N

N
N

HAL

open science

Higher-order abstract syntax with induction in Coq

Joélle Despeyroux, André Hirschowitz

» To cite this version:

Joélle Despeyroux, André Hirschowitz. Higher-order abstract syntax with induction in Coq. [Research

Report] RR-2292, INRIA. 1994. inria-00074381

HAL 1d: inria-00074381
https://inria.hal.science/inria-00074381
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074381
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Higher-order abstract syntax with induction in
Coqg

Joélle Despeyroux , André Hirschowitz

N° 2292
June 1994

PROGRAMME 2
Calcul symbolique,
programmation

et géenielogicie

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

Higher-order abstract syntax with induction in Coq

* % %

Joélle Despeyroux *, André Hirschowitz

Programme 2 — Calcul symbolique, programmation et génie logiciel

Projet CROAP

Rapport de recherche n”® 2292 — June 1994 — 18 pages

Abstract: Three important properties of Higher-Order Abstract Syntax are the (higher-
order) induction principle, which allows proofs by induction, the (higher-order) injection
principle, which asserts that equal terms have equal heads and equal sons, and the exten-
sionality principle, which asserts that functional terms which are pointwise equal are equal.
Higher-order abstract syntax is implemented for instance in the Edinburgh Logical Frame-
work and the above principles are satisfied by this implementation. But although they can
be proved at the meta level, they cannot be proved at the object level and furthermore,
it is not so easy to know how to formulate them in a simple way at the object level. We
explain here how Second-Order Abstract Syntax can be implemented in a more powerful
type system (Coq) in such a way as to make available or provable (at the object level) the
corresponding induction, injection and extensionality principles.

Key-words: Higher-Order Abstract Syntax, Induction, Type Systems, Theorem provers,
Calculus of Inductive Constructions.

(Résumé : tsvp)

To appear in the Proc. of the Int. Conf. on Logic Programming and Automated Reasoning, LPAR’94,
Kiev, Ukraine, July 1994

*joelle.despeyroux@sophia.inria.fr. INRIA-Sophia
**andre.hirschowitz@sophia.inria.fr. CNRS URA 168, University of Nice, F-06108 Nice Cedex 2, France

Unitéde recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 93 65 77 77 — Télécopie : (33) 9365 77 65

Syntaxe abstraite d’ordre supérieur avec induction
dans Coq

Résumé : En syntaxe abstraite d’ordre supérieur, on dispose de trois principes importants.
Le premier est le principe d’induction (d’ordre supérieur), qui permet de faire des preuves
par induction. Le second est le principe d’injection, qui dit que deux termes égaux ont des
opérateurs de tete égaux et des fils égaux. Le troisieme est le principe d’extensionalité, qui
dit que deux termes fonctionnels égaux en tous points sont égaux. La notion de syntaxe
abstraite d’ordre supérieur est implementée dans le ‘Logical Framework’ d’Edinbourg (LF),
ou ces trois principes sont valides. Mais bien qu’ils soient prouvables au niveau meta, ces
principes ne peuvent etre prouvés (ni méme exprimés de maniére simple) au niveau objet.
Nous donnons ici une méthode d’implémentation de la syntaxe abstraite d’ordre deux, dans
un systéme de types plus fort que LF, le systéme Coq, de maniére & rendre ces principes
disponibles au niveau objet.

Mots-clé : Syntaxe abstraite d’ordre supérieur , Induction, Systémes de types, Systemes
de développement de preuves, Calcul des constructions inductives.

HOAS with Induction in Cog 3

1 Introduction

The original motivation of our work is to investigate how to use a powerful theorem prover to
perform proofs in Natural Semantics [Kah87] written in the LF [AHMS87][HHP87][HHPI1]
style. We have chosen the system Coq [DFHT93] rather than other systems, like EIf [Pfe89]
or Isabelle [Pau89] for example, because Coq is equipped with a notion of inductive defi-
nitions [PM92] which provides induction and a recursion operator (called Match) both on
expressions and on proofs.

The problem of the implementation of second-order syntax together with induction in
Coq is not trivial because declarations like the following one are not legal:

‘Inductive Set' Lo = Lamg : (Lo — Lo) — Lo | Appo Lo — Lo — Lo.

Indeed, in the definition of the constructor Lamo : (Lo — Lo) — Lo, the first occurrence of
Lg is negative and this is not allowed in an inductive definition.

Let us explain, on the above example, the main features of our solution.

In order to avoid negative positions, we use the following trick. We use a set var for
variables, introduced by the following declaration:

Variable var : Set.

together with an axiom providing var with two distinct values. This assumption is much
weaker than the usual one concerning variables. This reflects the fact that our treatment
of variables is genuinely higher-order. Our lam-constructor has for its argument a function
from war to L instead of from L to L. In order to complete the picture, we also need a
constructor from var to L. This yields the following inductive declaration:

Inductive Set L =Var :var — L | Lam : (var — L) — L | App: L — L — L.

For instance, the term Az.(z z) is encoded as
(Lam (Az : var. (App (Var z) (Var z))),
using the meta-level operator A. Terms of L form our provisional syntax. Now we want to
implement altogether closed and open terms. We see open terms as higher-order terms, in
other words as functions of an arbitrary number of variables. We know of at least three
approaches for implementing such functions:

e through implicit lists, by glueing in a single dependent type the sequence L, of types:
L, L — L L— L— L, ..Such a definition is not possible in the current Coq system,
since the rule Nodeps.: Types., 15 not yet available;

e through a term list of type nat — Set — Set, where the intended meaning of (list n A)
is the type of lists of length n of elements of A;

e through infinite lists via the term list = AA : Set.nat — A.

