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Abstract: The problems of numerical analysis with large sparse matrices involve
often a projection of this matrix onto a Krylov subspace to obtain a smaller matrix
which is used to solve the initial problem. The subspace depends on the matrix and
on an arbritary vector. We consider, in this paper, a method to study the stabil-
ity of the Krylov subspace through a matrix perturbation. This method includes a
definition of the condition numbers for the computation of the Krylov basis and the
Krylov subspace. A practical method for estimating these numbers is provided. Tt
is based on the solution of a large triangular system.
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Stabilité des bases et des sous-espaces de Krylov

Résumé : Les problemes d’analyse numérique avec des grandes matrices creuses
requierent souvent une projection de cette matrice sur un sous-espace de Krylov
pour obtenir une matrice plus petite utilisée pour résoudre le probleme initial. Le
sous-espace dépend de la matrice et d’un vecteur arbitraire. On se propose ici d’étu-
dier la stabilité des bases et sous-espaces de Krylov lorsqu’on perturbe la matrice.
Cette méthode inclut une définition du conditionnement des bases et sous-espaces
de Krylov. On fournit un algorithme de calcul de ces conditionnements, basé sur la
solution d’un grand systéme triangulaire.

Mots-clé : Base et sous-espace de Krylov, Conditionnement, Stabilité.



1 Introduction

Using a computer to solve a numerical problem, we have to ensure the accu-
racy of the result by computing the condition number of the problem, i.e. to give a
measure of the sensitivity of the result to a data perturbation. It is with this aim
that we deal, in this paper, with a method studying the condition number of Krylov
basis and subspace. The Krylov subspaces [3], built from a matrix A € R"*" and
an arbitrary vector f € R”, are often used in numerical analysis with large sparse
matrices [1, 4]. Indeed, in these problems, we need to project the large matrix onto
a subspace to obtain a smaller matrix which is used to solve the initial problem. We
give here a method to measure the sensitivity of the Krylov basis and subspace to a
matrix perturbation. This method is proposed by S.K. Godunov.

First, in section 2, we give the definitions of the distance between two bases and
two subspaces, the definition of the Krylov basis and subspace and the condition
number of them. At the end of this section, we show that only the case of a ma-
trix perturbation on an Hessenberg matrix with the vector f = (1,0,.. .,O)T has to
be taken into account. In section 3, we give the method for the computation of the
condition numbers : we study the sensitivity, at the first order, of the Krylov basis F’
of dimension k construted from A and f, to a matrix perturbation A, i.e. we search
X such that (I + X )F is a Krylov basis of A + A. Then, we show that X is solution
of a Sylvester equation ; S.V. Kuznetsov proved that X could be found from the so-
lution of a linear system involving a large triangular matrix B(4*) constructed from
the elements of A. We prove then that the condition number for the computation of
the Krylov basis and subspace are deduced from the 2-norm of the inverse of B(4:5).
In section 5, J-F. Carpraux implements the algorithm for the computation of the
condition number and gives some bounds to ensure the quality of the result. Finally,
in section 6, we illustrate this method by computing some condition numbers for
several matrices and vectors.

2 Definitions and preliminaries

2.1 Distance between two bases and subspaces

Let F and G be two subspaces of R of dimension &, and let F’ and G be two or-
thonormal bases of F and G respectively. Then, there exists some matrix W € R"*",
such that W*W = I and G = WF. Let W be the set of such matrices, then VW € W,

RR n"2296



there exists some unitary matrices U € R"*™ such that

cosw; — sinwq
sinwy  coswy

cosw; —sinw;
wW=U* sinw;  cosw; U

0

+1

Definition 1

J
The distance between F' and G is given by d(F,G) = V%m%}v Zw? where W =
EW \| ¢
1=1

{W € R"™" such that G = WF and W*W = 1}.

The distance between F and G is given by d(F,G) = I}I?llGll d(F,G) where F' and

G are respeclively two orthonormal bases of F and G.

