N

N
N

HAL

open science

Arborescent canonical form of boolean expressions

Tochéou Pascalin Amagbegnon, Loic Besnard, Paul Le Guernic

» To cite this version:

Tochéou Pascalin Amagbegnon, Loic Besnard, Paul Le Guernic. Arborescent canonical form of boolean

expressions. [Research Report] RR-2290, INRIA. 1994. inria-00074382

HAL 1d: inria-00074382
https://inria.hal.science/inria-00074382
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074382
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Arborescent Canonica_l Form of Boolean
Expressions

Tochéou AMAGBEGNON
Loic BESNARD
Paul LE GUERNIC

N°® 2290
Juin 1994

PROGRAMME 2
Calcul symbolique,
programmation

et génielogicie

apport
derecherche

ZIINRIA

RENNES

Arborescent Canonical Form of Boolean
Expressions

Tochéou AMAGBEGNON
Loic BESNARD
Paul LE GUERNIC

Programme 2 — Calcul symbolique, programmation et génie logiciel

Projet EP-ATR

Rapport de recherche n* 2290 — Juin 1994 — 63 pages

Abstract: SIGNAL is a synchronous language designed to program real-time
systems. Because of its equational style, its compilation requires the statical
resolution of a system of boolean equations; the variables being clocks. This
report discusses the arborescent representation of SIGNAL clocks. We introduce
a BDD-based data structure called hierarchy. Through the factorization of
boolean functions, we show that hierarchies are a canonical form of clocks.
We also show that this canonical form optimizes the sequential code generated
from a SIGNAL program. We finally link hierarchies to the well known ordering
problem of BDDs.

Key-words: SIGNAL, BDD, clock calculus, boolean lattice
(Résumé : tsvp)
Unité de recherche INRIA Rennes

IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Tééphone: (33) 9984 71 00 — Téécopie: (33) 99847171

Forme Canonique Arborescente des
Expressions Booléennes

Résumé : SIGNAL est un langage synchrone pour le temps-réel. Parce qu’il est
équationnel, sa compilation requiert que soit résolu statiquement un systeme
d’équations booléennes; les variables étant les horloges. Ce rapport traite de
la représentation arborescente des horloges de SIGNAL. Nous y présentons une
structure de données appelée hi€rarchie. Avec de la factorisation de fonctions
booléennes, nous montrons que les hiérarchies sont une forme canonique des
horloges. Dans le méme temps nous montrons que cette forme canonique op-
timise le code séquentiel généré a partir d’'un programme SIGNAL. Enfin, nous
établissons un lien entre les hiérarchies et le probleme bien connu de 'ordre
dans les BDDs.

Mots-clé : SIGNAL, BDD, calcul d’horloge, treillis booléen

Arborescent Canonical Form of Boolean Fxpressions 3

1 Introduction

Real-time systems, and more generally reactive systems [1], constantly inter-
act with their physical environment. Because they must respond to externally
generated stimuli, they must be programmed so that they keep pace with the
environment. Moreover, in real-time systems safety is very often a big concern.
Thus, in such systems, one would wish to prove correctness. Response time
and correctness are the major issues to tackle when developing a real-time
application.

Traditionally, real-time systems have been programmed with imperative asyn-
chronous languages like:

o C together with some real-time operating system facilities,
e ADA [29] which handles concurrency by rendezvous constructs,

e OCCAM |23, 11] based on Hoare’s “Communicating Sequential Proces-
ses” formalism [22]

Although they are widely used, they suffer severe drawbacks.
e They lack determinism,

e time must be handled explicitly; the programmer cannot fully abstract
from it,

e due to the indeterminism, proofs are highly complex.
There are alternatives to the indeterminism of the previous formalisms.

e The GRAFCET [20] based on Petri nets; it is used on programmable
controllers; it lacks clean semantics, hierarchical constructs and proof
tools

e Finite state machines (FSM’s): there are tools to prove correctness of
systems specified with FSM’s [16, 17]. The major problem with using
FSM’s as design language is that a slight modification in the specification
may (and generally does) result in a dramatic increase in the number of

RR n 2290

4 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

states, and composing two FSM’s is a rather tedious task. However, due
to the power of the tools available (both software and mathematical),
FSM’s are produced as result of the compilation of higher level languages.

The insufficiencies of the previous formalisms, well discussed in [1, 4], have lead
to the design of a new paradigm: synchronous programming. The hypotheses
of synchronous programming are that:

e calculations and communication actions have zero duration (instanta-
neousness)

e simultaneity exists (simultaneousness)

Thus, time is treated from a chronological point of view; succession and simul-
taneity of intants.

Nevertheless, duration matters are not ignored. They are taken into account
specifically for each target architecture: sequential machines, Digital Signal
Processors, transputers, ... This allows to fully abstract from implementation
details when programming with synchronous languages. Freeing the program-
mer from explicit management of time puts the burden on the compilers of
these languages.

Many synchronous languages are being developed: Esterel [4], Lustre [12] and
SIGNAL [26]. The synchronous approach is summarized in [21].

In this report we focus on the language SIGNAL and present part of the tech-
niques used to implement its compiler. The remainder is organized as follows:

e Section 2 introduces the basic elements of the SIGNAL language.

e Compiling a SIGNAL program requires the resolution of a system of boo-
lean equations and efficient code generation requires a “good” represen-
tation of the solutions of the equations; section 3 will present the form of
the boolean equations we are to solve and an arborescent representation
for the resolution.

Inria

Arborescent Canonical Form of Boolean Fxpressions 5

e Section 4 defines a binary decision diagram-based data structure called
hierarchy and in section 5, we use hierarchies as an arborescent canonical
form of our boolean equations.

e Finally in section 6 we link hierarchies with the well known ordering
problem of binary decision diagrams [10].

2 Presentation of the language SIGNAL

SIGNAL [9] is a language designed for real-time programming. It is synchronous,
data-flow oriented, declarative and equational. A SIGNAL program is a system
of equations on signals.

2.1 Signals and clocks
2.1.1 Signals

A signal X is a sequence (X;);es of typed values (integer, booleans, reals,. ..).
1 is a totally ordered set of instants. We are interested in a discrete time model.
So, instants are taken in a denumerable set.

At any given instant ¢, a signal may be present or absent depending on whether
or not, the instant under consideration belongs to I. Obviously, a signal carries
a value only when it is present.

2.1.2 Clocks

The set of instants at which a signal is present is its clock. So, the clock of a
signal (X3):ey is its time index 1.

Two signals always present at the same instants are said to be synchronous:
they have the same clock. Thus, the clock of a signal X is the equivalence class
of X for the synchrony relation; in that sense it is denoted X.

RR n 2290

6 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Formal semantics of SIGNAL can be found in [25, 3, 2].

Notation: Following [5], the set theoretic operators for clocks, which are sets,
are denoted A (intersection), V (union) and \ (set difference).

2.2 Processes

A statement in SIGNAL is an equation on signals; it is called a process. Here
are the different types of processes.

2.2.1 Functional expressions

The operators (4, —,*,and,...) defined on basic data types (booleans, inte-
gers, ...) are canonically extended to sequences and consequently to signals.
Let f be such an operator of arity n and let (Xi)ier,...,(Xnt)ier be n se-
quences with the same time index /. The equation

Viel, Y= f(Xig..or X0y

is written in SIGNAL
Y = f(Xq,...,X,)

The signals involved in that equation are required to have the same time
index: they must be synchronous. Thus, the definition of the signal ¥ implies
the following equation on the clocks:

Y=X,=...=X,

Figure 1 shows a timing diagram for such a process.

2.2.2 Reference to past values

We reference past values of a — discrete — signal with the “$” operator. The
SIGNAL process
ZX = X$1

is the transcription of the following equation on the sequences (X;);e; and

(Z X¢)ier defined on the same index I:
Vt €], ZXt - Xt—l

Inria

Arborescent Canonical Form of Boolean Fxpressions 7

PO S W N SN S R
N, T W g
S RS I T T N R

Figure 1: Y := X; + X5

Here again, Z X is by definition synchronous with X. The initial value is spe-
cified for ZX with the declaration ZX intt vy. A timing diagram for this
operator is depicted on figure 2.

X 3 3 7§ 23

Figure 2: ZX := X$1

2.2.3 Downsampling
Given a signal X and a boolean-valued signal C', the process
Y = X when C
defines the signal Y such that:
e ¥ = X A[C]; [C] is the set of instants where C occurs and is true.

e Vi €Y, Y, = X,. At the instants where Y occurs, it carries the same
value as X.

. Y being a subset of X. A

(Yt)tef/ can be viewed as a subsequence of (Xt)te)?

timing diagram is depicted on figure 3.

RR n 2290

8 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

X L3 ¥ [8 12 3
C |t EE |t :F |t |t |t f |t
Y 1 0 12

Figure 3: Y = X when C

2.2.4 Deterministic merge

U ! 3 7 3
1% 3 P8 12 8
X o5 3 7§ 12 3

Figure 4: X = U default V

Given two signals U and V', the process
X :=Udefault V
defines the signal X such that:
X=UvV
Vt € U Xt - Ut
VieV\U X, =V,
X, is well defined for all ¢ €)A(, since any instant in X belongs either to U or
to V\U.

Informally, when U is present, X is equal to U; otherwise, X is equal to V. X
is absent when neither U nor V is present. A timing diagram is depicted on
figure 4.