RR n"2292

4 J. Despeyrouzr & A. Hirschowitz

Here below we explore the latter solution, which appeared to be the simplest one. Our
infinite lists are easily equipped with the usual terms cons, car and edr. Thus our final syntax
is made of terms of type (list L) — L. Not all such terms are convenient and we have to rule
out exotic terms through a predicate Valid of type nat — ((list L) — L) — Prop. Finally,
we have to identify Valid terms which are extensionally equal in some natural sense; this is
because Coq’s object equality (more precisely the polymorphic equality on Sets provided in
Coq) is not extensional.

The desired induction principle is generated by the inductive definition of Valid. The
extensionality principle is given for free by our ad-hoc equality. As for the injection principle,
we are able to prove it at the object level.

Our implementation of second-order syntax would be meaningless from our point of view
if it did not allow convincing formulations and proofs in semantics. We wish to address this
problem systematically in the future. In this paper, we present briefly a significant example,
namely an implementation of a translation from a first-order (de Bruijn) version of our
simply typed A-calculus to our second-order description of the same calculus, together with
the formulation and proof (at the object level) of the correctness of this translation. This
proof illustrates nicely the use of the induction and injection principles on both sides.

The rest of the paper is organized as follows. In section 2, we explain our implementation
of the above example of a simply-typed A-calculus. In subsection 2.1, we review a first-order
implementation of our A-calculus in Coq. In subsection 2.2, we introduce our provisional
syntax and discuss its properties. In subsection 2.3, we present our final syntax. In order to
build a complete proof of the injection principle, we were led to introduce ad-hoc extensional
notions of equality, which are studied here. In subsection 2.4, we present our object-level
proof of translation. The statements proved in this subsection 2.4 are not the natural ones,
since they involve our notion of equality, instead of Coq’s object equality. This makes them
more cumbersome. In subsection 2.5, we discuss alternative approaches through extensio-
nality axioms needed for proofs of the original statements (those involving Coq’s object
equality). In section 3, we explain how to implement similarly a large class of second-order
syntaxes. Related works are discussed in section 4, while future works are presented in the
conclusion.

Note: Throughout the paper, Coq terms are pretty-printed using A, ¥ and 3 in place of
[], (1) and exists([-]-). We also omit the type information in the Match ((< 7' > Match _))
and in Coq’s object equality on Sets (< T' > _=).

2 An example

We explain in this section our implementation of the example of the simply-typed A-calculus
considered in the above introduction.

INRIA

HOAS with Induction in Cog

Ot

2.1 First-order setting

First, let us review first-order syntax as it can be implemented in a theorem prover such
as Coq. For a first-order implementation of a A-calculus without variables, the de Bruijn
approach is simple and efficient: in Coq, we may declare, following Huet [Hue92]:

Inductive Set fol = ref :nat — fol | lam : fol — fol | app : fol — fol — fol.

Induction and Match. This declaration generates, for terms of type fol, both a Match
operator and the following induction principle, available for object proofs:
VP : fol — Prop.
(Vr : nat. (P (ref n)))
— (Ve : fol. (P e) — (P (lam ¢)))
— (Va: fol. (P a) — Vb: fol. (P b) — (P (app a b)))
— Ve : fol. (P e).

Injection principle. These two tools make it possible to prove at the object level the
following injection principle, made of six theorems (we only give two of them here):
Theorem lam_app : Ve : folVa,b: fol. =((lam €) = (app a b)).
Theorem lam_lam : Va,b: fol. ((lam a) = (lam b)) — a = b.

Extensionality. In this setting already, the extensionality principle does not hold. We can
easily produce two terms of type fol — fol which are extensionally equal but not equal.
For instance, the identity function on fol can naturally be written as Az : fol.z or using the
Match operator, which is a combination of a recursor operator and a case operator ((*_x)
denotes comments in Coq):

Az @ fol. (Match © with
(* (ref n) *) An : nat.(ref n)
(* (lam y) *) Ay : fol ARy : fol.(lam y)
(* (app y z) *) Ay : fol.Ahy : fol Az : fol Ak : fol.(app y z)).
This is not such a drawback since, in this setting, we do not plan to manipulate higher-
order terms.

Inversion. This is an important tool in Coq. As induction is not allowed on partially ins-
tanciated terms, a standard way to simulate a double induction on two predicates is to use
induction on the first predicate, followed by the use of the inversion rules of the second
predicate. We give here as an example, the inversion rules for the following predicate valid,
which makes it possible to characterize closed terms (through the predicate (valid 0)).

Inductive Definition valid : nat — fol — Prop

=wvalid_ref : Vo, m : nat. (m < n) — (valid n (ref m))

| valid_lam : Vn : nat.Ve : fol. (valid (S n) €) — (valid n (lam €))

| valid_app : Vn : nat.Va,b: fol. (valid n a) — (valid n b) — (valid n (app a b)).

RR n"2292

6 J. Despeyrouzr & A. Hirschowitz

Since the conclusions of the different rules do not unify, the inversion package simply reads
as the following one:
valid_tnv_ref : Vn,m : nat.(valid n (ref m)) — (m < n)
valid_inv_lam : Vn : nat.Ve : fol.(valid n (lam e)) — (valid (S n) €)
valid_tnv_app : Vn : nat.Va,b : fol.(valid n (app a b)) — (valid n a) A (valid n b).
The proof of this package, which is more or less standard (cf. eg. [DFH93]), uses the
injection principle (here on fol) in an essential way.