If F and G are close from each other, then G = WF with W = I + X + O(|| X|*)

where || X|| < 1 and X* = —X. Let X be the set of all these matrices X. Then
VX € X,
0 —W1
IR O
X =U* —Wj U.
w; 0

J
Since || X||r = , 22%2, we get the following:
=1
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1
Lemma 1 At the first order in || X ||, d(F,G) = )r(nn} EHXHF, where X = {X such that || X]| < 1,X* = -X
€

2.2 Krylov subspace and basis
Let A € R"*™ and f € R", ||f||2 = 1. The Krylov subspaces are, for 1 < k < n,
the subspaces Ki(A, f) = span[f, Af, A%f,..., A*=1 f] of dimension < k.

Let [ be the dimension of K, (A, f) = span[f, Af,..., A"71f] : in fact, we have
}CTL(A7f) = Spa/n[f7Af7' . '7Al_1f:|'

Definition 2 For 1 < k < I, the natural orthonormal Krylov basis of Ki(A, f) is
an orthonormal basis Fy, = { f1, f2,. .., fr} such that for 1 < j < k, F}; is the Krylov
basis of KC;(A, f). Fy is unique up lo the sign.

Remark Fj can be constructed by the Arnoldi process for example.

Let V be an orthonormal basis of R such that V = (F}, F’), where F’ is an
orthonormal basis of Ki-(A, f), and such that, in this basis, f = (1,0,...,0)T and
A is an Hessenberg matrix, where a;41; = 0 and a;41; # 0 for 1 <14 < [.

Remark Ifl < n —1 then V is notl unique.

2.3 Condition number of Krylov subspace and basis

We give here the definitions of the condition numbers of the Krylov subspace
Ki(A, f) and of its natural orthonormal Krylov basis through a matrix pertur-
bation A. These condition numbers are denoted respectively by p{K(A, f)} and

1e{Kk(A, )}
For 1 <k <, let

o K =Ki(A, f), and F its natural orthonormal Krylov basis. Since k <[, F'is
of dimension k.

e K = Ki(A+ A, f), and F its natural orthonormal Krylov basis.

We assume that ||A|| is small enough to ensure that F is also of dimension .
We apply the usual definition of condition number [6] where the metric in the set of
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subspaces is defined in Definition 1 and we choose the Frobenius norm in the space
of matrices.

Definition 3 For1 <k </,

WAKH(AL )} = mf{ sup (d(’c”C)HAHF)}

>0 | aflp<e \ 1A]lF
and .

. d(F, F)

1 {Kk(A, f)} = inf { sup ( ||A||F)}
>0 jlaflr<e \ [1AllF
Forl <k <m,
KA, )} = m{Ke(A, )} = o0

Remarks

o [l is easy to see that u{K1(A4, f)} = w{K1(A, f)} = 0.

o Ifl =n, then M{}Cn(Avf)} =0 and :ub{}Cn(A7f)} = :ub{}cn—l(A7f)} because

in this case, the last vector is uniquely defined up to the sign.

2.4 Simplification of the problem

We saw in subsection 2.2 that there exists some orthonormal bases V' of R”, such
that H = V*AV is an Hessenberg matrix, and V*f = (1,0,...,0)" = ¢;. We prove
in the following theorem that the condition number does not depend on the basis in
which A and f are expressed.