Inria

Arborescent Canonical Form of Boolean Fxpressions 9

2.2.5 Composition of processes

The elementary processes we have presented till now may be composed with
the commutative and associative operator “|”. From an equational point of
view, this operator is the union of two systems of equations. For example the
system:

werl 7% = N
Xi = ZXi+ Y

is the following SIGNAL process:

(] ZX = X$1
| X = ZX+Y
)

2.2.6 Derived operators

For convenience, the full language SIGNAL offers many derived operators; they
can be expressed in terms of the kernel operators. Here are some of them:

e the unary when: when C is an abbreviation for C when C

o the operator event: event X gives the clock of a signal X; in fact, it is an
abbreviation for the boolean signal defined by event X := (X = X);
it is synchronous with X and carries the value true each time it occurs;

thus it can be identified with X the clock of X

e the process synchro{Xi,..., X, } specifies the equality of the clocks of
the signals Xi,...,X,.

3 Compiling a SIGNAL program

The important point of SIGNAL compilation [26, 2] is to ensure the respect
of the synchronization of the computations expressed by the language. It is
necessary, on the one hand, to calculate the relations among the different clocks
and, on the other hand, to analyze the dependencies between the calculi of the
program. To achieve this, we caracterize a SIGNAL program [26] by an abstract
representation which combines an equational control modeling (presented in

RR n 2290

10 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

sub-section 3.2) with a dependence graph (presented in sub-section 3.3). Over
this abstract representation, two complementary studies are perfomed:

e the study of static properties, in other words the set of invariant temporal
properties ; they allow to characterize the set of states in which the
automaton associated to a SIGNAL program can evolve, independently of
initial values, and the set of the transitions between these states.

e the study of dynamical properties which take initial state and trajectories
into account, through the boolean signals defined by the delay opera-

tor($).

3.1 Purposes and motivations

In this report, we focus on the study of static properties. It is a preliminary
study for code generation and study of dynamical properties.

We have, in the previous section, expressed the temporal relations in terms
of availability /unavailability of signals, and we have noted the particular role
of boolean expressions when they are used to define a second operand of the
when operator. Such an expression introduces two new clocks (downsampling)
depending on the possible values (“true”,“false”) of that expression when it is
defined. One can observe that the relevant information to reason about clocks
is concentrated in three values: present-true, present-false, absent. To deal with
this information, synchronizations can be modelled:

e in the commutative field Z/3Z by the following coding ; to a boolean
signal C is associated a variable C' which takes its values in the set
{0,1,—1} which means respectively the absence of the signal, the pre-
sence of the signal with the “true” value and, lastly, the presence of the
signal with the “false” value. Since the presence/absence of the boolean
signal C, whatever its value is, is obtained by C?, which takes its values
in {0, 1}, the presence/absence of a non boolean signal X is also deno-
ted by X2. This encoding is part of a denotational semantics thoroughly
presented in [2]. A theory [8] and a tool named SIGALI have been built
on this concept to analyze and verify dynamical properties of SIGNAL
programs.

Inria

Arborescent Canonical Form of Boolean Fxpressions 11

e in the boolean lattice associated with a set of variables by laying down
constraints on some boolean variables. Here we present this method. We
will focus on the techniques actually implemented in the compiler to
partially solve the system of boolean equations resulting from a SIGNAL
program ; the partial synthesis of explicit expressions of control is expres-
sed by a collection of trees whose roots can be arguments of non solved
constraints and internal nodes are explicit expressions.

3.2 System of boolean equations

It appears clearly from the previous section that an equation on clocks lies
under each signal process.

e For a functional expression Y := f(Xy,...,X,) the requirement on the

clocksis?zj(\l:...zj(;.
e For a delay process ZX := X$§1, we have 7X =X.

e lor a deterministic merge X := U default V the clocks are related by
X=UvVV.

e For a downsampling Y := X when C, we have Y = X A [C] where [C]
denote the clock of the signal when C.

The boolean signal C' used as the second operand of the when operator intro-
duces supplementary equations. Indeed, consider the clocks denoted [C] and

[-C] and defined as:

[C] = when C = the set of instants at which C
carries the value true
[-C] = when(not C) = the set of instants at which C

carries the value false

The pair ([C],[~C]) defines a partition of the clock C. Thus, we have the

additional information

{ [C]v[=C] =
[CIA[=C] =

S

the null clock, the empty set of instants

RR n 2290

12 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

All these equations are recapitulated on table 1

signal process clock calculus additional equations

Y:= f(X4,...,X,) Y=X=...=X,

ZX:= X$1 ZX =X

X:= U default V X=0vV

Y:= X when C Y =X A[C] [Clv[-C]=C
[CIA[-C]=0

Table 1: From SIGNAL operators to boolean equations

Free conditions: Due to some distributivity properties of the operators when,
default, and (on boolean-valued signals) and or, the expressions when C' and
when(not C') can be rewritten as intersection and union of clocks. If a clock
when C cannot be rewritten, the boolean C is said to be a free condition. The
rewriting rules are not enumerated here; they can be found in [5].

Example:

If A and B are two synchronous boolean signals, the boolean signal C' =
A and B is not a free condition for, the clocks when C and when (not C') can
be rewritten as:

when C = (when A) A (when B)
when(not C) = (when(not A)) V (when(not B))

The boolean signal C':= (X = 0) where X is an integer signal is a free condi-
tion for no boolean rule apply to this expression.

In the partitions ([C],[~C]) we will consider in the sequel, C' is supposed to
be free; the conditions that are not free are rewritten.

Inria

Arborescent Canonical Form of Boolean Fxpressions 13

3.3 Conditional Dependency Graph

A data dependency is associated with each process. A process is compiled into
a graph representing the dependency between signals. The excerpt of graph
X Ly

means that at each instant of the clock h, Y’s value depends on X’s value.
Such a graph is constructed from the elementary processes as follows:

o X = f(Xy,...,X,) is associated to the graph

~

X
Vi=1...n, X; — X

e X :=U when C is associated to the graph

X —
U —— X where X = U N [C]
o X :=U default V is associated to the graph

U XA/\IAJ
U X 1%

e For each signal X there is the dependency
X——X
which means that its clock must be evaluated first to check if the expres-
sion of X is to be computed.

Sequential code generation from that graph follows a very simple scheme. For
example a sequential code for the process X := U default V is:

if present(X) then
if present(U) then
X:=U
else
X:=V
endif
endif

RR n 2290

14 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Note: We write if present(X) to test if the signal X is present; in other
words, to test if the instant under consideration is an element of X.

Full details on the code generation process can be found in [27]

3.4 Resolution of the system of equations: objectives

From the conditional dependency graph and the code generation scheme, we
can figure out what the needs are in terms of resolution.

At any given instant, before the value of a signal X is computed, a test is
made on the presence/absence of X; that is the presence/absence of its clock
X. So there is a need for a resolution method that will allow to efficiently
check the presence of a clock. The choice made in the SIGNAL compiler is
a triangularization; that is, a transformation of the system of equations into
a set of equalities of the form h; = h;;<op>h;, such that the clock-to-clock
dependency graph — the edges h;, h; h;, — be an acyclic
graph.

12

3.5 Strategy of resolution

A triangular system of equations is progressively constructed from the original
system (see table 1). An equation of the form h = hy<op>h, is oriented (we
note h := hy<op>hsy) in order to consider the clock formula hy<op>h; as the
definition of the clock variable h. During this process, an orientation of some
equations may not be trivially possible. There are 3 reasons for that.

1. The equation under consideration is of the form h = hy<op>hy but
there is already a definition of the variable h. In this case, a rewriting
can be performed to verify that the formula h;<op>h, is equivalent to
the previous definition of A.

2. It is an equation of the form h = hy<op>h, but an orientation would
induce a cycle in the clock-to-clock dependency graph. In this case, an
attempt can be made to rewrite the formula h;<op>h, and break the
cycle.

Inria

Arborescent Canonical Form of Boolean Fxpressions 15

3. It is an equation of the form hy <op>hy = ki <op>ky: none of the parts are
variables. In this case, an attempt can be made to prove the equivalence
of the formulas with rewriting techniques.

At the end of this process the program is said to be temporally incorrect if
there are some non-proved equalities, or if there are some equations whose
orientation induces a cycle. Hence there is a need of an accurate automatic
rewriting system to avoid the rejection of programs that may have been ac-
cepted if the rewriting was carried out manually.

In [5] an implementation of this strategy is proposed; it is based on an arbores-
cent representation of the equations and a sum-of-product normal form. As it
will be shown in the following paragraph, the arborescent representation exhi-
bits the definitions and the equivalence of two formulas is proved by checking
the equality of their normal forms.

3.6 Hierarchical representation of the equations

To meet the requirements presented above, an arborescent organization of the
formulas has been defined in [5]. It speeds up the rewritings and it captures
the triangularity of the system of equations. We give here the main ideas.

3.6.1 Partition tree

[C] [~C]

Figure 5: Basic partition tree

RR n 2290

16 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Let C be a free condition and C its clock. According to the properties described
in the previous sections, the pair ([C],[-C]) is a partition of C' and satisfies

the equations:

{ CIv[-C] =

[C]AN[-C] = O (the null clock, the empty set of instants)

o

(1)

[c1] [=Ci] [C2] [-C4] (D]

Figure 6: A hierarchical partitioning

Since any clock can be partitioned by a free condition, this basic tree can grow
as its nodes are partitioned. For example on figure 6, ([C4],[~C}]) is a partition
of the clock [C]. The root may be an arbitrary formula but the internal nodes

are partitions.

