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Codes principaux autoduaux de 1’algébre de groupe

IFa [{Fom, +}]
Self-dual codes which are principal ideals of the
group algebra Fo[{Fom,+}] *

Pascale CHARPIN**

Résumé

Cet article est un prolongement du travail de Paul CAMION portant sur les codes autoduaux,
idéaux principaux de ’algebre Fy[{F2m,+}]. Dans [5], ces codes sont introduits et appelés
H-codes. Notre principal résultat ici est que les H-codes sont aymptotiquement mauvais,
au sens de la borne de Gilbert-Varshamov. Pour obtenir ce résultat, nous exhibons d’abord
une borne supérieure pour la distance minimale de tout H-code donné. Nous caractérisons
les H-codes extrémaux et montrons que leurs générateurs sont liés a certains ensembles a
différence.

Abstract

This paper follows up CAMION’s contribution on self-dual codes which are principal ideals of
the algebra Fz[{F,m,+}], the so-called H-codes. Our main result is that this class of codes
does not meet the Gilbert-Varshamov bound. We obtain this result by giving an upper
bound on the minimal distance of any H-code. We characterize extremal H-codes and link
up their generators with certain difference sets.

Keywords: self-dual codes, extremal codes, group algebra, difference sets.

* To appear in The Journal of Statistical Planning and Inference — special volume : Affine
Designs, Orthogonal Arrays and Related Topics
** INRIA, projet CODES, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, FRANCE
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Self-dual codes which are principal ideals of
the group algebra Fy[{Fom, +}]

1 Introduction

Let C be a binary linear code of length n. The code C is said to be self-dual if and only if it
is equal to its dual; in this case its dimension is n/2. A code is said to be t-divisible when
the distance between codewords is always a multiple of . By convention a ¢-divisible code
is not t’-divisible for ¢’ > t. : ‘

Our main reference on self-dual codes is [17, chapter 19], where an extensive study of the
work of GLEASON is given. A binary t-divisible self-dual code exists for only two values of
t: t =2 or 4. When ¢t = 2 we say that the code is even; when t = 4 we say that the code is
doubly-even. An important result on these self-dual codes was obtained by GLEASON when
he established strong constraints on their weight enumerators [14]. Then an upper bound
on the minimal distance of these codes appeared; a code which meets this bound is said to
be extremal. Many questions on the existence of extremal self-dual codes remain open.

Binary H-codes were introduced by CAMION in [5]. They form a class of binary self-dual
codes which are principal ideals of a modular algebra of type F2[G], G = {Fm,+}. Basic
properties of such codes are given in [5]. Above all it is shown that it is very easy to construct
an H-code; it is sufficient to choose a hyperplane H of G and a codeword x of odd weight
whose support is contained in H. A generator matrix is directly obtained. The code is even
- if and only if the weight of x is congruent to 1 modulo 4; otherwise the code is doubly-even.
It is also shown in [5] that there are many extremal doubly-even H-codes of length 32. In fact
many will be equivalent because there are only five extremal codes of length 32 [13, 15]. Our
purpose in this paper is to study asymptotic properties of the minimal distance of H-codes.

We will denote by A the algebra F;[G]. In Section 2, we present the class of H-codes,
giving a brief review of properties of the algebra .A; more details on codes of A can be found
in [2, 8, 11]. Recall that the powers of the radical of A are the Reed-Muller codes [4].

Extremal H-codes are studied in Section 3. We first give an upper bound on the minimal
distance of any H-code (Theorem 3). We can then deduce that H-codes are asymptotically
bad; moreover we prove that there are no extremal H-codes of length greater than 32.

The last section treats the extremal H-codes of length 32. Our main result is presented
in Theorem 5, linking extremal H-codes to difference sets of the abelian group {Fis,+}.

The usual terminology of coding theory can be found in [17]. In this paper we only treat
binary linear codes of length 2™. The distance is always the Hamming distance.