Theorem 1 For1 <k <,

p{Kk(H,e1)} = p{Ki(A, f)} and pp{Ky(H,e1)} = mp{Ke(A, )}
Remarks Let U be an orthonormal basis of R™,
o Let X € R™*™, then ||U*XU||lr = || X||F.

o Let G be an orthonormal basis of Ki(A, f), then UG is an orthonormal basis
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Proof of the theorem
Ki(H,e1) = Kp(VTAV,V*f)

span[V*f, VAL, VAL, .. V*ARLf]
V*Ki(A, f)

Let F and F be the orthonormal basis of Ki(A, f) and Kp(A + A, f), then V*F
and V*F' are the orthonormal basis of V*KCr(A, f) and V*Kr(A+ A, f) = Ki(H +
V*AV,e1) = Kp(H 4+ A, e1) where [|A||r = ||A]|F.

d(V*F,V*F) = min

1
—|lY h
Yeyﬂ” |7, where

y

{V st Vr <1,y = -Y and V*F = (T+Y + O(|Y[})) V*F}
= {Yst |Vllr <1,y ==Y and F = (1+ VYV +O(|[Y|})) F}
{V st Vp<1,¥" ==Y and F = (1+Y + O(|[Y|})) F}

—  d(V*F,V*F)=d(F,F). Hence uy{Kr(H,e1)} = up{Kr(A, f)}

d(}Ck(H7 61)7 }Ck(H + Alv 61)) = d(v*}Ck(Av f)7 V*}Ck(A + A, f)
= mind(V*F,V*F)
FE

= mind(F, F)
FF

= d(Kp(A, f),K(A+ A, f)

Therefore p{Kr(H,e1)} = p{Kr(A, f)}.

3 Method to compute the condition numbers of Kry-
lov subspace and basis

We want here to give a method to compute the condition number of the Krylov
subspace Kr(A, f) and of its natural orthonormal basis.
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We saw in subsection 2.4 that we can suppose that A is an Hessenberg matrix and
that f = (1,0,...,0)T. Let us suppose now that [2 < k < min(l,n — 1)

Remark [ is such that a;4q, is the first zero of the subdiagonal of A, therefore | is
the dimension of KC,(A, f).

Let ' = [f1,..., k] be the natural orthonormal basis of K¢(A, f) where f; =
f=(1,0,...,0)", and let F' = [f1, f,..., fx] be the natural orthonormal basis of

Ki(A, f) where A = A+ A+ O(|A]») (|A|| < 1) and f; = f; = (1,0,...,0)T.
Then,

If we find a matrix X € R™" (|| X|| < 1) such that F' = (I + X + O([JA|I*) F
with X* = — X, then, thanks to Lemma 1, we will be able to estimate d(F, F'), and
then, the condition number of the Krylov subspace and basis (see Definition 3).

3.1 Structure of the matrix X

Definition 4 (Definition of the operator Ly)
Let M € R™™ then L {M} designs the first k — 1 columns below the subdiagonal of

m3 . O
M, ie L {My=| + - :

ME41,k—1 0 ... 0

Mp1 oo My ko1 0o ... 0

)

Remark £ is linear and its kernel is the subspace of Hessenberg matrices for the
first k — 1 columns.

INRIA



We have to find X such that X* = —X, f; = f1, . Therefore X has the
following structure :

0 0 ...l 0
0 0 L322 e —Zn,2
X = T32 0
: —ZTp,n-1
0 Tp 2 vennn Tpn—1 0

Moreover, X has to be such that F=(I+X+4O0O(|A|*)F is an orthonormal
basis of Ki(A4, f), i.e.
(1-x+o(Ia1») (A+a+o(a®)) (1+ X +0(alH) = 4 + o(|a]*)

where A is an Hessenberg matrix for the first £ — 1 columns. This previous equation
is equivalent to :

ce{(1-x+o0al)) (A+a+o(a®) (1+X +o(|al?)} = o(a?)
= L{At+a+ax-xato(a])}=o(al?)