Inria

Arborescent Canonical Form of Boolean Fxpressions 17

3.6.2 Forest of clocks

As any clock formula can be partitioned, the formulas originating from a Si-
GNAL program can be grouped into partition trees; this set of trees is called
a forest of clocks. Within this forest, some trees may be one-node trees; these
are clocks that have not been partitioned in the original SIGNAL program.

3.6.3 Fusion of clock trees

!
T h = hy<op>hs

IUSIOH

Figure 7: Fusion of trees

In the forest of clocks, let T and T be 2 trees with roots r and A such that:
e h be defined by a formula ki <op>h,
e /i and hy belong to the tree T'

that is the operand of the root h are in the tree T. We carry out a fusion of T"
into T by inserting h into the tree T" as depicted on figure 7. On figure 7 we
point out a particular node k of the tree T'. k is the branching of the nodes hy
and hy; it is the first common ancestor of the 2 nodes. 7" is now a subtree of
the merge tree T”. The fusion of 2 partition trees yields a more general tree
we call clock tree.

RR n 2290

18 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

The main idea of the insertion of the formula h;<op>h, is that it is inser-
ted under the branching of its operands, at the “right hand side”; we give
more formal definitions further. This insertion procedure has two interesting
features:

o it preserves the triangularity of the system of equations

e it optimizes the code generated by nesting if-then-else control structures.

3.6.3.1 Triangularity preservation

During a depth first search (dfs) of the tree 7" “from left to right”, the nodes
hi and hy are visited before the node h = hy<op>hy; it means that the ordering
that makes the system be triangular is embodied in the tree.

3.6.3.2 Code optimization

A partition tree can be viewed as the representation of an inclusion relation.
As a matter of fact, the first partition equation [C]V [-C] = C implies that
[C] C C and [-C] C C. Hence, in a partition tree, a node is included in its
parent. And more generally, a node is included in its ancestors.

On figure 7 the clock h = hy<op>hs is included in the clock k. As a matter
of fact, k£ being an ancestor of both hy; and hy, we have by C k and hy C k.
Consequently all of the 3 formulas h; V hy, hy A hy and hy \ hy — denoted
hi<op>hy — are included in k. That is, the clock tree resulting from a fusion
of 2 trees represents an inclusion relation.

The nesting of if-then-else structures for code optimization is based on the
remark that, if & and k are 2 clocks such that A C &, then for an instant ¢, the
following implication holds:

t¢k=1¢h

In other words, if the test ¢ € k fails, there is no need to test if ¢ € h. Thus,
code generation can take advantage of the inclusion relation between clocks.

Inria

Arborescent Canonical Form of Boolean Fxpressions 19

As an example, this code

if present(k) then
do-something-k
if present(h) then
do-something-h
endif
endif

is more efficient than this one

if present(k) then
do-something-k

endif

if present(h) then
do-something-h

endif

3.6.4 Arborescent resolution

We give here in three steps the algorithm of resolution.

1. Take a tree T" in the forest and attempt to rewrite its root A in a way that
will make the operands of h belong to the same tree T'. If this succeeds,
the root formula of 7" can be inserted into T" as described in 3.6.3 without
disturbing the triangularity of 7.

2. Realize the fusion of T and T" to yield a tree T" as described above.
After the fusion of 7" and 7" , a formula which had one operand in 7" and

the other one in 7" now has its 2 operands in the tree T". So, the fusion
of T'and 7" may lead to more fusions; that is the purpose of step 3.

3. Do step 1 and step 2 till the rewriting rules of step 1 no longer apply.

RR n 2290

20 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Step 1 is implemented using a notion of p-depth resolution thoroughly pre-
sented in [5]. To put it roughly, the user of the compiler can set an integer
parameter p; this parameter is the maximum depth of the syntactic trees of
the formulas manipulated during the rewriting. Setting a limit to the formu-
las, solves the duration and termination problems commonly encountered in
rewriting systems.

During step 2, a formula is given a sum-of-products normal form before it is
inserted in the tree. A normal form may fail to equate two equivalent formulas,
leading to the rejection of a correct SIGNAL program. So there is a need of an
canonical form to make the resolution more accurate.

The major purpose of this report is to show a canonical form that yields an
optimal code as well.

Before the presentation of the arborescent canonical form, we intuively link
our modelling with Z/3Z which is the advocated modelling presented in [3].

3.6.5 Intuitive relation with Z/3/7

We have indicated (section 3.1) that the coding of temporal relations of SI-
GNAL could be modelled in Z/3Z . We link here intuitively this representation
with the representation presented in this report.

Let E be a clock expression built on the boolean signals C,....,C, of a clock
tree; such an expression can be factorized in the following manner:

(E\C)VCLA (G A BV ([Ci] A By))

where the expressions £y, Fs, E\a do not involve Cy. In this factorization, the
three possible states of a boolean signal clearly appear. On the one hand, one
can in this expression substitute the clock Ch by its definition. This definition,
by definition of a clock tree, is built on conditions that are not in the sub-tree
of root C;. On the other hand, one can eliminate the set difference operator
(\) using the following classical rules of boolean lattice :

E\E=0

Inria

Arborescent Canonical Form of Boolean Fxpressions 21

E\(HAG) = (E\ H)V (F\G)
E\(HVG) = (E\ H)A(E\G)
and the rule induced by the downsampling

E\[C]=(EA[-C)V E\C

This method, when applied to the others conditions Cs, ...C,,, allows to express
any clock expression with the operators V, A and downsamplings by condition
([C],[=C]). Since the absence of a signal can be expressed in terms of presence
of other signals, only two values (presence with the value “true”, presence with
the value “false”) are used to express any clock expression.

3.6.6 Arborescent canonical form

3.6.6.1 Insertion = Factorization
We show informally that the insertion of a formula into a tree is a factorization.

Figure 8: Factorization

Let us start with a partition tree (see figure 8). The parent of a node h; is
denoted f(h;). Since a node is included in its parent, (h; C f(h;)), we have

hi = hi A f(h:)

RR n 2290

22 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Recursively applying that equality to h; and hy up to their branching & yields
I

hy=ha A f(h) A F2(ha) o A f7 () AR
hy = ha A f(ha) A f*(ha) ... A f72(h2) Ak

By

A clock h defined by a formula hy <op>h; can be written:
h=hi<op>hy = F Nk

where F' = Fi<op> F;, for, the operator A distributes over all of the operators
A,V and \.

Because of the way in which the fusion of trees is carried out, all the clock va-
riables involved in the term F' are descendants of k. This is a kind of “locality
property” of the factor F.

As it will be shown in the following example, the factorization may depend on
the rewriting of the expression of h.

3.6.6.2 Example

Consider the tree on figure 6 and consider the formulas

hy = [C1] V [D]
hy = [Cs] V [2D]

Following the idea that a formula is inserted under the branching of its ope-
rands, the insertion of h; and hy yields the tree depicted on figure 9.

Now consider the formula & = hy Ahy. The same argument would trivially place
h as a child of r (see figure 10). But A can be rewritten into another expression.

Indeed, developing h yields:

h= hyAhy
= ([Gi] v D) A([C] Vv [-D])
= ([GIA[C]) v (IGIA[=D]) v ([Co ALD]) v ([D] A [-D])

Inria

Arborescent Canonical Form of Boolean Fxpressions 23

[c1] [=Ci] [C2] [-C2] (D] -D]

Figure 9: insertion of formulas

[D] and [=D] being a partition of [-C], we have [D] A [-D] = O. Thus
h=(C]A[C]) v ([G]A[=D]) Vv ([Ca] A [D])

{ [C1] = [Ci] A [C]

Using the inclusion relations { [Cy] = [Co] A[C] yields:

[D] = [DIA[C]

h=(GIA[C]) vV ([GIACIA[=DIA[RC]) v ([Co] ACTA DT A[=C])

Finally, [C] and [=C] being a partition of r, we have [C] A [-C] = O, which
implies that:

The branching of [C1] and [Cs] being [C], h can be placed under [C] (see figure
10).

RR n 2290

24 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

hy = [C1] V [D]

hy = [Co] V [=D]
h = hy A hy = [Ch] A [C]

[cy] [=Ci] [C2] [-C2] A (D] [-D]

Figure 10: Best factorization

As the code generation is based on if-then-else nesting, the insertion of A under
[C] yields a much more efficient code.

3.6.6.3 Outline of the remainder
It appears from the previous example that a canonical form of the clocks must
also seek to place formulas as deeper as possible. The canonical form we pro-

pose in this report, satisfies that requirement.

The next section introduces formally a data structure called hierarchy. A hie-
rarchy is a tree which may seem at first sight very artificial. But it is endowed

Inria

Arborescent Canonical Form of Boolean Fxpressions 25

with features that mimic trees of clocks. Afterwards, we show that a node in
a hierarchy can be associated in a one-to-one manner with a clock formula.

4 Hierarchies

A hierarchy is a tree whose nodes are decorated with boolean functions. Be-
fore giving a formal definition, let us introduce a canonical form of boolean
functions and a formal definition of a tree.

4.1 Boolean functions
4.1.1 Definitions and notations

Let B = {0,1}, and (B,-,+) be the boolean algebra. In some boolean terms
the “” operator may be omitted. Let V = {zq,...,2,} be a set of n > 0
boolean variables.