2.2 Provisional setting

In this section, we explain our prowvisional syntax. At first, we introduce a type wvar for
variables.

Variable var : Set.

The keyword Variable makes var universally quantified for the rest of the session. Next
we make sure that var is inhabited by at least two distinct values:

Axiom varz : Iz, y : var. (z # y).

Now our provisional syntax L is as follows:

Inductive Set L =Var :var — L | Lam : (var — L) — L | App: L — L — L.

This definition generates some exotic terms: indeed, we want the type var to be used
only for (bound) meta-variables; those terms using (ground) values of type var have to be
ruled out. Also, for var an inductive type, we could have irreducible terms of type var — L
different from Var, and, through Lam, these would again generate exotic terms. And it
seems quite hard to formulate an assumption on var which makes it possible to prove that
the terms of type var — L are the expected ones only. Here below (higher-order setting),
we shall show how to rule out exotic terms.

Induction and Match. The previous declaration generates, for terms of type L, both a
Match operator and the following induction principle, available for object proofs:
VP :L — Prop.
(Vz : var. (P (Var z)))
— (Ve : (var — L). (Vz : var. (P (e z))) — (P (Lam €)))
— (Va:L.(Pa)—Vb:L. (Pb)— (P (App a b))
— Ve: L. (Pe).

First injection principle. The two previous tools make it possible to prove the injection

principle for the type L, which is a package of six theorems:
Theorem Lam_app : Ve : (var — L).¥a,b: L. =((Lam e) = (App a b)).
Theorem Lam_lam : Va,b : (var — L). ((Lam a) = (Lam b)) — (a = b). ...

Extensionality. As in the first-order case, the Match operator will generate for instance a
term of type L — L which is extensionally equal but not equal to the identity on L. Even
after having ruled out exotic terms and gone to the higher-order setting, it seems quite

INRIA

HOAS with Induction in Cog 7

hard, and maybe impossible, to prove the desired extensionality principle. That is why we
introduce the ad-hoc notions of equality, which give the desired extensionality principle for

free.
Inductive Definition eqz : L — L — Prop

= eqr_var : Yz : var.(eqr (Var z) (Var z))
| eqr-lam : Va,b: (var — L).(Vz : var.(eqr (a z) (a’ 7)))
— (eqr (Lam a) (Lam a'))
| eqr-app : Va,a',b,b" : L. (eqr a a') — (eqr b b') — (eqr (App a b) (App a' b')).

As in the first-order case, where we have given the inversion rules for the valid predicate,
the previous first injection principle for L. makes it possible to prove the rules for inversion
of eqr.

Second injection principle. We now have to suit our injection principle to this new equality.
We get a package of six theorems, the proofs of which mainly use the inversion of eqr .
Theorem Lam_app_eq : Ve : (var — L).¥a,b: L. =(eqr (Lam €) (App a b)).
Theorem Lam_lam_eq : Ve, e’ : (var — L).(eqr. (Lam ¢e) (Lam ¢€'))
— Vz :var.(eqr (e) (¢' z)). ...

2.3 Higher-order setting

As mentioned in the introduction, it is not yet possible to implement the list of types
L, as a dependent type in Coq. However, by curryfication, we may identify L, with a type
(list n L) — L. This is how lists enter the picture. Now it turns out to be very uncomfortable
to work with such a dependant type, because the type (list n L) is not equal to the type
(list m L), even when n and m are dynamically equal. This is the reason why we chose
infinite lists.

Lists. We simply define lists through: Definition list = AA : Set.nat — A.

Lists are defined together with the usual terms cons | car, edr and map. An additional
basic definition is provided: proj,, that gives the p-th element of a list. A cst function builds
a list from a given element. A bunch of theorems has been proved on these lists. A typical
one is the following:

Theorem cons_car_cdreszt : VA : Set.Vl: (list A).
Vn :nat. (I n) = (cons A (car Al) (cdr Al) n).

which states that a list is essentially the cons of its car and its cdr. We do not state it
as follows:

‘Theorem’ cons_car_cdr : VA : Set.Vl: (list A). 1 = (cons A (car Al) (cdr Al)).

because the proof of the latter statement needs some extensionality axiom, like the
following one:

Axiom ext; : VA : Set.Vf,g: (list A). (Ve :nat.(fz)=(gz))— f=y.

Actually, this problem of extensionality is recurrent all over our work.

RR n"2292

8 J. Despeyrouzr & A. Hirschowitz

Higher-order constructors. We shall implement our higher-order syntax within the type
(list L) — L, which will be denoted as LL. Exotic terms will be ruled out easily, and
we shall be able to define a suitable equality. We introduce what we call the higher-order
constructors, which will make apparent the tree structure of our higher-order terms.

Definition Ref = At : nat. Az : (list L). (z 1).
Definition Lam = Xe : LL. Az : (list L). (Lam (Ay : var. (e (cons L (Var y) z)))).
Definition App = Xa, b: LL.Az : (list L). (App (a z) (b z)).
These higher-order constructors are the exact counterpart of the constructors of fol.
Indeed, we may define naturally the translation relating fol and LL:
Inductive Definition trans : fol — LL — Prop
= trans_ref : Vn : nat.(trans (ref n) (Ref n))
| trans_lam : Ve : folVe': LL.(trans e e') — (trans (lam e) (Lam €'))
| trans_app : Va: fol¥a': LL.(trans a a') —
Vb: fol. V' : LL.(trans b b') — (trans (app a b) (App o' b')).

