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Abstract:

The system Fc, the well-known second-order polymorphic typed A-calculus with sub-
typing and bounded universal type quantification [CW85, BL90, CG92, Pie92, CMMS94],
appears to be undecidable [Pie92] because of undecidability of its subtyping component.
Attempts were made to obtain decidable type systems with subtyping by weakening F<
[CP94, KS92], and also by reinforcing or extending it [Vor94a, Vor94b, Vor95]. However, for
the moment, these extensions lack the important proof-theoretic minimum type property,
which holds for F'< and guarantees that each typable term has the minimum type, being a
subtype of any other type of the term in the same context [CG92, Vor94c].

As a preparation step to introducing the extensions of F< with the minimum type prop-
erty and the decidable term typing relation (which we do in [Vor94e]), we define and study
here the hierarchies of decidable extensions of the F< subtyping relation. We demonstrate
conditions providing that each theory in a hierarchy:

1. extends F<, proving everything that is F'<-provable;

2. satisfies the substitution property for boundedly quantified universal types:
' (Vy<o1.02) K (Vy<m.m)and T F 0<m imply T + o3[0/y] < m[0/7];

3. is transitive: ' = 01 < o9 and ' F o9 < o3 tmply ' F 01 < o3 .
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2 Sergei Vorobyov

Transitivity and substitutivity are indispensable for the minimum type property and
typing proof normalization [Vor94e].
We give conditions guaranteeing that a hierarchy condenses, i.e.,

The(FO(H)) D The(FETV(H)) for cach i € N

and converges to F¢, i.e.,

lim The (PEV(H) = ﬁ The(FEV(H ) = The(Fe) .

We also study cases when a hierarchy collapses, i.e.,
ThS(Fg)(’H)) = ThS(FgH)(’H)) starting from some i € N .

It turns out, however, that normally the hierarchies do not collapse.

Key-words: second-order polymorphic typed A-calculus, subtyping, system F<, bounded
universal type quantification, (un)decidability, polymorphism, proof normalization.

(Résumé : tsvp)
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Hiérarchies des extensions décidables
de la quantification bornée

Résumé :

Le systeme F¢, le A-calcul polymorphe typé avec le sous-typage et la quantification uni-
verselle bornée de types [CW85, BL90, CG92, Pie92, CMMS94], s’avére indécidable [Pie92]
a cause de I'indécidabilité de sa composante de sous-typage. Des essais ont été effectués pour
obtenir des systémes de types décidables en affaiblissant F< [CP94, KS92], et aussi en le
renfor¢ant [Vor94a, Vor94b, Vor95]. Néanmoins, pour l'instant ces extensions ne satisfont
pas la propriéte de typage minimum, trés importante de point de vue de la théorie de la
démonstration. Cette propriété est vraie pour F< et garantit que chaque terme typable pos-
séde un type minimum, étant le sous-type de n’importe quel autre type du terme dans le
méme contexte [CG92, Vor94c].

Pour préparer 'introduction des extensions de F'< avec la propriété de typage minimum
et la relation de typage décidable (ce que nous faisons dans [Vor94e]), nous définissons et
étudions ici des hiérarchies des extensions décidables de la relation de sous-typage dans F<.
Nous établissons des conditions garantissant que chaque théorie dans une hiérarchie : -

1. étend F<, démontrant tout ce qui est Fi<-démontrable;
2. satisfait la propriété de substitution pour les types universellement quantifiés;

3. est transitive.

Transitivité et substitutivité sont indispensables pour la propriété de typage minimum
et pour la normalisation des démonstrations [Vor94e].

Nous donnons aussi des conditions garantissant qu’une hiérarchie se condense et converge
vers F<, et étudions des cas oli une hiérarchie s’effondre. Il se trouve que normalement des
hiérarchies ne s’effondrent pas.

Mots-clé :  X-calcul polymorphe du second ordre, sous-typage, systeme F<, quantification
universelle bornée de types, polymorphisme, (in)décidabilité, normalisation de démonstra-
tions.



4 Sergei Vorobyov
Contents

1 Introduction 6
2 Rapid Introduction to Typing Proof Normalization 10
3 Preliminaries 13
4 System F< (Curien-Ghelli’s Variant [CG92] ) 14
5 How to Make Your Extension of F< Decidable: Hierarchies { ThS(F(Si)(H)) izo 16
6 Choices of V-Hypotheses Sets 18
7 Three Characterizations of F< 19
8 Transitivity in Hierarchies {ThS(F(Si)(H)) i=o: Proof Plan 19
9 Transitivity of ThS(F(SO)(H)) 20
10 First Embedding Lemma 21
11 Second Embedding Lemma 21
12 All ThS(F(S")(H)) are Transitive 22
13 Cover Property 22
14 Collapse Problem 22
15 Distinguishing ThS(Féo)(H)) and ThS(F(Sl)(H)) 23
16 Distinguishing ThS(Fg)(H)) and ThS(F(SiH)(H)) 24
17 Non-Collapse 25
18 Substitution Property 25
19 Substitution Lemma 25
20 Assumptions on V-Hypotheses in Substitution Lemma 28
21 Conclusion 29
A Appendix: SnS-interpretations of F< 30

INRIA



Hierarchies of decidable extensions of bounded quantification )

B Appendix: Proofs 33
B.1 Proof of Lemma 9.3 (Transitivity of ThS(Fio)(H))) .................. 33
B.2 Proof of Lemma 10.1 (First Embedding Lemma) . . . ... ... ... ........ 37
B.3 Proof of Lemma 11.1 (Second Embedding Lemma) . . . . .. ... ... ... .... 38
B.4 Proof of Lemma 12.1 (Transitivity Lemma) . . . .. . ... ... ... .. ... ... 38
B.5 Proof of Proposition 15.2 . . . . . . . . . . ... 39
B.6 Proof of Proposition 16.1 . . . . . . . . . . . . . .. e 39
B.7 Proof of Lemma 19.1 (Substitution Lemma) . . . . . . . ... ... ... ... .... 40
B.8 Proof of Proposition 20.1 . . . . . .. . . . ... 44

RR n"RR-2354



6 Sergei Vorobyov

1 Introduction

Polymorphism, inheritance, and static type checking are three important cornerstone pa-
radigms of the most contemporary approaches to programming language design and me-
thodology. Statically typed languages stipulate that all function calls typecheck at compile
time. This makes programs more error-protected and efficient, making the run-time type
control unnecessary. Almost all recently developed programming languages feature in one
way or another combinations of ideas of type control in presence of polymorphism. Du-
ring last decade a substantial progress has been achieved both on elucidating theoretical
foundations of the underlying type systems and practical implementation of type-checkers
for programming systems and environments [CW85, Car88, Mit88, Car89, BL9I0, Mit90,
BTCCS91, CL91, Bar92, CG92, Pie92, KS92, CP94, CMMS94].

Among various existing notions of polymorphism the most important and influential are the
following two:

The parametric (or horizontal) polymorphism characterizes a function uniformly applicable
to objects of any type. This is best captured by universal quantification. For example, the
polymorphic identity Az .z does not care what the type of its argument is. Its generic type
is therefore Ya.a@ — «a. The contemporary study of parametric polymorphism is based on

Girard-Reynold’s polymorphic second-order A-calculus [Gir71, Gir72, Rey74, GLT89].

The inheritance (or vertical) polymorphism is based on the idea of hierarchical data orga-
nization where each new descendant type possesses all the properties of its ancestor types.
Therefore, a function applicable to an ancestor type should successfully work on all its off-
springs, i.e., polymorphic downwards. This idea of programming over taxonomic data, first
appearing in Simula-67, has been evolved into a new programming paradigm, now best
known as the object-oriented programming. The systematic study of inheritance polymor-
phism and its combination with parametric polymorphism was started by Cardelli [Car88],

Cardelli and Wegner [CW85].

Cardelli and Wegner [CW85] suggested to unify the parametric and inheritance polymor-
phism in a single type-theoretic framework. Their language Fun, an extension of the second-
order typed A-calculus with subtyping [CMMS94], includes both kinds of polymorphism,
allowing simultaneously:

e the universal quantification over types Vo . type[a], expressing a polymorphic type[a]
parametrized by an arbitrary type «;

e the inheritance subtype relation on types: subtype < type meaning that a subtype
inherits everything from a type;

e the most revolutionary feature of Fun is the ability to combine the both, achieved by
means of the bounded universal quantification:

Vo < bound-type . type[a]

INRIA



Hierarchies of decidable extensions of bounded quantification 7

expressing a polymorphic type[a] parametrized by « that could be substituted by any
subtype of a bound-type. Since Fun has the largest type T, the bounded quantification
subsumes the unbounded one as a particular case: Vo is simply expressed by Va < T.