A boolean function of the variables x,...,x, is a map
(I B" — B
(T1,...,2,) — Y(x1,...,2,)

We denote 1 the boolean function that maps any vector on the constant 1. Si-
milarly, O denotes the boolean function that maps any vector on the constant 0.

We call valuation, a partial map that associates a value in B to a symbol in

V.

For example (21 = 0,23 = 1) is a valuation that involves only the variables x4
and zs.

When the valuation involves the whole set V/, it is represented by the vector —
€ B™ — of the values. Throughout this report, when we reference a valuation,
we will either enumerate the variables involved or use a vector notation (¢);
the context will then precise the variables involved.

RR n 2290

26 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Let A be a subset of V and ¢ be a valuation of the variables in A. We denote
Y the “restriction of 1 to ¢7; it is the function ¢ in which the variables in A
are replaced by their values.

Example: ¢ —o(21,...,2,) = ¥(21,. .., 2i21,0,Ti1, ..., Tp).

Note that 1), —q does not depend z; any longer.

4.1.2 Shannon’s expansion theorem

Let ¥ be a boolean function of the variables zq,...,x,. Shannon’s expansion
theorem around the variable z; is given by

Y= (r_z) %1:0) + (”L’Z) '%z:l)

As mentioned above 'g/%zo and 1/%:1 do not depend on z; any longer.

4.1.3 Support set

Given a boolean function v of the variables zq,...,x,, we define a set called
support as follows:

Supp(v) = {; such that ¢),,—g # =1}

Supp(t)) is the set of variables on which ¢ depends.

We will use this immediate consequence of Shannon’s theorem very frequently.

def
z; & Supp() = Ypimo = Ypi=1 = Y = Ypy=0 = V=1 (2)
To put it another way, “i» does not depend on z;” if and only if all the three
functions ¥},,—o, Yr,=1 and ¥ are equal.
4.1.4 Construction of BDDs

The Binary Decision Diagrams (BDD) technique has been presented by Bryant
[10] as an efficient (both in time and space) data structure for the represen-
tation of boolean functions. It has been widely used in the field of hardware

Inria

Arborescent Canonical Form of Boolean Fxpressions 27

verification: verification of combinational circuits [10, 7] and verification of se-
quential circuits [30, 14]. A variant called TDD for Ternary Decision Diagrams
has been introduced in [17, 8] as a canonical form of Z/3Z polynomials.

Consider a boolean function @ of the variables xq,...,x,. Assume there is a
total order < on the variables e.g v1 < zy < ... < z,. A BDD of the function
Y with respect to the ordering < is a directed acyclic graph that represents
Y. The construction of a BDD is based on applications of Shannon’s expansion
theorem successively around the variable x, then z, thru x,. First, Shannon’s
theorem is applied to) around z; yielding two functions ¥, —¢ and ¥, ;.
Then it is applied to 9}, =g and ¥}, =y around the variable z,,...

The precise algorithms to construct BDDs are not relevant for what follows. In
this report, BDDs are interesting mostly because of their canonicity property
summarized in the following theorem.

Theorem 1 Let v be a boolean function of the variables x1,...,x,. Given a
total order < on the variables e.qg v1 < vy < ... < x,, ¥ has a uniqgue BDD
representation.

A proof can be found in [10].

This allows us throughout this paper, to identify a boolean function with its
BDD and to apply to BDDs, the same operators as to boolean functions.

4.1.5 Example

Figure 11 shows some BDDs and one interesting feature. For any function ®,
the variables in Supp(t) are the only ones that appear in its BDD.

4.2 Tree: formal definition
A tree is a pair (V, f) where

e V is a non-empty set

RR n 2290

28 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

n=3 -
LZ)('rlv T2, $3) =0
Supp(y) =0
=
Lb(xlv:ﬂ%x:}) =T+ T3 B
s B

Figure 11: Support sets of some BDDs

o f:V +— Visamap called filiation function. f satisfies
dreV,VeeV,Ine IN,r = f*(z) and f(r)=r
It can be easily shown that such an element r is unique. r is the root.

A tree may sometimes be denoted (V, f,r) to point out its root.

Terminology : Given a tree (V, f,r) , a node x € V, we define here some
terms and objects we will frequently use.

e f(z) is the parent of the node

o Ch(z) ={y € V/f(y) = «} \ {z} is the set of the children of z; x has
been subtracted from C'h(z) so that the root r do not belong to C'h(r);

e 2 distinct elements of a set Ch(x) are called siblings
o Anc(z)={f"(x),n € IN}\ {x} is the set of the ancestors of z,
o Des(z)={yeV/Ine N, f*(y) =z} \ {z} the set of the descendants

of x,

o d(z) = Mwin{n € IN/f"(x) = r} is the depth of x.

Inria

Arborescent Canonical Form of Boolean Fxpressions 29

4.3 Total order on a tree

An arborescent structure naturally defines a partial order < on the nodes; it
is the reflexive and transitive closure of the relation R:

2Ry = v = f(y)

=< is a partial order because two siblings are incomparable. So, if we choose an
arbitrary total order R, of the children of each node z, a total order < can
be put on the tree by a preorder traversal, i.e a depth first search — dfs — in
which a node is visited before its children. Throughout this report, each time
a total order of a tree is needed, it is defined by a family of total orders on the
children of each node.

When a tree is drawn, R, could be the enumeration of the children of x from
left to right. As an example, a preorder traversal of the tree on figure 10 would
yield the order:

r, [C]a [Cl]a [_'01]7 [02]7 [_'02]7 h7 [_'C]v [D]a [_'D]v hh hy
The key features of the total order < are the following properties :
VeeV, fz) <z (3)
Ve € V,Vay, 29 € Ch(z), 1 # 22,21 < 23 = Yy € Des(x1),y < a2

These properties are depicted on figure 12.
The first one comes from the fact that, a node x is always visited after its

parent f(z).
In the second one, z1 and z, are distinct siblings, with z as their parent, such

that x; < xq; on Ch(z), < coincides with R,.. Thus, ;R x2; and consequently
z1’s descendants are visited before zs.

4.4 Hierarchy: definition
A hierarchy is a tuple (V, f,r, <, B) where:

RR n 2290

30 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC
z; < =3 -
Y y < @
Figure 12: Order on the nodes
e V is a finite non-empty set; the elements of V are considered as boolean
variables
o (V. f,r)is a tree
e < is a total order on the tree and satisfies the dfs properties described
above
e 3 is map that associates to each element of V', a boolean function on the

variables of V; the total order < on V allows to consider these boolean
functions as BDDs. B satisfies:

- B(r)=1
— the following properties we call locality criterion

{ Vy € Supp(B(z)),y <« (4)
Supp(B(z)) € Des(f(2))

To put it another way, Supp(B(z)) C Des(f(x)) means that the node
x is decorated with a BDD whose variables are descendants of f(z), the
parent of z. And, Vy € Supp(B(z)),y < x means that during a dfs, the
node z is visited after the variables involved in B(x)

Inria

Arborescent Canonical Form of Boolean Fxpressions 31

Intuitive relation with clocks
We require B to satisfy the properties (4) in order to mimic the features of
clock trees. The properties of B capture two features of clock trees:

e The insertion of a clock formula in a tree of clocks (see 3.6.3) was done
in such a way that a dfs visit a formula after its operands; we called it
triangularity preservation

e In section 3.6.6.1, we showed that a clock formula A inserted under a clock
k could be factorized h = F'Ak where F was a term whose variables were
descendants of k. The requirement Supp(B(x)) C Des(f(x)) is designed
to be a formalization of the requirement on F.

4.5 Sub-hierarchy

The locality criterion on B allows to view each sub-tree of a hierarchy as a
hierarchy.

Consider a node v in a hierarchy (V, f,r, <,B). The sub-tree with root v —
the set of nodes {v} U Desc(v) — can be very simply endowed with a hierarchy
structure as follows:

e the filiation function f, :

Jvafr=vw
folz) = { f(z) if z € Desc(v)

e the total order <, is inherited from <

e the map B, is defined by :

lifx=v
By(z) = { B(z) if x € Desc(v)

RR n 2290

32 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

4.6 Fusion of hierarchies

In the previous paragraph, we showed that in a hierarchy, each sub-tree can be
viewed as a hierarchy. Conversely, consider two hierarchies (V4, fi,71, <1, B1)
and (Va, fa, 79, <2,B3) such that V4 NV, = §; that is, they are made up with
disjoint sets of boolean variables. Let v € V; and consider the tree graphically
defined on figure 13.

r1

Figure 13: fusion of hierarchies

Informally, r, is dropped out; the set of v’s children is augmented with the
children of ry; consequently, the sub-tree of v is augmented with r,’s descen-
dants.

More formally, we have a new hierarchy (V, f,r, <, B) defined by:
o V=(V1UV2)\ {ra}
o the filiation function

filz)if zeW;
flz) =14 folz)if x € Vo and fi(z) # s
vifx e Vyand fo(x) =ry

Inria

Arborescent Canonical Form of Boolean Fxpressions 33

e the total order < is obtained from a dfs when the new set C'h(v) of v’s
children is ordered in such a way that the original children of v be less
than the children of ry. That is, if z; is the greatest child of v with respect
to <y, and if x5 is the least child of ry with respect to <5, we choose the
ordering z; < xy. By transitivity, it yields a total order on the new set
of children C'h(v) and a dfs yields a total order on the whole new tree.

e the map B is defined on V as follows:

) Bi(z)ifzeW
B(‘”)—{ By(z)if z €V,

We say that V' is the fusion of V, into Vi through the node v of V;.

