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Abstract:

In this paper, a generating equation for optic flow is proposed that generalises Horn and Schunck’s Optic
Flow Constraint Equation (OFCE). Whereas the OFCE has an interpretation as a potntwise conservation
law, requiring grey-values associated with fixed-scale volume elements to be constant when co-moving with
the flow, the new one can be regarded as a similar conservation requirement in which the flow elements have
variable scale consistent with the field’s divergence. Thus the equation gives rise to a definition of optic flow
which is compatible with the scale-space paradigm.

We emphasise the gauge invariant nature of optic flow due to the inherent ambiguity of its components,
i.e. the well-known aperture problem. Since gauge invariance is intrinsic to any definition of optic flow based
solely on the data, it is argued that the gauge should be fixed on the basis of extrinsic knowledge of the
image formation process and of the physics of the scene.

The optic flow field is replaced by an approximating field so as to allow for an order-by-order operational
definition preserving gauge invariance, i.e. the approximation does not add spurious degrees of freedom to
the field. One thus obtains a defining system of linear equations in the optic flow components up to arbitrary
order, which remains decoupled from any physical considerations of gauge fixing. Such considerations are
needed to derive a complementary system of gauge conditions that allows for a unique, physically sensible
solution of the optic flow equations.

The theory is illustrated by means of several examples.

Key—WOI'dS: aperture problem, gauge invariance, gauge condition, Lie derivative, optic flow, scale-

space.
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La Structure Intrinseque du Flot Optique

Résumé : Dans cet article nous proposons une équation définissant le flot
optique, qui généralise I’Equation Contrainte du Flot Optique (ECFO) de Horn
et Schunck. Alors qu’on interprete ’ECFO comme une loi de conservation
ponctuelle, les valeurs de niveaux de gris associées a des éléments volumétriques
d’échelle fixe devant rester constants sur les trajectoires associées au flot, la
nouvelle équation peut étre considérée comme une loi de conservation similaire
dans laquelle les éléments du flot possedent une échelle variable cohérente avec
la divergence du champ. Donc, I’équation correspond a une définition du flot
optique compatible avec le concept d’espace-échelle.

Nous mettons ’accent sur l'invariance de jauge du flot optique due a I’ambi-
guité inhérente a ses composantes, c’est a dire le fameux probleme d’ouverture.
Puisque l'invariance de jauge est intrinseque a toute définition du flot optique
basée uniquement sur les données, on montre que le jauge doit étre fixé d’apres
la connaissance extrinseque du processus de formation de I'image et la physique
de la scene.

Le flot optique est remplacé par un champ approché permettant une défi-
nition opérationnelle ordre-par-ordre, qui maintient I'invariance de jauge, c’est
a dire que 'approximation n’ajoute pas de degrés de liberté impropres. On
obtient donc un systeme d’équations linéaires en les composantes du champ
du flot jusqu’a un ordre arbitraire, qui reste indépendant de toute considéra-
tion physique aidant a fixer la jauge. De telles considérations sont nécessaires
pour déduire un systéme complémentaire de conditions de jauge qui donne une
solution unique et physiquement plausible des équations du flot optique.

La théorie est illustrée au moyen de plusieurs exemples.

Mots-clé : probleme d’ouverture, invariance de jauge, condition de jauge,
derivée de Lie, flot optique, espace-échelle.



The Intrinsic Structure of the Optic Flow Field 3

1 Introduction

There exist many imaging modalities producing grey-level images of various
characteristics. It is generally the case that coherent objects in the world lead
to structural coherences in the image, and it is by virtue of this that we may
actually hope to be able to infer useful information from such an image. In
this paper we address spatiotemporal coherence induced by a dynamic scene,
conventionally captured by the notion of optic flow.

The optic flow field is a vector field. This reflects the desire to link corres-
ponding points (whatever these may be) separated by arbitrarily small tem-
poral intervals. The motivation for this is of course that in the physical world
such pointwise connections are actually meaningful; they may for example cor-
respond to the true motion of material points on a physical body.

However, it is commonly appreciated that the image flow induced by some
physical motion is intrinsically ambiguous due to the aperture problem; any
hypothetical motion confined to an iso-grey-level contour is a prior: feasible,
and there is no image intrinsic evidence compelling for any particular solu-
tion. Put differently, if only for the image data, one may seek to solve for
the homotopy that links spatial iso-grey-level contours over time as a whole,
but one cannot hope to establish any pointwise connections between them. A
convenient descriptor of such a homotopy is the normal flow (at least, if one
tacitly admits arbitrary tangential flows so as to rule out its interpretation as
a point correspondence). Normal flow is thus an intrinsic structural element of
an image.

Another way of expressing the intrinsic degree of freedom that is left un-
constrained by the data is to say that optic flow theory is a gauge theory'; optic
flow, considered as a vector field, contains local degrees of freedom that do not
manifest themselves in any observable way, hence can be fixed arbitrarily. By
gauge invariance, any arbitrary gauge condition may equally well explain the
data.

1A gauge theory is a theory which is characterised by a local invariance. Gauge theories
are popular in physics because one can often simplify the description of a physical system
by adding virtual degrees of freedom as well as a symmetry that effectively cancels their
physical effect. Optic flow is conventionally described by such a gauge theory so as to obtain
a linear model, as opposed to its nongauge equivalent formulation.

RR n°2350



4 Luc FLORACK , Mads NIELSEN

However, the data do not constitute a goal by themselves, but should enable
us to infer structural information about the physical scene they are intended
to describe. Eventually, we are not interested in optic flow as such, but in its
relation to the dynamical structure of this scene. This is the reason why the
specific choice of gauge s a crucial issue.

The physical nature of this gauge problem has not always been emphasised
in the literature. Methods have been proposed to allow for the extraction of
a unique vector field, without proper motivation? for the underlying implicit
gauge choice. Even worse, the choices implicitly imposed may very well be
inconsistent!

Although subject to immense effort, a satisfying operational definition of
optic flow, even when disregarding the gauge problem, is by no means firmly
established. A traditional, local approach is based on Horn and Schunck’s
“Optic Flow Constraint Equation” (OFCE) [1, 2, 3, 4, 5, 6, 7]. It defines the
optic flow vector locally by means of a conservation law for local (or rather,
punctal) grey-values; pixels (or any other fixed-scale samples, possibly weigh-
ted averages of neighbouring pixel values) are dragged along with the flow
while preserving their grey-value attributes. Depending on the imaging moda-
lity, this view may not be consistent with scale-space theory, since migrating
image volume elements, when viewed at fixed resolution, generally exhibit a
nonvanishing divergence while moving along the flow, thereby changing their
attributed grey-values. In order to prevent this, one needs to scale the aperture
(or volume element), which defines local grey-values through local averaging,
in accordance with the divergence of the optic flow field. This will be made
more precise in the next section.

In summary, the purpose of this paper is threefold:

e To incorporate the notion of resolution into the definition of optic flow
(scale-space).

e To explicitly separate the gauge invariant optic flow degrees of freedom as
they are supported by the data from complementary, data independent,
physical considerations that solve the aperture problem (gauge fixing).