The ability to derive subtyping judgments between types I' F ¢ < 7 (meaning: “o is a
subtype of 7 in context I'”) in addition to usual typing judgments I' - M : p (meaning:
“M is of type p in context I'”) is crucial in the presence of subtyping. In fact, to correctly
type an application of a function of type 7 — x to an argument of a subtype ¢ of a type 7,
one needs rules like:

r-t¢+ . o o <1

(Subsumption)
N e S

which promotes a type of a term to all supertypes and brings together typing and subtyping.

To derive subtyping judgments about boundedly quantified types the following rule was
introduced in Fun:

Fa<phto <mn
I' F Va<p.o2) < (Va<p.m)

(All-Fun)

meaning that two boundedly quantified types are in the subtype relation if so are their

bodies.

For theoretical purposes Fun was purified and simplified by Bruce and Longo [BL90], then
by Curien and Ghelli [CG92]. The resulting type system is now known as the system F<.
The system F< includes more subtle and powerful subtyping rule for boundedly quantified

types:
ren < o INa<mn ko < m
't Va<oy.02) < (Va<1.m)

(All)

allowing one to subtype types with different type bounds.

F< and its variations become a proving ground for experimentation and studying of different
forms and notions of subtyping on boundedly quantified types and its algorithmic and proof-
theoretic properties. Curien and Ghelli [CG92] proved that F<¢ with powerful (All) rule is
coherent, possessing the minimal type property, i.e., each F<-typable term has a minimal
type, being a subtype of any other type of the same term with respect to the subtyping
relation generated by F<. Unfortunately, as proved Pierce [Pie92], the F< subtyping rela-
tion is undecidable. Consequently, the F< typecheck problem is undecidable too. Trying to
obtain decidability, attempts were made to weaken F<. Katiyar and Sankar [KS92] proved
decidability of restricted fragment of F< disabling the maximal type T in bounds of poly-
morphic types. Castagna and Pierce obtained decidability of F< replacing the powerful rule
(All) above by its weaker version

RR n"RR-2354



8 Sergei Vorobyov

recn <o N a<TF o < 1
' Va<oy.02) < (Va<m.m)

(All-Top)

However, the resulting system does not possess the minimal type property, as was noticed
recently by Ghelli'. Other weaker variants of F'< are mentioned in the introduction to [CP94]
and in [Pie92].

At that point, as remarked Pierce, there exists several ways: either to return to original
rule (All-Fun) with its unnatural restriction that bound of compared universally quantified
types are the same, or stay with powerful but undecidable (All), or, better, look for other,
simpler notions of subtyping.

In this paper we demonstrate that this last way is indeed possible. We show that there exist
infinitely many hierarchies of different subtyping systems that are simultaneously:

e simple in the sense that they are all decidable;
o more powerful than F<, i.e., they extend F< proving everything that Fi< does;
e transitive,ie., I' F oy <ogand ' F o9 <ozimply ' F o1 < 0o3;

o satisfy the substitution property for universal types, i.e.,
'k (VYy<o1.09) < (Vy<m.m)and T F p < mimply I F o3]p/7] < malp/7].

We construct hierarchies of more and more tight decidable extensions of the F« subtyping
relation satisfying the above properties and converging to F<. Our ultimate goal consists
in creating, on the basis of these hierarchies, the infinite family of decidable type systems
with subtyping more powerful than F<, which would type more terms than F< does, and
possess the unique canonical proofs and the minimum type properties. The transitivity and
substitution properties are necessary to achieve this. Using the hierarchies constructed in
this paper, in [Vor94e] we introduce an infinite family of extensions of F< with decidable

typing.

Infinite sets of decidable extensions of undecidable F<-subtyping relation, based on inter-
preting F< in Rabin’s second-order arithmetic of two successors, were first introduced and
studied in [Vor94a]. It turns out that the F< types and the F< subtyping rules could be
read in many ways just as S2S-formulas and admissible rules of S2S respectively. The
S2S-interpretations were generalized to recursive types [Vor94b]. The main drawback of
S2S-interpretations of F'<, as was noted by Cardelli, Pierce and others, was their unstructu-
redness. The S2S-interpretations were defined without any inference rules and thus proved
too many undesirable subtyping judgments. This disadvantage was partially remedied in
[Vor95], where the direct SnS-interpretations of F< were combined with conventional sub-
type inference rules. In this paper we go further: the structural decidable extensions of [Vor95]

1“types@dcs.gla.ac.uk” electronic forum, January 1994

INRIA



Hierarchies of decidable extensions of bounded quantification 9

form just the first levels of infinite hierarchies presented in this paper. These hierarchies is
what is really needed to get decidable extensions of the F< typing, see [Vor94e].

The three main ideas of our approach are the following:

1. we restrict the structure of (possibly) infinite F<-subtyping inferences, which lead to
undecidability;

2. we enrich the set of non-logical hypotheses (which is empty in the case of F¢); instead
of involving ourselves into exploring possibly infinite inferences, we prune the proof
branches, which may lead to infinite loops and verify whether the resulting unproved
judgments belong to the non-logical hypotheses sets;

3. we suggest a large choice of non-logical hypotheses sets, allowing us to extend F< and
to get the transitivity and substitution properties; SnS-interpretations are the main
tool? to construct such hypotheses sets; each SnS-interpretation gives rise to its own
hierarchy; as there exists infinitely many different SnS-interpretations of Fi< [Vor94al,
we get infinitely many different hierarchies, all converging to Fx.

After informally considering the example of the typing proof normalization in the presence
of subtyping and elucidating the problems in Section 2, we proceed to basic definitions
concerning polymorphic subtyping in Sections 3 and 4. Section 5 introduces the hierarchies
of subtyping theories, and Sections 6-17 are devoted to proving the transitivity in the hie-
rarchies and related problems. Sections 18-20 address the substitution property. To make
the paper self-contained, we added the Appendix A on SnS-interpretations of F¢. All the
proofs, which are quite difficult and subtle in the presence of non-logical hypotheses, are
given in Appendix B.

2There exist others

RR n"RR-2354



10 Sergei Vorobyov

2 Rapid Introduction to Typing Proof Normalization

Let us start by informally considering an example of a typing proof and a typing proof
normalization in the presence of subtyping. This will allow us to introduce some jargon, to
understand problems, and to sharpen the intuition.

In contrast to the simply typed A-calculus or Girard’s polymorphic system F' [Bar92], the
typing proofs in the presence of subtyping are no more unique. A term may possess several,
or even infinitely many different typing proofs and, correspondingly, several or infinitely
many types.

Here is a fragment of a typing proof in the system F<:

(*11%) (*12%)
't : Wa<og. I v Va<o;. < Va<m.
(Va < 01.03) (Vasoro)s(Vasn.m) (Sub) (+13%)
't: VYa<m.m) I'Fp<mn

(TApp)
(1)

It t{p} : mp/a]
where:

e the term ¢ is assigned the boundedly quantified universal type (Vy < o1 . 03) in context
' by the typing proof (*I1x), which is not depicted here; the term ¢ is therefore proved
to be a partial function accepting type parameters; when applied to any subtype p of
the bound o this function produces the object ¢ {p} of the type oa[p/c], i.e., o9
with p substituted for all free occurrences of «;

e (xI2x) is an example of a subtyping judgment: (Yo < 07 . 03) is a subtype of
(Va < 71 .79) in context I'; it is intended that any object of a subtype belongs also to
a supertype;

e the judgments (xI1x) and (*I2%) allow us to infer by the so-called Subsumption rule
(Sub) the judgment T' F ¢t : (Va < 7 .72); in general the rule (Sub) allows one to
promote a type of a term to any supertype:

''ts:7mand TFH 7 <60 imply T+ s : 0

(it is the subsumption rule, which leads to the multitude of types of the same term);

e by (*I3x%), the type p is a subtype of the bound 7 of the type (Va < 71 .7) assigned
to the term ¢; therefore, the term ¢ is good to be applied to the type p, and we get
after applying the inference rule (TApp) for the type application, the final judgment

'k t{p} : mlp/a].

INRIA



Hierarchies of decidable extensions of bounded quantification 11

The above F<-typing proof is however not unique, and we could proceed otherwise:

(*11%) (*14%)
I Ft . Va<oy.09 'k p<oy
(TApp) (+15%) @)
I'F t{p} : o2lp/a] I' b os[p/a] < mp/a] (Sub)
u

' t{p} : mlp/a]

where instead of applying the subsumption rule (Sub) first, as in (1), we immediately use
the type application rule (TApp), and only afterwards proceed to the subsumption (Sub).

There are several necessary conditions guaranteeing that the transformation of (1) into (2)
could always be performed correctly:

1. the subtyping judgment (*I3%) should always imply (*I4%);

e the latter is guaranteed by the properties of subtyping for bounded universal
types (contravariance on bounds):

I (Va<oy.00) < Va<nn.m) =TFn <o,
e and by transitivity of the subtyping relation:
Frrp<n &lkFn <o =>TFp <o

2. the subtyping judgments (xI2x) and (*I3x%) should always imply (xI5%), i.e.,

' Va<oy.02) < Va<m.m)and T F p < 1 imply T F oa)p/a] < mip/al
(3)

(which is exactly the Substitution property for bounded universal types).