2 The class of H-codes

2.1 The algebra A

Let G be the additive group of the finite field Fam. We denote by A the algebra of the group
G over the field F,. An element of A is a formal sum

x=) z4X7, zg €F, .
9€G

For anya € F,, b€ ]Fg,v x € A and y € A, we have:

ax+ by = a Z z, X9+ b Z Yo X9 = Z(aa:g + byy ) X°

9€G g€G g€G
Xy = Z T X? Engg = z (Z zgyh+y) X* ’
9€eG 9€G heG \g€G

The additive and multiplicative unit elements are 0 = 3" g0 X¢ and 1 = X?° . In this
paper, the algebra A is the ambient space of the codes. A code of A is an F;-subspace.
A codeword is an element of A. Note that an ideal of A is a code invariant under the
multiplication by X9, for any ¢ € G. The scalar product is < x,y >= 3 ¢¢ Zg¥y - The dual
of a code C will be denoted by C*. If C is an ideal, the annihilator of C is:

AnnC={x€A|lxy=0 forall yeC}.
Since xy = Fheq < X, X'y > X» , the following proposition is obvious:
Proposition 1 Let C be an ideal of A. Then Ann C = C*.

Since G is an elementary abelian 2-group and a? = a for a € IF,. we have for any element

x of A: .
x? = (Z :ch") =) z,X¥ = (E :tg) X°.
9€G 9€G 9€G

That means that x is invertible in A if and only if its weight is odd. The set of non invertible
codewords is the only maximal ideal of A, its so-called radical. We will denote by P the
radical of A; that is

P={xed| Yr,=0}={xecA|x2=0}.

9€G

For any j € [1,m] we define the ideal which is the j-power of P. The ideal P’ is generated
linearly by elements of the form [I/_, x; where x; € P. For any basis {ej,..., e} of G,
the 2™ elements

{ TIX% +1)% | & € {0,1) }

=1



form a linear basis for A. Moreover, for all j € [1,m], the elements of
BJ:{H(X6.~+1)’H Ijsz,\,- , /\;6{0,1}} (1)
1=1 =1

form a linear basis of P7 (by convention, P° = A) [8]. We now define a useful parameter of
an element or of a subset of A: :

Definition 1 Let x € A ; let U be a subset of A. Let j € [0,m].
o We will say that the depth of x equals j if and only if x is in P? and not in P!,

o We will say that the depth of U equals 3 if and only if U is included in P? and not
included in P+t

In the following we will use several representations of codewords of depth 1. Two of them
are given in Lemma 1. It is clear, by means of the basis B?, that a codeword z of depth 0 is
of the form:

z=X4+2' =147, ZeP. (2)

Lemma 1 Let x € A be a codeword of depth 1. By using the basis B (c¢f. (1)), we have:
x=Y a(X“+1)+y , ye€P?, ai€F, 3)
=1
where at least one a; is not zero. Set h =Y 7%, a;e;. Then

x=(X*+1)+x , X eP?. (4)
Proof: We can assume that a, # 0 in (3). Since e; = h + 371, aje;, we have

X1 +1 = X"HX°'°'+1—((X"+1)+1) (H((X°'+1)“'+1))

=2 1=2

= (X"+1)+Za,~(X°‘+1)+y, yeP?.

=2

Then, according to (3), x = (X*+1) +y.
0

BERMAN proved in (4] that the powers of the radical of A are the Reed-Muller codes
(RM-codes). More precisely:

P’ =R(m—j,m) , forall je€([l,m], (5)

where R(m — j,m) is the RM-code of length 2™ and order m — j (see an'easy proof in [1]).

Remark 1: From well-known properties of RM-codes or by using the bases B, it follows
easily that :



1. Pl ={0} and P"={aY,ecX’|a€F,} ;
2. The minimal distance of P? equals 2.
3. (P)t = Ann Pi = Pmitt

4. Since P™-! is the RM-code of order 1, the set P™~'\P™ contains the elements of
A whose supports are the affine hyperplanes of G ;

5. Any ideal of A of depthj contains P™ and is such that its intersection with P*, k> j
is not empty.

The support of a codeword x =} ,cq T, X9 is:

supp(x) ={g€G |z, =1}.

Recall that the cardinal of supp(x) is the weight of x, which we will denote by w(x). We will
use also the notation F,G instead of A. More generally the notation F,V, where V is an
F,-subspace of G, will appear. It is because we will often need to study some codeword whose
support is contained in some V. For instance the restriction of x to V is x' = 3T ey ,X¢

and we can identify it with a codeword of the algebra F,V. The following lemma will be
very useful for the proof of Theorem 3.

