N

N
N

HAL

open science

Regular array synthesis using Alpha
Doran K. Wilde, Oumarou Sié

» To cite this version:

Doran K. Wilde, Oumarou Sié. Regular array synthesis using Alpha. [Research Report] RR-~2289,

INRIA. 1994. inria-00074383

HAL Id: inria-00074383
https://inria.hal.science/inria-00074383
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074383
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Regular Array Synthesisusing ALPHA

Doran K. Wilde and Oumarou Sié

N° 2289
May 1994

PROGRAMME 1
Architectures paraléles,
bases de données,

réseaux et systémes distribués

apport
derecherche

INRIA

RENNES

Regular Array Synthesis using ALPHA

Doran K. Wilde* and Oumarou Sié**

Programme 1 — Architectures paralléles, bases de données, réseaux et systémes distribués
Projet API

Rapport de recherche n ‘2289 — May 1994 — 13 pages

Abstract: We report our current research in a computer assisted methodology for synthesizing
regular array processors using the ALPHA language and design environment. The design process
starts from an algorithmic level description of the function and finishes with a netlist of an array
processor which performs the specified function. To illustrate the proposed approach, we present
the design of an array processor to do polynomial division.

Key-words: recurrence equations, systolic arrays, alignment, scheduling, pipelining, allocation,
uniform dependencies, computer aided design, automatic synthesis, hardward design language,

EDIF

(Résumé : tsvp)

*email: wilde@irisa.frThis work was partially supported by the Esprit Basic Research Action NANA 2, Number
6632 and by NSF Grant No. MIP-910852.
**email: sie@irisa.fr

Unité derecherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Taanhone: (R 0024 71 00 — Ta econie : (R 0024 71 71

Synthese de réseaux réguliers avec ALPHA

Résumé : Ce papier présente une méthodologie de synthese assistée par ordinateur dans ’envi-
ronnement ALPHA. Cet environnement est dédié a la synthése de réseaux réguliers. Partant d’une
description comportementale de type algorithmique d’une fonction, le processus de conception gé-
neére la netlist du réseau de processeurs correpondant. L’approche est illustrée par la présentation
de la synthése d’un réseau de processeurs réalisant la division polynomiale.

Mots-clé : équations récurrentes, réseaux systoliques, alignement, ordonnancement, pipeline,
allocation, dépendances uniformes, conception assistée par ordinateur, synthése automatique, lan-
gage de description de matériel, EDIF

Regular Array Synthesis using ALPHA 3

1 Introduction

We describe our experiences in using ALPHA as a tool to develop regular array processor circuits
from a high level description of an algorithm. ALPHA is a functional language based on the for-
malism of systems of affine recurrence equations. Algorithms may be represented at a very high
level in ALPHA, close to how one might specify them mathematically and are in an equational
and fully parallel form. The input specification can be transformed into a form called ALPHAO [2]
(a subset ALPHA) which is suitable for generating a netlist for the regular array processor. Then
finally, an EDIF netlist is generated for the circuit. ALPHAO is obtained by performing a series of
program transformations which can be independently proved, and thus the derived ALPHAO pro-
gram is correct by construction (assuming that the specification was correct). The ALPHA language
is very restrictive in the class of algorithms that it can represent, but is useful for programming
mathematical types of algorithms such as the kinds currently being proposed for signal and video
processing. The current ALPHA environment is built on top of MATHEMATICA [13], a commercially
available symbolic algebra system which supports imperative, functional, and rule-based program-
ming paradigms built on top of a symbolic calculator. This environment provides the means to
both create and run ALPHA transformation and analysis tools.

To demonstrate the proposed design process, we wanted to chose an example problem which
was not too complex, but which at the same time tested a broad range of ALPHA capabilities in
order to find the strengths and weaknesses of the ALPHA system. This project has thus helped
us in development of the ALPHA environment. The example that we chose is polynomial division.
This problem is interesting because it e involves a system of mutually recursive equations, e is
specified in terms of two parameters which specify the size of the two inputs, ¢ has more than one
output, e has a systolic solution that requires more than one type of processor, and e is not always
100% efficient (depending on the chosen projection).