Note that transforming (1) into (2) we improve the type of the term t{p}: whereas (1)
yields the type 72[p/a], the proof (2) produces a better (smaller) type o2[p/c] (see (xI5x)).
Again, to be sure that during such transformations the types really get smaller, we need the
Substitution property (3).

The example just considered is a particular case of the so-called typing proof normalization.
The target of of this process consists in eliminating the abnormal patterns as above, where
a subsumption (Sub) immediately precedes a type application (TApp). As a result, the nor-
malization process produces finally a unique canonical proof and, as a by-product, the least
possible type for a term, being a subtype of all other possible types of the term in the same
context.

RR n"RR-2354



12 Sergei Vorobyov

The moral one should extract from this example is:

Transitivity and Substitutivity are two properties indispensable for typing proof
normalization.

Accidentally, the subtyping relation of the system F< possesses both transitivity and sub-
stitutivity properties, and any F<-typable term has a unique canonical typing proof and the
least type [CG92]. Unfortunately, the F< subtyping, and hence, the F¢ typing relations are
undecidable [Pie92].

Our aim in this paper consists in studying hierarchies of subtyping relations that:
1. possess the transitivity and substitutivity properties,
2. extend the F<-subtyping relation,
3. are all decidable.

Our ultimate goal consists in creating, on the basis of these hierarchies of extensions of the
F< subtyping, the infinite family of typing systems, which would type more terms than F¢
and possess the unique canonical proofs and the least type properties. We implement this
program in [Vor94e].

With these ideas in mind we now turn to formalities.

INRIA



Hierarchies of decidable extensions of bounded quantification 13

3 Preliminaries

Definition 3.1 (Boundedly quantified types) The set of F<-types is defined by the fol-
lowing abstract grammar:

T=¢ V|T|T—-T|VVLST.T
where:

1. 'V is a set of type variables denoted by Greek letters o, 3, 7y;
2. T is the largest type superior to any other type, o < T,

3. — s the functional type constructor, o — 1 is the type of functions with domain of
type o and codomain of type T;

4. Ya < p.7 is a polymorphic boundedly quantified type, i.e., a function assigning to
each subtype o of p, o < p, the type [0 /] obtained from T by substituling o instead
of free occurrences of o (with usual non-clashing preconditions on free variables). In
Va < p.1 the bound p does not contain o free.

The Greek letters o, T, p, 0, ¢, ¢ denote arbitrary (variable or compound) F<-types; V3.1
abbreviates VB < T.1; FV (o) is the set of free variables in o. a

Definition 3.2 (Subtyping Contexts) An Fc-subtyping context is an ordered sequence

a1 <0o1,...,0, < 0y

of <-relations between type variables and F<-types such that:
1. all o; are different type variables, and
2. for each i, FV(o;) C {aq,...,ai_1}.

Subtyping contexts are denoted by capital Greek T. Dom(T') is the set of type variables
appearing to the left of < in T'. We write I'(«) = o if T contains a < ¢ and call o a bound
of  inT. We define T*(a) as I'(«x) if the latter is not a variable, and as T*(T'(«)) otherwise.

Definition 3.3 (Subtyping Judgments) An Fc-subtyping judgment is a figure of the
form:
r-o < r

bl

where FV(o)U FV (1) C Dom(T). O

RR n"RR-2354



14 Sergei Vorobyov

4 System F. (Curien-Ghelli’s Variant [CG92])

Definition 4.1 (System Fc) The subtyping relation of the system F< is generated by the
following set of azioms and inference rules intended to be applied bottom-up (from conclu-
sions 1o premises):

r-r<T (Top)
I' o < o (aisavariable) (Refl)
I' F I'e) <
() < 5 (AlgTrans-Var)
't a<p

I'T"a) < o—r
'ra<o—r71

(AlgTrans- —)

PF ) < (V< pn)
'Fa < (V8<p.7)

(AlgTrans-Y)

F|_T1§0'1 Fl‘U’QSTQ
(Arrow)
F|_0'1—>0'2 S T1 — T2
'trn <oy lNa<m ko < m
(All)

' Va<o;.02) < Va<m.m)

Remark. For the purposes, which will become clear shortly we explicitly stated three

distinct rules: (AlgTrans-Var), (AlgTrans- —)(AlgTrans-¥Y) instead of just one generic
scheme:

't T(a) < 7
'ra<r

(AlgTrans)

INRIA



Hierarchies of decidable extensions of bounded quantification 15

Definition 4.2 (F<-inference trees) Call an V-hypothesis a judgment of the form
'Fa < (V8<p.T)

Fiz an arbitrary (normally recursive) set of V-hypotheses H. An F<-proof tree of a judgment
J from the set of V-hypotheses H (F<(H)-proof tree for short) is a (possibly infinite) tree T
with the root J such that:

1. each node in T s a subtyping judgment with at most two successors;

2. each node in T without successors is an instance of either the axiom (Top), or the
aziom (Refl), or belongs to the set of V-hypotheses H;

3. for each node J' in T, if J" is a unique successor of J', then J' is not an instance of

the (Refl) aziom, and

J//

Jr
is a particular case of either the rule (AlgTrans-Var), or the rule (AlgTrans- —), or
the rule (AlgTrans-Y);

4. for each node J' in T, if J” and J"' are two successors of J', then
J“ JIII

J/

is a particular case of either the rule (Arrow) or the rule (All).

An F<¢-proof tree s a finite F<-inference tree from the empty set of V-hypotheses, i.e., a
finite F<(0)-proof tree. A judgment J is F<-provable iff there exists a finite F<-proof tree
with the root J.

Let Th<(F<) denote the F<-subtyping theory, i.e., the set of all F<-provable judgments. O
As an immediate consequence of the above definitions we have:

Proposition 4.3 The following subtyping judgments are unprovable in Fc:

e ' T < Twitht#T,
o I' b 7 < « with a variable and T non-variable,

el'F oy —02 < (Vy<m.m),

eI'F (W<o1.02) £ 14— 7. m|

RR n"RR-2354



16 Sergei Vorobyov

One may think that constructing F<-proof trees he gets a decision procedure for Th<(F<).
Unfortunately, it is not the case. Ghelli gave examples of infinite F'<-proof trees, and Pierce
proved

Theorem 4.4 (Pierce, [Pie92]) The theory Th<(F<) is undecidable. O

This result was inspired by Ghelli’s example of a diverging alternating sequence of the
bottom-up applications of the rules (All) and (AlgTrans-V), see [Pie92], Section 4. Using
Ghelli’s divergence pattern, Pierce succeeded to encode the termination problem in Th< (F<).

5 How to Make Yqur Extension of F. Decidable: Hie-
rarchies {ThS(FS)(H)) 20

Our main idea of gaining decidability consists in pruning (possibly) infinite chains of alter-
nating (AlgTrans-¥) and (All) applications in the F<(H )-proof trees (see [Pie92], Section
4), together with using suitable V-hypotheses sets and their decision by using external (non-
inferential) means.

Definition 5.1 (Theories ThS(Fin)(’H))) Letn € N and H be a set of V-hypotheses. An

Fin)(H)-proof tree T for a judgment J is an F<(H)-proof tree of J with the following
additional properties:

1. every path in T starting from the root J contains at most n applications of the rule

(AlgTrans-Y);

2. every path in T starting from the root J and finishing by an Y-hypothesis from H
contains exactly n applications of the rule (AlgTrans-Y).

Let ThS(Fén)(’H)) =g { J | there exists an Fin)(H)-praof tree for J }.

By writing J € ThS(Fin)(’H))[ Ji, ..., Jx | we stress the fact that { J1,...,Jr } C H is
the finite set of all V-hypotheses actually used in an Fén)(’H)-proof of J. a

The following proposition is a direct consequence of the above definition.

Proposition 5.2
1. For every J € ThS(Fin)(H)) its Fin)(H)-proof tree is uniquely determined.

2. Proposition 4.3 holds for all ThS(Fin)(’H)).
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5. The(Fe) = UZo The(F<D(D)). 0

In contrast to Theorem 4.4 above we have:

Proposition 5.3 For every n € N and every decidable set of V-hypotheses H the theory
ThS(Fin)(H)) is decidable. O

Proof . Immediate from definitions. Given a judgment we try to construct its Fin)('H)—
proof tree by deterministically applying the rules of F<, verifying in parallel at each step the

two additional properties of Definition 5.1. Either we succeed in building an Fin)(’}'()—proof
tree or we are blocked with something, which could be called the F<-rejection iree. a

Below we show how to choose decidable sets of V-hypotheses correctly, so as each theory
ThS(Fin)(’H)) in the hierarchy be transitive, extend Th<(F<), and satisfy additional good
properties, as substitutivity.