Lemma 2 Let V be a subspace of G of dimension k. Let W be a subset of G of 2™*
elements, which contains one representative of each coset of V : W is such that G is equal to
Unew(h+ V). Letx in A and y =3 ,cy X9. Let us denote by x(k), h € W, the restriction
of XPx to V. So x can be written as follows :

x= Y x(k)X* , x(h)eFV.

hew

Then either x(h) is invertible and the restriction of yx to h+V equals yX* or x(h) € P
and the restriction of yx to h+V equals 0. The weight of yx equals A\2*, where X is the
number of h € W such that x(h) is invertible.

Proof: The codeword y can be considered as an element of F,V ; it is the all-one vector of
F, V. Note that, for any basis (e, ..., ex) of V, y equals Hf=1 X% +1). So y € P* and
PHINF,V = {0}. We have

Cyx= 3 yx(h)X* | yx(h)e P NRV .

hew

Whenever x(h) € P the product yx(k) is zero, since its depth is k + 1. If x(k) is invertible,
then x(h) =1+z,z € P, which yields yx(h) = y.
a



2.2 Principal ideals of depth 1

The definition of the H-codes and the properties given in this section are mainly due to
CAMION [5]. We denote by (x) the principal ideal generated by an element x of A. That is

(x)={yx|yeA}.

A generator of (x) is an element yx such that y has depth 0 (i.e. is invertible); all generators
have the same depth. Since the ideal (x) equals (yx) for all such y, we always will consider
x as a formal generator that we can fix when it is necessary. In accordance with Proposition
1, an element z is in the dual of the ideal (x) if and only if it is in its annihilator. So

(x)'=Ann (x)={z€ A|zx=0}.

The algebra A itself is the only principal ideal of depth 0. When x € P, then xZ =0
which yields that the ideal (x) is contained in its dual ; the dimension of (x) is less than
or equal to 2™,

From now on we assume that x has depth 1 ~i.e. x € P\'P?. We assume that x is written
as in (3); we can suppose, without loss of generality, that a; = 1. Hence the restriction of
x to the hyperplane H generated by (e, ..., €n) is invertible. Indeed set z =Y .y X7 ;
using (3), with a; = 1, we obtain: :

m m

zx = [[(X* +1) x=[[(X*+1)=)_ X9,

=2 =1 v g€G
which implies, with the notation of Lemma 2, that
x=x(0)X°+x(h)X* , h¢gH,

where x(0) and x(k) are invertible elements of F;H. Note that if x € P? the product zx

is zero for any hyperplane H. By multiplying x by x(0), we obtain a generator of (x) of the
form '

X°+xX* |, hgH, X invertible , x' € I, H . (6)

Now it is clear that the set { X9+ (x’X9)X" | g € H } is a linearly independent subset of
(x) containing 2™~! elements. Since dim (x) < 2™~! | it'is a basis of (x). More generally
theset { X% |g € H } it is a basis of (x). Then we have proved the following theorem.

\

Theorem 1 Let x in A. Recall that A = F,G where G is the additive group of Fom.

(i) The element x is of depth 1 if and only if there exists a hyperplane H of G such that the
restriction of x to H (respectively to h+ H , h € H) is invertible.

(ii) Assume that x is of depth 1. Then the ideal (x) is self-dual. Its dimension equals' 2m-1
The code (x) ts said to be an H-code, where H is a hyperplane of G such that

x=x"+x"X"", h¢H, supp(xX)C H, supp(x")CH,



€Y

where X' and x” are invertible. The set { X9x | g € H } is a basis of (x). The generators
of (x) are the

> a, X9x, ag€F;, where Y a,X9 is invertible .

9EH g€H

There is a generator of (x) of the form (6)
The H-codes are the principal ideals of depth 1.

Remark 2: Principal ideals of depth 1 of the algebra K[G], K = F;» and G = Fym, are
self-dual. WOLFMANN proved that the binary image of such codes, relative to a convenient
basis, are binary self-dual codes, which can be doubly-even [19]. For instance an extremal
[64,32,12] code was constructed in this way [18]. '

An H-code (x) is contained in P; thus it is an even self-dual code. Moreover (x) has a
generator matrix all of whose rows have the same weight as x. So it is easy to determine
if the code is doubly-even or not, since a binary self-dual code is doubly-even if and only if
every row of its generator matrix has a weight divisible by 4.