2Uniqueness of the optic flow field cannot motivate its defining method in this respect.

INRIA



The Intrinsic Structure of the Optic Flow Field 5

e To provide an operational scheme for obtaining a (gauge invariant) ap-
proximating linear system for the data intrinsic, local optic flow degrees
of freedom up to any order.

In other words, we de-emphasise the semantics of optic flow (and hence, the
specific characteristics of the imaging modality); the focus is on the local struc-
ture of the optic flow field as far as it is captured by the image data only. We
will point out how things can be made to work in practice, i.e. when given a
particular imaging situation, but the details of this are beyond the scope of
this paper.

2 Operational Definition of Optic Flow

In this section we consider a 1-parameter, infinitesimal transformation (pa-
rametrised by a formal parameter €) which affects the image grey-value at a
given point z* (assumed, without loss of generality, to be in the immediate
neighbourhood of the origin z* = 0) in a way that can be explained in terms
of two independent actions:

1. a small, genuine spatiotemporal flow from z* — éz* to z*;
2. a small independent change of the grey-value at z*.

The first type of variation is conveniently captured by the so-called Lie deri-
vative [8]; it is this one that we would like to relate to our definition of optic
flow. We shall only consider first order variations in ¢, i.e. O(6¢), and thereby
obtain a linear model of optic flow; this should not be confused with the spa-
tiotemporal differential order of the flow field we might be interested in. We
will require no a prior: restrictions on this.

Assumption 1 (General Local Image Variation)

Let ¢ : R"™' — IR denote a scalar image, and let ¢ € R be some formal
parameter. Then it is assumed that an independent variation d¢ of € induces
the following variation of ¢(z):

biot(z) = 6¢(z) + 6¢(z) (1 =0,...,7n)

RR n°2350



6 Luc FLORACK , Mads NIELSEN

Here, §¢(z) = ¢(z + éx) — ¢(z) is the infinitesimal variation3 generated by a
spatiotemporal vector field v*(z) (u = 0,...,n), i.e. =z = v"(z)de, and §¢(x)
denotes an independent, infinitesimal variation of the scalar image value at
xh.

In other words, an infinitesimal image variation i.t¢(z) at some fixed point
z" is accounted for by a pure spatiotemporal variation (i.e. the Lie derivative
8¢(x)/be induced by the vector field v*(x)), as well as by some independent
“source” component §¢(z). The latter is introduced so as to account for varia-
tions that cannot be explained in terms of a pure spatiotemporal flow. Thus
the variation is of a rather general form.

We shall assume that the vector field v*(z) is smooth and everywhere (or at
least within the closure of some region of interest) nonvanishing. Smoothness
of v#(z) can always be assumed to hold at some scale, at least conceptually
(because smooth functions are typically dense in some suitably chosen Hil-
bert space). This scale may however be inaccessibly small at some points in
the image (say, smaller than the discretisation scale or spatiotemporal noise
correlation width); in a computational sense we then have a “discontinuity”.
Anyway, by virtue of spatiotemporal coherence typical of practical imagery one
may hope and expect this kind of discontinuity to be exceptional. Conceptual
smoothness of v*(z) allows us to sensibly talk about its derivatives of arbitrary
order—and we will freely do so—in every point in the image; its operational
manifestation is a separate issue that will be discussed afterwards.

Assumption 1 is ambiguous; it relates two potential causes of local image
deformation, one due to the action of a vector field (§¢(x)) and one imposed in
some deus-ex-machina fashion (§¢(z)). The first one is the kind we would like
to make explicit here by trying to set up an operational method for defining
the vector field v#(z) in terms of the local structure of the image ¢(z). It is
nontrivial to determine whether at some point z* an independent component
5¢(z) is really needed in order to explain local image change. Of course, for
every choice of vector field v#(z) (in whatever way obtained or defined) one
can always define 6¢(x) by the equation in Assumption 1 to complement the

If ¢(x) were a C'(IR™') function, we would have 8¢(z) = v*(z)0,¢(z)de; however,
no such smoothness assumptions are presumed here. We will assume ¢(z) to be a function
of polynomial growth (a rather weak restriction). The infinitesimal variation §¢(z) will be
given a well-defined interpretation in terms of so-called regular tempered distributions.

INRIA



The Intrinsic Structure of the Optic Flow Field 7

v*(z)-induced spatiotemporal variation, and thus explain the overall variation.
But this is clearly not very useful. In some sense one would like the independent
variation 8¢(z) to be as small as possible so as to at least remove ambigueties.
The strategy followed in this paper will be (as is usually done) to initialise it
to zero in order to unconfound it with the generator v#(z), and see how far we
can get.

For the moment let us assume (cf. [1, 5]):

Assumption 2 (“Conservation of Topological Detail”)
As Assumption 1, but with

5p(z) =0
Note that the absence of an independent source contribution 4(z) is quite a
severe constraint, since it implies conservation of topological detail: every point
in the image domain is mapped in a one-to-one way onto a new one under
the action of the vector field (i.e. by the e-parametrised family of spacetime
diffeomorphisms generated by v#(x)), thereby preserving the topology of iso-
intensity contours. Since the vector field is in turn defined by the image, one
could say that all structural elements present in the image are preserved in
spite of deformations. It is in this way that we would like to perceive of é¢(z):
as a source necessary to account for the creation or annihilation of topological
detail.

We shall need one more assumption about the vector field in order to be
able to interpret it as a genuine optic flow field. It emphasises the special
role of the time dimension in spacetime. As in Newtonian mechanics, we will
assume that space and time each have their own (flat) metric, but spacetime
has none?; it is conceived of as a stratification of spatial slices over absolute
time [9].

Assumption 3 (Temporal Gauge)
Cf. Assumption 1 and Assumption 2.

Yz € R* . vo(x) =1

* Although we defy existence of a spatiotemporal metric, we shall use 7, as shorthand no-
tation for the two independent metrics, comprising the spatial metric, defining the spatial line
element ds? = nijdwidmj, and the temporal metric, defined by the interval dt? = 7godz°dz°.
All other components 7;0 and 79; are always zero. Unless stated otherwise, we shall use
Cartesian coordinates, so that n,, = 1 if g = v, and zero otherwise.

RR n"2350



8 Luc FLORACK , Mads NIELSEN

This assumption implies that the flow is always transversal to fixed-time slices,
in other words, that structural details persist over time, although they will ge-
nerally deform. It therefore expresses a priori temporal causality. This trans-
versality condition allows us to reparametrise the flow parameter ¢ so as to
synchronise it with universal time z° = ¢, which is just Assumption 3.

The goal will be to find a unique vector field v#(z), and to express its local
structure in terms of derivatives of the image. To guarantee well-posedness
one needs to take derivatives in distributional sense, which in turn requires
a smooth test function in conjunction to the image to be differentiated. The
basic trick is well-known from the theory of regular tempered distributions, as
formulated by Schwartz [10, 11].