The theories ThS(Fén)(’H)) and ThS(FgH'l)(’H)) are linked by the following simple pro-
perty: - -

Proposition 5.4 For every n € N:

1. LetT*(a) = (Vy < 01.02). AjudgmentT + o < (Vy <7 .7)isin ThS(Fin—H)(’H))
i .

(a) T+ n <oy € The(FEV(H));
()T, y<m F oy < 1 € The(FEI(H));
()T F (Vy<or.00) < (Vy<m.m) € The(FLI(H)).

2. The conclusion of the inference rule:

rrn <oy Iy<n ko £y
(All)
I'F (Vy<o1.00) < (Vy<1.m)

is in ThS(Fin)(H)) iff its two premises are also in ThS(Fin)('H)) (the same is true

for all other rules of F<, except (AlgTrans-V)). ad
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Proof . Immediate by definition. To prove 1, it suffices to consider the inference figure
'k n <oy Ly<n ko < m
' T a)=(Vy<o1.02) < (Vy <7 .72)
T'Fa < (Vy<mn.m)

(All)

(AlgTrans-Y)

Remarks. 1) Proposition 5.4.1 shows that the theories ThS(FinH)(H)) are not closed
with respect to backward applications of the (AlgTrans-V), which makes impossible the

proof of transitivity for ThS(Fin)('H)) in general. However, if ThS(Fio)(’H)) is transitive

and ThS(Fin)(H)) covers ThS(FinH)(H)) (Lemmas 9.3, 10.1, and 11.1 give conditions to
attain that), then all theories ThS(Fén)(’H)) are transitive (Lemma 12.1).

2) The theory ThS(Fio)('H)) is defined without any applications of the rule (AlgTrans-Y)
at all! As this rule is absent, normally one has to add to the set of V-hypotheses H all
judgments of the form

't a < (Vy<n.m) = I'(w)

unnecessary in the presence of the rule (AlgTrans-V), see Lemma 10.1. a

6 Choices of V-Hypotheses Sets

In principle, the set of V-hypotheses in Definition 5.1 may be arbitrary. Decidability of H 1s
of course crucial for decidability of ThS(FS)('H)).

We may choose, for example:

1. Hi={J | Jisofthe foomT F a < (VG <p.7)with T*(a) being an Y-type }.
With this choice, for every ¢ € N the theory ThS(Fg)(H)) is a consistent decidable
extension of T'h<(F<), the undecidable set of F<-provable judgments.

2. Hao={J | Jis an F<-provable judgment of the form T - o < (VG<p.7) }.
In this case for every i € N the theory ThS(Fii)(H)) is exactly Th<(F<). Note,

however, that H» is undecidable.

3. Take any decidable extension H of Hs (if you think that H; above is the only one such
extension, you are wrong, see the infinite class of Hz right below). For every decidable
‘H extending Ho and every i € N the theory ThS(Fg)(H)) is a decidable extension of
The(F<). B
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4. Consider the SnS-interpretations of the F<-subtyping relation introduced in [Vor94a],
see also [Vor95] and Appendix A. Choose and fix any such interpretation Z (there are
infinitely many of them). Let

Hz={J | Jhasthe formT F o < (V3 <p.7), I*() is a¥-type, J isvalidinT }.

We will call such sets of V-hypotheses the SnS-based V-hypotheses. In this paper we
prove, in particular, that every theory Th< (Fg)(’l'{z)) with an SnS-based V-hypotheses
set Hz is a consistent decidable extension of Th<(F<), closed with respect to transi-
tivity and satisfying the substitution property.

7 Three Characterizations of F.

1. Let Hp_ be The(F<) restricted to the V-hypotheses, (coincides with undecidable H
from the previous Section). Then the hierarchy collapses:

Th<(F<) = ThS(Fg)(’HFS)) for every i € N

2. Choosing the empty set of of V-hypotheses, we get:

The(F<D(0))

~
=
A
5
I
G

0

o
I

3. For every set of V-hypotheses H O Hp_, if ThS(FinH)(H)) C ThS(Fin)(H)) for all
¢ € N then: h B -

The(Fs) = lim The(FC(H)) = N The(r& 1)

n=0

Proposition 7.1 There are no decidable sets of V-hypotheses H extending Hp, such that

the hierarchy { ThS(Fg)(’H)) 182, collapses. |
Proof . Immediate from the limit property 3) above. a

8 Transitivity in Hierarchies { ThS(Fg)(H)) }2,: Proof
Plan

We now proceed to the proof that under certain conditions on the set of V-hypotheses,
each theory ThS(FiZ)(H)) in a hierarchy is transitive. First we prove the transitivity of
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ThS(Fio)(’H)) (Lemma 9.3). Then we demonstrate the inclusions
ThS(Fg-H)(H)) C ThS(Fii)(H)) (Lemmas 10.1 and 11.1). Finally, we demonstrate the
transitivity of all ThS(Fii)(H)) by induction using these two facts (Lemma 12.1).

9 Transitivity of ThS(FéO)(H))

The theory ThS(Fio)(’H)) is defined without any applications of the transitivity rule
(AlgTrans-¥). The next lemma shows how to remedy this drawback by correctly choosing

the set of V-hypotheses H, so as ThS(Fio)('H)) becomes transitive.

The V-hypotheses should satisfy the natural closure conditions, corresponding to the as-
sumption strengthening and to the congruences:

Definition 9.1 (Natural closure conditions on V-hypotheses) We say that a set of
V-hypotheses H satisfies the natural closure conditions iff:

LT, y<mkF6<0eHadT + p < 7 € Tha(FO(H))
mply ', vy <pp B 6 < 0 € H.

2T Fa< (VWW<n.n) € H and
LE(Vy<m.m) < (Vy<p1.p2) € Ths(Féo)(H))

mply I' = a < (Vy<p1.p2) € H.
3T FB < (Wy<n.m) € HandT F o < B € Tha(FO(H))

implyT' F o < (Vy<m.m) € H. o

Proposition 9.2 Fvery SnS-based set of V-hypotheses (see Section 6 and Appendiz A)
satisfies the natural closure conditions of Definition 9.1. a

Proof . Immediate by definition, see Appendix A. a

Lemma 9.3 (Transitivity of ThS(Fio)(’H))) Let a set of V-hypotheses H satisfy the na-
tural closure conditions of Definition 9.1. Then the theory ThS(Fio)(’H)) is transitive, i.e.,

Tk 01 <0 € The(FO(M)) and T F 0, <03 € The(FY(H))

imply T b 01 <05 € The(FY () O
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Proof . See Appendix B.1. a

Lemma 9.3 has infinitely many immediate applications, for example:

Corollary 9.4 The conditions of Lemma 9.3 are satisfied, if one takes H to be any SnS-
interpretation Hz defined in Section 6 and Appendiz A. So, all ThS(Fio)(HI)) are transitive.

The direct proof of this fact can be found in [Vor95].

10 First Embedding Lemma

Lemma 10.1 (First Embedding Lemma) Let a set of V-hypotheses H include all judg-
ments of the form

'ta < (VWwW<n.m) = I'(a)
and satisfy the natural closure conditions of Definition 9.1.
Then the theory ThS(Fio)(’H)) ertends ThS(Fil)(’H)), ie.

The(FE(H)) C The(FY(H)). O

Proof . See Appendix B.2. a

11 Second Embedding Lemma

Lemma 11.1 (Second Embedding Lemma) Let all the conditions of Lemma 10.1 be
satisfied.

Then for alln € N one has:

The(FOTV(H)) C The(FEV(1))

Proof . See Appendix B.3. a
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12 Al ThS(Fin)(H)) are Transitive

Lemma 12.1 (Transitivity) Let all the conditions of Lemma 10.1 be satisfied.

Then for every n € N the theory ThS(Fin)(’H)) is transitive, i.e.,

Lk 6 <0, € The(FEV(H)) and T+ 6y <65 € The(FI(H))

imply T = 0y < 03 € The(FL)(H)). O

Proof . See Appendix B.4. a

13 Cover Property

For every n € N, if a set of V-hypotheses is properly selected, the subtype theory
ThS(Fin)(H)) extends Th<(F<), the set of F<-provable judgments:

Proposition 13.1 Let a set of V-hypotheses satisfies the natural closure conditions of De-

finition 9.1 and contain the set of F<-provable judgments of the form
't o < (V<7 .m). Then

1) The(Fe) C The(FYV(H)) ¥ neN.

2) The(F) = limi—o The(FY(H)) = M52y The(FY(H)). O
Proof . Immediate. O

Proposition 13.2 The conditions of Proposition 13.1 are satisfied by each of the
V-hypotheses sets H1, Ha, Hz from Section 6. a

14 Collapse Problem

The following problem arises naturally:

Under what conditions the hierarchy { ThS(Fg)('H)) 2o collapses?