Corollary 1 Let x be an element of A of depth 1. Then the principal ideal (x), generated
by x, is an even self-dual code. Moreover (x) is doubly-even if and only if the weight of x is
divisible by 4.

Constructing a doubly-even self-dual code of length 2™. We can summarize as
follows the construction of the generator matrix of an H-code of length 2™:
o Choose a hyperplane H of the F;-vector space Fym.

o Get a codeword x’ of odd weight whose support is contained in H. That means that
x’ is an invertible element of F, H.

e Compute the 2™~! x 2™~! matrix M whose rows are the codewords X*x’, h € H.

Let I be the 2™~! x 2™~! identity matrix. Then the code with generator matrix [I | M ]
is an even self-dual [2™,2™] code. This code is doubly-even if and only if the weight of x’.
satisfies : w(x’) =3 modulo 4.

3 Extremal H-codes

One corollary of GLEASON’s result {14] is an upper bound on the minimal distance of the
even (respectively doubly-even) self-dual codes. The proof of the following theorem can be
found in [17, ch. 19].

Theorem 2 The minimum distance of a binary self-dual code with all weights divisible by t
(and not by t' > t) is at most d* where:

o ift=2then d*=2[n/8]+2;



o ift =4 then d* =4[n/24] +4.

A self-dual code which has minimal distance d* is said to be extremal. All ertremal even
(respectively doubly-even) codes of the same length have the same weight enumerator.

In this section we want to prove that there are no extremal H-codes of length greater
than 32. Moreover we point out that the class of H-codes is asymptotically bad. In order to
do that we first determine an upper bound for the minimal distance of every H-code. This
bound is given in Table 1 for m < 14.

Theorem 3 Recall that A = F,G , with G = Fam, m > 0. Let (x) be an H-code in A.-
Then, for each i, i > 0, such that i+ 2" < m , there ezists an element y of (x) whose
support is a subspace of G of dimension m — 1.

Let d be the minimal distance of (x) and set

*=max {ieN|i+2"'<m}.

Then d < 2™ .

Proof: Throughout the proof we will assume that x is an element of depth 1 of A and we
will study the principal ideal (x). We will prove the first part of the theorem by induction
on .

The property is satisfied when i = 0, for any m, since each ideal of A contains the all-one
vector Y ,ecg X?. If ¢ = 1 the property is satisfied for any m > 1 since (x) contains some
codewords whose support is a hyperplane of G (see Remark 1).

We suppose now that ¢ > 1 and that the property is satisfied up to ¢+ — 1. Hence we
assume that ~

(:—1)+2"2<m = thereexists y € (x) suchthat supp(y) is a subspace
of G of dimension m — (1 — 1) . (M

Now we want to prove that the property is satisfied for 1.

1) We first suppose that m = ¢+ 2~ . In accordance with (7) there exists an y € (x)
such that supp(y) is a subspace V of G of dimension k =m — i+ 1. Let W be the set of
representatives of cosets of V. With notation of Lemma 2 we have

x= Y x(h)X* where x(h)ePNFV.
hew '

Indeed y € (x) implies yx = 0 which means that each x(k) is in P (from Lemma 2). Note
that W contains 2™~* = 2°-1 elements. Whenever x(h) is of depth 1, x(k) can be written
as follows (according to (4)):

x(h) = (XM +1)+x , KeV\{0} , xeP?. (8)

Let Q be the subspace of G generated by these elements A’. Since there are 2°~! elements
x(k), the dimension of Q is less than or equal to 2°=!. By hypothesis, the dimension of V

8



mit|d<{im|&|[d<|m|i*|d<
21141 2 311/ 4 4 12| 4

5|2 8 612|161 73|16
8131329 ]13]64 |10)3]128
113256111214 1256 [[13] 41512

Table 1: The upper bound of the minimum distance of any H-codes of length 2™, m < 13.
Notation is that of Theorem 3.

equals 27! + 1. Hence there exists a hyperplane V' of V containing Q. Set z = T ¢v+ X9
and note that z € P*"' N,V ; then we have .