Definition 1 (Spatiotemporal Derivatives of ®)

Let y(z) be a smooth test function, whose derivatives all vanish sufficiently fast
at the boundary of the image domain, and let vy, ., () denote its k-th order
derivative with respect to x*, ..., x#* | then the corresponding k-th order image
derivative® is defined by the distribution

e = () [d2 9(2) V.. (2)

In practice one often decides on a fixed and severely limited set of test functions
by imposing physical constraints. A rather minimal set may consist of scaled
and shifted versions of a single, normalised Gaussian filter, as prescribed by the
scale-space paradigm. Although not strictly required for the present discussion,
let us agree on using this Gaussian “Schwartz space”; at some stage later on we
will need specific properties of this. The shift and scale parameters (indicating
the spatiotemporal location and scale at which to evaluate the derivatives) will
not be made explicit in the notation; for the present discussion these are just
free parameters.

Definition 2 (Normalised Gaussian)

Let A be a symmetric, positive definite (nt+1) x (n+1) matriz, without space-time
cross-talk, i.e. its general coordinate representation A", when decomposed into
spatial and temporal components, AY and A" respectively, is given by

W AOO @
Al _< @ ALJ) )

SWithout loss of generality, “derivative” here means “derivative at the origin” z# = 0.

INRIA
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with arbitrary positive A% and symmetric, positive definite matriz A" (all

other A" = A% = (). Then we define

1 1 1 :
T) = exp(—=al Az
FYA( ) mn—l—l \/m p( 9 pv )
In a suitable orthonormal basis we can take the scale matriz to be diagonal,
A = diag{t®,...,t"}, where t* = (6#)?> (u = 0,...,n). In this case we shall
simply write y(z) and omit the matriz subscript A.

The zero-scale limit of this normalised Gaussian is well-defined “under the
integral” of Definition 1, provided the data ¢(z) are sufficiently smooth. In that
case this limit will bring us back to the conventional definition of a derivative
of ¢(z), taken at z* = 0 (this conventional limiting behaviour was, of course,
what Schwartz had in the back of his mind when he wrote down his theory).

It is henceforth implied that one takes derivatives with respect to appro-
priately scaled coordinates #* = z*/o* (no summation convention here), if
o is the scale parameter associated with the u-th dimension (typically one
takes these to be all equal in the spatial domain to enforce isotropy; of course
one will need an independent one for the time dimension). Similarly we will
consider only scaled frequency coordinates in Fourier space: o* = o*w". To
facilitate notation, we will forget about the ™ and write z* instead of z#, etc.
In other words:

Assumption 4 (Choice of Spatiotemporal Units)
Every spatiotemporal quantity is henceforth measured relative to implicit inner
scale.

Put differently, we henceforth choose our length and time units such that we
can formally put all o#, u = 0, ..., n, equal to unity. Moreover, we may, without
loss of generality, allow for arbitrary (not necessarily Cartesian) coordinate
systems, provided we consider all derivatives to be covariant (these will still
commute since space and time are Euclidean). The metric components 7, can
be absorbed into the definition of A (Definition 2).

Since we view the dynamical structure of the data ¢(z) by means of fized
spacetime filters, we will assume the following.

RR n°2350



10 Luc FLORACK , Mads NIELSEN

Assumption 5 (Static Filters versus Dynamic Data)

Vi (z)=0 ,

i.e. the filters are not subject to the external flow (it is in this sense that they are
called “fixed”; they are not time independent!). They comprise the “sensorium”
[12] probed by the stimulus. Furthermore we define, for each derivative filter
Yyur..ue (), @ corresponding filter current density.

Definition 3 (Filter Current Density)
Notation as in Assumption 1 and Definition 1. Define the filter current density
j*(z) corresponding to the filter y(z) and the vector field v*(z) as follows:

3" (x) = y(z)v" (z)
More generally, for any order k € IN:

o () = Yy ()0 (2)

The k-th order filter current density is really a density in the tensorial sense,
a property it inherits from the basic filter y(z) [8] (a scalar density is the
geometrical object corresponding to an (n + 1)-form). Note that the zero-
components equal the basic Gaussian derivative filters by our causality gauge
v’(z) = 1 (Assumption 3).

The Lie derivative of the image with respect to the optic flow vector can
be made well-posed by formulating it as a regular tempered distribution, just
as we did in Definition 1 for ordinary derivatives.

Proposition 1 (Lie Derivative of ®)
Notation as in Assumption 1 and Definition 1. Define furthermore

5% = /d:r 56(x) v(x)

This variation has an equivalent, dual interpretation, viz.
60 = [do¢(a)6™(x)

in which 6Ty (z) is defined by
§Ty(z) = —0,5"(z) 6

INRIA



The Intrinsic Structure of the Optic Flow Field 11

We thus have a dual interpretation® of §®: either we track a flow element and
extract samples by means of a passive aperture, or we take a fixation point not
co-moving with the flow (a “mark on the screen”), and take samples by means
of an active aperture that continuously adapts its profile to the flow so as to
yield the same result’. In the latter view the flow is hypothetically carried over
into the sensorium, in which the filters “live”. One then has to subject the filters
to the opposite flow, i.e. take their Lie derivative w.r.t. w”(z) = —v*(z). Since
this also toggles the sign of the temporal gauge component, w’(z) = —1, the
“arrow of time” induced by w”(x) actually points backward in time. To “fix”
this apparent time reversal conceptually, we can give it a causal interpretation
simply by noting that the Lie derivative w.r.t. w”(z) corresponds to minus the
Lie derivative w.r.t. v#(z):

6T o

==z (1)

oe o¢
The corresponding conjugate variation of the filter is, apart from the minus
sign, apparently given by the divergence of the filter current density. Note that
the transformation of the filter y(z) differs qualitatively from that of a smooth
scalar ¢(z): this is a manifestation of the fact that y(x) is a scalar density
rather than an ordinary scalar.

Let us turn to the proof of Proposition 1.

Proof 1 (Proposition 1)

The most tempting way to proof Proposition 1 might be to write é¢(z) =
0, ¢(x)v"(x)ée, and then to carry out a partial integration. This, however, pre-
supposes that the image function ¢(z) is differentiable in conventional sense.
But recall that conventional differentiation is ill-posed and even operationally
ill-defined. We cannot impose smoothness constraints on our acquisition data;
we have to accept them the way they come. This is the very reason for intro-
ducing regular tempered distributions in the first place!

6 Although in this paper duality is merely a matter of concept, it may well have implemen-
tational relevance for a (biological or artificial) vision system (one may think of a continuous
chain of “Reichardt detectors” [13]).

"A different strategy based on this duality principle with constant, parametric v* =
(1;v%)—is used in [14].