For example, if the set of V-hypotheses is

HFS =af {F Fa< (V’ySTl.Tz) € Ths(Fs)}
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then for all ¢,k € N

The(FY (Hp,)) = Tha(F¥ (Hp,)) = The(Fe)

In the next three Sections we show:

1. how to construct a typing judgment, which belongs to ThS(Fg)(’H)) and does not
belong to -
ThS(FgH)(’H)), provided that ThS(Féo)(’H)) and ThS(Fg)(’H)) are different;
2. that the hierarchy { ThS(Fg)('H)) 152, collapses iff ThS(FéO)('H)) coincides with
The(F(M)).
o e . . 0 1
15 Distinguishing ThS(F£ (1)) and ThS(F£ (M)

Proposition 15.1 Consider the following two types and the judgment (T is arbitrary):

T = YW.(T—=T)—=T) 4)
p = Yy (T—=T) (5)
J = T,ao <17k ay <p (6)
The judgment (6) belongs to every SnS-based set of Y-hypotheses. a
Proof . Immediate by definition, see Appendix A. a

Remark. Note that a judgment of the foom I' + o < (V...)is in H iff it is in
The(FL(M)). o

Proposition 15.2 Let ‘H be an arbitrary SnS-based set of V-hypotheses.
Then the judgment (6) is in ThS(Féo)(’H)), but not in € ThS(Fil)(H)). a

Proof . See Appendix B.5. a
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16 Distinguishing ThS(Fg)(H)) and ThS(FgH)(H))

We demonstrate the “simplest” distinguishing judgment.

Notation. Denote by I'},; the empty context () and for £ < n define the context I'} as:
Iy =g Tigpq, ar < (Vagpo1.ap-1)

In other words,

n —

P=an < (Vap—1.an-1), ano1 < (Vap_2.an_3), an_a < (Vap_3.an_3), ...,

oy apgr < (Vag . ag), ap < (Vag—y.op_1)

Define the types 6; (i € N) by induction (where the types 7 and p are defined by (4) and

(3)):

g = VYag<T1.p
92'_}_1 = Vai-}—l S (VCYZ . Ozi) . 92

Proposition 16.1 For every n € N and an arbitrary SnS-based set of V-hypotheses H:
1. the judgment
Frf l_ (VO[Q . (10) S 60

is in ThS(Féo)('H)) and not in ThS(Fg)('H));

2. the judgment

[y B (Van.an) < 0,

is in The(FEY(H)) and not in Tha (FST(H)). 0
Proof . See Appendix B.6. a
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17 Non-Collapse
As a corollary to the above propositions we have:
Corollary 17.1 A hierarchy { ThS(Fg)(H)) 224 collapses iff
The(FE(M)) = The(FL ()
In fact, take a judgment from ThS(Fio)('H)), which does not belong to ThS(FS)(H)).

Without loss of generality we may suppose that this judgment is of the form
I'Na<r, T'F a < p. Now we may use these types 7 and p instead of (4) and (5).

18 Substitution Property

Recall that we need subtyping theories with the following Substitution property:

TE(Wy<m.m) < (Vy<pr.p2) and T F o <py imply T F nlo/y] < palo/y] (7)

which is indispensable for the the typing proof normalization, see Section 2.

Proposition 18.1 The substitution property (7) holds for F<. O

Proof . Simple Corollary 19.2 to our Substitution Lemma 19.1 below. a

19 Substitution Lemma
We are going to investigate the substitution property for hierarchies { ThS(Fg)('H)) 20

Suppose, for some k € N:

't (Vy<m.m) < Vy<p1.p) € Thg(Fik)(H))

Then by definition (see also Proposition 5.4)

D,y<p b m < pp € The(F(H)) (8)

There might be two kinds of V-hypotheses used in the ThS(Fik)('H))—proof of (8):

Fa"ygplarl F oo
L,y<p, " F v

(V€< 01.02) (6#7) 9)

<
< (V¢ < 01.0) (10)
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The V-hypotheses of the form (9) are good, whereas the V-hypotheses of the form (10) create
an insurmountable obstacle for the substitution property, see Section 20. The problem is that
substituting a type o (satisfying ' F o < p;) instead of ¥ into an V-hypothesis of the
form (10) produces an expression:

I Uo/y] oo < (V€ <bi[o/q].02[0/7]) |

which is not, in general, an V-hypothesis any more, and, moreover, this judgment is not
guaranteed to be provable, see Proposition 20.1.

In a sense, adding the substitution property as a new inference rule may lead to contradic-
tions.

This explains restrictions on the form of ¥V-hypotheses in the Substitution Lemma below.
In Section 20 we show that these restrictions are essential and cannot be removed, so the
Substitution Lemma cannot be reinforced.

INRIA



Hierarchies of decidable extensions of bounded quantification 27

Lemma 19.1 (Substitution Lemma)

Let:
. Ia<o, I'F ¢ < 9 € ThS(Fék)(’H)) for some k € N| (11)
. 'tp <o € ThS(Fg)(’H)) for some | >k, (12)
. all ThS(Fg)(’H)) be transitive for 0 < j < k, (13)
o The(FY(M)) C The(FI(H)) for 0<j<], (14)
. all the Y-hypotheses used in the Th<(F (k)('H))-proof of (11)
are either of the form :
[La < o, 1" F a < o (where o0 = (Vy < 01.09)), (15)
or of the form :
[Ma<o, IMMFE B < (Vy<b.6) (with o different from 3), (16)
) and each of these Y-hypotheses remains a Y-hypothesis
after substituting [p/a], i.e.,
I, IMp/a] & B < (Vy < bOi[p/a].Oxlp/a]) € H (a#p). (17)
Then
['[p/a] b dlp/a] < ¥lp/a] € The(FL (M) (18)

Proof . See Appendix B.7. As becomes clear from the proof, the role of the assumption
a # f in (16) is crucial. Proposition 20.1. O

As an immediate application we have:

Corollary 19.2 (Substitution Property for F<) The substitution property holds for F<.

Proof . Recall that:
U <(F< () (0))

Therefore, if J € The(F<) then J € ThS(FS(m)(Q))) for some m € N.

As ThS(FS(m)((D))—inferences do not use any V-hypotheses at all, each of these (absent)
V-hypotheses satisfy (16) and (17). So, Lemma 19.1 applies. a
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20 Assumptions on V-Hypotheses in Substitution Lemma

One may ask whether the assumptions on V-hypotheses (16) in Lemma 19.1 could be relaxed.
The analysis of the proof of Lemma 19.1 shows that this assumption is crucial for the ability
to transform subtyping proofs after type substitutions.

Why cannot one admit arbitrary V-hypotheses of the form
INa < (Vy<o1.00), T Fa < (VW< .m)

not necessarily with (Vy < oy.09) = (Vy <1 .1)7

The immediate answer is that the proof of the Substitution Lemma does not work in this
case since the general V-hypotheses after type substitutions may become non-hypotheses,
and even non-provable judgments, and the proof transformation process fails.

To prove that the restrictions on the form of ¥V-hypotheses (15) and (16) in Lemma 19.1 are
really essential we have to construct for an arbitrary n > 0:

1. ajudgmentT' - (Vy <71 .m) < (Vy<p1.p2) € ThS(Fén)(H)) and
2. ajudgment ' F o< p; € ThS(Fg)(’H)) for I > n,
3. such that T' F wfo/y] < palo/q] € ThS(Fin)(’H)),

4. because the ThS(Fin)(H))—proof of the first judgment contains a prohibited axiom
of the foorm I', v < p1, I'" + v < 7, which becomes unprovable after substituting

[p1/7]-

The “simplest” such judgments are constructed in Proposition 20.1 below.

Like this we demonstrate that the restrictions on the form of V-hypotheses in the Substitu-
tion Lemma are essential, could not be relaxed, and the Substitution Lemma could not be
reinforced.

Proposition 20.1 Let k € N. Define:

o = VW<T.(T—=T)—T)

T = VW<T(T=T)

n o= T

n = (V& .. .Y, . (v —=T)—=T

pp = o

p2 = P—T

I'= B, < (V6 (17— T)), Baot < (Vn—1.Bn), ..., B2 < (V2. 03), f1 < (V61 . f2)
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Consider the ThS(Fin)(H))-pmof of the judgment:
' (Vy<n.m) < (Vy<pi.p2) (19)

which uses a V-hypothesis of the form I', v <o, I'" + v < 71 disallowed by Substitution
Lemma. Then:

1. the judgment (19) belongs to ThS(Fin)(’H)),
2. the judgment T' F o < o belongs to ThS(Fg)(’H)) for every l € N,

3. but the judgment T F mlo/vy] < palo/y] does not belong to ThS(Fin)(H)).

