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Métamorphoses d’objets tridimensionnels

Résumé : Nous présentons une nouvelle méthode pour calculer une transformation entre
des objets polyédriques. Les problemes de correspondance et d’interpolation sont conjoin-
tement abordés. L’approche proposée fournit & I’animateur une grande capacité de controle
grace a la simplicité des spécifications et de ’interaction.

Mots-clé : Animation, CAO, Interpolation, Déformation, Modélisation géométrique



Feature-based shape transformation for polyhedral objects 3

1 Introduction

We are interested in simulating deformations of geometric shapes. The way the deformation is
specified is important: it determines both the flexibility and the usability of the deformation
tool. There exists many approaches to deform a 3D shape from an object using a modelization
of a time-dependent deformation process (cf. [Bar84, TPBF87, PEF*90, CJ91, BD93)]).
Our goal is to provide a general and intuitive tool that computes a shape transformation
mainly specified by two shapes: the initial and the final shapes.

Such a tool is useful in both animation and design.

e In animation, it is well adapted to traditional techniques such as keyframing: the ob-
jects are given at each keyframe and the in-between shapes are computed by the shape
transformation. Moreover, the visual effects of metamorphosis between two images or bet-
ween two shapes are very popular. This effect is called “morphing” ([BN92, Hug92]) and is
often used in movies.

e In design, it is used to create new shapes by combining two objects ([CP89, KR91]).

Our concern is concentrated in the 3-D shape transformation problem; thus, we will not
describe the 2-D approaches (the main approaches can be found in [CP89, BN92, SG92,
SGWMO93]).

The 3-D methods can be classified into two families according to the type of information
used to compute the intermediate shapes.

The volumic approaches [KR91, Hug92].

As the volumic information is used to compute the shape transformation, there is no restric-
tion for the topological correspondence between the initial and the final shapes: for example,
a torus can be transformed into a sphere.

e Kaul and Rossignac [KR91] define the internal points of intermediate polyhedral ob-
jects using linear interpolation based on Minkowski sums of the internal points of the
two original polyhedra. The faces of the deformed shapes have a constant orientation
and their vertices move on a straight line between a vertex of the initial shape and
a vertex of the final shape. Moreover, when the two original shapes are convex, these
faces form the boundary of the deformed polyhedron.

e Hughes [Hug92] proposes a method for sampled volumetric models. He defines an inter-
polation between the Fourier transforms of the two models, separating the processing
of high frequencies and low frequencies. The most interesting point in this approach
is the underlying idea of dissociating the general shape and the details during the
transformation.

These two approaches are robust but there is no control over the intermediate shapes: only
one shape transformation is computed from two original solids.

The boundary approaches [BU89, KPC91, KPC92, Par92].
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4 Francis Lazarus, Anne Verroust

In all the cases, the original solids are polyhedral objects and they have equivalent surface
manifold topologies. For these methods, the shape transformation process is decomposed in
two parts:

1. a correspondence process, where the correspondence between the two surfaces is es-
tablished. As the surfaces are polyhedral, the process is reduced by computing the
correspondence between the topological structures of the two objects. In fact, all the
approaches build a vertex/edge/face network containing the topological structures of
the original objects.

2. an interpolation process: once the correspondence is established, the in-between poly-
hedra are computed using the corresponding vertices. This is achieved by either linearly
interpolating or using a spline interpolating curve between the corresponding vertices
(Hermite cubic path with end tangents set equal to the vertex normal in [KPC92]).

All the approaches consider the two processes separately and propose solutions to the cor-
respondence problem.

e First of all, Bethel and Uselton [BU89] tackle the correspondence process mainly as
a graph correspondence problem. As the geometry of the two polyhedra is not often
taken into account, the visual effects produced during the shape transformation are
often not intuitive in the general case and are difficult to control.

e Kent, Parent and Carlson [KPC91, KPC92] use the geometric information of the initial
and the final shapes to build an adjacency graph containing their adjacency graphs.
Their approach is very intuitive and convincing for star-shaped objects: in this case,
they use a spherical projection to solve the correspondence and the interpolation pro-
cesses. More precisely, the correspondence process is decomposed in two steps:

* a projection of each adjacency graph is done onto the surface of the unit sphere,
* the common adjacency graph is computed by merging these projected graphs.