= L{XA-AX} =L {a}+0(|A]%) (1)

Therefore the part under the diagonal of the n — k last columns of X can be
arbitrarily chosen (for j > k and ¢ > k,z;; = 0) :

0 0 0
0 0 L3 e —Tp2
T32
X = : 0  —Tpp1k — Tk (STx)
Tk41,k O
0 2,2 ..... Ty k

RR n"2296
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3.2 Computation of X

We are searching X with the structure (S7x) and solution of (1). Therefore, at
the first order in ||A||, we are searching X solution of :

X has the structure (57x) defined in subsection 3.1 (2)
Lo {XA— AX) = L{A)

Let m be the number of unknown components of X,
m=(k-1n+1-kk+1)/2,
$(k) = (.’E372, s Ty 2 | T43y. 0 | Ce | Thtlky- s CL‘mk)T cR™

and 6(k) = ((5371, RN 67%1 | ... | 6k+1,k—17 R 6n7k_1)T € R™

Then, we can prove (see section 4) that

X solution of (2) <= 2" solution of BAF) ¢ (F) = (k)

where B(A#) ¢ R™X™ s a triangular matrix built with the elements of A.
B is non singular because its diagonal elements (a;41,;, for 1 < j <k —1) are
non zero.

3.3 Condition number of Krylov subspace and basis

Let us write X = X,gl) + XIEQ) + XIEB) where

0 0 ... 0
0 0 23,2 .. —TEk2
) 23,2 0 : O is such that I + X,gl)
Xlg ) _ : : —Th g1 is a rotation
0 zp2 ..... Tk k—1 0 in /Ck(A, f)

INRIA
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0 0
—Tk41,2 .-+ T2
2
Xlg ) —Tgy1k ... —Tpk | moves Kr(A, f)
0 Zrg12 -0 Tkt
0 zp2 ... Znpg

XIES) =X - Xlgl) - XIEQ) is such that I + XIEB) is a rotation in Ki(A, f)

Remark In subsection 3.1, we decided to take XIEB) = 0. Indeed, I + XIEB) s a

rotation in Ki-(A, f), so it does not perturb the computation of Ki(A, f) and of its
Krylov basis.

We give here the condition numbers of the Krylov subspace and of its natural
orthonormal basis defined in Definition 3.

Theorem 2 Let | be the dimension of K, (A, f), then for k € [2,min(l,n — 1)], the
-1
matriz CAk) = (B(A’k)) exists, and then :

The condition number of the natural orthonormal basis of Ki(A, f) is

u{Ki(A, 1)} = |CHD ]| Al p

The condition number of Ki(A, f) is

piK(A, )Y = 1CAD Al
where CAF) s the matriz composed by a few rows of CAK) such that

) = ( )T = AR §8),

TE41,29---5Tn,2 | e | Th41,ky-- -5 Tnk

Proof Definition 3 gives us :

i {Kk(A, )} = int { sup (d(F’ F)||A||F)}

>0 | ajp<e \ 1AllF

RR n"2296
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We have to remark that if A is an Hessenberg matrix for the k£ — 1 first columns (i.e.

L{A} = 0) then d(F, F) = 0. Therefore

I
SO I (D)

Then, using Lemma 1 and the egality ||§()||, = ||[Lx{A}||F, we find

(KA, D)} = inf AIXC + X
I , in sup
v 0 | 1500 <e CRIE F

(k)
= mf{ sup 12212

>0 L j1s(R))|p<e 16|

S

}IIAIIF = [Nz Al

Thus, we find u{Kx(A4, f)} = inf{ sup (d(}C’}C)HAHF)}

>0 | jjaflr<e \ [[AllF
. d(K,K)
= inf sup 7||A||F)}
>0 {Hck{A}HFSe (Hﬁk{A}HF
But d(K,K) = mind(F, F) = m111—||X ';EQ)HF, then
FF f
1 X(2)||
k(A D)} = it sup [ ZE D,
>0 | sop<e \ 6P
[125)]] } “(4,k)
= infq sup |AlF = [[CY|2]| Al F
E>0{||5(k>|| <e 16|l
where 2(®) and C(4%) are defined in the theorem. O

4 The matrix B“F)

Let A,A,6(") and the operator £; be defined as in section 3. We are going to
prove that X solution of (2) <= z¥) solution of BA4#*)z(*) = §(k) where BAK) ¢

INRIA
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R™*™ is a triangular matrix built with the elements of A.