Therefore the restrictions (15) and (16) on the form of Y-hypotheses in the Substitution
Lemma are essential, could not be relazed, and the Substitution Lemma could not be rein-
forced. a

Proof . See Appendix B.8. a

21 Conclusion

We investigated the structure and the properties of the hierarchies of decidable extensions
of the F¢ subtyping relation. We demonstrated sufficient conditions guaranteeing that a
hierarchy extends F«<, converges to F, every its member is transitive and satisfies the sub-
stitution property. We also suggested an infinite class of SnS-based non-logical hypotheses
sets satisfying all these sufficient conditions.

We thus constructed the general theory of decidable extensions of the undecidable F'< sub-
typing relation and demonstrated a particular class of such extensions. The next logical step
will consist in applying these hierarchies to build extensions of the F< typing relation, which
would satisfy the unique canonical typing proofs and the least type properties, and would
be decidable too3. The progress in this direction will give us deeper understanding of the
semantics and the structure of higher-order polymorphic type systems with subtyping.

3We implemented this program in [Vor94e]
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A Appendix: SnS-interpretations of F

The alphabet of the n-successor monadic second-order logic SnS (n =0,1,2,...,w) consists
of: 1) infinitely many object variables @, y, z,..., 2) the equality predicate symbol =, 3)
infinitely many unary (monadic) predicate variables A, B, X, Y, ..., 4) n successor function
symbols {succ; }i<n, 5) all usual boolean connectives, parentheses, 6) first- and second-order
universal and existential quantifiers V!, 3!, ¥2, 32,

Terms are constructed as usual, starting from object variables by applying the successor
function symbol(s).

Atomic formulas are either equalities of terms or expressions of the form A(t), where A is a
predicate variable and ¢ is a term.

Formulas are constructed from atomic ones by the usual rules using boolean connectives,
parentheses, first- and second-order quantifiers: Vlz ®, 3tz @, V2 X @, 32X @, (where z is
an object and X is a predicate variable).

Interpretation. For an n-successor theory SnS consider the infinite n-ary tree 7:°. Interpret:
1) object variables as nodes of the tree, 2) succ;(t) as the i-th son of the node interpreting ¢,
3) equality, boolean connectives, and first-order quantifiers as usual, 4) predicate variables
as arbitrary sets of nodes, 5) atomic formula A(t) as the membership relation “the node ¢
is in the set A”; 6) second-order quantifiers as quantifiers over sets of nodes.

Denote by Th?%(SnS) or simply by SnS the set of all formulas valid in the above interpre-
tation.

Replacing the interpretation 6) of the second-order quantifiers by the following clause:

6’) second-order quantifiers are interpreted as quantifiers over finite sets of nodes,
we get the weak monadic second order arithmetic of n successors, denoted by WSnS.
All theories WSnS and SnS are decidable [Rab69, Rab77].

The best known of all these are: Biichi’s arithmetic S18, Rabin’s arithmetic S2S, and their
weak counterparts WS1S, WS2S. The theory S28 is strictly more powerful than WS28,
S18S, and easily encodes all SnS.
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Definition A.1 (SnS[F<](f, g)-interpretations of F<) Fiz any n =0,1,2,...,w. Let f
and g be two arbitrary strings composed of successor function symbols of SnS. Both may be
equal to the empty string €.

For an arbitrary type p of F<, the “I'ypes-As-Propositions-Interpretation” of p in SnS
with parameters f and g (the SnS[F<|(f, g)-interpretation for short) is defined as an SnS-

formula [ p ﬂg(r) with unique distinguished free object variable x by induction on the struc-
ture of the type p:

L [alf@ =y A)

2. [[T]]g(l) =g z=u,
3. [o—rlh@ =4 [olh@) o [rIhE@);
4 [Va<orlg) =y ¥4 {ve (40) > [oIg@) > [ IgleE)};
The SnS[F<](f, g)-interpretation is extended to all subtyping judgments by:
5. [o < Ik =y Ve([oTh() o [rI5@);
6. [a1<o1,...,anp<o0p l—agr]]g =g
[o1<oi T [on<only By g [0<7I5 O

Definition A.2 (Theory) Define the SnS[F<](f, g)-theory as:

SnS[rcl(f,g) =4 (T F o< |[TFo<rlb)

We say that a typing judgment is true or valid in (or with respect to ) a SnS[F<](f, g)-in-
terpretation iff it belongs to the set SnS[F<](f,g). a

The SnS-interpretations enjoy the following important properties:
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Lemma A.3 ([Vor94a]) 1) All axzioms of F< are valid with respect to any SnS[F<](f, g).

2) All inference rules of F< preserve validity with respect to any SnS[F<](f,g), i.e., if both
premises of a rule are valid in SnS[F<](f,g), then so is the conclusion of the rule.

3) There ezxist infinitely many different theories SnS[F<|(f,g) (for different choices of f
and g). O

Corollary A.4 (On Decidable Extensions of F<) Every theory SnS[F<](f,g) is a

consistent decidable theory containing all F<-provable subtyping judgments. Henceforth, the
subtyping relation of F< is not essentially undecidable, possessing infinitely many consistent
decidable extensions. ad

Corollary A.5 (SnS-interpretations and the hierarchy) For an arbitrary theory
SnS[F<](f,g) let H be SnS[F<](f,g) restricted to the judgments of the form T + a <
(Vy < 11.7). Then for alln € N:

The(FEV(H)) C SnS[F<](f,g)

i.e., SnS[F<](f, g) is more powerful than all corresponding subtyping theories ThS(Fin)('H)).
5 <

The problem is that SnS[F<](f, g) are too powerful, and unstructural, proving too many un-
desirable subtyping judgments. They can, for example, subtype a universal and a functional
types, see [Vor94a].

As an immediate consequence of Definition A.1 and Corollary A.5 we have:

Proposition A.6 (Closure conditions for SnS-interpretations) Every theory
SnS[F<|(f,g) restricted to the subtyping judgments of the form T F a < (Vy < 71 .m)
satisfies the natural closure conditions of Definition 9.1. a
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B

Appendix: Proofs

B.1 Proof of Lemma 9.3 (Transitivity of ThS(Féo)(H)))

We have to consider the following cases for the types 61, 62, 03:

61 0 B3
Case T o T T
Case V ! 8 ¥
Case F1 01 — 09 T — To p1 — P2
Case F2 e T| — T2 p1— p2
Case F3 « B p1— P2
Case Ul Vy <oy.03 Vy <1 .7y Yy < p1.p2
Case U2 o Vy<mn.m Vy < p1.p2
Case U3 o 154 Vy < p1.p2

Note that we need not consider the following cases, because they cannot belong to
ThS(Fio)(’H)) by definition (see Propositions 4.3 and 5.2):

1.

; = T and 0,41 # T;

; = 01 — o3 and 0,41 = § (type variable);

»:V'ygal.o'Q and 9i+1:7'1_>7-2;

0;
2. 0;
3. 0; =Yy < o1.03 and 0;41 = (3 (type variable);
4. 6;
5. 0;

;=01 —ogand ;41 =Vy <71 .7

Case T is trivial, since I' - ¢ < T is always an axiom.

Cases U2 and U3 is covered by the second and the third natural closure conditions on the
V-hypotheses assumed by the Lemma.

Let us consider the most interesting cases: Case V, Case F2, Case Ul (Case F1 is
completely analogous), and Case F3. Like this everything will be covered.

All the proofs will be conducted on the complexity of the structure of the Fio)(H)—proofs of
subtyping judgments. -
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Case V

We should demonstrate that for any type variables «, 8, and ~:

TFa < B e The(FO(H)), (20)
PEB < v € The(FL (M) (21)

imply
T'Fa<y € The(FO(H)) (22)

The Fio)(’}'{)—proof of the judgment in (20) is just a finite sequence of (AlgTrans-Var)-
applications finishing by an application of (Refl) to T F B < 3. So, starting from the
judgment in (22) by backward applications of the same sequence of (AlgTrans-Var) we are

guaranteed by to reach B on the left of <, i.e., to reach (21), which is Fio)('}'()—provable by
assumption. -

Case F2

We have to prove that:

I'Fa<n—mn € The(FY (M) (23)
and
Thrm—mn < p—p € The(FOH)) (24)
imply
[Fa<p—p € The(FO(M)) (25)

The Fio)(’}'{)—proof of (23) is uniquely determined:

(*xJ 1) (*J2%)
'trn <o I'koy < 7
L= 2= (Arrow)

' T"a) = 01—03 <14 — 1

(AlgTrans- —)
'Fa < n—mn

where by definition of the Fio)(H)—proof, (xJ1%), (xJ2%) € ThS(Fio)(’H)).
The Fio)(’}'{)—proof of (24) is also uniquely determined:

(*J3%) (xJ4x%)
F|_p1§T1 FFTQSPQ

(Arrow)
'k (n—m) < (p1—p2)
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where by definition of the Fio)(’l'{)—proof, (xJ3%), (xJ4%) € ThS(Fio)(’H)).