2 Introduction to ALPHA

ALPHA was originally designed in the context of systolic array synthesis research [4, 7] done at
IRISA in France. A fundamental feature of ALPHA, which sets it apart from other functional lan-
guages, is that all variables in ALPHA are based on polyhedral index domains [12]. Variables are
strongly typed and denote a mapping from an indez domain (the set of all integral points within a
specified union of polyhedra) to values in the value domain (integers, reals, or booleans). A polyhe-
dron, {z € Z"|Az > b}, is the intersection of a finite set of halfplanes, each of which is defined by a
linear inequality. The syntax of a polyhedron in ALPHA is (for example): { i,j | 0<i<N; 0<=j<i
}, and the syntax of the declaration of an integer variable A based on that index domain is: 4 :
{ i,j | 0<i<N; 0<=j<i } of integer;. A system may have input, output, and local variables.
The equations that define the variables follow the declarations and are delimited by the pair of key-
words let and tel. The language is equational, and each equation variablerys= expressiongyg
names a variable on the LHS and has an expression on the RHS. A dependency is an affine function
of indices which maps the index domain of the LHS variable to an index domain on the RHS. Syn-
tactically, a dependency is written as: (index, index, ... — index-expr, index-expr, ...),
where each index—-expr is an affine expression of the indices to the left of the arrow. Examples of af-
fine functions are (i->i-2) and (Z,1i,k->Z-1,2Z-k-1,k-1). In ALPHA , affine function operators
can be written explicitly: X = B.(i->1i) - b.(i->i,i-1); or equivalently, they can be written
implicitly: X[1] = B[i] - b[i,i-1];

The syntax for an ALPHA expression is presented below. (Vertical bar is an alternate, square
bracket is an optional construct and the asterisk is a Kleene star)

RR n~"2289

4 Doran K. Wilde and Oumarou Sié

data-variable | constant

[expression] op expression op is a binary or unary operator
expr . dep an expression composed with an affine dependency function
domain : expr an expression restricted to a particular (sub)domain
case expr* esac a union of expressions defined over disjoint subdomains

The denotational semantics of ALPHA [7] specify that every ALPHA expression denotes a func-
tion from indices to values. These semantics are fully compositional, and form the basis of a
transformational system. The change of basis is the most common transformation and is similar to
the reindexing of loop variables done in vectorizing and parallelizing compilers. A change of basis
of variable A using the affine transformation function F' and left inverse transformation function
G, such that (F o G)y =y, y € Dy, is done by rewriting an ALPHA program as follows:

A : D of integer; A : Preimage[D, F] of integer;
let let

A=A — A= (-AF-).G;

com A T U
tel; tel;

There is also an ALPHA transformation that “normalizes” any ALPHA program into a syntactic
form where all case constructs occur at the outermost level in the RHS of an equation, and all
compositions of dep’s are converted into a single dep function. Many other transformations are
used and will be described in context of the example.

3 The polynomial division problem

Given two polynomials

N N-1 2
aNx +an_1x + -4 ax” +a1x+ag

B(z) = byx™ £y a™ 4 b Fbix 4 b

2
—~~
8
~—
l

where N and M are parameters such that N > M > 1 and where ay # 0 and by # 0. A com-
putation produces the quotient @ and remainder R of the division of polynomial A by polynomial
B, such that

bl

Q) = an-ma™ M4 qnoy 2T e e+ g0

R(z) = ryae™ ey oM 4 e’ e+

R(z) = Az) - B(2)Q(z)

The problem is to produce a systolic array to do the above computation which uses the sequences
An...0 and Bps..o as inputs and produces Q(n_ar)..0 and R(ar_1)..0 as outputs.

Example: Consider the example of

A=32" 4425+ 525+ 62 + 525 + 422 + 32 + 2

= :3'4—23 6—3 R:—82 S
B =25+ 222 + 3z + 2 =3z~ 2"+ 6 v

The computation can be done using standard hand methods as shown below.