They generalize their appoach in [KPC92] mainly by extending the projection method
to other classes of polyhedral models. In most of these cases the relationship between
the geometry of the object and the mapping method seems less natural.

e Parent [Par92] uses a recursive subdivision process to build the common adjacency
graph. In his method, the user can indicate explicitly the correspondence he wants to
ensure between areas of the objects (areas composed of connected sets of faces). The
common adjacency graph is then obtained by recursively subdividing these areas.

Our opinion is that dissociating the correspondence from the interpolation process leads to
a difficult control of the deformation of the shape during the interpolation. In a sense, the
shape transformation problem has to be taken as a whole, even if two problems have to be
solved.

Inria



Feature-based shape transformation for polyhedral objects 5

Our method can be classified as a boundary approach but it differs from the previous models
in several points:

e First, we solve jointly the correspondence and the interpolation processes.

e We do not built a common adjacency graph from the initial and the final adjacency
graphs. A common parametrized polyhedral mesh is associated to the initial and final
objects during a sampling process.

e We propose to the user the control of the “global” evolution of the deformation. This
control is done by specifying two corresponding skeletal structures (here 3D curves or
axes) from which the parametrizations of the sampling meshes are built.

In this paper we will focus our attention on objects that are star-shaped around an axis. For
these objects there exists a 3D curve inside the object, namely its axis, such that each point
of the object can be attached to the axis without ambiguity. These objects can naturally be
split into 3 sheets:

e two hemispherical parts, corresponding to the points that are attached to one extremity
of the axis.

e one cylindrical part, corresponding to the points that are attached orthogonally to the
axis, i.e. that belong to one normal cross-section of the axis.

Each of these parts admits a natural parametrization, respectively spherical and cylindrical.
We shall refer, in this paper, to a more general cylindrical coordinate system, where the
z-axis is replaced by a 3D curve (the axis of the object).

2 The basic scheme

In order to perform the transformation of one object into another, the user must specify two
3D axes, one for each object, such that the objects are star-shaped around them. The curves
are discretized and a 3D frame is associated to each discretization point. As in [LCJ93], we
have chosen a rotation minimizing orthogonal frame along each 3D curve [Bis75, Klo86].
Each axis is used to define an appropriate parametrization of the associated object, such as
described earlier. The shape transformation process will then consist in the interpolation of
such parametrization. We propose here an algorithm decomposed in two main steps. Each
of these steps will be explained in the following sections.

e Using the axes, the sampling of the objects are computed using the natural parame-
trizations. This sampling process must be followed by an adjustment of the sampling
vertices/edges/faces to the singular features of each object. For polyhedral objects
these features are sharp edges or conic points. This adjustment is of prime importance
for a good approximation of the shapes.

This process will be detailed in the next section.
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e Then we interpolate simultaneously the parameter of each corresponding parametri-
zation (i.e. a 3D frame for a spherical parametrization and a whole 3D curve for a
cylindrical parametrization) and the local coordinates of each sampled objects with
respect to these parametrizations.

This will be described in section 4.

At this stage it is useful to mention that the correspondence problem is automatically
solved by taking the same discretization in the parameter space of two corresponding para-
metrizations of the objects.

3 Sampling and adjustment

3.1 Sampling

Given an object and its axis, we sample the object by computing the intersections of its
boundary with a set of half-lines attached to the axis. These half-lines are built from the
axis following two different ways:

e they radiate from one of the two axis extremities, in the half-space determined by the
normal cross-section of the axis at this extremity. They intersect the object at two
hemispherical sheets. Given one extremity, each half-line is defined by two angular
parameters, as shown in Figure 1.

e they belong to one normal cross-section of the axis. Here, the collection of intersection
points compose the cylindrical sheet of the object. In this case, each half-line is defined
by one angular parameter and an abscissa along the axis (see Figure 1).

We will call these half-lines sampling half-lines in the following.

In both cases, the parameters may vary in a rectangular domain. The sampling is thus
obtained by mapping square lattices in the parameter spaces onto the object. By connecting
the sampling points according to the square grid associated to the square lattice, we define
a mesh subdivided in three sheets. The mesh is composed of rectangular faces except for
the poles of the two hemispheres where triangular faces are joined at the respective pole
(see Figure 1). Let us point out that for the hemisphere, one edge of the associated square
domain [0, 27(x [0, ] is mapped on a single point.