RR n°2350



12 Luc FLORACK , Mads NIELSEN

A proof that makes no regularity assumptions about the image goes as
follows. Consider the following reparametrisation:

Yy =at + o' (x)de . (2)
Its inverse is (discarding O(6e?) from now on)

ot =yt — v (y)de . (3)
This local reparametrisation induces a Jacobian given by

of Ozt
Ji(y) € 2=

v

= 6 — O, v"(y) be T 8 — 6! 4
oy = 00— 0 (y) b Ty (4)

the determinant of which will show up in the reparametrised integral:
J(y) E det J(y) = 1= 90" (y) 8 L1 - 6J(y) . (5)

Note that it deviates from unity if the vector field has nonvanishing divergence,
causing local volume elements to expand.

Applied to Proposition 1, changing the symbol for the dummy variable y
back into z), reparametrisation yields

50 = — /dx z) + 6z - V) def/d o(z)6Ty(z) . (6)

The extra contribution §.J(z) to the transformation law of the filter is typical
of a density. Indeed, it can readily be seen that the combined effect of the
two variations in (6) precisely boils down to Proposition 1.This completes the
proof of Proposition 1.

To reveal the local structure of the Lie derivative 69 it is useful to consider
its spatiotemporal derivatives; these should reflect conventional derivatives of
d¢(x) in case this were a sufficiently smooth function.

Proposition 2 (Spatiotemporal Derivatives of §P)
Let the spatiotemporal derivatives of 6® be defined as

8p1.../,Lk 5(1) /dl‘ 6¢ ’7#1 ,uk - /d.’E ¢ 7#1 #k( )
Then we have (cf. Definition 3)

6T7ﬂ1...uk (x) = - [—L][lll,lllk (l') 66

INRIA



The Intrinsic Structure of the Optic Flow Field 13

Proof 2 (Proposition 2)
This proceeds along the same lines as for Proposition 1.

Note that spatiotemporal derivatives do not commute with the Lie derivative;
Proposition 2 gives us the spatiotemporal derivative of the Lie derivative of ®,
as opposed to the following.

Definition 4 (Lie Derivative of ®,, . )
The Lie derwative of ®,, ,, s defined as

5(1)#1--#1. - /d$ QZS lt1 ILL (JI)

This is a good definition, because it has the correct classical limit if ¢(z) is
smooth, viz. 8¢, ., (z = 0). Another important observation is that, in the
conjugate view of Definition 4 when v(z) — J(z) = vy(z) + éTv(z), norma-
lisation of all derivatives of 4(x) is preserved. To see this, recall that, as a
consequence of normalisation of y(z), all filter derivatives are simultaneously
normalised according to:

Npep et O /dmm g () = S {60151} [day(a) =S e om}
(7)

(S{.} denotes index symmetrisation, and 6/ is the Kronecker symbol). After
deformation ’y( ) — 7(z) one might expect a violation of this due to an extra
term 6 N/' k. However,

dﬁ{ /d:cwpl 28, 0 y(z) = 5”1 5”’“ /d:véT
(8)

The last equality follows from replacing 67v(z) by —8,5"(z)ée, and using
Stokes’ theorem (or the “divergence theorem”) [15]:

Jd= 0,3 @) = § ds.5"(2) . ©)

in which dS,, denotes an outward normal boundary element for the region-with-
boundary 2. We have assumed that the filter current density j*(x) vanishes

RR n°2350



14 Luc FLORACK , Mads NIELSEN

on the boundary or, if the image domain is all of IR"*!, that j*(z) decreases
sufficiently fast towards infinity. This will indeed be the case if v*(z) is a
function of polynomial growth. As a consequence, we see that normalisation is
indeed unaffected.

The image induced intrinsic vector field (or the equivalence class of vector
fields) we are looking for will be the one that nullifies the variation of ® along
its corresponding flow.

Definition 5 (Optic Flow)
See Assumption 3. The optic flow vector field is defined, modulo gauge trans-
formations, by

0

(g

02 =0 forall k€N

Definition 5 differs from Horn and Schunck’s OFCE; it does not require grey-
values attributed to pixels (and assumed to be dragged along with the flow
field) to remain constant. Rather, it allows grey-values to change due to the
field’s divergence. This can best be appreciated from the derivation of Propo-
sition 1, and in particular equation (6): it is not the variation 6¢(z) of the
(high-resolution) data ¢(x) which is required to vanish, but the effect §® it
induces on the functional ®, in other words, on the measurements of ¢(z). See
also figure 1.

Depending on the actual task one aims to accomplish, one may want to gain
insight into the local characteristics of the vector field beyond lowest order. For
example, in the case of optic flow in real world movies, first order properties
of the vector field may reveal relevant information such as qualitative shape
properties, surface slant [16], time-to-contact, etc. Unlike first order properties,
second order is quantitatively related to intrinsic surface properties of the
objects projecting to the image plane [17], etc.

Let us consider the M-th order case. To this end we make a formal expan-
sion of v#(z) near the origin, and truncate it so as to obtain an M-th order
polynomial approximation vh;(z). This polynomial is intended to capture a
finite number of local degrees of freedom of the vector field.

Definition 6 (M-th Order Formal Expansion)
The formal expansion of order M of the vector field v*(z) at " = 0, denoted
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The Intrinsic Structure of the Optic Flow Field 15

vhy(z), 1s an M -th order polynomial

M=

=y Vb TP

l' P1---P1

() =3

N
Il
=)

the coefficients of which may depend on M.

The finite set of coefficients 8p1___,,,vg (to be defined later on so as to approzimate
Opy..;v"(x) at the origin z* = 0, for [ = 0,..., M), corresponds exactly to
the degrees of freedom we are looking for. It is important to appreciate that
we do not require the M-th order polynomial vi;(z) to be the M-th order
Taylor polynomial of v*(z). That would be too much to ask for in view of our
operational definition for v4,(z) to be given below. Rather, the thing we hope to
accomplish is that the coefficients of v}, (z) will approzimate the corresponding
Taylor coefficients of v#(z) as we increase M: by definition we have v (z) =
lm py o0 Vi (2) = 0" (2).
Note that the divergence div vy () is given by

3,L’U”M(a:) = Hapl.__pmvg P (10)

Replacing v*(z) by v4;(z) according to Definition 6 yields the following.

Result 1 (0,, ,,6u®)

See Definition 3, Proposition 1, and Proposition 2. Writing d5; instead of 6 to
remind us of the fact that we are dealing with the M -th order formal expansion
v (z) instead of v*(z) itself, we have

M
O 6 ® = — Z Opr.; Ul /d:c #(z) 8, Toi-t (z)ée
=0
in which the effective filters Tf~ (z) are given by

_\k
rpen(e) = Sl @)an o
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16 Luc FLORACK , Mads NIELSEN

One may raise an objection to the way Result 1 is presented. Recall that the
Gaussian derivatives (—)Fy,, . (z) (k € Z75) form a complete family [18].
This implies that the set of filters I'2#! (z) (k,l € Z7) is overcomplete; it
should be possible to express the members with [ # 0 in terms of those with
! = 0 (i.e. the good old plain Gaussian derivatives). Since overcompleteness
is merely a technical detail, let it suffice at this point to state that T'/'-7 (z)
can indeed be expressed as a linear combination of Gaussian derivative filters
(=)™ Yp1...um () of various orders m up to order k+1, inclusive. The details are
left to appendix A (in particular Result 3).