INRIA

Regular Array Synthesis using ALPHA 5

3zt —2z° +0z2 +6x -3
> 4222 43z 42) 3z7 +4z% +52° 4627 +5z° +4z2 +3z +2
3z7 —|—6o:6 —|—9275 —}—61?4

—226 —4z5 —6xt —4z°
0x® +6z* +9x —|—4z2
0x® 40zt +0z° +0z2
+6z% +9z7 +4z7 +3z
+6zt 122 41822 412z
—3z3 —14z2 —9zx +2
—3a° —62? -9z -6
—8x2 +0x +8

Description in ALPHA: The recurrence equations for polynomial division were derived following
the above hand method and encoded into ALPHA. The R = A — BQ pattern is clearly visible in the
recurrence equations for rr below. The program was executed to validate the specification. This
resulting ALPHA program is shown below.

-- Polynomial Division, parameterized

system dp (a : { k,N,M | 0<=k<=N ; N>=M>=1 } of integer;
b : { k,N,M | 0<=k<=M ; N>=M>=1 } of integer)
returns (q : { j,N,M | 0<=j<=N-M; N>=M>=1 } of integer;
r : { k,N,M | 0<=k<=M-1; N>=M>=1 } of integer);
var
rr : { k,j,N,M | 0<=k<=M-1; 0<=j<=N-M; N>=M>=1 } of integer;
let
q = case
{j,N,M]| j=N-M} : a.(j,N,M->N,N,M/b. (j,N,M->M,N,M);
{j,N,M | j<=N-M-1} : rr.(j,N,M->M-1,-j+N-M-1,N,M)/b.(j,N,M->M,N,M);
esac;

rr = case
{k,j,N,M | j=0 } : a.(k,j,N,M->k+N-M,N,M)
- q.(k,j,N,M->-j+N-M,N,M) * b.(k,j,N,M->k,N,M);
{k,j,N,M | j>=1; k=0 } : a.(k,j,N,M->-j+N-M,N,M)
- q.(k,j,N,M->-j+N-M,N,M) * b.(k,j,N,M->k,N,M);
{ k,j,N,M | j>=1; k>=1 } : rr.(k,j,N,M->k-1,j-1,N,})
- q.(k,j,N,M->-j+N-M,N,M) * b.(k,j,N,M->k,N,M);
esac;
r = rr.(k,N,M->k,N-M,N,M);
tel;

As the recurrence equations were being derived, it was useful to create a graphical representation
of the equations, in the form of a dependency graph. The dependency graph of figure 1 was helpful
to us in the development of the recurrence equations.

This dependency graph is actually several transformations beyond the recurrence equations as
specified above since communication has already been localized.

4 Design methodology

The following is a presentation of a design methodology for transforming an algorithmic specifica-
tion into a netlist of systolic array processors. Each step may in turn require a number of low—level
AvrpHA transformations.

1. Loading Parse ALPHA into an abstract syntax tree (AST). The AST is the internal represen-
tation used by the system to do all transformations and operations.

RR n 2289

Doran K. Wilde and Oumarou Sié

0
N-M
q
J
N-M
0 — A, s, I']
N-M
N‘ ® rrNode
0 b M]
1 [®] ggNode
0 k M

Figure 1: Dependency Graph for Polynomial Division Program

2. Alignment of variables. Place all local variables on a common dimensional grid in a manner

which minimizes communication. This is also called placement, since variables are placed
relative to each other. This gives a common reference space for all variables and facilitates
later transformations and analysis.

. Localization of communication. Pipeline broadcasted variables to where they are used in order
to localize all communication between nodes on the dependency graph. Local communication
is from a node (in the dependency graph) to neighboring nodes only. A localized program is
called uniform.

. Fiz parameters. Parameters are fixed to specific values. Ideally, this should be done later in
the design process. However, for the time being, the tool we have to find the schedule requires
fixed sized, finite arrays.

. Choose a projection vector. A projection vector (and thus an allocation function) is chosen.
This is the direction that nodes in the dependency graph will be projected onto physical
processors. All nodes falling on the same projection line will be mapped to the same physical
processor.