X has the structure (S7x) defined in subsection 3.1, therefore we can write
X = X1, + Xy where

0 0 0 ... 0

0 0 0 —z32 .. —Zpg
AXVL = I32 0 O ,AXU = 0

: : O —ZTp,n-1

0 Tn2 «+ Tpn-1 0 0

As A is an Hessenberg matrix, we see that XyyA — AXyy is an upper triangular
matrix, then L{XpyA — AXy} = 0, and therefore

Lif{XA—AX} = L{A} <= L{XpA— AXp)} = Li{A)}

J+1 n
< Zaﬁuau— Z ai71:€17]':(52'7]' Vi<j<k—-landj+2<i<n
=1 {=1—1

But Vi, ;1 =0,s0 V1<j3<k-1and 7+2<i<n, wehave:

j—1 n
(Z al,ﬂ‘z‘,z) + (%‘,jl‘m - %lwz,j) + (aj41,j%ij41) = 6ij
(=2

{=1—1

j—1 Ti41,l
—Vje€ [1,]6‘ - 1], Zau ( Oj—l-l—l ‘ In—j—l ) .

1=2 T

0 Qjp2, 541 eeeeeeannn a;42.n Tit1;
+ e | : In_]-_l :

0 O an,n—l anm 'rn,j

Tjt2,i+1 0iv2,j

+aj+1,jIn—j—1 : = :
T+l On j

RR n"2296
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-1 Tiy1,l Lj4+1,5
— Zal,jjg:]l'—l f + (aj,ﬂﬁfff_l - AUH))
=2 Tp Xy j
Tj42,j4+1 bj+2,j
+aj+1,jIn—j—1 : = : . Vie[lk—1]
Tn,j41 bn,j

where Jij = ( Oj—i

Ii ) € RIXJ

and A®) = f e Rn—t+1)x(n-i+2)

O Upn—1 Gpn

This last system of equations is equivalent to BA*) z(*) = §(k) where B(A:F) ig
the following triangular matrix built with the elements of A :

02,1In-2
2 4
Ay, J22 — AW ay, 1,

, 3 3 0
P . .

2 k2 k41 k+1
az,k.1Jrrllk Ax.2 k-1 Jrrll_k-l- Ax.1,x-1 Jrrll_k-l- — Alk+D ak,k-lln-k

5 The algorithm

Let A € R™™™ and f € R"™. We propose here an algorithm to compute the condi-
tion numbers of the Krylov subspaces (A, f) and of their natural orthonormal
bases, for k from 2 to n — 1.

(An—1)

This algorithm consists in the construction of a large triangular matrix B ,

for which we have to estimate the norm of its inverse. We need to have a good preci-
sion of the computations in order to ensure the results. To realize this, we compute
the inverse by using a special technique for scalar products, in order to avoid in
mosts cases underflow and overflow.
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In the second part, we bound the computed condition numbers. These bounds
will be improved [2] because the study of the algorithm stability is not enough sharp
at this time. Indeed, we cannot ensure the exactness of the result for some examples.

5.1 Algorithms

We give first the algorithm of computation of the condition numbers (Algorithm
1) and then we give in detail the algorithm of computation of the inverse matrix
(Algorithm 2).

5.1.1 Algorithm 1 : computation of the condition numbers

1. Compute the reflections of Householder Py, Pi,..., P,_9 such that Fyf =
(1,0,...,0)T, and PTAP is an Hessenberg matrix, where P = PoP; ... P, .

Let now A := PTAP and f :=(1,0,...,0)"

(A,n—1)

2. Compute the lower triangular matrix B of section 4

-1
3. Compute the lower triangular matrix ¢4 = (B(A’l)) by Algorithm 2

4. For k = 2...l, give the condition numbers using subsection 3.3 :

e For the basis : ||C(A’k)||2,

o For the subspace Ki(A, f) : [|[C4F)]|;, where C(4#) is defined in subsec-
tion 3.3.