Intuitive relation with clocks
The fusion of hierarchies formalizes and precises the fusion of clock trees descri-

bed in 3.6.3. If in the hierarchy (Vi, f1,r1, <1,B1), the node v has no children,
a picture of the fusion will be the figure 7.

4.7 TUpward expansion in a hierarchy

Given a hierarchy (V, f,r, <,B), we define a map £ that associates a BDD L(x)
to a node x € V as follows:

In short,

{ L(x) = f(ﬂf)ﬁ(f(:v))

Intuitive relation to clocks
In lines to come, we will show a link between the expression

L(x) = B(z) B(f(x)) B(f*(x))...B(r)
and the expression
hy=ha A f(Ra) A FP(Ra) oo A7 () AR

we introduced in 3.6.6.1.

RR n 2290

34 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

4.8 Canonical factorization

Given a hierarchy (V) f,r,<,B) and 2 nodes x; and x3. Let the BDD G
L(x1)<op>L(x2) denote one of the three terms L(xq) - L(x2), L(x1) + L(z
£(l’1) . ﬁ(l’g)

)

We are going to show that, when G # 0 and G # 1, there exists a unique node
p € V and a unique BDD G’ which satisfy

) G =L(p)- &
Supp(G') # 0 (5)
Supp(G') C Des(p)

2. p has a maximal depth; that is, the depth of any node p’ € V which
satisfies (5) is less than the depth of p — d(p') < d(p).

Intuitive relation with clocks

Recall that in section 3.6.6.1, for a clock formula A = hi<op>h,, we trivially
had a factorization o = F'Ak and the operands of the term F' were descendants
of k.

With the proper links between clocks and hierarchies, this proposition asserts
the existence of the “best factorization”, in the sense that the parent will have
the greatest possible depth.

In the following lines, we prove that statement in three steps:
e the existence of p and G’ is shown; its quite straightforward

e we define very simply Pot(G), a — totally ordered — subset of V', and
we show that its greatest element is a convenient p: hence the uniqueness
of p

e we finally show the uniqueness the BDD G’ by giving its expression.

Inria

Arborescent Canonical Form of Boolean Fxpressions 35

4.8.1 Intermediate results

Let G denote one of the 3 BDDs L(x1) - L(x2), L(x1) + L(x2), L(x1) - L(z2).
We will sometimes use the notation L£(x1)<op>L(x3).

Suppose G # 1 and G # 0.

Consider the set Pot(G) of the nodes that can “potentially” satisfy the pro-
position. That is,

Pot(G) = {peV /3Jasop G suchthat L(p)-G' =G
Supp(G') # 0
Supp(G') C Des(p)}

The aim is to prove that there is in Pot(G) a unique element which has the
greatest depth and that the associated G’ is also unique.

Here is a property of BDDs we will use very frequently.

Lemma 1 Let B and B’ be 2 BDDs; let A be one of the 3BDDs B+ B', B- B’
or B - B'. Then
Supp(A) € Supp(B) U Supp(B')

This lemma is quite trivial; it means that when 2 boolean functions B and
B’ are composed with a boolean operator <op>, the variables involved in the
resulting function A, can be found in B or B’. The proof is straightforward.
O

Here are some features of the set Pot(G).

Proposition 1 The root r is in Pot(G).

Proof:

RR n 2290

36 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

We know from the definition of £ that £(r) = 1 and that

L(x1) = B(a1) - L(f(1))

Asr = fd(zl)(ajl), d(x1) being the depth of z1, we have:

Similarly

Hence

G = £(r1)<0p>£(3:2)

d(z1)—1 d(z2)—1
= (H B(f(z1))<op>] B(f)))

=0

GI

= L(r) -G

o Supp(G') # 0 for, if Supp(G') = 0, we would have G' = 0 or G’ =
which means that G = 0 or G = 1: these cases have been excluded by
hypothesis.

o Supp(G') C Des(r) for:

From lemma 1 we can write

d(z1)-1 d(z2)-1
Supp(@') € U Supp(B(f(z) v U Supp(B(f'(22)))

From the properties (4) of B — Va € V, Supp(B(z)) C Des(f(z)) — we

can write
d(l’l) 1 d(l‘g) 1
Supp(G') € |J Des(f*'(z1))u | Des(f* (x2))
=0 =0

Inria

Arborescent Canonical Form of Boolean Fxpressions

37

A simple property of trees — Des(f'(z)) C Des(f**!(z)) — allows to

write

Supp(G') C Des(f*C) (1)) U Des(f*)(22))

And finally from the definition of d the depth in a tree — r = f4=)(z,) =

=2 (2y) — we write

Supp(G') C Des(r) U Des(r) = Des(r)

Conclusion: r € Pot(G).
O

Lemma 2 Let p be an element of Pot(G) and G’ be the BDD specified in the

definition of the set Pot(G) i.e G' is such that

L) -G =G
Supn(') # 1
Supp(G') C Des(p)
Then Y& € Supp(L(p)),z <p
Proof:

From the definition of L,

d(p)
L(p) = l:[B(f'(p))

which implies — see lemma 1 — that
d(p) ,
Supp(£(p)) € J Supp(B(f'(p)))

1=0

From (3) the properties of < we have f*(p) <p
and from (4) the properties of B we have

Yz € Supp(B(f'(p))),z < f(p)

RR n 2290

38 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

consequently z < p for all z € Supp(B(fi(p)))

Since any = € Supp(L(p)) belongs to some Supp(B(fi(p))) — lemma 1 — we
have
Vz € Supp(L(p)),x <p

Lemma 3 Let p be an element of Pot(G) and G’ be the BDD specified in the
definition of the set Pot(G).

Vz € Supp(G'),z > p
> is an abbreviation for not <

Proof

As specified in the definition of Pot(G), Supp(G') C Des(k).
And from the definition

Des(p) ={z € V/In € IN, f*(z) = p} \ {p}

we deduce that
Va € Des(p),p <z andp+#x

which means that
Va € Des(p),z > p

Since Supp(G') C Des(p) we have Va € Supp(G'),z > p.

0.

Lemma 4 Let p be an element of Pot(G) and G’ be the BDD specified in the
definition of the set Pot(G).

Supp(L(p)) N Supp(G') =0

Inria

Arborescent Canonical Form of Boolean Fxpressions 39

Proof:

It is straightforward from the 2 previous lemmas.

0.

Lemma 5 Let p be an element of Pot(G) and G’ be the BDD specified in the
definition of the set Pot(G). Then

Supp(G) = Supp(L(p)) U Supp(G"’)
Proof:

e The inclusion Supp(G) C Supp(L(p)) U Supp(G’) results from lemma 1.
o Supp(G') C Supp(G) ?

Let @ be an element of Supp(G') i.e Glzo # Gz

L(p) # 0 for G # 0. Thus, there is a valuation ¢ of the variables in

Supp(L(p)), such that L(p)y =1

Since Supp(G")NSupp(L(p)) = B, we have x ¢ Supp(L(p)). Which means
L(pk=0 = L(pl=1 = L(p)

Since Supp(G') N Supp(L(p)) = B, T doesn’t involve the variables in
Supp(G') and consequently

/|1'f: G/

Now, suppose = ¢ Supp(G) i.e Go—g = Gi=1. We would have:

Gr=0,y = Gr=oz
L(Pl=07 N Gh=oz = L(Plh=1,s N Gh=1,7
Lk A Gh=o = L(plAGh=a
1A G/|ﬂ?=0 = 1A Gl|w:1

RR n° 2290 k=0 = Gh=

40 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Which contradicts the hypothesis that x € Supp(G’).

Then = € Supp(G) i.e Supp(G') C Supp(G)
e A similar argument proves that Supp(L(p)) C Supp(G).

From the previous points, we deduce Supp(G) = Supp(G') U Supp(L(p)).
O

Proposition 2 Let x, be the greatest element of the set Supp(G) i.e x, =
Max(Supp(G)). Then, any element of Pot(G) is an ancestor of x, i.e

Pot(G) C Anc(xy,)

This theorem is very interesting because the set Anc(x,,) is quite easy to com-
pute.

Proof:

Let p be an element of Pot(G'), G' be the BDD specified in the definition of the
set Pot(G) and x, be the greatest element in Supp(G).

We know from lemma 5 that
Supp(G) = Supp(£(p)) U Supp(G')
and from lemmas 2 and 3 that
Vz € Supp(L(p)),Vy € Supp(G'),x <p <y
Consequently, the greatest element of Supp(G) is in Supp(G’) i.e
z, € Supp(G')

Now, from the definition of Pot, Supp(G') C Des(p). Then z, € Des(p) and
p € Anc(xy,).

O

Inria

Arborescent Canonical Form of Boolean Fxpressions 41

Proposition 3 There exists a unique element p € Pot(G) such that
Vg € Pot(G),d(q) <wn d(p)
<mn denotes the usual total order on the natural integers.

Proof:
The existence is trivial: Pot(G) is a finite, totally ordered and non-empty set.