. Pipeline inputs and outputs. Inputs and outputs are pipelined so that all I/O to the array
enters or exits at the ends of the array [8, 5]. In the case of a linear array, all /O is to/from
the processors at the two ends of the array.

. Find a timing function. A function (change of basis) which maps one of the dimensions of
the virtual domain to “time”, is called a timing function. The program is called causal if for
every dependency (def-use pair of variables) a value is used only after the time when it is
computed.

. Apply timing and allocation functions. Perform the change of bases to reflect the timing and
allocation functions on all local variables. Indices are renamed “t” and “p” to represent time
and processor (space).

INRIA

Regular Array Synthesis using ALPHA 7

9. Separation of time and space. In the definitions of local variables, separate case statements
whose alternatives depend on both time and space into doubly nested case statements where
the outer most nest (the space case) depends only on space and the inner most nest (the
time case) separates the temporal behavior for each different range of processors. A single
processor may do different computations at different times. After the separation of time and
space, an ALPHA program shows how a variable is computed in each (range of) processor(s),
as a function of time.

10. Control Variable Generation. The inner time cases generated above specify that, for some
variables, different computations may need to be done at different times. In this step, a time
dependent control variable, or set of control variables, is created to govern which computation
to select. To chose among n different possibilities, requires [log(n)] control variables. A (set
of) control variable(s) is created for each variable having a time case in the RHS of its
definition. Later on, during netlist generation, these control variables will become control
signals to multiplexors components [2, 9].

11. Normalize to ALPHAO. Separate statements which perform more than one level of arithmetic
into multiple statements, introducing new local variables as needed. Control variables may
be pipelined and simplifications and optimizations performed where possible. For example,
two different, but compatible, control variables may be merged into a single variable.

12. Generate netlist. The array netlist generator creates a hierarchical netlist description in the
EDIF format [11] from the array specification contained in an ALPHAO file. The resulting
netlist has the following parts:

e Basic cell library. A technology dependent library of basic components such as registers,
multiplexors, and basic arithmetic functional blocks.

e Structural descriptions of the processors. A regular array is composed of one or more
processor cell types. For each processor type in the array, the netlist contains a structural
definition containing the interface declaration, the list of instances of basic components,
and the interconnection between the components.

e Structural description of the array. This description is the top level in the structural
hierarchy and consists of instances of processors and the interconnection between the
processors.

5 Transformation of the polynomial division problem

In this section, we present an annotated script file which gives each major low—level transformation
needed to implement the steps described in section 4. This script file may be read and executed
by the MATHEMATICA—ALPHA environment since the commands are in fact functions written in
MATHEMATICA . Each command analyzes and/or transforms the current AST little by little toward
a desired target format.

load["dp.alpha"];
Loads the source specification file ”dp.alpha”. Parses the file and creates the AST inside
MATHEMATICA with name $result.

analyze[]
Performs static analysis on the program using the denotational semantics of ALPHA. Checks
for domains which do not match their declarations and expressions which are defined over
empty domains [10].

addlocall"qq = q"1;
Creates a local variable qq to represent q wherever it is used. This is done in preparation for
aligning the computations associated with g with the other variables.

RR n~"2289

8 Doran K. Wilde and Oumarou Sié

addDimension["qq.(j,N,M->M,j,N,M)","k"];
Places the one dimensional variable qq on a two dimensional (k, j)—grid by adding a dimen-
sion to it and placing it on the line k=M.

changeOfBasis["qq. (k,j,N,M->k,N-M-j,N,M)"];
Align the variable qq with the variable rr to make all communication between qq and rr
local. See figure 1— the qq nodes are boxed and the rr nodes are not boxed.

pipeline["rr","b.(k,j,N,M->k,N,M)","B1. (k,j,N,M->k,j+1,N,M)"];
pipeline["qq","b.(k,j,N,M->M,N,M)","B2. (k,j,N,M->k,j+1,N,M)"];
pipeline["rr","qq. (k,j,N,M->M,j,N,M)","qQ. (k,j,N,M->k-1,j,N,M)"];