Given the variations on the l.h.s. of the equation in Result 1, we have ac-
complished a set of linear equations in the unknowns 0,, v (one for each
possible realisation of indices p1, ..., ux, with £ = 0,..., N for some yet unspe-
cified order N). The coefficients in this equation can be computed by straight-
forward linear filtering of the image ¢(z) using the filter profiles I'2# (z) as
defined in Result 1. The inhomogeneous part 0, .. ,, 1 ® reveals the k-th order
local structure of the variation of ® along the flow induced by the “truncated”
vector field v, (z).

The problem is that we don’t know the L.h.s. in Result 1. Let 6 =
Su® + 6 ®. Since we know that 6® = limp,oc 6 ® = 0, it makes sense
to “approximate” the true optic flow field v#(z) by v4;(z), as follows.

Definition 7 (M-th Order Approximated Optic Flow)
The M -th order approrimated optic flow vector field is defined, modulo gauge
transformations, by

0

H1-.

uou® =0 forall £=0,...,M

Combined with Result 1 (and Appendix A), we thus obtain a homogeneous sys-
tem of linear equations, expressing M-th order optic flow in terms of (2M +1)-
st order local image structure, in which of course everything (or nothing. . .)
happens in the null space. It is, however, “slightly inconsistent”, since it pre-

supposes 0y ® = 0. In fact, it amounts to imposing the gauge condition
Oy oy V() = 0, which is generally a physically ill-motivated gauge: it

asserts that the optic flow generator v*(z) is of the form v);(z), which is
too restrictive in principle. However, by virtue of the limiting behaviour for
M — oo, there is good hope that we indeed approximate the exact system of
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The Intrinsic Structure of the Optic Flow Field 17

Definition 5 in this way. But we have to take care not to introduce spurious
degrees of freedom by adding any more gauge conditions. In particular, we
should try to maintain the original gauge invariance for our approrimated op-
tic flow field v4;(z). Allowing arbitrary orders of differentiation in Definition 7
would certainly break this invariance in the generic case (i.e. the case when
v*(z) # vh(2))! This is why one needs to limit the highest order to k = M.

As opposed to conventional schemes based on M-fold implicit differentia-
tion of the OFCE, every k-th order subset of Definition 7 contains M-th order
components of the approximated optic flow field. An important thing to keep
in mind is that the degrees of freedom of the approximated optic flow field,
i.e. the coefficients 0y, ,,vf, depend, although not explicitly indicated by the
notation, on the order M of approximation. In other words, the polynomial
approximation v}, () is a refinement of vj;(x) in the sense that all its coef-
ficients are refined. Hence, it is not a Taylor polynomial of v#(z).

Definitions 5 and 7 always admit trivial vector fields that render these
self-consistent. Viz. take v*(z) = 0 (vh;(z) = 0 respectively) identically, and
the homogeneous equations will be trivially satisfied. Of course, these are not
“interesting” solutions by any means, and in fact we already discarded them
by requiring the vector field to be everywhere nonvanishing. So let us look for
admissible vector fields. Since the solution space is a linear space, we can always
arrange things such that (for nontrivial solutions) v%(z) = 1 (Assumption 3).
For the M-th order approximation vh,(z) this becomes

Assumption 6 (Temporal Gauge for M-th Order Approximated Optic Flow)

See Assumption 3 and Definition 7. Requiring the temporal gauge of Assump-
tion 3 to hold for vh,(z), one finds

0
Uy =1 ,
{8”1___M2)8 = 0 forall k=1,....M and py,...,p,=0,...,1

The ambiguety of the solution, when not subjected to any gauge condition
(including the temporal gauge), generalises the classical “aperture problem”
to the spatiotemporal domain; under the temporal gauge it boils down to the
classical one [1], leaving only the spatial optic flow vector v*(z) ungauged.

To appreciate why k£ must not exceed M in Definition 7, let us return to our
inverse problem. In Result 1 we can choose any M, depending on the differential
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18 Luc FLORACK , Mads NIELSEN

order of the flow field we would like to retrieve. In n + 1 dimensions, the total
number of degrees of freedom Fj; contained in v (z) (i.e. vf,...,0u . 4 ?0)
equals

fM:(n+U§;<j:n) : (11)

So this is the number of variables in our linear inverse problem. If not for the
constraint on k, we could also choose any fixed order N and consider all cases

with £ = 0,..., N. This would determine our total number £y of equations,
viz. .
.
&:ch> . (12)
§=0

For complete solvability one needs at least €5 > Fj;, which could, in principle,
always be achieved by a suitable choice of M and N (at this level of rigor we
ignore rank conditions for the set of equations). If this condition is not satisfied,
one is left with (at least) Gyn = Fu — En undetermined gauge degrees of
freedom.

As an example, take the (1 + 1)-dimensional case. For N = 2 and M =1
we have & =1+ 2+ 3 = 6 equations in F; = 2 X (1 + 2) = 6 unknowns; 2 of
these unknowns parametrise a local shift, and 4 of them capture a local linear
deformation (since v{(z) is an “affine approximation” of v#(x)). There are
apparently no gauge degrees of freedom left: G1o = F; — & = 6 —6 = 0. Where
did they go? In other words: where did we fix the gauge? As argued before,
gauge fixing is an extrinsic problem; its motivation cannot be based on the
image data sec, but only on a priori knowledge of the physics underlying the
image formation process. The example is a typical instance in which we have
implicitly fixed the gauge in an ad hoc fashion. The result is a unique optic
flow field lacking any physical relevance (unless, by some incredibly fortunate
coincidence, the ad hoc gauge happens to be close to a physically sensible
one). It has not always been appreciated in the literature that one cannot
solve the aperture problem intrinsic to the data in a physically sensible way
merely by making some formal expansion of the optic flow field! An instructive
example of a physically well-motivated gauge condition in medical imaging,
using conservation of mass and the physics of X-ray projection, is provided by
Amini in [7].
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The Intrinsic Structure of the Optic Flow Field 19

Indeed, self-consistency requires that M be equal to N, so that we are
always left with our full gauge problem, merely split up in a countable, order-
by-order way.

Proposition 3 (Self-Consistency)

Notation as in Definition 7 and equations (11) and (12). The M -th order optic
flow field vh,;(x) as determined by the second system of equations in Defini-
tion 7, with k = 0,..., N, is gauge invariant for arbitrary vh,(z), if and only
iof N = M. In the generic case one s then left with

M .
Gy =nY (J”)
=\ ™

undetermined local gauge degrees of freedom. Fixing the a prior: temporal gauge
according to Assumption 6, this number reduces to

gﬁf:(n—l)f(ji”)

§=0

This result should be intuitively evident; it states that only 1 (without the
temporal gauge, otherwise 2) of the n+ 1 components of v#(z) can be determi-
ned given only a single equation, viz. the vanishing of the Lie derivative. This
observation holds on a full neighbourhood of the origin, and Proposition 3
expresses this in terms of the equivalent, countable set of degrees of freedom
contained in the coefficients of vi,(z). Note that after temporal gauge fixing,
there are no optic flow gauge variables left in the trivial n = 1 + 1-dimensional
case; the spatial iso-grey-level contours degenerate to points and hence cannot
“hide” any flow components.