zx= Y zx(h)X* where zx(h) € PNV,
hew .
r being the depth of x(k). If x(h) is in P? then zx(k) =0 . Whenever x(k) is as in (8) we
have zx’ =0 and ,
(X¥+1)z= Y XM 1z2=22=0,
gev’ , _
since by construction k' € V. So zx =0 which is equivalent to z € (x). Since the support

of z is the subspace V' whose dimension equals m — 7, the property is proved for all ¢, when
=14 21, »

2) We suppose now that m > i +2'~' and we assume that the property is satisfied up
to m — 1. In accordance with (6), there are a hyperplane H of G, an invertible element x’
of F;H and h ¢ H such that x = X* +x' . As x' =1+ x" with x" € P (see (2)),
x = (1 4+ X”) +x” . We can choose A such that x” has depth 1. Indeed (x) contains the half
of elements of P™~!, because xP™~! = {0, ,e6 X} . So there exists a hyperplane H’,
different from H, Wthh is the support of a codeword z ¢ (x). Getting & in H' (and not in
H) we obtain zx = zx"” # 0 which yields x” € P\P2. So we have:

x=(X"4+1)+x" where x"€ P\P?and supp(x")C H .

Since x” € F, H , where H is identiﬁed with the additive group of Fj'~!, there exists (by
induction on m) an element y” in (x"”) whose support is a subspace of H of dimension

(m — 1) —i. Then we have y”x” = 0 which ylelds that the codeword y"”x of (x) equals
" y"(X*+1) . Since h ¢ H, the support of y”x is a subspace of G of dimension m —i. That
completes the proof of the first part of the theorem.

Actually we have stated an upper bound for the minimum distance d of (x). Indeed we
have proved that (x) contains a codeword of weight 2™~*, for any 7 such that i+ 2! < m.
Hence d < 2™~" , where i* is the biggest i.

@]

Corollary 2 Set N =2™, m > 1. Let d,, be the minimal distance of any H-code of length
N. Then the quotient d, /N approaches zero as m approaches infinity. The class of H-codes
does not meet the Gilbert-Varshamov bound : H-codes are asymptotically bad.

9



Proof: In accordance with Theorem 3, d, < 2™, where * is the biggest ¢ such that
i+ 2! < m. Then d,/N < 2°". By definition :* approaches infinity as m approaches
infinity. Then we have clearly:

dpm

lim —=0, as m — oo.

N

So we have proved that the class of H-codes does not meet the Gilbert-Varshamov bound
(cf. [17, p.557]). A H-code is an [N, N/2,d,,)-code; then the rate k/N, where k is the
dimension of the code, equals 1/2. Let { C,, | m > 1} be any infinite sequence of H-codes.
Actually we have proved that such a sequence cannot satisfy

1- K(dwm) < % where K(s) = —slog,(s) — (1 —s)logy(s — 1), (9)

for all m. Indeed K(273) =0.54 and K(27*) =0.33 . According with Table 1, that means
that (9) is not satisfied for m > 12.
a

The last corollary of Theorem 3 will give the characterization of extremal H-codes. For
its proof, we must treat separately length 64.

Lemma 3 Any H-code of length 64 contains a codeword whose support is a 3-dimensional
subspace. Hence tts minimal distance is less than or equal to 8.

Proof: Let (x) be an H-code of length 64 - i.e. G is the additive group of Fey. Let z € (x)
such that the support of z is an hyperplane V of G ; there exists such z from Theorem 3.
Since zx =0, we can write x as follows (see Lemma 2):

x=x"+x"X? , ¢g¢&V, x' and X" in FVAP.
According to (4) we have:
X=(X*+1)+y and x"=(X"+1)+4y" ,

withueV,veV,y ePy"e P2, If ¢’ (resp. x") is in P?, then u (resp. v) is zero. Since
x has depth 1, u and v cannot be zero together. Set

a'=(X"+1)(X"+1)x and a"=(X"+1)(X"+1)x".

If u = 0-or u = v we take another u in V and replace it in the expression of a’ and a”. So it
is clear that a’ and a” are in F,V N P*. Since V is here the additive group of Fa;, a’ and a”
are element of the Reed-Muller code of order 1 and length 32; the support of such element
(when it is a non zero element) is an affine subspace of V of dimension 4 or 5. In all cases
there exists w # 0 such that the codeword

a=(X*+1)(X*+1)(X” +1)

has weight 8 and satisfies aa’ =0 and aa” = 0. That yields ax = 0, which means a € (x),
completing the proof. '
@]

10



Corollary 3 Let (x) be an eztremal H-code.
(i) If (x) is an even self-dual code then it is.a [4, 2,2] code.