The sampling of an object is computed as follows:

e each vertex of the original object is examined and localized w.r.t. the parametrization
induced by the axis. As in [LCJ93] this is done by finding the closest point on the axis.

o for each face F of the object, we compute the intersections with the sampling half-lines
and F. More precisely,

Inria



Feature-based shape transformation for polyhedral objects 7

Figure 1: The three sheets

— given the parameters of the vertices of F, the face F is cut in three parts w.r.t.
the three sheets (one or two may be empty),

— inside each sheet, F is projected in the parameter space, using the parameters of
its vertices previously evaluated. More precisely, the sampling parameters appea-
ring in the projected region are located and the corresponding sampling half-lines
are intersected with F. This is done by a sweep, the length of the sweep being
determined by the the extremal parameters of the vertices of F:

* for the cylindrical part, we cut F with every intermediate cross section and find
the sampling parameters for each intersecting segment (see Figure 2).

* for the hemispherical parts, the process is similar but the intermediate cross
sections are the planes determined by the angular parameters 6 (cf. Figure 1).

3.2 Adjustment

If we apply this algorithm to a cube with a straight axis as in Figure 3, the resulting object
will look very different from the original one: the sharp edges of the cube do not appear
on the sampling model. One can notice that the salient features (i.e. sharp edges and conic
points, for a polyhedron) are of prime importance for the appearance of an object, since
they mark (with the contour lines) the discontinuities of the light reflectance function.

Hence, if we want to obtain a good reproduction of the shapes, we have to take into
account the sharp edges and the conic points of the original model during the sampling
process.

RR n~ 2264
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The extremal cross-sections
that circumscribed
the faceABCD

el

Sy

Figure 3: The sampling of a cube (center) and the same sampling after adjustment (right).

In order to minimize the topological change of the sampling mesh previously calculated,
we choose to adjust the sampling mesh by locally deforming this mesh, moving its vertices
and adding some diagonal edges to the rectangular faces. Thus we proceed in the following
two steps:

e we find the sharp edges and conic points of the original object,

e we deform locally the sampling mesh: for each of these entities, we locate the vertices
to be moved, compute their displacement and, if necessary, insert diagonal edges in
the sampling mesh.

3.2.1 Sharp edges

A simple angle criterion between the adjacent faces to an edge allows us to select accurately
the sharp edges. A similar criterion can be applied to conic points. An interactive module
is also proposed to the user in order to give him greater freedom of choice. We obtain from
the above two lists of salient features: a list of sharp edges and a list of conic points.

Inria
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3.2.2 Deforming the sampling mesh

Deforming the sampling mesh consists of fitting the vertices and the edges of the sampling
mesh to the sharp edges and conic points and adding diagonal edges in the sampling mesh
in such a way that, at the end:

e each sharp edge can be decomposed in a set of disjoint edges of the sampling mesh,

e the conic points belong to the vertices of the sampling mesh.

The displacements of the vertices of the sampling mesh are local and bounded w.r.t. the
parametrization. More precisely, a covering of the parameter space in “deformation zones”
associated to the vertices of the sampling mesh is done. These zones are rectangular neigh-
borhoods constructed from a parallel mesh passing by medium values (in Figure 4, the
deformation zones are the rectangles filled in grey surrounding the selected vertices).

This parallel mesh is used to localize the vertices to be moved and adjust them on the sharp
edges and the conic points as follows:

e for each sharp edge £, a sweep is done (similar to the sweep previously used to sample
a face):

€ is cut with every medium intermediate cross section and the parameters of the
intersection points are used to determine the vertices to be moved. One can notice
here that the number of selected vertices is not fixed: in Figure 4, two vertices have
been selected on section D (between intersections of £ with sections C’ and D’) whereas
only one has been selected on section B (between intersections of £ with sections A’
and B?).

Figure 4: The selected vertices are marked in grey and the intersection points in black. The
black curve is the projection of £ in the parameter space. On the left, the vertices have been
selected and, on the right, the sampling mesh have been deformed w.r.t. £.

e When the set of vertices to be moved have been selected, each vertex V is displaced
on a point P belonging to &£ as follows:
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— for the cylindrical sheet, we compute the nearest point Q belonging to £ of the
sampling half-line corresponding to V. If the parameters of Q belong to the de-
formation zone associated to V then P=Q. In the other case, P is determined by
the intersections of £ and the boundaries of the deformation zone associated to
V.