Proof 3 (Proposition 3)

First disregard the temporal gauge. From a trivial counting argument it is
clear that there are at least Gy = Fyr — Ey undetermined degrees of free-
dom in the defining system for vh;(z), Definition 7. It remains to be shown
that, if one considers a generic image, one for which the rank of the system
is not affected by an arbitrarily small, independent variation of all image de-
rivatives, the number of gauge degrees of freedom can neither exceed Gj;. In
other words, we must show that the system has full rank &;. (Of course, one
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can always construct artificial, nongeneric images, for which the system will
have less than maximal rank; a trivial example is a “null image”, yielding zero
rank. Generic images are needed to avoid intrinsic ambiguities due to “lack of
structure”.) To see that a generic image indeed induces a maximal rank sys-
tem for any M, consider the k-th subset of equations 0, ,, 6, ® = 0 for some
fixed £k = 0,..., M (hint: it may be helpful to follow the general argument
while looking at the Examples 4, 5 and 6). The explicit expression in Result 1
and the details in Appendix A reveal that the highest order filters needed in
these equations, viz. 0,12 (z), all have differential order M + k + 1, and
are mutually independent for different choices of p4, ..., ui. Consequently, the
image derivatives of order M +k+1, 0, .., 07 ? ®, multiplying the highest
order variables 0, ,,, vy in this subset of equations, guarantee that the subset
is independent of all subsets of lower orders. Hence all £,; equations are indeed
generically independent.

Finally, incorporating the temporal gauge means fixing &£,; of the G, =

Fur — Ey unknowns, yielding Gy# = Fir — 2E) left-over gauge variables.

So far for the theoretical framework. To gain better understanding of the theory
sketched in this section, let us consider some examples.

3 More Examples

The two following examples illustrate the overcompleteness of the filter set
defined in Result 1 and Result 2. Example 1 shows the special cases in which
the filters carry only lower or upper indices. Example 2 shows some lowest
order mixed filters.

Example 1 (Special Cases of I'?'#! (z): T, . (z) and I'***(z))

Bk

[1=0] I'(z) = v(z), Lu(z) = —0,7(2), Tw(z) = 9,0,7(z),
in general: ', . (z) = (—)""QL1 e Oy (),

[k=0] T"(2) = —0"y(z), T""(z) = 31" (z)y(2) + 30°07y(=),
in general: I'¥*1(z) = (=) HP 71 (—iV)y(x).

Example 2 (Some Lowest Order Mixed Filters I'i1-/! (z))
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[k=1,1=1] FZ(;E) = 0°0,y(x) + 5{;7(.13),
[k=2,1=1] ", (z) = —0,0,0°v(z) — 6£0,v(z) — 6£0,7(z),
[k=3,1=1] I',,(z) = 0,0,0,0°v(x) + 6;,0,0,7(x) + 6, 0,0,7(x) + 870,0,7().

pvp
The general case is given in Appendix A, Result 3.

The following example illustrates the conjugate view of Proposition 1. It
shows that, when monitoring a stimulus while tracking the flow by means
of a passive aperture, one obtains a variation 6® which may equally well be
explained as an observation of the stimulus at a fixation point, carried out by
an active aperture that suitably adapts its shape to the flow.

Example 3 (The Conjugate View: Filter Adaptation)
Suppose that the (spatial) flow field v'(z) is linear in z* relative to some fixation
point, say

() = (°(2);0'(2)) = (15 Aja)

Separating space and time explicitly,

1) =9() )

and using the fact that v,(z) = —z,y(z), it follows that, in the conjugate
view, the filter transformation §”y(z) = —8,5"(z)é¢ is given by
5T,ytime(t) u .
= tAHmery — _a tlmet
kU O ()
6T,)/spa.ce(i.’)

56 = (IL‘ZA;(E] _ A:) ,YSPace(i:) — A;8L8]7Space(f)

The temporal part §74""m(t) represents a time shift over de of the centre of
the filter y%me(¢), i.e. from ¢t = 0 to t = . The spatial part §Ty*P2(ZF) is
just the spatial O(6¢) part of the filter ya(z) of Definition 2, if we take the
spatial submatrix to be A = I 4 é¢ (A + AT). In fact, one can “exponentiate”
the infinitesimal transformations of O(é¢) in order to reveal their effect after
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a finite time interval €. To this end, consider the previous equations equipped
with the following initial conditions (the basic, isotropic Gaussians):

ye(te =0) = qfme(t)
YPE(T e =0) = (D)

Then, following the evolution of these basic filters for a time interval ¢, we find

,ytime(t; 5) déf efeat ,)/};ime(t) — ,Y‘tr;ime(t o 5) )
PRe(Ee) NI (E) = L an (@)

The conclusion is that the filter continues, at least for some finite time, to
adapt its profile to the linear flow. But note that, depending on the details of
the flow field, the adaptation process may cease to make sense after a certain
finite time due to physical limitations. It can be seen from the exponentiated
results that the filters may expand or contract beyond physically sensible scale
limits. For example, in the case of a “pure, negative divergence”, for which
Al = af} with a < 0 (so that na = A} = 9;v*(z) is the only degree of freedom
in the flow), the whole thing collapses after a time ¢ = —1/(2«) if one refrains
from reinitialising the system periodically.

The following examples illustrate the gauge invariant systems for the approxi-
mated zeroth, first, and second order optic flow field, respectively.

Example 4 (Zeroth Order Optic Flow)
The zeroth order, gauge invariant optic flow field equation is given by §,® = 0,
with
0P
be
This is of course just the classical Optic Flow Constraint Equation for a fixed
point. Proceeding to higher orders one obtains systems that are fundamentally
different from conventional schemes that differentiate the OFCE:

= v 0,®
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Example 5 (First Order Optic Flow)
The first order, gauge invariant optic flow field equations are given by 6;® =

8,6:® = 0, with

6P

£

619
N ;g = Opu® + Ox Opp 07 + 8ILU(I)) 09,®

Example 6 (Second Order Optic Flow)
The second order, gauge invariant optic flow field equations are given by 6,® =

(9”52(1) = 8IL,,62<D = 0, with

§5,® 1 1
;_8 = U0 0,® + 0,0 8,07® + 50,0 0,07 + 51770, 0[ 5,
0,22 _ 00, ® 4 0,000,,0® + O,0L 0, + 20,00 8,,0°7® + 217D, 0l D,
nee Y0 %m + 05V Opp + Ouvp Op® + o YoV pu + o' 9ol Gpu +
+0,,v5 0,07
9,22 — o By vl 0,07 ® + D08 O d,v0 Lo 0,07
s = Vg Opuw ® + 050 0y 0" @ + 00 9 @ + 0,1 puq)+§ o7V Opuy 07" @ +-

—I-%T]”T@Wvg Opuv® + 00l 0,007 ® + 0y vfy 0,,0° P + 0,05 0,P
The Examples 4, 5 and 6 illustrate the general principle of refinement: the
(M + 1)-st order system {0, ., 6m11® = O}ﬁf&l has the same form as the
M-th order system {0, ,, 0u® = O}i}/fzo except for additional terms of order
M + 1 in the flow field’s approximation. The transition M — M + 1 will
generally affect all coefficients in the formal expansion of the optic flow field.
The hypothetical limit M — oo will generate the “ideal” system of Definition 5
with its original, gauge invariant optic flow field v*(z) replaced by its equivalent
Taylor expansion v% (z).