In fact, as for the injection principle given at the end of the previous section, we have to
use a modified version of the translation given above, involving our ad hoc equality eqrz
given below, instead of Coq’s object equality. For example, the first rule of ¢rans has to be
read as:

trans_ref : Vn : nat.Ve: LL.(eqrr € (Ref n)) — (trans (ref n) e).
In the rest of this section, for each definition we shall give (more exactly for wf and Valid),
we shall only give the simplest version, for clarity.

Coarse equality. In order to prove the desired extensionality principle, we shall define two
notions of equality which we shall prove to coincide on well-formed terms. We start with the
coarser one: two terms are made equal by this definition if they associate equal (in the sense
of eqr) values to any list of variables:

Definition eqrzo = Aa,b : LLVz : (list var).
(eqz (a (map var L Var z))(b (map var L Var z))).

Extensional equality. We now turn to our final notion of equality. Two terms are equal by
this definition if they associate equal (in the sense of egr) values to any list of terms. This
notion is finer than the previous one.

Definition eqrz. = Aa,b: LLVz : (list L).(eqr (a z) (b z)).
Theorem eqrr_eqrrv : Va,b: LL. (eqrr a b) — (eqrrv a b).

Ruling out exotic terms and the induction principle. It is easy now, using the higher-
order constructors, to define inductively the well-formed terms of type LL:
Inductive Definition wf: LL — Prop
=wfref:Vn:nat(wf (Ref n))
| wflam: Ve: LL. (wf e) — (wf (Lam €))
| wfapp :Va,b: LL. (wf a) — (wf b) — (wf (App a b)).

INRIA

HOAS with Induction in Cog 9

From this definition, Coq generates the following induction principle (more exactly an
equivalent version of it):
VP :LL — Prop.
(Vn : nat.(P (Ref n)))
— (Ve: LL. (P e)— (P (Lam €)))
— (Va:LL. (Pa)—VYb:LL. (Pb)— (P (App ab)))
— Ve:LL(wfe)— (Pe).

This induction principle is the exact counterpart of the induction principle generated by
the definition of fol. We shall also need the counterpart of the induction principle generated
by the definition of valid. For that, we just have to define the counterpart of valid:

Inductive Definition Valid : Vn : nat. LL — Prop

=Validref :Vn,i: nat.(i <n) — (Valid n (Ref 1))

| Valid_lam : Vn : nat. Ve : LL. (Valid (S n) e) — (Valid n (Lam ¢))

| Valid_app : Vn : nat.Na,b: LL.(Valid n a) — (Valid n b) — (Valid n(App a b))

Coarse injection principle. The injection principle corresponding to our coarse equality is
composed as usual of six theorems. Only one of them need a wf assumption:
Theorem Lam_app_var : Ve : LLVa,b: LL. =(eqrro (Lam €) (App a b)).
Theorem Lam_lam_var :Va,b: LL(wf a) — (wf b) —
(eqrzv (Lam a) (Lam b)) — (eqrrv a b). ...

The proofs of these theorems mainly use the inversion of eqr and the second injection
principle given above. In addition to that the proof of theorem Lam_lam_var uses the
following lemma (whose proof is straightforward):

Theorem wf ext_eqr, =Ve: LL.(wf e) — Vz,y: (list L).(Vn: nat.(z n) = (y n))
— (eqr (e z) (e y)).

Thanks to the coarse injection principle, we can prove that our two notions of equality
coincide on well-formed terms:
Theorem eqrrv-eqrr :Va: LL(wf a) — Vb : LL(wf b) —
(eqrrv a b) — (eqrr a b).

Final injection principle. The second and coarse injection principles make it possible to
prove our final injection principle. The theorem eqrr,-eqrr given in the previous paragraph
is a decisive tool in the proof of the theorems Lam_lam and App_app, which are the only
ones who need a well-formed assumption:

Theorem Lam_app : Ve : LLVa,b: LL. =(eqrr (Lam €) (App a b)).
Theorem Lam_lam :Va : LL.(wf a) — Vb: LL.(wf b)

— (eqrr (Lam a) (Lam b)) — (eqrr a b). ...

RR n"2292

10 J. Despeyrouzr & A. Hirschowitz

2.4 Proof of translation

In this section we shall describe a proof of correctness of our translation from the first-order
syntax fol into the higher-order syntax L. Remember that we consider the variant of the
translation given in 2.3 suited to our notion of equality. This example of proof illustrates
two of our goals. Firstly, it is an example of a proof of adequacy of syntaxes. Secondly, it
is an example of a proof in semantics, that makes intensive use of the tools that we have
developed in the previous sections.
The correctness of our translation consists in four theorems, stating that the trans
relation is a surjective function in both directions:
Theorem trans_sur_l: Ve : fol.Vn : nat.(valid n €)
— e’ : LL.(Valid n e') A (trans e €').
Theorem trans_sur_r : Ve' : LLVn : nat.(Valid n e')
— Je : fol.(valid n €) A (trans e €').
Theorem trans_lr : Vn : nat.Ve : fol.(valid n €¢) — Va : LL.(Valid n a)
— (trans e) — Vb: LL.(Valid n b) — (trans e b) — (eqrz a b).
Theorem trans_rl: Vn : nat.Ve : fol.(valid n e) — Ve' : LL.(Valid n €)
— (trans e e') — Vf : fol.(valid n f) — (trans f e') — (e = f).