The first command pipelines the expression b. (k, j,N,M->k,N,M) used in variable rr, crea-

ting a new local variable B1 to do the job. (k,j,N,M->k,j+1,N,M) gives the direction to
propagate the values inside B1. The other two pipeline commands perform similar tasks.

merge ["Bi" s ngon s "B"] ;
merge [llQll , lqull , llQll] ;
Do a little simplification by combining compatible variables B1 and B2 and calling the com-

bination B. Merge Q and q into Q as well. Having been pipelined and simplified, the program
is now uniform.

project["k,j,N,M| N=9;M=4 ", "B .(k,j,N,M->k,j)"]; (likewise for Q and rr)

project["i,N,M| N=9;M=4 ", "a.(i,N,M->i)"]; (likewise for b, r, and q)
Fix the parameters N and M to the values 9 and 4, respectively. This is done for each of the
3 local variables, the 2 input variables, and the 2 outputs variables.

At this point the program is uniform and parameters are set to a specific problem size. The resulting
ALPHA program is:

system dp (a : {i | i>=0;-i+9>=0} of integer;
b : {k | k>=0;-k+4>=0} of integer)
returns (q : {j | -j+5>=0;j>=0} of integer;
r : {k | k>=0;-k+3>=0} of integer);
var
Q : {k,j | -k+4>=0;3j>=0;k>=0;-j+5>=0} of integer;
B : {k,j | k>=0;-j+5>=0;-k+4>=0;j>=0} of integer;
rr : {k,j | k>=0;j>=0;-k+3>=0;-j+5>=0} of integer;

let
Q = case
{k,j | -k+3>=0}: Q.(k,j->k+1,j);
{k,j | k-4=0;j=0}: a.(k,j->9) / B;
{k,j | k-4=0;j-1>=0}: rr.(k,j->3,j-1) / B;
esac;
B = case
{k,j | j=0}: b.(k,j—>k);
{k,j | j-1>=0}: B.(k,j->k,j-1);
esac;
q = Q.(j->4,-j+5);
rr =
case
{k,j | j=0}: a.(k,j->k+5) - Q * B;
{k,j | k=0;j-1>=0}: a.(k,j->-j+5) - Q * B;
{k,j | j-1>=0;k-1>=0}: rr.(k,j->k-1,j-1) - Q * B;
esac;
r = rr.(k->k,5);
tel;

INRIA

Regular Array Synthesis using ALPHA 9

q N-M | rq
o o T T
o
T
o :
S Projection
o BaEe P o
O Delay Node
® rNode
[® gqNode
| K " Isotempordl Line ab

Figure 2: Dependency Graph for Polynomial Division Program

Now, we are ready to set the projection direction for the program. In this case, there are two
good choices for projections: one along the X-axis (see figure 2) and a second along the Y—axis
(see figure 3). Thus, the design sequence splits here into two different trajectories resulting in two
entirely different designs, depending on which projection is chosen. We will follow the first choice—
project along the X—axis.

$space = {-1,0};
This is the (processor space) projection vector along the X-axis.

pipeIO["a. (k,j->-j+5)","A. (k,j->k+1,j+1)","k,j | j>=0"1;
The input variable a which enters on the left hand side of the dependency graph is pipelined
such that a will only enter the processor array from the bottom (see figure 2).

plpeIO [nqn s nqn s "Q2- (k,j_>k+1:j+1) " s "k,j | j<=5||] ;
The output variable q derived from Q will be pipelined so that q exits from the top of the
processor array (see figure 2).

$time = minPeriodLinearOffsetSched[$space, "B", "Q", "rr","Q2","A"];
This is an analysis step which sets up and solves a linear programming problem to find an
optimal schedule for uniformly dependent algorithms [1]. The result is a timing function. If
the program is non—causal, or not uniform, this step will fail to find a schedule.
ApplyChangeOfBasis[$time, $space, "B", "Q", "rr", "Q2", "A"]
The timing function and projection vector are used to compute change of basis functions
for each of the specified variables. These change of basis transformations are then performed
automatically.

