raimbault. Tools for Correct DSP
Synchronization. Technical Report 717, IRISA, April 1993.

Mentor Graphics Corporation, EDC. DSP Station. Data Sheet, 1993.

Kevin O’Brien. Compilation de silicium : du circuit au systeme. These de I'Institut
National Polytechnique de Grenoble, France, March 1993.

Jan Rosseel, Guy Lauwers, and Francky Catthoor. Array clustering in the context of

the CATHEDRAL-1V environment. Technical Report PPR 3, NANA-I, March 1992.

Charles Seitz. System Timing, chapter 7, pages 218-254. Addison-Wesley, 1980. In
Mead and Conway, Introduction to VLSI Systems.

SGS-Thomson. STI13220 motion estimation processor. Data Sheet, 1990.

RR n~°2363

30 R.McConnell

[30] J. van Meerbergen, P. Lippens, B. McSweeny, W. Verhaegh, and A. van der Wertf.
PHIDEO: High-Level Synthesis for High Throughput Consumer Applications. Tech-
nical Report, Philips Research Laboratories Eindhoven, November 1992.

INRIA

/¢

Unité derechercheINRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derechercheINRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derechercheINRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derechercheINRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