These four theorems are easily reduced to corresponding lemmas which do not involve
the valid or Valid conditions. The proofs of the first two lemmas, stating surjectivity, are
straightforward. The proofs of the last two lemmas proceed by a double induction on trans,
(more exactly induction on trans followed by an inversion of trans). These proofs use all the
injection principles given in the previous subsections.

2.5 Alternative approaches

The reason why we had to introduce ad-hoc equalities could be concentrated in the following
statement:
Axiom ext; : VA : Set.Vf,g: (list A). (Ve :nat.(fz)=(gz))— f=y.

This axiom is certainly not provable, since it modifies Coq’s object equality by identifying
for example the identity function on nat and the following term of type nat — nat, which
are extensionally equal:

Az : nat. (Match ¢ with (x 0 %) 0 (% (S z) *) Az, by : nat.(S z)).

If we assume this ex?; axiom, we are able to implement our language and to prove the
higher-order injection principle in a simpler way, without introducing ad-hoc equalities. Thus
we wonder if this very natural axiom could be assumed without making the whole system
inconsistent.

A less controversial -and still sufficient- axiom is the following one (where wf is defined
using = instead of eqrz):
Axiom extyy = Ve : LL(wf €) — Vz,y: (list L).
(Vr :nat.(z n) = (y n)) — (e z) = (e y).

INRIA

HOAS with Induction in Cog 11

It seems quite difficult to prove this axiom at the object-level. However, it is possible to
prove it at the meta-level.

3 Generalization

In this section, we explain how the ideas described above make it possible to implement in
Coq, any second-order abstract syntax in the sense of [DH94], together with the correspon-
ding induction, injection and extensionality principles.

3.1 The data

We consider here an arbitrary second-order abstract syntax, given for instance by a LF

signature as follows:
Li,...,Ln: Type;

c1:Thvy o em T

where the L;’s (denoting types) and the ¢;’s (denoting constructors of these types) are
identifiers, while the 7;’s belong to the grammar 7" defined as follows:

A=L|L— A
T=L|A—T,

To the previous sequence of grammars, we associate the following one, which is suited
for replacing, in terms of T', negative occurrences of L’s by the corresponding V’s:
L=1Li| ... | Ln;
V=Vi|...|Vu
A" =L |V = A",
T =L | A" - T
Since there is a natural bijection between the terms in L and the terms in V, there is
also a natural bijection between the terms in A and the terms in AY, and also between the
terms in 7" and the terms in T". We denote by X" the term associated with the term X
by this bijection. We write 173 = m;1 — ... — my 4, — Lp, and m;; = L
Lq:,j,b,,j = Ly s0-
Thus ¢; has type:
(qu,1,1 —...—= L

L — —
qi,3,1 e

ql,l,b.‘)l - qu,l,o) e

- (qu,j,l .. T qu,j,bl’j - qu,j,o) e
- (qu,a,g .. T qu,al,bl)al - qu,a,,u)
— Ly, .

The p, q,a,b’s are, together with n and m, the integers encoding the syntax (its arity in
the terminology of [DH94]). Observe that a and b are families of arbitrary integers (depending
on one and two integers respectively) and that p and ¢ are in 1...n (depending on one and
three integers respectively). We fix the natural convention that if (¢; = 0) then ¢; = L,,, and

if (biyj = 0) then m;; = L

qi,5,0°

RR n"2292

12 J. Despeyrouzr & A. Hirschowitz

3.2 Preliminary declarations

Now we describe a list of Coq declarations which are necessary for our implementation of

this syntax. For this we introduce some further notations.

At first, because there is no mutual inductive definitions in Coq, we have to define our
types L; as a single dependent type. There is a standard way[DFH193] to do this. First we

define the type for parameters as an inductive type with n elements:

Inductive Set Param = Py : Param | ... | Pn: Param.
Then we use as above a type var, inhabited by at least two distinct values:
Variable var : Set. Axiom var : Iz, y : var. (z # y).

We build typed variables by multiplying the type var and the type Param:
Inductive Type pvar : Param — Set = Pvar : Vp : Param.var — (pvar p).

3.3 Provisional syntax

Now we can introduce the provisional syntax as follows:
Inductive Type L : Param — Set
=Var :Vi: Param.(pvar 1) — (L 1) |Cy T | ... | O T,

(pvar j) for occurrences of V; (for all values of j).

Thus C; has type T;*. We write T} =1;1 — ... = 1; 4, — Lp, where
tij = (pvar gij1) — ... — (pvar ¢ijs, ;) — (L 4ij0).

where T7" is the term built from 77 by substituting (L j) for occurrences of Lj, and

The injection principle for the type L consists of four series of theorems. The first series

contains only the following:
Theorem Var_Var : Vp : Param.Nz,y : (pvar p).
(Var pz) = (Var p y)) — (z = y).
Then for each ¢ € 1...m we have:
Theorem C; _C; :Vz1,y1 1 ti1. ... VTa,, Ya; : tija;-
((Ciz1...24) =(Ci y1...¥a;)) = (21 =y1) A .. A (Tay = Ya;)-
For each j € 1...m we also have:
Theorem Var_Cj : Yz : (pvar p;).Yy1 : tj1....Yya; : tja;.
((Var pj) =(Cj y1...9a;))-
And for any couple ¢ < j in 1...m satisfying p; = p;, we have:
Theorem C; C; : Vo1 :ti1... . VT, 1 tia, Yy 1 t51. .. .Vyaj “ta-
=((Ci z1...24;) =(Cj y1 .. .yaj)).