Here, the program has been scheduled and projected. The indices representing time and processor
space have been renamed “t” and “p”. The program at this point is as follows:

system dp (a : {ili>=0;-i+9>=0} of integer;
b : {klk>=0;-k+4>=0} of integer)

returns (q : {jl-j+56>=0;j>=0} of integer;

r : {kl|k>=0;-k+3>=0} of integer);

RR n 2289

10 Doran K. Wilde and Oumarou Sié
O Deay Node 0
® rrNode
L
(@ gaNode ey
" Isotemporal Line Sy A 0
-
o A
: ==
A== —8 | NM
-+ ;=
o| &
b Projection
M [N 1
k
a
YY) q
b r
Figure 3: Dependency Graph for Polynomial Division Program
var

Q2 : {t,pl-t+2p>=0;t-p>=0;-p+5>=0} of integer;
A : {t,plt-2p-4>=0;-t+p+9>=0;t-p-5>=0;p>=0} of integer;
Q : {t,plt-2p>=0;p>=0;-t+2p+4>=0;-p+5>=0} of integer;
B : {t,pl-t+2p+4>=0;-p+5>=0;t-2p>=0;p>=0} of integer;
rr : {t,pl-t+2p+4>=0;p>=0;t-2p-1>=0;-p+5>=0} of integer;
let
Q2 = case
{t,plt-2p=0} : Q;
{t,pl-t+2p-1>=0} : Q2. (t,p->t-1,p-1);
esac;
A = case
{t,plp=0} : a.(t,p->-t+9);
{t,plp-1>=0} : A.(t,p—>t-1,p-1);
esac;
Q = case
{t,plt-2p-1>=0} : Q. (t,p->t-1,p);

INRIA

Regular Array Synthesis using ALPHA 11

{t,plt=0;p=0} : a.(t,p->9)/B;
{t,plt-2p=0;p-1>=0} : rr.(t,p->2p-1,p-1)/B;
esac;
B = case
{t,plp=0} : b.(t,p—>-t+4);
{t,plp-1>=0} : B.(t,p—>t-2,p-1);
esac;
Q2.(j->-j+10,5);
rr = case
{t,plp=0} : a.(t,p->-t+9) - Q * B;
{t,plt-2p-4=0;p-1>=0} : A - Q * B;
{t,plp-1>=0;-t+2p+3>=0} : rr.(t,p->t-1,p-1) - Q * B;
esac;
r = rr.(k->-k+14,5);
tel;

Q0
1]

We continue to evolve this program towards ALPHAO which easily maps to circuit components
such as registers, multiplexors, ALUs, and combinational logic.

$timeIndexPos = {1}

$spaceIndexPos = {2}
This tells the ALPHA environment where to find the time and space indices, respectively,

within the list of indices.

spaceTimeCase["rr", $timeIndexPos, $spaceIndexPos]; (likewise for A, B, Q, and Q2)
These transformations separate the cases dependent on both time and space indices into
nested cases, where the outer cases depend only on processor space, and the inner cases
specify a behavior for each range of processors. For example, the first command separates
the space and time dependencies of the variable rr as follows:

rr = case
{t,p | p=0}: a.(t,p->-t+9) - Q * B;
{t,p | p-1>=0}:
case
{t,p | t-2p-4=0}: A - Q * B;
{t,p | -t+2p+3>=0}: rr.(t,p->t-1,p-1) - Q * B;
esac;
esac;

Control signal generation
For the case statements whose alternatives depend on time, a control signal is generated
which selects among the alternatives as a function of time. For example, for the variable rr
(see above), a control variable loadrr is created and used in the modified definition of rr as
follows:

loadrr = case
{t,plp=0} :
case
{t,plt-4=0} : True.(t,p->);
{t,pl-t+3>=0} : False.(t,p->);
esac;
{t,plp-1>=0} : loadrr. (t,p->t-2,p-1);
esac;
rr = case
{t,plp=0} : a.(t,p->-t+9) - Q * B;
{t,plp-1>=0} : if (loadrr) then A - Q * B
else rr.(t,p->t-1,p-1) - Q * B;

esac;

RR n 2289

12 Doran K. Wilde and Oumarou Sié

Simplification and Optimization
In this step, the ALPHA program is finally transformed into ALPHAO. Control variables are
combined when possible and intermediate variables are introduced where necessary in order
to only have one single arithmetic operation per simple expression. Continuing the example
above, new variables QBout and rr1 have been added in the code below to bring it into
ALPHAO form.