Now by induction hypothesis from (x.J3x) € ThS(Fio)(H)) and (xJ1x*) € ThS(Fio)(’H)) we

conclude:

I'Fop <oy € The(FOMH)) (26)

Also by induction hypothesis from (*.J2x) € ThS(Fio)('H)) and (xJ4x*) € ThS(Fio)(’H)) we

derive:
Lk oy < po € The(FE(M)) (27)
Now using (26) and (27) we construct the Féo)('H)—proof for (25) as follows:

(*J5%) (xJ6%)
PEpp <o 'k or < po

(Arrow)

't Ta) = 01 —02 < p1—p2

(AlgTrans- —)
I'Fa < pr—p

As (xJ5%) € The (FE(H)) by (26) and (+J6%) € Th<(FY(H)) by (27), we have (25).

Case Ul

We have to prove that:

and

I (Vy<n.m) < (Vy<p.p) € Ths(Féo)(H)) (29)
imply

LE(Vy<op.00) < (Vy<pr.p2) € ThS(Fio)(H)) (30)

The Fio)(’}'{)—proof of (28) is uniquely determined:

(*J1x%) (xJ2%)
F|_T1§0'1 F,")/STl'_U'QSTQ (31)

(All)
I'F (Vy<o1.09) < (Vy<71.72)

where by definition of the Fio)('H)—proof, (xJ1%), (xJ2%) € ThS(Fio)(’H)).

The Fio)(’}'{)—proof of (29) is also uniquely determined:
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(*J3%) (xJ4x%)
I+ < r < F <
pP1L S N1 y YT S P1 T2 S P2 (All) (32)
Ik (Vy<n.m) < (Vy<p1.p2)

where by definition of the Fio)(’}'()—proof, (xJ3%), (xJ4%) € ThS(Féo)(’H)).

From (xJ2x%), (xJ3%) € ThS(Fio)(’H)) we conclude:

T,y<p F oy <1 € The(FE (M) (33)
In fact, the only difference between (*J2#) and the judgment in (33) is the context bound
on variable v (71 in (*J2%) and p; in (33)). To transform an Fio)('}'{)—proof of (*J2%) into
an Fio)(’}'{)—proof of (33), it suffices to replace v < 7y in all contexts of the Fio)('}'{)—proof of
(*JQ;) by v < p1, and every axiom I',y < 7, I + v < 7 by the Fio)(H)—in_ference:

(+J3'%)
Ly<pmpbEy<pm Ty<ppbEp <n (34)

Iy<p by <7y

where (xJ3'x) € ThS(Fio)(’H)) because (*.J3x) € ThS(Fio)(’H)) and T', v < p; F extends
r. B B

Note that in this transformation every V-hypothesis ', v <7 F 6 < 6 turns into an
V-hypothesis I', vy < p; F é < 6, since the V-hypotheses satisfy the first natural closure
condition of Definition 9.1 by assumption.

Note that (34) is the application of transitivity. This is lawful, since the premises of (34)
are of smaller complexity than the conclusions of (31) and (32). So the inductive hypothesis
works.

Now from (33) and (xJ4x) € ThS(Féo)('H)) by induction hypothesis we can conclude:

L, y<pi bk oy < py € The(FY(H)) (35)

Also by induction hypothesis from (*.J3x%) € ThS(Féo)(’H)) and (xJ1x*) € ThS(Fio)(’H)) we
conclude: - N
T'kop < oy € The(FO(H)) (36)

But (36) and (35) imply (30).
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Case F3

Let #3 be p; — p2. We have to prove that

Pra < 8 (37)
r=pg < 03 (38)
imply
' a < 63 (39)

As (38) is Fio)(’}'()—provable, sois T F T*(8) < 05 (by application of (AlgTrans- —)).

But () = TI*(«) since the Féo)(’}'{)—proof of (37) is a sequence of (AlgTrans-Var)-
applications leading to I' F 8 < B. So, I'*(8) and I'*(«) should coincide. Therefore, (38)
is also Fio)('H)—provable.

This finishes the proof of the Lemma 9.3. a

B.2 Proof of Lemma 10.1 (First Embedding Lemma)

By induction on the structure of Fil)(’}'()—proofs. All axioms and V-hypotheses in the theories
ThS(Fio)(’H)) and ThS(Fil)(H))_ are the same. The only rule, which can appear in an
Fil)(’HS—proof and cannot a_ppear in an Fio)(’}'()—proof, is the rule (AlgTrans-V). But every
application of
Dk a) < (Y8<p.7)
't a < (V8<p.7)

(AlgTrans-V)

ina Fil)('H)—proof can be replaced by the following Fio)('H)—proof:

(*D1x) (xD2%)
'ra <T(a) T FTI'a) < (V8<p.7)

'ta < (V3<p.T)

(T'rans)

since ThS(Fio)(H)) is closed with respect to transitivity by Lemma 9.3, (*D1x) is in H by

assumption, and the premise (*D2x) is in ThS(Fio)(’H)) by inductive hypothesis. |
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B.3 Proof of Lemma 11.1 (Second Embedding Lemma)
Consider a judgment J € ThS(Fin-H)(’H)). If all the branches in its Fin+1)(’}'()—proof tree
has < n applications of (AlgTrans-V), then J € ThS(Fin)(H)). Otherwise, let

Jnx1s Jn, -, J1, Jo

be the sequence of all conclusions of (AlgTrans-V) (read bottom-up) applied on a branch

of the Finﬂ)(’}'{)—proof tree of J with n 4+ 1 applications of (AlgTrans-¥), and Jy be either
an instance of axioms (Refl), (Top), or an V-hypothesis from H.

By definition, J; € ThS(FS)(’H)). So, by Lemma 10.1, J; € ThS(Féo)(H)), i.e., can
be proved without any applications of (AlgTrans-V). We thus can reduce the number of
(AlgTrans-V)-applications by 1, and, therefore, J can be proved using at most n applica-

tions of this rule. Hence, J € ThS(Fin)('H)). o

B.4 Proof of Lemma 12.1 (Transitivity Lemma)

By induction on n € N. The base case is established by Lemma 9.3. The inductive step is
routine. We conduct it only for the most interesting case, when 6, is a variable, and #5 and
fl3 are universal types.

1. Suppose T F o < (Vy <7 .m2) € ThS(Fin-H)(H)) and
2.0 F (\y<m.m) < (Vy<p.p) € The(FUH(H)).

3. We haveto prove I' F a < (Vy <p1.p2) € ThS(FinH)(’H)).

4. Let (o) = (Vy < 01.032) (if T*(«) is not a universal type, 1 does not hold, see
Propositions 4.3, 5.2).

5. From 1 by Proposition 5.4.1.a,T F , < o7 € ThS(Fin)('H)) and

6.T,y<m F oy < m € The(FEV(H)).

7. From 2 by Second Embedding Lemma 11.1, T F (Vy <7 .7m) < (Vy < p1.p2) €
The(FEU(H),

8. So, by Proposition 5.4.2, ' + py < 7 € ThS(Fin)(’H)) and
9.1, v<p b m < po € The(FII(H)).

10. From 8 and 5 by inductive assumption on transitivity of ThS(Fin)(H)) we have:
[ ko < o1 € The(FE)(H)).

INRIA



Hierarchies of decidable extensions of bounded quantification 39

11. From 6 and 10 we have: T, y <p1 F 02 < 7 € ThS(Fin)(’H)).

In fact, the only difference between 11 and 6 is the context bound on v (p; and 7

respectively). To transform the Fin)(H)—proof of 6 into the Fin)(H)—proof of 11 it
suffices to replace v < 7 in all contexts of the Fin)('H)—inference of 6 by v < p1, and

any axiom I', v <7, [ F v < 7 by the Fén)('H)—inference

Ly<pbEy<pp Ly<ppbpp <1

LLy<p by <7

where T)v<p1 F pp < 1 € ThS(Fin)(’H)) by 8, since I', v < p; extends I'.

Note that in this transformation every V-hypothesis I', v <7 F é < 6 turns into
an V-hypothesis I', v < p; F 6 < 6, since the V-hypotheses satisfy the first natural
closure condition of Definition 9.1 by assumption.

Note also, that to construct the latter inference we apply the inductive assumption on
transitivity of Th< (Fin)(H))

12. From 11 and 9 we have I' F (Vy < 01.02) < (Vy < p1.p2) € ThS(Fin)('H)) by
the inductive assumption on transitivity of ThS(Fin)('H)).

13. Henceforth, I' F o < (Vy <p1.p2) € ThS(FinH)(H)), which is needed. a

B.5 Proof of Proposition 15.2

The uniquely determined ThS(Fil)(H))—derivation of J is:

L FT < T—=T .. FT<T
FrtT<T Ta<ny<TH(T=T)=T<T=T

(Arrow)

(All)

FLay <tk 71 <p
(AlgTrans-Y)
Iag < 7F ag < p
But the premise ... T < T — T is unprovable. a

B.6 Proof of Proposition 16.1

1) Consider the proof tree for the judgment T} F (Vag.ag) < (Vag < 7.p):

MMeEr<T TIT a<thka <p
(All)
't b (VYag.ap) < (VYoo <7.p)
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Now the conclusion follows from Proposition 15.2.