(ii) If (x) is a doubly-even self-dual code, then it is either an (8,4,4] code, a [16,8,4] code
or a (32,16, 8] code. '

Proof: (i) Assume that (x) is an extremal even self-dual code. In accordance with Theorem
2, its minimal distance d equals 2™~2 + 2. But, from Theorem 3, we know that d < 2™~?
as soon as 4 < m. When m = 3, (x) is a 8,4, 4] code, which is ¢learly doubly-even. Indeed
its generator matrix is of the form A

1 000(0111
01001 011
0010|1101
00011110

(see in Section 2.2). So there is only one possibility : m =2 and (x) is a [4,2,2] code.

(ii) We now assume that (x) is an extremal doubly-even self-dual code. Then , from
Theorem 2, its minimal distance d equals 4[?] + 4. From Theorem 3, d < 2™3 as soon
as 7 < m. So (x) is a code of length 2™, with m < 6. We have seen that it is very easy
to construct a doubly-even self-dual [8,4,4] code. It is also easy to construct a doubly-even
self-dual [16, 8, 4] code. Indeed whenever the weight of x is 4, we are sure that (x) is doubly-
even; therefore (x) has minimal distance 4. If m = 6 then d = 12; but, in this case, we know
from Lemma 3 that d is less than or equal to 8. There is no extremal [64,32,12] H-code.

In the following section we will show how to construct a [32,16,8] H-code.
@]

4 On generators of extremal H-codes of length 32

We first recall the definition of difference sets in elementary abelian groups and the theorem
of H.B. MANN. An overall review on difference sets can be found in [6] and [16].

Definition 2 Let {G,+} be a finite abelian group and let D be a subset of G. Then D is
a difference set of G with parameter X if and only if it satisfies:

card (DN (h+ D))=\ forall h in G\{0} .

Theorem 4 [16] Let {G,+} be an abelian group of order 2F and let D be a difference set
of G with parameter A. For any subgroup V of G, we denote by V the set G\V. If D is
equal to {0}UV , for any V, we will say that D is a trivial difference set. If D is not trivial,
then the parameters of D are:

k=2t, card D = 2‘_1(2‘ +e€) and A= 2“1(2"1 +¢€),

where € = £1.
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From now on G is the additive group of the finite field F3,.

Lemma 4 Let (x) be an H-code of length 32, where x =1+ X*x' | h ¢ H, x' invertible in
FyH. Then (x) is ¢ [32,16,8] code if and only if:

(1) The weight of x' is 7 or 11.
(ii) For all z=1+ X9, g € H\{0}, the tbeight of the product zx' is greater than 2.

Proof: Let [I|M] be the generator matrix of (x), where I is the identity matrix and
M={X*x'|ue H} (seeSection 2). Let y in F; H; then the product of the vector y by
M is in fact the codeword yx’. Any codeword of (x) is of the form (y,yx’) and its weight
equals w(y) + w(yx’). By construction yx’ # 0 whenever y # 0 ; moreover the depth of
yx' is equal to the depth of y. So yx’ has depth 1 for any y of welght 2.

If (x) has minimal distance 8 it is clear that (i) and (ii) are satisfied. Note that (11) is
not satisfied when w(x’) is 15.

Suppose now that (i) and (ii) are satxsﬁed Condition (i) implies that (x) is doubly-
even. Then we must only prove that (x) does not contain a codeword of weight 4. First
it is impossible to have w(y) = 3 and w(yx’) = 1, since we cannot have w(y) =
and w(yx') = 3. Condition (ii) means that w(y) = 2 and w(yx’') = 2 cannot appear,
completing the proof. :
a

Theorem 5 We denote by H any hyperplane of G. Then an H-code of length 32 is an

extremal doubly-even self-dual code (i.e. a [32,16,8] code) if and only if it has a generator
of the form
x=1+X"l+y) , h¢H , yeFRH, (10)

where the weight of 1+y is7 or 11 and the support of y is a non trivial dzﬂ'erence set of
H, where H is identified with the additive group of Fyg.