— in the hemispherical cases, we use spherical projection. We compute Q belonging
to E such that its projection Q' is the nearest point from the projection of V
on a sphere centered at the extremity (see Figure 5). We take P=Q when the
parameters of Q are inside the deformation zone associated to V. If it is not the
case, we proceed as in the cylindrical case, using the intersections of £ and the
boundaries of the deformation zone associated to V.

axis,

0
/ e

"y
g

o WA

""""um)nlumllllllulmlluN‘

/
Figure 5: Computation of Q in the hemispherical case.

e The cases of the conic points and of the extremities of the sharp edges are similar: the
points are located w.r.t. the mesh of the deformation zones and the vertices containing
these points in their deformation zone are moved on them.

Once the vertices of the sampling mesh have been moved on the sharp edges, the deformed
mesh may not totally cover €. This is the case when the sequence of selected vertices does
not form a subpath of the sampling mesh. In this case, a diagonal edge must be added each
time there is a “hole” in the sequence of vertices displaced on £. For example, in Figure 4,
four diagonal edges have been added, one for each jump between two cross sections, i.e.,
between A and B, B and C, C and D and between D and E.

If the fineness of the sampling is not sufficient, two sharp edges may deform the same
vertex of the sampling mesh. As taking into account the two edges to compute the final
position of the vertex has no sense, we move the vertex even though it has been displaced

Inria



Feature-based shape transformation for polyhedral objects 11

before. Since the position of the conic points are of prime importance, we choose to examine
first the sharp edges (w.r.t. their order of appearance in the list of sharp edges) and then
the conic points.

The order of the edges inside the list of sharp edges, which determines the relative importance
of the salient features, can be changed via an interactive tool.

4 Interpolation

We must ensure, before the interpolation process, that the two sampled meshes of the objects
have the same topology. This was true before we adjusted these meshes on the sharp edges.
But in the previous section we saw that diagonals could be added to the meshes, thus we
have to report in each mesh the same diagonals. This is done by splitting the rectangular
faces where diagonal edges have been added in two or four triangular faces:

e if only one diagonal appears in one of the two sampling meshes, then it cuts the
rectangular face in two,

o if two diagonal edges have been added (one in each sampling mesh), we have to insert
a new vertex and split the face into four triangular faces.

As we have already stated, the interpolation is performed at two levels: we interpolate simul-
taneously the coordinates systems, which are defined by the axes, and the local coordinates
of each object in these coordinates systems.

4.1 Axes interpolation

We consider the discretized curve as a polygonal line rather than a differentiable entity. We
discretize the two curves with the same number of points since they correspond to sampled
values in the parameter space. Simply it is necessary to find a good interpolation process
between the two polygonal lines. Henceforth, the terms axis, curve or polygonal line will
designate the same entity.

As noticed in [SGWM93], a linear interpolation of the two polygonal lines seems to be
inadequate. For instance, the interpolation of two parallel segments oriented in opposite
directions collapses for some interpolation value; this is not acceptable.

Actually we consider the axis as a moving frame, which means that a 3D frame is
associated to each point of the axis and we interpolate the whole structure (see Figure
6).

A moving frame associated to a curve 7 is a couple (v, R), where R is an orthonormal
moving frame (e, €2, e3) such that e;(¢) has the same direction as the tangent ~'(t) at the
point 7(¢). The basic idea is to interpolate the evolution of these frames rather than the
frames themselves. Thus we interpolate the relative coordinates and the relative rotation
between two consecutive points and frames of the polygonal line. Let’s note (7y1,...,7n)
(resp. (R1, ..., Rn)) the digitized points (resp. frames) of the curve 7, then we have:

Yi+r = 7% + RiXin (1)

RR n~2264
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Figure 6: A discretized axis with its frames

Rit1 =rip1R; (2)

where X, are the local coordinates of ;41 in (v;, R;), and r;4; is the rotation between
R; and R;41. By interpolating the X; and the r; of the two axes, we can construct for any
intermediate time ¢ a polygonal line: starting from a point on the curve (for instance an
extremity) we recursively compute the next point using equations (1) and (2) where X;
and r;4+1 have been replaced by the interpolated values.