2) Consider the proof tree of the judgment I',, F (Va, .a,) < Oy

Iy b (Yap_o.an_2) < 0,9
Mok apy £ 0,
I b (Vap—1.an-1) < 01 = (Va1 < Van_2.an_2).0,_2)
Lo, < 0,
[Ny B (Yan.an) < 0, = (Vo < (Vapo1.an-1) . 0,-1)

where the odd numbers correspond to applications of the rule (All) and the even to the rule

(AlgTrans-v).

This inference is the alternation of the rules (All) and (AlgTrans) At every odd step we
have judgments of the form:

Iy b (Vogor.apo1) < Or-q

and after n times applying the pair of rules (All) and (AlgTrans-V) arrive at:

Frf F (VO(Q.O[Q) S 90

By 1) the latter belongs to ThS(Fio)(’H)) but does not belong to ThS(Fil)(’H)). Therefore,
the initial judgment B -

I‘Tl

ny1 T (Vap, .ap) < 0,

belongs to ThS(Fin)('H)) but does not belong to ThS(FinH)(H)), since there is exactly

n

one application of (AlgTrans-V) between I'f + (Vap_1.ap_1) < 6Ox_1 and e, F
(Vak.ak) < 0. O

B.7 Proof of Lemma 19.1 (Substitution Lemma)

Consider the judgment (11). If we formally replace all occurrences of « in its Fik)(’}'{)—proof
tree 7 by p and discard p < o from all contexts, then we get a tree 7’ with the needed
judgment (18) at the root (recall that T' does not contain « by definition).

The only problem is that 7’ is not a correct Fik)(’}'{)—proof tree any more.

We demonstrate below how to transform the tree 7’ into an Fik)(’}'()—proof tree of (18).

We have to prove that in the tree 7', obtained after substituting [p/a] in 7 and discarding
p < o from all contexts:
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1. axioms remain axioms;

2. V-hypotheses remain V-hypotheses, or become Fik)(H)—provable judgments;

3. rule applications could be transformed into correct inferences.

Case of axioms

It is evident that all axioms (y may be equal to « or not):
ILa<o, I"Fy<y and I'a<o, I F v<T

remain axioms after substituting [p/a] and discarding p < o from the contexts.

Case of V-hypotheses

By assumption (17), the set of V-hypotheses of the form (16) used in the proof 7 is closed
with respect to substitution [p/«]. So each such V-hypothesis remains a V-hypothesis after
substituting [p/«] and discarding p < o from the contexts.

By assumptions (12) and (14), all Y-hypotheses of the form (15) used in the proof after
substituting [p/a] and discarding p < o from the context (¢ = (Vy < o1.032)) become

Fg)(’}'{)—provable judgments
I Ep < (Vy<or.09)

for all 0 < j <, since I', T extends T'.

Case of the rule (Arrow)
Every application of the rule (Arrow):

Ma<o Ik 6 <n Fa<ol"F rn<o

— (Arrow)
F,(XSO’,F l_T1—>T2§61—>62

remains a correct application of (Arrow) after substituting [p/a] and discarding p < o from
the contexts:

I,I"[p/a] F b6i[p/a] < mlp/a] T.T"[p/a] b mlp/a] < 6:]p/a
L, Ip/a] b milp/a] — malp/a] < bi[p/a] — O2[p/a]

(Arrow)
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Case of the rule (All)
Every application of the rule (All):
Ma<oTI"F 6, <n Fa<o " y<60; F 7 <0y
Na<ol"F (Vy<n.m) < (Vy<b.6y)

(All)

remains a correct application of (All) after substituting [p/«a] and discarding p < ¢ from the
contexts (y is completely fresh variable):

I I"[p/a] F 0i]p/a] < ni[p/a]  T,T"[p/a],y < bilp/a] & mlp/a] < 0a[p/a]
L, Ip/a] & (Vy < milp/a].malp/a]) < (Vy < Oi]p/a] . Oalp/a])

Case of the rule (AlgTrans)

Let T denote a context of the form Ia <o, I Let f[p/a] be obtained from T by substi-
tuting p instead of free occurrences of a and discarding p < o.

We have to prove that each application of (AlgTrans) (where ¥ may be possibly equal to
a):
THT(y) <0
Thy<0

(AlgTrans) (40)

after substituting [p/c] and discarding p < o can be transformed into a correct Fik)(’}'()—
proof:

Lp/a] F T(7)p/a] < Olp/a]

Llp/alt vlp/a] < 0]p/al

(with possible auxiliary subinferences).

Subcase v # a. If ¥ # « then (40) after substituting [p/«] and discarding p < ¢ from the
contexts:

Llp/al F T(v)[p/a] < 6[p/a]
Llp/alF vlp/a] < Olp/a]

becomes a correct application of the rule (AlgTrans).

(41)

Indeed, if v # « then y[p/a] = v and:
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e cither v € Dom(T); in this case f(’y) = T'(y) does not contain « by definition of the
context, so T'(y)[p/a] = T'(v), and the application (41) of (AlgTrans) is correct;

e or ¥ € Dom(T"); in this case f(’y) = I'(y), so f(’y)[p/a] = I'(y)[p/a], and the
application (41) of (AlgTrans) is also correct.

Case a = 7. Suppose finally, that o = 7. In this case the application (40) after substituting
[p/«] and discarding p < o becomes incorrect:

T[p/a] b o < 0[p/o]
Llp/alt p < 0lp/a]

(AlgTrans) (42)

(recall that by definition of the context o does not contain «).

To transform the incorrect inferences (42) into the correct ones we proceed by induction
on the structure of the inference using the assumptions of the lemma. At each stage of the
transformation we choose the topmost incorrect application (42) supposing that its premise
is already correctly proved. We then transform this incorrect application into the correct
one with the same conclusion:

flp/altp < o Plo/al b o < 0[p/a]

_ (43)
Llp/alFp < 6[p/a]

In fact:

1. The left premise of (43) belongs to ThS(Fg) (H)) by assumption (12), since [ extends
I' and a ¢ FV(T). N

2. The right premise of (43) belongs to ThS(Fg)(’H)) for some 0 < j < k by assumption
(11) and by inductive assumption. -

3. As | > j by assumption (12), one has ThS(F<)(H)) C ThS(Fg)(H)) by assumption

(1
(14); henceforth, both premises are in ThS(Fg)(’H)).

4. Therefore, as ThS(Fij)(’H)) is transitive by assumption (13), the conclusion of (43)

belongs to ThS(Fg)(’H)).

This finishes the proof of the Substitution Lemma. a
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B.8 Proof of Proposition 20.1
Consider the bottom-up inference of the judgment I' F (Vy <71 .7m) < (Vy < p1.p2):

e First of all we get by the (All):
Iy<o bk (V6,..¥ . (7—=T)—=T < 51 =T
e From this one by the (Arrow) we have:
Iy<o bk f < (V61...¥6, . (y—=T))
e Applying for the first time (AlgTrans-V) we obtain:
I,y<o b (¥61.082) < (Vé1...¥b,.(y—=T))
e Again applying (All) we get:
Iy<0,60<T F Bs < (Vba. ..V, .(y—=T))
e Applying the rule (AlgTrans-V) for the second time we obtain:
Iy<o,60<T F (Vé2.03) < (Vb63...¥b . (y —=T)) ,
o which followed by (All) leads to:
[y<0,60<T,8,<TF [ < (V83...¥6,.(y—=T))

e ... (the pattern of the repetition is now clear)

e Finally we arrive at:
[,y<o6<T,.6an ST F By < (V0. (7 = T))
e Applying the rule (AlgTrans-Y) for the n-th time we obtain:
[y<0,60<T,...,60 1 <TE M. (r=T)) < Voo .(y—=T)),
e which followed by (All) produces:

[y<0,6<T,...,6,<TF7=T < ~v—=T
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o After the application of (Arrow) we have:

[Ly<o,6<T,...,6,<TF~v <71 (44)

Let H be any SnS-based set of V-hypotheses. By Proposition 15.2, the judgment (44) is in
ThS(Fio)(’H)) but not in ThS(FS)(’H)). So, the initial judgment T' F (Vy < 7m.m) <
(Vy < p1.p2)isin ThS(Fén)(’H)) but not in ThS(Fin"'l)(’H)).

The above Fén)(’}'()—proof uses the V-hypothesis (44) of the form disallowed by Substitution
Lemma. -

If we substitute everywhere in this Fin)(’}'()—proof v by o, the resulting inference will show
that T' F m[e/y] < p2[o/v] does not belong to ThS(Fin)(’H)) (see the proof of Proposi-

tion 15.2). O
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