In all examples given thus far we have been illustrating the key idea of
this paper: gauge invariant optic flow. It is, by definition, ambiguous. Yet it
should be appreciated that it provides the only data intrinsic evidence for
any unambiguous definition of optic flow. As such, it lies at the basis of any
gauge constrained definition of optic flow. The gauge needed to single out an
unambiguous choice is, as argued before, a requirement enforced by the physics
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of the image formation process. As such, it is independent of the data, a basic
observation that has not always been made explicit.

Although this paper deals with the data induced, gauge invariant optic
flow, it is instructive to point out how things can be put to work in practice.
Finding a unique optic flow field requires a gauge condition complementing
the gauge invariant optic flow equation of Definition 5 or, in practice, its ap-
proximating equation of Definition 7, which requires modality specific details
that are beyond the scope of this paper. Gauges may be inferred from physi-
cal considerations such as rigidity or elasticity of motion, incompressibility of
fluids, flow continuity (or conservation of mass), etc., very much depending on
the imaging modality.

One of the simplest cases of a gauge constrained optic flow field, and of
rather general interest in its own right, is perhaps normal flow. The gauge
condition is “canonical” rather than physical; it is intended to annihilate the
“pure” gauge degree of freedom, i.e. the tangential flow (thus the result may not
be the flow induced by some physical motion). As a final example we show how
to obtain approximations of the normal flow in 2 4+ 1 dimensions. It serves to
illustrate the general recipe: enforce a (physically motivated) constraint so as to
break the intrinsic gauge invariance, and solve for the resulting (approximated)
optic flow field. The advantage of this approach is that one maintains linearity
throughout.

Example 7 (Normal Flow)

Define the dual® of a (2 +1)-vector v = (1;u,v) in a Cartesian coordinate sys-
tem by *v = (0; —v,u). Then one can solve for the normal flow components
up to 0-th, 1-st, or 2-nd order approximation by complementing the correspon-
ding linear, inhomogeneous gauge systems of Examples 4, 5 and 6 by similar,
homogeneous systems with v replaced by *v. It is a straightforward but te-
dious exercise to replace the condensed summation convention by an explicit
expression for any given case. For definiteness, here is the 1-st order system
(with self-explanatory notation for the 2 zeroth and 6 first order optic flow
components):

8Remember not to confuse space and time!
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e gauge invariant system (data induced, always the same):

Dy +udy +vPy +usPot 1Py + e Pog + 1y Py + 0 Py +vy Py
Py +us Py +uPys +vi Py + Pyt +us Popt V1 Pyt + e Pt + Uy Pyt + 0 Pyt +vy Pyt

@wt +ug Qz +u¢mz +vg @y +U@my +ut¢wmt +’Ut¢zyt Uy @mzm +uy¢zzy +vg @:L’zy +U'y szy =
Dy +uy Py +uPypy +v, Py +v Py +ut Pyt + Vi Pyt + e Prwy Uy Puyy T2 Puyy 0y Pyyy

e gauge condition for normal flow (model induced, depends on the physics of
the situation):

0P, +uPy —v; Py +us Py — v, Poy —Vy Py Ty Py +uy Py
_/Utia: - Uta +ut¢y +u¢yt - 'Ut¢ztt +ut¢ytt —Ug szt — Uy szt +uz¢zyt +uy¢yyt

Vg éz - vi’zm +u2¢y +U/@zy - 'Ut@zzt +ut¢zyt — Vg szz - Uyéza:y +uz¢1.zy +uy @zyy =

Wy Py —VPuy +uy Py +ulyy —vi Poyt + Ut Pyyt — Vo Pawy —Vy Payy + Uz Payy +uy Pyyy

This system of four inhomogeneous and four homogeneous, linear equations
can be inverted in the generic case for the 8 local flow degrees of freedom
(U, U, Uty Vs, Ugy Vg, Uy Uy ).

4 Conclusion and Discussion

In this paper we have proposed a gauge invariant definition of optic flow. In
order to make the number of local degrees of freedom manageable, we have
approximated the ideal, hypothetical optic flow field by a formal expansion,
truncated at some finite order. The coefficients in this expansion can be de-
termined modulo gauge transformations in terms of a simple, linear system of
equations. This system captures the full differential structure of the (approxi-
mate) optic flow field up to some order, as far as this is determined intrinsically
by the image data.

Extrinsic, physical considerations beyond the information provided by the
image data, such as a priori knowledge of the underlying scene and of the
image formation process, need to be taken into account in order to complement
the ungauged system. This “gauge fixing”, if done properly, may lead to a
unique, physically sensible solution. Since gauge fixing relies entirely on specific
information beyond the evidence provided by the data, we have not addressed
it in the general context of this paper. Rather, we have emphasised the general
aspects of optic flow as far as it relates to image structure as such, and shown
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how to decouple it from considerations that vary from one image modality to
another, and even within each modality, from one specific scene to another. One
general a priori gauge has been explicitly discussed, viz. the usual temporal
gauge v'(z) = 1; it is used to synchronise the optic flow’s affine parameter
with “universal time”.

The defining linear optic flow system resembles the classical Horn and
Schunck’s Optic Flow Constraint Equation and existing schemes derived from
this by implicit differentiation. There is, however, an important difference.
Since our defining system is based on the vanishing of a Lie derivative of the
image data, when viewed by some fixed, physical aperture, rather than on an
operationally ill-defined and ill-posed derivative in the conventional sense, it is
not required that the grey-values attributed to the discretisation grid (or any
other fixed-scale average grey-values) remain constant along the flow. Only if
one scales up the apertures consistently with the optic flow field’s divergence
(which causes local volume elements to expand), will the resulting grey-values
remain constant.

An important observation has been made concerning the refinement of ap-
proximation v, — vh;,; it does not merely introduce an extra order in the
approximation, but updates all coefficients in the polynomial expansion of the
flow field. This update may provide an important cue concerning “discontinui-
ties” of the optic flow field. If the flow field happens to vary slowly relative
to the inner scale of the Gaussian aperture used in the computation of image
derivatives, then one may expect to obtain an accurate estimate v/, of the flow
field even for very low order M (an extreme case is that of a pure translation,
for which it suffices to take M = 0). In that case the transition to higher orders
will hardly affect the coefficients in the expansion. If, on the other hand, the
field varies significantly relative to inner scale (optic flow “discontinuities”),
then the transition from order M to M + 1 will have significant influence on
the coefficients of the expansion. Hence one could use this transient behaviour
to test for consistency of truncation, as well as for localising effective discon-
tinuities of the field.