QBout = Q * B;
rrl = if (loadrr) then A else rr.(t,p->t-1,p-1);
rr = case

{t,p|p=0} : a.(t,p—>—t+9) - QBout;
{t,plp-1>=0} : rrl - QBout;
esac;

The above is a part of the final ALPHAO program.

save['dp-final.alpha0"]
The final ALPHAO program is written out (the AST is translated back into ALPHA notation)
to the file “dp-final.alpha0”.

alpha2edif <dp-final.alphaO >dp.edif

From the operating system, the final program is run through a netlist compiler which produces
an EDIF netlist for the processor array. The translator makes use of a cell library which allows
us to migrate between technologies and facilitates the interface with other tools such as a logic
simulator or logic synthesizer. Presently, only one-bit processors are supported. For one-bit
functions, the standard cell approach is better suited than the datapath approach [6]. In
appendix A, we give the resulting schematics for the polynomial division problem. Figure 4
is a schematic of the linear array of processors composed of two processor types. Figures 5
and 6 are schematics of the first (p = 0) and subsequent (1 < p < 5) processors, respectively.
Since these are single—bit processors, multiplication is done with an AND gate, subtraction
is done with an XOR gate, and division is always by 1.

The EDIF netlist which is generated can be read by the MADMACS regular array layout
generation system [3]. In this system, the physical topologies of the processor and array are
specified and generated.

6 Conclusions

We have presented our current research in doing regular array synthesis using a program trans-
formational approach in the ALPHA environment. This environment is a toolchest of mechanical
transformation and analysis tools which can be applied to a program to move it along a trajectory
in its design space from the original specification to a desired implementation. Transformations are
designed and written to guarantee the semantic equivalence of a program, before and after being
transformed. The choice of which transformation to apply at each step is made by the designer. We
have demonstrated this approach using polynomial division, an example of medium complexity.

Ongoing research is being conducted to make the transformation process more and more au-
tomated, getting input from the designer when needed. This will make the ALPHA environment
much closer to a compiler which automatically translates an algorithm into a netlist. There is also
ongoing research in translating netlists of array processor architectures into geometry using the
MADMACS tool. The ALPHA language is continuing to evolve and we are currently working to
extend the ALPHA language to increase both its representational power and readability, all while
retaining the strict denotational semantics needed to analyze and transform an ALPHA program.
Optimization of an ALPHA program to minimize (or reduce) the number of registers, multiplexors,
and ALUs needed is still an open problem.

INRIA

Regular Array Synthesis using ALPHA 13

7 Acknowledgments

Zbi Chamski programmed much of the current ALPHA system within the MATHEMATICA envi-
ronment. Hervé Le Verge was helpful in giving insight and mathematical rigor for many of the
transformations. Fernando Rosa Do Nascimento helped write the specification of polynomial divi-
sion and validate it with simulation. Finally, we thank Patrice Quinton, Sanjay Rajopadhye, and
Eric Gautrin for their valuable discussions and encouragement.

References

[1] A. Darte, L. Khachiyan, and Y. Robert. Linear scheduling is close to optimality. International
Conference on Application Specific Array Processors, 37-46, 1992.

[2] Catherine Dezan. Génération automatique de circuits avec ALPHA du CENTAUR. PhD thesis,

Université de Rennes 1, Rennes, France, Feb 1993.

[3] E. Gautrin and L. Perraudeau. MADMACS: an environment for the layout of regular arrays,
pages 345-358. Elsevier Science Publishers B.V. (North-Holland), 1993.

[4] H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its use for the design of systolic
arrays. Journal of VLSI Signal Processing, 3(3):173-182, September 1991.