The ad-hoc equality is introduced by the following definition:

INRIA

HOAS with Induction in Cog 13

Inductive Definition eqr : Vi : Param.(L i) — (L i) — Prop
= eqr-var : Vi: Param.Vz : (pvar 1).(eqr 1 (Var i z) (Var i z))
| eqr C1: ...
| eqr-C; : V1,91 : ti1.(Vz1 : (pvar gina)... Nap, (pvar q¢,1,b,,1).
(eqL ginpo (z1 21 ... sz,l) (y1 21 ... sz,l)))

—_ ...

— VZa,, Ya; tiya;- (V21 2 (poar giagn)- .. .VZbl’al : (pvar qﬁaubi,a,)-
(eqL Gia;0 (Ta; 21 .. ~Zb,,ai)(ya, Z1... Zbi,al)))

— (eqL Pi (Cz r1.. -l'a,) (Cz Y1 .. .yaz))

| eqr Cm i ...

The second ground injection principle is again a package of four series of theorems. We
only give one of them here. The others are a simple modification of the injection principle
given above, where Coq’s object equality on L is replaced by our eqp equality. For each
t €1---m we have:

Theorem C; _Ci_eq : Vz1,y1 1 ti1. - VTa,, Ya; * ti,a;-
(eqr pi (Ci 21+ 2a;) (Ci y1-+Ya;))
— (V21 : (pvar gixn).-- Vap,, - (pvar qi,l,b,,1)~
(eqL giio (z1 21 -+ zv,,) (1 21 -+ 2p,1)))
Ao
A(Vz1 : (pvar gia;1). .- 'Vzbi,a, : (pvar qi,aub,,a,)~
(eqr giai0 (Tai 21 o 26,,,) (Yay 21 -+ 26,,,))):

©

3.4 Higher-order setting

Next, our final type is the type of functions with values in (L p) depending on n lists of
arguments (one for each type):

Definition mlist = AL : (Param — Set).Vp : Param.nat — (L p).

Definition LL = Ap : Param.(mlist L) — (L p).

Next, we define the higher-order constructors C;.
We define in general C for each term C of a type T of the form:
T'= ((poar q10) = - — (poar qip,) = (L q10)) — -+
— ((poar ga,1) — -+ = (pvar gap,) = (L ga0)) = (L p).
The term C is the following Coq term of type (LL ¢1,0) — -+ — (LL ¢a,0) — (LL p):
C= Xz :(LL qip). -+ Aza: (LL qap).Az : (mlist L).
(C Azy : (pvar q11).- - Az, @ (pvar qip,).
(=1 (append (Var q11 z1)---(Var g6, z5,)) 2)) ...
Azy : (pvar o). - Az, : (pvar qap,).
(za (append (Var gag 1) (Var gap, zv,)) 2))).
Where (append (s1 ---sp) z) denotes the Coq term z in case p = 0, and the Coq term
(append (s1 - --sp_1) (mcons sp z)) otherwise; where again, for s of type (L P;), (mcons s z)
denotes the Coq term

RR n 2292

14 J. Despeyrouzr & A. Hirschowitz

Ap : Param. (Match p with
(¥ p1 %) (zp1) -+ (xpi %) (coms (L pi) s (zpi)) -+ (% pn %) (2 Pn)).
The projections Ref : Vi : Param.¥n : nat.(mlist L) — (L i) are defined by:
Ref = Ai: Param.An : nat. Az : (mlist L).(z 1 n).

In the following definition of our coarse equality, the term mmap, standing for ‘multi-map’,

is the evident one:
Definition eqrzo = Ap : Param.AE, E' : (LL p).Nz : (mlist pvar).
(eqr p (E (mmap var L Var z)) (E' (mmap var L Var z))).

Here is now our final notion of equality, which is finer than the previous one:
Definition eqr., = Ap : Param.Xe,e’ : (LL p).¥z : (mlist L).(eqr p (e z) (¢’ z)).
Theorem eqrr-eqrro : Vp : Param.Ne,e' : (LL p).(eqrr p e ') — (eqrrv p e €').

Next we define the well-formed terms of type LL. This definition generates the desired
induction principle.
Inductive Definition wf : Vp: Param.(LL p) — Prop
=wfref:Vp: Param.Vn : natVE : (LL p).(eqrz p E (Ref pn)) — (wf p E)
| 'wf_C1 : VE : (LL p1).VE1 : (LL q17170). . 'VEal : (LL Q17a170).
(eqzz p1 E (C1 E1 -+ Eay)) — (wf 110 E1) — -+ — (wf q1,a1,0 Ea;)
— (wf p1 E)
| wf Cr: YE: (LL pm)VE1 : (LL gmp0)-+VEa,, : (LL gm,ap,0)-
(eqrr pm E (Cm Ev -+ Ea,)) — (Wf gmao E1) — - — (WS @m,am,0 Eap)
— (wf pm E).