A point of speculation may be the biological implications of this work. In
this respect, the conjugate view of optic flow presented in this paper, in which
the flow is “carried over” into the “sensorium” were the filters (read: recep-
tive fields) live, may be more than a mere conceptual alternative. One could
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imagine tuned receptive fields actively deforming their profiles (periodically)
according to some specific optic flow degree of freedom, such as a pure (0-th
order) translation or divergence (1-st order, one of the examples in this paper).
In this case the optic flow degrees of freedom correspond to tuning parameters,
and one could hypothesise ensembles of receptive fields for different values of
these parameters. Whether this could actually lead to a plausible model for ve-
locity sensitive receptive fields remains speculative at this point. But the type
of receptive fields needed to construct such tuned “motion detectors” based
on simple, static filters (Gaussian derivatives), as well as the kind of mutual
connections needed to realise the prototypical “conjugate flow” (correlators
with spans and/or delays), are physiologically quite plausible. The advantage
of having motion detectors for various tuning parameters is that it may well
account for transparant motion. But also the “direct” view, in which the filters
are considered to be passive, may have a rather straightforward physiological
realisation. A challenging question in this case is the kind of gauge condition
imposed by the visual system to account for an apparently unambiguous mo-
tion percept. However, it is less obvious how to explain transparency in this
case.

A The Filters [/ (r) and the Gaussian Fa-

mily
Using the following lemma we can get rid of the derivative d, in the integrand

of Result 1:

Lemma 1
Using parentheses to denote index symmetrisation, we have

Lyt (x) = =Tyt () + 6 G-y ()

It is understood that I'?*P1-1(z) =0 if l = 0.

P

The proof of this lemma is straightforward and will be omitted. Using this
lemma we can rewrite Result 1:

RR n°2350



28 Luc FLORACK , Mads NIELSEN

Result 2 (0

M1

See Result 1.

51 ®)

M
OO ® = ; am---pzvg /d.r ¢(z) [Fﬁi::.—/})}ku,(f’;) - Fﬁ.—.—.ﬂ;l(m) 5;/11] be

(Note that we do not need to make index symmetrisation for py, ..., p; explicit
here; it is automatically achieved by virtue of symmetry of the differential
operator 0, ,,.)

In order to express the overcomplete set of filters I'**# (z) in terms of

[ZRT
Gaussian derivative filters vy, . . (z), consider the following diagram.

ol (g) L AV (w)

M1k [
* | 1 *x
TPL--P1 (:L') Fﬁr f‘Pl---PI (w)

P1eeefik [1-eefik

Instead of simplifying directly in the spatial domain (the arrow marked by a
x), we take the Fourier route (F — xx — F") and simplify in Fourier space.

Definition 8 (Fourier Transform)
The Fourier transform of a function f : IR — IR : z — f(z) is defined as

fla) = [dwe s f(w)

Hence

N

With this definition, we can make the following formal identifications of ope-
rators (the Lh.s. in the spatial domain, the r.h.s. in the Fourier domain):

=i 0

p

We need one more definition.
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Definition 9 (Hermite Polynomials)

The Hermite polynomial of order k, Hy(z), is defined by
k

This is appropriate for the 1-dimensional case; but in general we have more di-

mensions, say d. So let us define, for the sake of convenience, the d-dimensional

analogue of the Hermite polynomials, as follows.

Definition 10 (Hermite Polynomials in d Dimensions)
The d-dimensional Hermite polynomial of order k, H;, ., (z), is defined by

8k
Ozh ... Oz
These d-dimensional Hermite polynomials are related to the standard ones in

the following way.

Lemma 2 (Relation to Standard Definition)
The d-dimensional Hermite polynomials as defined according to Definition 10
are related to the standard definition, Definition 9, as follows.

2 1.2

e % = (="M (z) e 27

d
Hzlzk(x) = H Hai_l---"k (37]) y
j=1

7

in which o ** denotes the number of indices in 4y, ..., equal to j.

Clearly we have E?::l ozj-l“'i’“ = k, since this simply sums up all indices. The

separability property of Lemma 2 follows straightforwardly from Definition 9,
when applied to a multidimensional Gaussian.

Having established all basic ingredients and notational matters, we can
now relate the overcomplete family of filters I'/2 ! (z) to the Gaussian family.
This is easy, since all we need to do is to use Leibnitz’s product rule for
differentiation in

R - .8 .0 . Ca

rm-h (w) = ( “) Zawm ...zawm (twyy - .. iw,, A(w)) (14)
(see formula (13) and the definition of the filters in Result 1). Then, each
time we have to take a derivative of §(w), we use the explicit property of the

Gaussian stated in Definition 10. In this way we arrive at
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Result 3 (The Filters I'?'-*1 () and the Gaussian Family)

[T
Let § denote the index symmetrisation operator (applying both to upper as well
as lower indices), then we have

P11 (w) =

H1---pk

(_)k min(k,l) l k! ' ' .
T S Z <m) m(—)méﬁi Oy e wy, (—8) T THE P (W) A (w) o

m=0
Fourier inversion yields

[P () =

BB

m=0

(_)k min(k,l) I k! . '
CES TS () G078 822 B B (0 07 (-i9) 2 (a)

Note that this expression is real in the spatial domain, since (—2)PH*r(—iV)
is a real differential operator for any p € Z{. To see this, look at the explicit
form of a Hermite polynomial:

[k/2]

o) = 3 ()" (o, ) (2m = at (15)

m=0

in which [z ] denotes the entier of z € IR, i.e. the largest integer less than or
equal to z, and in which the double factorial (2m — 1)!! indicates the product
1 X3 X...x (2m — 1). Consequently,

[k/2] -
(i) = (F (o ) emm 0t 0

very real indeed. The general n-dimensional case follows from this observation.
Note also that the r.h.s. of Result 3 is a linear combination of Gaussian de-
rivatives of the type 7,, ., (z), with p = 0,...,k + . Thus we have indeed
proven overcompleteness of the (apparently (k + [)-th order) filters I'2-#! (z)
by explicitly rewriting them in terms of Gaussian derivatives.
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Figure 1: In the conventional interpretation of the OFCE it is asserted that
two points p and ¢ (or fized-scale samples taken at these points), lying on
one flow line, have the same grey-value attribute. In the new interpretation
adopted in this paper, grey-values are attributed to volumes rather than points.
Consequently, the OFCE is assumed to apply to local volume elements, which
are susceptible to the divergence of the optic flow field. In this sketch, the
indicated patches are intended to represent corresponding volume elements,
the size of which is seen to increase due to the divergence component of the flow
field; the new OFCE entails that their volumetrically integrated grey-values be
the same.
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