The uniqueness is due to the fact that the elements of Anc(x,,) are ordered by
their depths. As a matter of fact, let p; and py be 2 elements of Pot(G) such
that

d(p1) = d(pz) = max d(q)

g€Pot(G)

Properties of trees allow to write:
pr = (xn) for p1 € Anc(z,,)
)

- #)(z2) for d(pr) = d(py)
= p2 fOI’ng ne(x,)

Proposition 4 Let p be the element of Pot(G) with the greatest depth. The
BDD G’ specified by the definition of Pot(G) is unique.

Proof:

Let p € Pot(G) be the element which has the greatest depth. There exists a

BDD (' such that
Lp)-G'=¢G

Supp(G') # 0
Supp(G') C Des(p)

To show the uniqueness of G', we are going to give its expression.

RR n 2290

42 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Let ¢ be a valuation of the variables in Supp(L(p)) such that L(p)y = 1. We
have

G = Lp)- &
Gr = Lpl- Gl
= G

= G for v doesn't involve the variables of G’

Hence the uniqueness of G'.

a

4.8.2 Canonical factorization theorem

Theorem 2 .
Given a hierarchy (V, f,r,<,B) and 2 nodes x1 and x5. Let the BDD G
L(x1)<op>L(x3) denote one of the three terms L(xq) - L(x2), L(x1) + L(x
L(x1) - L(x2).

)

There exists a unique node p € V. and a unique BDD G’ which satisfy

1.

Supp(G') # 0 (6)
C

{Gﬁw%g
Supp(G")

Des(p)

2. p has a maximal depth; that is, the depth of any node p' € V which
satisfies (6) is less than the depth of p — d(p') < d(p).

Proof:

The proof is given by propositions 3 and 4.

a

Inria

Arborescent Canonical Form of Boolean Fxpressions 43

4.9 Recapitulation

In this section
e we defined a structure (V, f,r, <, B) called hierarchy

o we defined a fusion operation which inserts a hierarchy H' as a sub-
hierarchy of another hierarchy H

e we defined some boolean functions £(x) which have nice factorization
properties.

In the following section, we define a hierarchy structure on clocks. Starting
from partition trees, we perform the fusion operation. And as the hierarchy
structure is preserved by the fusion, the process can be iterated.

5 From clocks to hierarchies

Consider a SIGNAL program and the forest of partition trees resulting from it.
In this section we show that:

e with the adequate decorations, a partition tree can be viewed as a hie-
rarchy

e the insertion of a formula in a partition tree can be carried out canonically
through our factorization

e the fusion of partition trees described informally in 3.6.3 can be viewed
as a fusion of hierarchies; since the fusion of 2 hierarchies yields a hie-
rarchy, the fusion process can be iterated. Hence hierarchies are a formal
framework for the construction of SIGNAL clock trees.

5.1 Clock variables and boolean variables

To make the distinction between clocks, considered as sets, and clocks viewed
as booleans, we use a set of boolean variables and define a one-to-one map
¢ that associates a boolean variable p(h) to a clock variable h. Through the

RR n 2290

44 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

map @ a partition tree is transformed into a tree of boolean variables, hence
preparing it for the definition of a hierarchy.

5.2 Ordering a partition tree

Let the pair ([C],[~C]) be a partition of a clock C. The children ¢([C]) and
©([7C]) of the node ¢(C) are given the ordering ¢([C]) < ¢([=C]); we will
justify this choice in lines to come.

If ([C],[~C]) and ([C"],[~C"]) are 2 distinct partitions of the same clock ¢ —

that is, the signals C' and C’ have the same clock — | the boolean variables

~

o([C]), ([7C]), ¢([C]) and ¢([=C]) are children of ¢(C). As said above, we

have the ordering

P([C]) < @([2C]) ([C]) < @([=C7)

To make the order total, we arbitrarily choose

#([=C1) < 9(1C])

Once the children of each node are totally ordered, a dfs yields a total order
on the tree.

5.3 Mapping clocks on BDDs

We define here the map B that associate a BDD to each node — boolean va-
riable — of a totally ordered tree.

In a partition tree, the root r may be defined by an arbitrary formula, but
the internal nodes are partitions and appear in pairs ([C],[~C]). On the tree
(V, f), image — through ¢ — of a partition tree, we define B as follows:

e the root: B(p(r)) =1
e [C]: B(p([C])) = ¢([C]) the positive literal

o [-C]: B(p([-C])) = ¢([C]) the negative literal of ¢([C]).

Inria

Arborescent Canonical Form of Boolean Fxpressions 45

Note that the sets of boolean variables involved in B(p([C])) and B(p([-C]))
— their support sets — are both equal to {¢([C])}. The ordering p([C]) <
©([~C]) is justified by the fact that it allows B(p([=C])) to satisfy the locality
criterion (4) that we recall here:
{ Vy € Supp(B(z)),y < =
Supp(B(z)) € Des(f(z))

The ordering is especially needed for the first equation.

With the definitions of < and B, the image (V, f) of a partition tree is a
hierarchy.

5.4 Bijection between clock formulas and boolean func-
tions

Given a partition tree with root r, consider two clocks hy and hy of the tree.
Consider the three formulas h; V hy, hy A hy and Ay \ hs.

With the upward expansion map £ introduced in 4.7, we define the following

correspondence:
clock formulas boolean functions
1 r the root L(p(r) =1
2 O the null clock L(p(0)=0
51 h=hy\ hy which is hy A (r\ ha) | L(p(h1)) - L(p(ha))

In a more mathematical framework we can show that £ defines a bijective
correspondence between clock formulas and the boolean functions that it as-
sociated to them; hence, L(¢(h)) is truly a representation of the clock h. This
is basically due to results in lattice theory. Precisions and details about the
material presented here can be found in [15]. We give informally some justifi-
cations.

e The set of clocks — which are sets themselves — that make up a partition
tree with root r can be viewed as a subset of a finite boolean lattice L.

RR n 2290

46 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

— its supremum is r, the root of the tree
— its infimum is O, the empty set of instants
— the upper bound operation is the union of 2 clocks: iy V hy
— the lower bound operation is the intersection : hy A Ay
— the complement of a clock A is r\ A
e Similarly, for a finite set of boolean variables, the set of the boolean
functions that can be constructed with these variables is a finite boolean
lattice.
— its supremum is the constant boolean function 1
— its infimum is the constant function 0
— the upper bound operation is the or — denoted + — of 2 functions
— the lower bound operation is the and — denoted -
— the complementation is denoted —
e L and ¢ define a map £ o p that preserves the suprema, the infima, the

lattices operations (see the table above). This map is injective due to
the properties of lattice homomorphisms. Hence £ o ¢ is an isomorphism

from L to Lo p(L).

Since ¢ is defined to be a mere variable renaming, the interesting iso-
morphism is actually L.

The aim of all this is to use L(¢(h1)) and L(p(hs)) as the representations of
h1 and hy in order to perform the computation of hy<op>hy — one of hy V hy,
hy A hay by \ ha.

The image L£(p(h)) of a clock variable h defined by some formula hq<op>h; is
called its arborescent canonical form.

Important remark

Inria

Arborescent Canonical Form of Boolean Fxpressions 47

Let ([C],[~C]) be a partition of a clock C. We defined B(p([-C])) = o([C]).

We give here some justifications of that definition.

From the definition of £, we have

= L{p(C))-»([C])
Similarly,
L(([-C]) = L(p(C))-B(#([=C]))
= L(e(C))-¢([C])
= L(p(C)) - L(([C])) after some manipulations

On the other hand,[C], [-C] and C are related by the partition equations we

recall here:
{ [Clv[-C] =

S

[CIn[-C] =
which means [-C] = C \ [C].

Conclusion: B(¢([=C])) has been defined so that L(p([-~C])) be consistent
with the general case hy \ hs.

5.5 Canonical insertion

Consider a partition tree 7" with root r, and a partition tree 7' with root r’
such that the operands of v’ be in the tree T'; that is, v’ is defined by some
hi<op>hy where both hy and hy belong to T'. As described earlier in 3.6.3 a
fusion of clock trees can be done. In this section, we transform it into a more
formal fusion hierarchies that will be optimal.

The image V = ¢(T') is endowed with a hierarchy structure; that hierarchy is
denoted (V, f,r, <,B). Idem for ¢(T").

RR n 2290

48

Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Consider the BDD G = L(p(h1))<op>L(p(hy)) associated with hy<op>hs. We
showed that when GG is not a constant boolean function it is factorized into

G=L(p) G

where

e pis a boolean variable in the hierarchy ¢(7'); p is equal to ¢(k) for some

— unique — clock k in T

e (' is a BDD and satisfies the locality criterion

In the following lines, we define a fusion of the hierarchies ¢(7') and ¢(7”) in
order to capture the fusion of clock trees described in 3.6.3.

4 cases are considered.

1. G = 0: we eliminate this case.

As L is a one-to-one map, this case means that the formula hy<op>h,
is equivalent to the null clock O. Consequently — a clock is included in
its parent — all the clocks in the tree 7" are equivalent to ©. This may
actually induce the simplification of many terms during the whole clock
calculus process. But it does not result in the fusion of p(7T') and (7).

.G=1

This means that h;<op>h, is equivalent to the root r, since L(p(r)) =1
too. In this case we build the fusion of ¢(7") into ¢(T") through the node
r.

. More generally, if there exists a node p(h) in the hierarchy ¢(7') such

that L(¢(h)) = G, we perform the fusion of p(T") into ¢(T') through the
node @(h).