For the definition of Valid we need the numbers §; ; , of arguments of type L, of terms of
type m; ;. In the following definition, for a meta-level integer d and an object-level integer v,
we denote by v+d the object-level integer which is defined as vif d = 0 and as (S v+(d—1))

otherwise.
Inductive Definition Valid : Yvy, -+, vy : nat.Vp : Param.(LL p) — Prop

=Valid_ref1: ...
| Valid_ref 4 : VE : (LL P;).Nvy, -+, vy : nat.Vk : nat. (k < v;)
— (eqer Pi E (Ref P; k)) — (Valid v1 -+ v, P; E)
| Valid_C; : YE : (LL pi).VEy : (LL ¢in0).++ YEa, : (LL Gia;0)-
(eqrr pi E(Ci Ev -+ Eq;)) —
(Valid (v1 +6:11) - (vn 4+ 8i1,0) gino B1) — -+ —
(Valid (v1 4+ 8i.a;1) - (vn + bia;n) Giai,0 Ea;) — (Valid v1 -+ vy, pi E).
| Valid Cp, ...

The first part of the injection principle corresponding to our coarse equality, namely the
theorems

INRIA

HOAS with Induction in Cog 15

Var_Var_war, Var_C;_var and C;_C;_var do not contain any w f-assumption. We expand
the last series C;_C;_var which do contain these assumptions.
Theorem C;_C;_var : Vz1,y1 : (LL gi10). -+ VZa;, Ya; 1 (LL Gira;0)-
(wf gino z1) = (wf g1 1) = - (Wf Girai0 Ta;) = (WS Giras0 Yai)
— (eqrro pi (Ci z1---xa;) (Ci ¥1---¥a,))
— (eqLL,, qi1,0 T1 ‘y1) A A (€QLLU 9i,a;,0 Ta; yai)-
The proof of the above theorem uses the following lemma:
Theorem wf_ext_eqr = Vp: Param NE : (LL p).(wf p E) — Vz,y : (mlist L).
(Vg : Param.Vn : nat.(z ¢ n) = (y ¢ n)) — (eqz p (E z) (E y)).

Thanks to the coarse injection principle, we can state that our two notions of equality
coincide on well-formed terms:
Theorem eqrrv-eqrr : Vp: Param.Na : (LL p).(wf p a) = Vb: (LL p).(wf p b)
— (eqrrv p a b) — (eqrr p a b).

As before, the first part of the injection principle corresponding to eqrr, namely the
theorems Ref_ref, Ref_C; and C;_C; do not contain any w f-assumption. We expand the
last series C;_C; which do contain such an assumption.

Theorem C; _C; : Vz1 : (LL gijn0).(wf gino z1) — Yy : (LL gijno)-(wf gio y1)
— oo = Vag, t (LL gia;0)-(Wf Giaz0 Ta;) — YYa; 1 (LL gia;0)-(Wf Girai0 Yai)
— (eqrr pi (Ci 1+ 2a;) (Ci ¥1-+Ya;))

— (eqrr gino 1 Y1) A~ A(€4LL Gija; 0 Ta; Ya;)-

3.5 Adequacy

In this subsection, we discuss correctness and adequacy of the generalization proposed in the
previous subsections. The proofs of the two theorems stated in this subsection are straight-
forward, although tedious. We do not state them here because of space limitation.

The correctness is expressed by the following (meta) theorem:

Theorem 1. Consider a second-order abstract syntaz (given for instance through its arity,
namely the package of integers n, m, a, b, p, q as above). Then:

(i) The corresponding sequence of definitions (inductive or not) listed in this section is a
correct sequence of Coq definitions.

(ii) The types of the corresponding sequence of theorems listed above are correct Coq types.
(iii) All these theorems have object proofs.
(iv) The meta-form of all these theorems is true.

In order to state adequacy, we have to build some category [DH94]. Let S be a second-
order abstract syntax given as in the previous statement, with the integers n, m, a, b, p,
q. The corresponding sequence of definitions listed above generates Coq types (L P;)’s and

RR n 2292

16 J. Despeyrouzr & A. Hirschowitz

(LL Pj)’s, the predicate Valid and equalities eqr and eqrr from which we build a Cartesian
category Scoq as follows.

The objects of Scoy are (indexed by) sequences of n natural integers, and product of
objects corresponds to addition of sequences. We denote by L! the object indexed by the
sequence I = (i1,..., 4,). In order to describe morphisms in Scoq, since it is Cartesian, it
is sufficient to describe Hom(L!, X) for indecomposable X’s. The indecomposable objects
are those indexed by the indecomposable indices, namely I; := (1, 0,..., 0),..., I, :=
(0,..., 0, 1). We take for Hom(L", L) the set of Coq terms t of type (LL P;) satisfying
(Valid iy - - - i, t), modulo the equivalence relation (eqrr. P;) (we hope the category structure
is sufficiently apparent; to settle it, one should use the properties of eqr 1, listed above). Now,
we can state the adequacy statement.

Theorem 2. Let S be a second-order abstract syntaz given as in the previous statement.
Then the cartesian category Scoq 15 naturally isomorphic with the first-order part of S.

Thus, for a second-order abstract syntax given by a LF signature as in 3.1, we have
implemented first order terms (i.e. terms whose type has shape L, — -+ — Li, — Ly,)
as classes (with respect to some object-level equivalence relation, here eqrz) of (tuples of)
terms of some object-level type (here, roughly speaking, LL) satisfying some object-level
predicate (here Valid).

Note that, in contrast with the natural LF implementation, we only implement first-order
terms. This is sufficient for semantics purposes.

4 Related Work

The general notion of Higher-Order Abstract Syntax has been introduced in [EP88] and is
currently being revisited in [DH94]. Higher-order abstract syntax is now commonly used,
at least by people who use either the A-Prolog language [MN88],or the Elf language [Pfe89]
(an implementation of the LF Logical Framework), both for writing semantics of languages
[AM88][Har90] and for developing proofs in those semantics [HP92][MPI1][PRI1]. Proofs
in Elf [HP92][MPI1][PR91] use induction. All these proofs rely on the introduction of an
adequate induction principle.