Proof: 1) Let (x) be an H-code such that x is of the form (10). Set D = supp(y) and
z=1+4+ X9 g € H\{0}. In accordance with Definition 2 and Theorem 4, we have

card D = 6 (resp. 10) and card (DN (D + hk)) =2 (resp. 6) .

Hence

w(zy) = w(y + X%) = 2card D — 2card (DN (D + h)) =8.

So, for all h, the weight of z + zy is greater than 2. From Lemma 4, (x) is extremal.
2) Let C be an extremal H-code. According to (4), there is a generator of C of the form

=(1+X"+a', a€P?.

where clearly h ¢ H; then a = (1 + X™)a, + a; , where a, is invertible in F, H and
a; € P2NF,H. Now we obtain another generator of C: :

x=X"a, = X1+ XM +aa) =1+ X"(1+y), yeP’nFKH.

12



Since C is extremal, the welght of 14y is7or 11l. Now we want to prove that the support
D of y is a difference set.

It is sufficient to prove that for any z = 1+X9, g € H\{0}, w(zy) = 8. Aszy € P’nF,H,
w(zy) € {0,8,16} (the three weights of the Reed-Muller code of order 1 and length 16). We
know that w(zy) > 2. Suppose that w(zy) = 16. The element y € P? can be identified
to a boolean function f on Fy (y = T,eq f(9)X?) which is quadratic. Remark that zy
corresponds to the function u — f(u) + f(u + k). If f is a bent function then the weight
of zy is always 8 and the weight of y is 6 or 10 (see [17, p. 426-30]). If f is not a bent
function, the kernel of its symplectic-form is at least of dimension 2. That means that there
exists ¢’ € H, g’ # g, such that w((1 + X¢)y) is either 0 or 16. It is impossible to have 0;
moreover

A+ X 414X )y =(X+X%)y —2EX9—0
g€H
proves that the value 16 is also not available. Thus we have proved that only welght 8 is

possible; f is a bent function and D is a difference set.
0

Remark 3: The quadratic bent functions are completely characterized. For instance the
general form of these functions is known; from {17, p. 429] we obtain the general form of the
generators of the extremal [32,16,8] H-codes. Let {ey, ...,es} be a basis of G and let H

be the hyperplane generated by the e;, ¢ € [1,4]. Then a generator of an extremal H-code
can be written as follows :

x=14+X*Q+(X?+1)(X?2+1)+(X?+1)(X*+1))

where w(x) = 8. An extremal H-code with generator of weight 12 is easily obtained. For
instance the following x is such generator: '

x=1+X" (1 F (X D)X 4+ 1)+ (X + 1)(X% + 1)+ X ([[(X% + 1))

1=1
5 Conclusion

In this paper we studied a special class of ideals of the algebra F;[{F,m,+}]. We gave an
upper bound on the minimal distance of these codes which allowed us to prove that they are
asymptotically bad. We think that our bound can be improved; maybe it would be possible
to find an upper bound for any ideal of the algebra which is self-dual. We conjecture that
the minimum-weight codewords of the RM-code [2™,2™1, 2(m+1)/2] are important for this
* problem. For example, we proved in [12] that all affine invariant self-dual codes of length
128 have minimal distance 16; the value 16 is the upper bound on the minimal distance of
H-codes and the minimal distance of the RM-code (for the length 128). In all cases there is
a codeword of weight 16 whose support is a vector-space of dimension 4.

The complete classification of all binary, self-dual, doubly-even [32,16] codes is due
to CONWAY and PLESS [13]; they proved that there are five non-equivalent extremal codes
(another proof was given later in [15}). Two of the five codes are well-known extended cyclic
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codes; that is the Reed-Muller code and the quadrétic residue code. There are three other
extremal codes of length 32, namely the code F, the code G and the code U. We proved
that the generator of any extremal [32,16] H-code is completely defined by a quadratic
bent function on Fy¢. These functions correspond to the codewords of weight 6 or 10 of
the RM-code R(2,4). All codewords of weight 6 (resp. 10) are equivalent. So there are at
most two non-equivalent H-codes; from recent explorations it seems that all H-codes are
equivalent to the code G. A full explanation of these facts in a more general context will be
presented in a forthcoming paper.

The complete coset weight distributions of the five extremal [32,16] codes are given in
[7] (see also [3] for the quadratic residue code).
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