Inria

Arborescent Canonical Form of Boolean Fxpressions 19

4. If there exists no such node, we pick a new boolean variable ¢(/) — which
belongs neither to ¢(7") nor to p(7T’) — and we augment the hierarchy
©(T') whith (1) in order to fall back into the previous case. Here is how
we proceed.

The hypotheses of the factorization — G # 0 and G # 1 — are satisfied;
(G can be written:

G =Lp)- &

where p is a boolean variable — some (k) — and G’ is a BDD.

We decorate (/) with the BDD G’ and insert it as the last child of ¢(k).
In other terms, the hierarchy ¢(7") is augmented with the node (1) and,
we update the filiation function f, the total order < and the map B in
order to preserve the hierarchy structure for o(7').

e The filiation: f(p(1)) = @(k). f(p(l)) is well defined, for p = ¢(k)

is unique;

e The ordering: p(l) is greater than all the other children of (k) (see
figure 14); a dfs on the augmented tree yields the new total order.
Note that with this ordering ¢({) is greater than all the descendants
of p(k) (see (3) the properties of the total order).

Figure 14: insertion of a new node

RR n 2290

50 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

e the map B: we define B(¢(1)) = G'; B(p(1)) is well defined, for G’ is
unique; moreover, ¢([) is given an ordering such that B(p(l)) satisfy
the locality criterion (4).

With the decoration of () we have

L(e(D) =B(e)) - L(f(e(l))) see the definition of £ in 4.7
— ' Llo(h)
=G

We are back in the case 3; we perform the fusion of ©(7") into ¢(7T')
through the node ¢(1) which has been created and inserted into ¢(7') for
that purpose.

5.6 Iterating the fusion process

In the previous paragraphs we showed that a partition tree 7' can be decorated
and transformed into a hierarchy ¢(7"). Afterwards, we showed that the fusion
of a partition tree 7" into a partition tree T' can be done by the fusion of the
hierarchy ¢(7") into the hierarchy ¢(7'). Since the tree which results from the
fusion of 2 hierarchies is also a hierarchy, the fusion process can be iterated.
Hence, hierarchies are a formal framework and a generalization of partition
trees.

5.7 Experimental results
5.7.1 Description of the experimentation

In this section we compare 4 representations of a system of boolean equations.

1. Tree and Normal Form (TENF): the system of equations is represented
by a tree of clocks; each clock is given a sum-of-products normal form.
This method is presented in [5].

2. Tree and BDD (TE&BDD): a tree structure together with a BDD canonical
form as presented earlier in this report.

Inria

Arborescent Canonical Form of Boolean Fxpressions 51

3.

BDD characteristic function: the whole system of equations is represented
by a single BDD; a system of equations over n boolean variables can be
viewed as a subset of {0,1}". Hence it can be given a representation in
the form of a characteristic function [17, 30].

BDD characteristic function after TEBDD: the original system of equa-
tions is transformed by a T&BDD into a tree (which is still a system of
equations); then a BDD characteristic function is constructed.

These 4 representations are compared in terms of the time and space it takes
to built them for some sample SIGNAL processes. The time is the classical unix
user-ttme. For BDD-based methods, the space is given by the number of BDD
nodes. And for T&NF the space is given in terms of number of formulas.

The sample SIGNAL programs are:

STOPWATCH: this program models a watch with chronometer and
alarm capabilities plus a simulation context;

WATCH: it is a sub-process of STOPWATCHj its watch part;
SUPERVISOR: it is a part of STOPWATCH; it abstracts the control

part of the physical environment and dispatches external events to the
watch, the alarm and the chronometer sub-processes,

ALARM: the alarm function;
CHRONO: the chronometer function;
PACE MAKER: it is a part of STOPWATCH; it permits to change the

pace of events in order to perform various simulations;

ROBOT: it is part of the controller of an active-vision robot; whereas the
previous processes contain much control, this one models a computation-
intensive estimation of some 3-D parameters.

The measures are conducted on a SUN4/Sparcl0 with 64MB main memory.
Manipulations of BDDs use a UC Berkeley BDD package.

RR n 2290

52

Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

For the experimentation we set a 200MB virtual memory limit and a 40mn

cpu time limit.

5.7.2 Comparisons

BDD BDD
TEBDD || characteristic || charac. func.
function after T6BDD
STOPWATCH 61893 unable-cpu unable-cpu
1318 variables
WATCH 34753 unable-cpu unable-cpu
785 variables
ALARM 3428 unable-mem unable-cpu
465 variables
CHRONO 1548 unable-mem 422975
282 variables
SUPERVISOR 425 unable-cpu 226472
202 variables
PACE MAKER 50 53610 582
96 variables
ROBOT 36 unable-cpu 415

99 variables

Comparisons in terms of BDD-nodes
unable-cpu denotes a computation that was unable to terminate within the

time limit.
unable-mem denotes a computation that was unable to terminate within the

memory limit

Inria

Arborescent Canonical Form of Boolean Fxpressions 53

BDD BDD
TENF || TEBDD || characteristic || charac. func.
function after T6BDD

STOPWATCH || 69.22s 27.07s unable-cpu unable-cpu
WATCH 24.20s 14.67s unable-cpu unable-cpu
ALARM 2.60s 2.19s unable-mem unable-cpu

CHRONO 0.55s 0.92s unable-mem 409.09s

SUPERVISOR | 0.20s 0.45s unable-cpu 146.32s

PACE MAKER || 0.07s 0.10s 160.50s 0.36s
ROBOT 0.20s 0.27s unable-cpu 0.31s

Comparisons in terms of cpu-time

As programs get larger, T&BDD tend to be faster than TE&NF. There are
basically 2 reasons for that:

o during a TENF process, as described in [5], the insertion of a formula
into a hierarchy requires the insertion of many other sub-formulas;

e as it will be shown in the next section, during a T&BDD process, the
properties of our ordering yields small-sized BDDs.

Most of the measures that involve a characteristic function were unable to
compute within the resource limits. It appears clearly that characteristic func-
tions are impractical.

The following table gives the informations about the Té&NF representation; in
this table, the number of initial formulas is the number of formulas that are
built for the creation of the system of equations; during this creation, some
elementary reductions such that AV h = h,h Ah = h,éA [c] = [c] are applied.
So, at the end of the creation step we obtain (second column of the table) the
number of formulas before solving. We give after that in the third column the
number of built formulas for solving the system of equations and lastly the
number of useful formulas: a formula is useful if it defines a clock of signals of
the program or it is a clock of the conditional dependency graph.

RR n 2290

54 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

number of number of number of all || number of
initial formulas before built useful
formulas solving formulas formulas
STOPWATCH 1876 1318 5295 526
WATCH 1134 785 2943 309
ALARM 710 465 1117 187
CHRONO 434 282 674 117
SUPERVISOR 368 202 477 91
PACE MAKER 146 96 171 36
ROBOT 245 99 257 30

Informations about the Té&NF representation

6 Hierarchies and the ordering problem in
BDDs

The BDD technique is an efficient representation of boolean functions. A BDD
is defined with respect to a total order on the boolean variables (see 4.1). As
we will see it on the following example, the size of the BDD that represents a
boolean function depends on the ordering of the variables.

6.1 Example

Consider the boolean function:
(@1, Ty, T3, T4) ¥ T1T2 + T3Ty

We denote BDD(x122 + x3®s, <¥1,T2,Ts,x4>) its BDD with respect to the
ordering x; < z9 < z3 < x4.

Similarly, we denote BDD(z1x2 + @324, <¥1, 3, T2, x4>) its BDD with respect
to the ordering z; < 3 < 25 < 4.

These BDDs are drawn on figures 15 and 16.

Inria

Arborescent Canonical Form of Boolean Fxpressions 55

Figure 15: BDD(x122 + x3®4, <1, T, T3, T4>)

6.2 Finding the best ordering

Unfortunately, finding the best ordering for an arbitrary boolean function is
an NP-hard problem [13]. There is an algorithm to find the best ordering [18]
and its complexity is O(nr*3™) is n is the number of variables.

Finding the best ordering being very complex, many heuristics have been de-
signed.

6.3 Overview of the heuristics

Most of the heuristics that yield a “good” ordering for BDD minimization fall
into 2 classes:

o the methods based on a traversal of the boolean term viewed as a logic
circuit [28, 19]

RR n 2290

56 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Figure 16: BDD(x1x2 + x3®4, <1, T3, T2,T4>)
e the methods that construct first a BDD with an arbitrary ordering, then
gradually improve it by permuting variables [24]

Going into further details with the known heuristics is not the purpose of this
report. Though there is a theorem that relates, in some cases, the ordering
problem to a factorization. Hence the link with SIGNAL hierarchies.

6.4 Disjoint support decomposition
The material presented here is borrowed from [28, 6]
If a boolean function F' can be expressed by SF;<op>SF, where <op> is a

boolean operator, and, SF; and SF; are boolean functions with disjoint input
support — Supp(SFi) N Supp(SF,y) = § — then F' is said to have a disjoint

Inria

Arborescent Canonical Form of Boolean Fxpressions

57

support decomposition.

Example

F=z 2342324
—— =

SFy SF,
has a disjoint support decomposition.
SFl = X1 - T3
(N
SFi1; Skig

has a disjoint support decomposition as well.

Proposition 5 If a boolean function accepts a disjoint support decomposition

with respect to an operator <op> — F = SFi<op>SF, — then in a minimized
sized BDD, the variables of SFy precede of follow those of SFy; but, they may

not be interleaved.