5.1.2 Computation of the inverse

Let B = (b; ;)%= = B and € = (cij)liz1 = CAn=1)_ The classic
algorithm of computation of the ¢; ; is the next :

1
bi;

-1 i—1
for j=1,i—1 do ¢ ;= b Zbi,kck,j
2,2 k:]

for i=1,m do ¢;=

We have to take into account that the diagonal of the matrix B may contain some

elements which are very close from 0. Indeed, if it exists ig such that b; ;, ~ 0

RR n"2296
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then the computation of the ¢;, ; can failed if Z;CO__].I biy kCk,; is very small too :

underflow. On the other hand, if Z}f:—jl biy kCk,; is not small, then ¢;, ; is very big

(biy iy = 0). Therefore, for i; > i, ijz_jl b, rck,; can be very big : overflow. By using
the following method to compute the ¢; ;, we can avoid such problems.

Algorithm 2

. 1
for i=1,m do ¢,;=27"
bz,z
or
£ 2
for j=1,i—1 do ¢ ;= —olpta—r) = — (3)
2,2
or

here r = 1+4|logy |bi|], p=1 log, |b; d ¢g=1 1 11.
where = 1+ |logy [bi[], p +].§rgg;<_ltogzl k|| and ¢ +].§rgg;<_ltogz|6k,]lJ

5.2 Validation of the result

Let B = BA#K) and ¢ = CAHK) | then we have to be sure that the computed
matrix C,,,ep is not too far from B~1. The study of the stability of this algorithm

allows us to estimate a majorant M of ||Q| 7 where @ = BC),qc, — I. Then, we can
bound the computed condition numbers :

1-2M

_— < <
|Conachlla =7 A4l < mSKL(A, £)} < [ Coactllag—7 14l
. 1-2M 2 1
Cmac —F0 A S K A7 S Cmac —||A
[Comacnlla =4l < 1{KE(A, 1)} < [ Comacnlla =7 1Al

6 Examples

We give now some examples of computation of the condition numbers of Krylov
bases and subspaces.
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For each example, we give a table in which we can see the lower and upper
bounds of the condition numbers of the basis :

1-2M

Lower bound = ||Crqch F

and Upper bound = [|Cpuacnl|2 | A|| 7

1-M
Indeed, these bounds, which can only be computed if M < 1, allow us to validate

the result when they are close enough from each other. Moreover, we can validate

the result, by computing the quantity ||€2||2 = || BCrach — I||2-

6.1 Example 1

Let us consider the following matrix A € R16*16 and f € R :

-7 36

1
—10".0 0

A= S f=
. . 36

0 -1 0 0

RR n"2296
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[
N

[
[

[y
o

Condition number of the Krylov basis (*) and subspace (full line)