[5] Hervé Le Verge. Un environnement de tranformations de programmes pour la synthése d’architectures
régulieres. PhD thesis, Université de Rennes 1, Rennes, France, Oct 1992.

[6] R. Leveugle and C. Safinia. Generation of optimized datapaths: bit-slice versus standard cells,
pages 153-166. Elsevier Science Publishers B.V. (North-Holland), 1993.

[7] Christophe Mauras. Alpha, un langage équationnel pour la conception et la programmation d’archi-
tectures paralléles synchrones. PhD thesis, Université de Rennes 1, Rennes, France, Dec 1989.

[8] S. V. Rajopadhye. I/O behavior of systolic arrays. In IEEE Workshop on VLSI Signal Processing,
pages 423-434, IEEE Press, November 1988.

9] S. V. Rajopadhye. Synthesising systolic arrays with control signals from recurrence equations. Dis-
g g
tributed Computing, 88—105, May 1989.

[10] Fernando Rosa Do Nascimento. Méthodologie de Conception d’Architectures Spécialisées — une Etude
de Cas. PhD thesis, Université de Rennes 1, Rennes, France, Oct 1993.

[11] P. Stanford and P. Mancuso. FElectronic Design Interchange Format-Version 2 0 0, Recommended
Standard EIA-548. Electronic Industries Association, EDIF Steering Committee, Washington, D.C.,
1989.

[12] D. Wilde. A library for Doing Polyhedral Operations. Technical Report Internal Publication 785,
IRISA, Rennes, France, Dec 1993.

[13] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer, Second Edition.
Addison—Wesley Publishing Company, Inc., 1991.

RR n 2289

14 Doran K. Wilde and Oumarou Sié

A Schematics of Polynomial Division Circuit

rruut rrin rrout | rrin rraut | rrin rrout | rrin rrout | rrin rrout
U-‘l [aut C2in UE [R2aut | CIn UE [2out | D2In Uq_ Olout | C2In U5 [2out | D2In UB D2 auk HQ
]] Bin Baut | BIn Bout | Bn Baut | Bin Raut | Bn Baut
L] A Aln Bdaut | Aln Aauk | Aln Aaut | An Aaut | Aln B uk
k ck ck ck ck | ck —t— ck |ck ck |ck ek | ck ck
|I:l I badrr oadrr kadrrin kadrrout | kadrrin adrrout | kadrrin kadrrout | kadrrin kadrrout | kadrrin kadrrout
|l-:l § g bod 02 kodD2 kodDn kodDlout | LodDAn kodDZout | RodO2n kodD2oub |kodD2n wodDZout (wodO2Un kad D2out
ﬁ kod O kad O kad Oin bod Dout | kad On kod Dout | kad On bod Dout | kad Oin kad Gout | kad On kad Dout

Figure 4: Schematic for processor array

41

A2

itk

T

2
L4
o

]
EN oM [CE]

Frout

Pl 7 out

E G

M B

A, it

P A,

loodrr G

Wl |codrr

loodQ2 O

B | nodDz2

lond(it

M [nad0

ol Gl

Figure 5: Schematic for Processor 2

Bl - |

INRIA

Regular Array Synthesis using ALPHA

= it 6
n
rrin @e—— o o T n e z 0B ou ﬁbz—ﬂrrnuf
1k =
i 14
2x — o] -
2in B Wz T ro q ur; 02 u t
s b | "
2x 2x
Bin B o H e ¥EI oyt
—% o I:: 3] —drm I::
2x
bin B H4 J M oyt
ol o :: b
2x 2x
loadrrin O o5 | aHe ¥ |5 adrrout
—y o I:: 3] —drm I::
2x 2x
load@2in B e J 210 # o od 0 2out
ol o :: b s ::
2x 2x
loadQin B e | o] ¥ | adQout
ok o :: be B3> o ::
il e ¥ |1

RR n 2289

Figure 6: Schematic for Processor 1

JINRIA

Unité de rechercheINRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derecherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocguencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derechercheINRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