On the other hand, using systematically Coq’s inductive types, Gerard Huet developed
in Coq a theory of simply-typed A-calculus with complete proofs in the first-order setting.

To our knowledge, the method described in the present paper is the first one which allows
writing semantics on higher-order abstract syntax in a system which provides inductive

types.

INRIA

HOAS with Induction in Cog 17

5 Conclusions and Future Work

We have explained how to implement in Coq any second-order abstract syntax together
with the corresponding induction, injection and extensionality principles. In performing this
task, our main trouble came from the fact that Coq’s object equality is not extensional. We
have also produced samples of proofs using extensively these principles. Our work would not
be relevant if our implementation of second-order syntax did not allow smooth formulation
and object proofs for semantics. Although not presented here, we have already gathered a
lot of positive experience about this and our next task is to present them in a systematic
treatment. Just to satisfy the curiosity of the reader, we give here a rule for G-reduction:
redg :Ve : LLNv : LL.(red (App (Lam €) v) Az : (list L). (e (cons (v z) z))).

Another task is to design and implement a top-level over Coq providing user-friendly
support for implementing in our way object second-order syntaxes and performing object
proofs on them. On the other hand, before tightening definitely our project to Coq, it seems
reasonable to explore other theorem provers equipped with induction, in particular HOL and
Isabelle, in order to verify that the difficulties we have encountered could not be overcome
there in an easier way.

Acknowledgements Thanks go to Frank Pfenning for useful comments on an earlier
draft version of the paper. We would like to thank Amy Felty and Christine Paulin-Mohring
for many fruitful discussions, and more generally the Coq team for their quick and helpful
e-mail answers. Finally we thank Yves Bertot for his very comfortable interface for the Coq
system.

References

[AHM87] A. Avron, F. Honsell, and A. Mason. Using typed A-calculus to implement formal
systems on a machine. Technical Report ECS-LFCS-87-31, Edinburgh University,
July 1987.

[DFH93] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, Ch. Paulin-
Mohring, and B. Werner. The coq proof assistant user’s guide, version 5.8. Tech-
nical Report 154, Inria, Rocquencourt, France, May 1993.

[DHY4] Th. Despeyroux and A. Hirschowitz. A categorical approach to higher-order
abstract syntax. forthcoming paper, 1994.

[EP88] C. Elliot and F. Pfenning. Higher-order abstract syntax. In Proceedings of the
ACM SIGPLAN’ 88 International Conference on Programming Language Design
and Implementation, Atlanta, Georgia, USA, June 22-24, 1988.

[Har90] R. Harper. Systems of polymorphic type assignment in LF. Technical Report
CMU-CS-90-144, Carnegie Mellon University, Pittsburgh, Pennsylvania, June
1990.

RR n"2292

18

J. Despeyrouzr & A. Hirschowitz

[HHP87]

[HHP91]

[HMSS]

[HP92]

[Hue92]
[Kah87]

[MNSS]

[MP91]

[Pau89]

[Pfe89)]

[PM92]

[PRI1]

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In
IEEE, editor, Proceedings of the second LICS International Conference on Logic
In Computer Sciences, Cornell, USA, pages 194-204, 1987.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Technical
Report ECS-LFCS-91-162, Edinburgh University, June 1991.

J. Hannan and D. Miller. Enriching a meta-language with higher-order features.
In Proceedings of the Workshop on Meta-Programming in Logic Programming,
Bristol, June 1988.

J. Hannan and F. Pfenning. Compiler verification in LF. In IEEE, editor, Pro-
ceedings of the LICS International Conference on Logic In Computer Sciences,
Santa Cruz, California, June 1992.

G. Huet. Constructive computation theory. part I. Lecture notes. October 1992.

G. Kahn. Natural semantics. In Proceedings of the Symp. on Theorical Aspects of
Computer Science, Passau, Germany, 1987. also available as a Research Report

RR-601, Inria, Sophia-Antipolis, February 1987.

D. Miller and G. Nadathur. An overview of A-prolog. In MIT Press, editor,
Proceedings of the International Logic Programming Conference, Seattle, Wa-
shington, pages 910-827, August 1988.

S. Michaylov and F. Pfenning. Natural semantics and some of its meta-theory in
elf. In Lars Halln” as, editor, Proceedings of the Second Workshop on Erxtentions
of Logic Programing, Springer-Verlag LNCS, 1991. also available as a Technical
Report MPI-1-91-211, Max-Planck-Institute for Computer Science,Saarbrucken,
Germany, August 1991.

L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated

Reasoning, 5:363-397, 1989.

F. Pfenning. Elf: A language for logic definition and verified metaprogramming.
In Proceedings of the fourth ACM-IEEE Symp. on Logic In Computer Science,
Asilomar, California, USA, June 1989.

Ch. Paulin-Mohring. Inductive definitions in the system coq. rules and properties.
In J.F. Groote M. Bezem, editor, Proceedings of the International Conference on
Typed Lambda Calculi and Applications, TLCA’93, Springer-Verlag LNCS 664,
pages 328-345, 1992. also available as a Research Report RR-92-49, Dec. 1992,
ENS Lyon, France.

F. Pfenning and E. Rohwedder. Implementing the meta-theory of deductive
systems. In Proceedings of the CADE-11 Conference, 1991.

INRIA

JINRIA

Unité derecherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derecherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derechercheINRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