©

T

T

T T
x

T
x x x

T
* x

T
E s
e
S
§ 7
o
o
S 6
—
(=)
S

5

4

3

2> | | | | | |

2 4 6 8 10 12 14

Size of the Krylov subspace

k [ Tower bound | u{Kx(4, f)} | upper bound [ u{Kx(A, N} | (122)macs
2 1.397e+02 1.397e+02 1.397e+02 1.397e+02 -0.0e4-00
3 5.158e4-03 5.158e+4-03 5.158e+4-03 5.158e+4-03 -0.0e+4-00
4 1.856e+405 1.856e+4-05 1.856e+4-05 1.856e+405 -0.0e4-00
5 6.671e406 6.671e4-06 6.671e4-06 6.671e406 -0.0e4-00
6 2.395e4-08 2.395e4-08 2.395e4-08 2.395e4-08 -0.0e4-00
7 8.556e4-09 8.573e4-09 8.589e4-09 8.573e+409 -0.0e4-00
8 2.851e+11 3.045e4+11 3.238e+11 3.045e+11 -0.0e4-00
9 4.393e+411 4.924e411 5.455e+11 4.304e+411 -0.0e4-00
10 4.322e+11 4.924e+11 5.526e+11 1.691e+10 -0.0e+4-00
11 4.260e+411 4.924e411 5.588e+11 5.755e4-08 -0.0e4-00
12 4.208e+11 4.924e411 5.640e+11 1.847e+07 -0.0e4-00
13 4.169e+11 4.924e+11 5.679e+11 5.737e4+05 -0.0e+4-00
14 4.144e4+11 4.924e411 5.704e4+11 1.746e+04 -0.0e4-00
15 4.132e+11 4.924e411 5.716e+11 5.225e4-02 -0.0e4-00

16
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The condition number of the Krylov basis increases with its size, and becomes

quickly bad. It is interesting to see that the condition number of the Krylov subspace
increases first up to a large value then decreases.

6.2 Example 2

Log10(Condition number)

Let us now take the transposed of the previous matrix and the same vector :

-7 -1

1
36 0 . O 0

A= o ERYXC and f=| . | €R'S

O 36 0 0

Condition number of the Krylov basis (*) and subspace (full line)
16 T T T T T T

1.4r- 1

=
N
T
I

=
T
|

o
o]
T
I

0-4 | | | | | |
2 4 6 8 10 12 14 16

Size of the Krylov subspace
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size | lower bound | up{Kr(A, f)} | upper bound | u{Kr(A, /)} | (|22),m0cn
2 3.879e+00 3.879e+00 3.879e+00 3.879e+00 -0.0e+00
3 6.349e+4-00 6.349e4-00 6.349e+400 6.348e+400 -0.0e+00
4 8.856e+400 8.856e+400 8.856e+00 8.851e+00 -0.0e+00
5 1.138e4-01 1.138e4-01 1.138e4-01 1.136e4-01 3.4e-21
6 1.389e4-01 1.389e4-01 1.389e4-01 1.386e4-01 5.5e-21
7 1.641e4-01 1.641e4-01 1.641e4-01 1.633e4-01 7.7e-21
8 1.892e4-01 1.892e4-01 1.892e4-01 1.875e4-01 9.8e-21
9 2.144e+4-01 2.144e4-01 2.144e+4-01 2.101e+4-01 1.1e-20
10 2.391e4-01 2.391e4-01 2.391e4-01 2.269e+4-01 1.2e-20
11 2.642e+4-01 2.642e+4-01 2.642e+4-01 2.344e+4-01 1.2e-20
12 2.881e4-01 2.881e+4-01 2.881e+4-01 2.319e4-01 1.2e-20
13 3.130e4-01 3.130e4-01 3.130e+4-01 2.187e+01 1.2e-20
14 3.343e+4-01 3.343e+4-01 3.343e+4-01 1.922e4-01 1.2e-20
15 3.586e+4-01 3.586e+4-01 3.586e+4-01 1.452e4-01 1.2e-20

The only difference between this example and the previous is that we consider
here the transposed matrix. But, as we can see in the tables the results are quite
different. Here, the condition numbers of the Krylov basis and subspaces are always
good.

7 Conclusion

We provide an algorithm to measure the sensitivity of the Krylov subspace and
basis to a matrix perturbation. This tool will be very useful to understand unsta-
bilities of a Krylov subspace or basis. We plan to use it on various examples and
to analyze the results thoroughly. Another direction of study is to understand the
links between the stability of the Krylov subspace and the convergence of iterative
methods in linear algebra using these subspaces.

For example, this algorithm could be used in the future to validate the compu-
tation of an invariant subspace by the Arnoldi process.

Acknowledgments : the authors are indebted to J. Erhel for her relevant remarks
about this paper.
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