6.5 Link with hierarchies

There is a strong similarity between that proposition and SIGNAL hierarchies

because our factorization is actually a disjoint support decomposition.

Recall the canonical factorization we presented in 4.8: given two nodes x; and
x5 of a hierarchy, let G denote one of the three BDDs L(x1)-L(x2), L(x1)+L(22),

£($1) . ﬁ(l’g)
We showed that for G # 0 and G # 1:

L(p) -G
Supp("V #0
Supp(G') € D

M

In lemma 4 we showed that Supp(G’)
have a disjoint support decomposition.

es(p)

RR n 2290

Supp(L(p)) = @ which means that we

58 Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

Moreover, lemmas 3 and 2 showed that the ordering on the nodes is such that
Va € Supp(L(p)), Yy € Supp(G'), = <y

which is clearly the ordering suggested by the proposition.

7 Conclusion

In this report we have presented the synchronous language SIGNAL designed
for real-time programming. The compilation of SIGNAL programs requires the
resolution of a system of boolean equations; the variables being clocks. We have
presented the clock calculus: the set of techniques used to solve the system of
equations.

The clock calculus is based on an arborescent representation of clocks. Follo-
wing that basis we have introduced as a formal framework a BDD-based data
structure called hierarchy. We have shown through boolean function factoriza-
tion that, under some hypotheses, hierarchies are a canonical form of SIGNAL
clocks.

Finally, we have shown a link between hierarchies and the ordering problem in
BDDs. The ordering given in the definition of a hierarchy yields “small-sized”
BDDs. Future works could investigate the converse: take a boolean function
and try to find a hierarchical organization of its variables in order to yield a
“good” BDD. Then, hierarchies would be a framework for the design of ordering
heuristics.

Due to the nice properties of their total order, BDD-based hierarchies have been
successfully implemented in the SIGNAL compiler. The problems induced by
the integration of BDDs in the existing compiler, will be discussed in another
report.

Inria

RR n 2290

Arborescent Canonical Form of Boolean Fxpressions 59
Contents

1 Introduction 3

2 Presentation of the language SIGNAL 5

2.1 Signalsand clockso 5

2.1.1 Signalso 5

2.1.2 Clockso 5

2.2 Processes 6

2.2.1 Functional expressions 6

2.2.2 Reference to past values 6

2.2.3 Downsampling 0L 7

2.2.4 Deterministicmerge oL 8

2.2.5 Composition of processes 9

2.2.6 Derived operators oL 9

Compiling a SIGNAL program 9

3.1 Purposes and motivations 10

3.2 System of boolean equations 11

3.3 Conditional Dependency Graph 13

3.4 Resolution of the system of equations: objectives 14

3.5 Strategy of resolutiono 14

3.6 Hierarchical representation of the equations 15

3.6.1 Partition treeo 0oL 15

3.6.2 Forestofclocks 0L 17

3.6.3 Fusion of clock trees 17

3.6.4 Arborescent resolution L. 19

3.6.5 Intuitive relation with Z/3Z 20

3.6.6 Arborescent canonical formo 0L 21

Hierarchies 25

4.1 Boolean functionso 25

4.1.1 Definitions and notations 25

4.1.2 Shannon’s expansion theorem 26

4.1.3 Support set 26

4.1.4 Construction of BDDs L 26

60

Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

7

4.1.5 Example
4.2 Tree: formal definition
4.3 Total orderonatree,
4.4 Hierarchy: definition
4.5 Sub-hierarchy
4.6 Fusion of hierarchies
4.7 Upward expansion in a hierarchy
4.8 Canonical factorization

4.8.1 Intermediateresults.,

4.8.2 Canonical factorization theorem
4.9 Recapitulation. L

From clocks to hierarchies
5.1 Clock variables and boolean variables
5.2 Ordering a partition tree L.
5.3 Mapping clocks on BDDs
5.4 Bijection between clock formulas and boolean functions
5.5 Canonical insertion oo
5.6 Iterating the fusion process
5.7 Experimental results
5.7.1 Description of the experimentation
5.7.2 Comparisons o . v e e e

Hierarchies and the ordering problem in BDDs

6.1 Example
6.2 Finding the best ordering L
6.3 Overview of the heuristics
6.4 Disjoint support decomposition L.
6.5 Link with hierarchies 0000

Conclusion

43
43
44
44
45
A7
50
50
50
52

54
54
55
55
56
57

58

Inria

Arborescent Canonical Form of Boolean Fxpressions 61

References

(1]

2]

3]

[4]

[5]

[6]

(7]

8]

[9]

[10]

A. Benveniste and G. Berry. Special section on another look at real-
time programming. Proceedings of the IEEE, 79(9):1268-1336, September
1991.

A. Benveniste, B. Le Goff, and P. Le Guernic. Hybrid Dynamical Systems
theory and the language SIGNAL. Research Report 838, INRIA, Rocquen-
court, April 1988.

A. Benveniste and P. Le Guernic. A denotational theory of synchronous
communicating systems. Research Report 685, INRIA, Rocquencourt,
June 1987.

G. Berry and G. Gonthier. The ESTEREL synchronous programming lan-
guage: design, semantics, implementation. Science of Computer Program-
ming, 87-152, 1992.

L. Besnard. Compilation de SIGNAL: horloges, dépendances, environne-
ment. PhD thesis, Université de Rennes 1, France, Septembre 1992.

T. Besson, H. Bouzouzou, 1. Floricica, G. Saucier, and R. Roane. Input
order for roobdds based on kernel analysis. In Furo Asic 93, pages 266—
272, 1993.

J. Billon and J. Madre. Original concepts of PRIAM, an industrial tool
for efficient formal verification of combinational circuits. In G. Milne,
editor, Proceedings of the fusion of hardware design and verification,
pages 487-501, North Holland, 1988.

M. L. Borgne. Systmes dynamiques polynomiaux sur des corps finis. PhD
thesis, Université de Rennes 1, 1993.

P. Bournai, B. Chéron, T. Gautier, B. Houssais, and P. Le Guernic. SI-
GNALmanual. Technical Report 745, IRISA, July 1993.

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on computers, C-35(8):677-691, August 1986.

RR n 2290

62

Tochéou AMAGBEGNON Loic BESNARD Paul LE GUERNIC

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Burns. Programming in OCCAM 2. Addison-Wesley, 1988.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: a declara-
tive language for programming synchronous systems. In 14th ACM Sym-
posium on Principles of Programming Languages, pages 178-188, Munich,
1987.

O. Coudert. SIAM: Une Boite a Outils Pour la Preuve Formelle de
Syst‘emes Séquentiels. PhD thesis, Ecole Nationale Supérieure des Té-
lécommunications, France, 1991.

O. Coudert, C. Berthet, and J. Madre. Verification of synchronous sequen-
tial machines based on symbolic execution. In LNCS /07, pages 365-373,
1989.

B. A. Davey and H. A. Priestley. [Introduction to Lattices and Order.
Cambridge Mathematical Textbooks, 1991.

R. de Simone and D. VERGAMINI. Aboard AUTO. Technical Report,
INRIA - Sophia Antipolis, October 1989.

B. Dutertre. Spécification et preuve de systémes dynamiques. PhD thesis,
Université de Rennes 1, France, Décembre 1992.

S. J. Friedman and K. J. Supowit. Finding the optimal variable ordering
for bdds. In 2/th ACM/IEEE Design Automation Conference, pages 348
356, 1987.

M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements
of boolean comparison method based on binary decision diagrams. In

ICCAD 88, pages 2-5, 1988.

G.R.E.P.A. Le GRAFCFET, de nouveaux concepts. Cepadues Editions,
1985.

N. Halbwachs. Synchronous programming of reactive systems. Kluwer,
1993.

Inria

Arborescent Canonical Form of Boolean Fxpressions 63

[22] C. A. R. Hoare. Communicating Sequential Processes. Communications
of ACM, 21(8):666-677, August 1978.

[23] INMOS. OccaM?2 Reference Manual. Prentice Hall, 1987.

[24] N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision
diagrams based of exchanges of variables. In ICCAD 91, pages 472-475,
1991.

[25] B. Le Goff. Inférence de contréle hiérarchique : application au temps-réel.
PhD thesis, Université de Rennes 1, France, 1989.

[26] P. Le Guernic and A. Benveniste. Real-time synchronous, data-flow pro-
gramming: The language SIGNAL and its mathematical semantics. Re-
search report 620, INRIA, Rocquencourt, France, June 1986.

[27] O. Maffeis, B. Chéron, and P. Le Guernic. Transformations du Graphe
des programmes SIGNAL. Research report 1574, INRIA France, Rennes,
January 1992.

[28] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vicentelli.
Logic verification using binary decision diagrams in a logic synthesis en-
vironment. In ICCAD, pages 6-9, 1988.

[29] M. W. Rogers. Ada, Language, Compilers and Bibliography. Cambridge
University Press, 1984.

[30] H.J. Touati, H. Savoy, R. Brayton, B. Lin, and A. Sangiovanni-Vicentelli.
Implicit state enumeration of finite state machines using bdd’s. In IEFEFE
conference on Computer-Aided Design, pages 130-133, 1990.

RR n 2290

JINRIA

Unité derecherche INRIA Lorraine, Techndpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derechercheINRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derecherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