We use linear interpolation for the coordinates X; and quaternion interpolation for the
rotation r; (more exactly for the corresponding quaternion g;). We follow the notations of
[Sho87] in equation (4). Hence we have:

Xi(t)=(1—-1t)X;1+1X;i0 (3)
qi(t) = Slerp(gi1, ¢i,2,t) = 411 (g5 4i.2)" (4)

where subscripts 1 and 2 account for the initial and the final curves.

It is clear from the description of the whole process that the interpolation is continuous.
Let us point out here that continuity does not only mean that a slight change in the polygonal
lines would result in a slight change in their interpolation, but also that the process applied
to digitized curves, whose steps of discretization go towards zero, would result in continuous
interpolating curves.

Moreover, equation (1) shows that X; has a second and a third components close to zero
since it is almost parallel to the tangent curve. One can note from equation (3) that the
interpolation is linear at a local level which holds true for the complete length of the curve.
For an exact linear interpolation of the length, we could have interpolated separately the
length and the orientation of X;. However we found this of no practical use.

This curve interpolation leads to good visual results as one can see in Figure 11. Moreover
the computation is simple and fast.

Inria



Feature-based shape transformation for polyhedral objects 13

4.2 Vertex interpolation

A linear interpolation of the local coordinates is performed between two corresponding ver-
tices of each sampled object. Thus the vertex path is obtained by a composition of this linear
movement and of the movement of the associated 3D affine frame. This results in a complex
movement which could not have been designed directly !

As one can see here, interpolation and correspondence (a consequence of the sampling)
are strongly related: in both cases, the main role is played by the sampling half-lines attached
to the axis.

5 A sample of animations

Let us comment our method using a sample of animations.

e ../Figures 7, 8 and 9 illustrate the role played by the axes to control the shape trans-
formation. The original objects are a cube and a cone. Two axes are defined: a vertical
line segment and an oblique curve. These axes are discretized using seven frames and,
for each planar section, sixteen angular parameters are used to sample the objects.
They are drawned in bold for each sampled model associated to an initial or a final
object.

Figure 7: The same axis is used to sample the two original objects.

In Figure 7, the same axis, a vertical line segment, is used to sample the initial and
the final objects. In the second shape transformation the axis has been translated

RR n~2264
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inside the cube. This way to control the shape transformation is similar to what Kent,
Parent and Carlson [KPC91] showed by moving the center of projection inside one of
the star-shaped objects.

CTTY
“FYTTIN

Figure 8: The influence of the axis interpolation in the shape transformations.

When taking two different axes (here an oblique curve and the vertical line segment
used in Figure 7) to sample the initial and the final objects, the axis interpolation
notably influences the shape transformation. In Figures 8 and 9, the two shape trans-
formations differ: on the top, the axis rotate in clockwise order from the left to the right
whereas on the bottom, the rotation is made in counterclockwise order. These rotations
lead to different movements of the salient features and thus to different intermediate
shapes, as one can see on Figure 8.

Three objects have been sampled and three transformations have been constructed in
Figure 10. Here, the shape transformations are showned in vertical columns.

The parametrization associated to the fish is nearly cylindrical: its associated axis
begins and ends near the mouth and the tail. Then, when transformed in a cube, the
mouth and the tail form the bases, as it is visible on the intermediate shape of the left
column.

Figure 11 shows two different views of the same shape transformation process. Here,
the two original objects are generalized cylinders around two different curves. This
example illustrates the visual effect produced by our axis interpolation method.

Inria
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|
\
r
;
\
|

Figure 9: The same shape transformations in wire-frame.

o In Figure 12, the fish has been deformed into a sickle. The axis of the fish is a straight
line whereas the axis associated to the sickle is bended on the sharp part of the instru-
ment. One can see the variety of intermediate shapes and the appearance/vanishing
of the salient features in the in-between shapes.

6 Conclusion

We have proposed a method for computing a continuous deformation between two polyhedral
shapes. The proposed method achieved:

e A natural way to solve jointly the correspondence and the interpolation problem.

e Interactive specification and control of the shape transformation. The use of axes to
specify the transformation is intuitive: it can be viewed as the specification via a
“skeleton” of the global deformation of the shapes. It is a natural extension of the first
approach of Kent, Parent and Carslon [KPC91].

e Good visual effects during the transformation, as shown on the examples of the pre-
vious section.

e An efficient way to compute transformation between shapes. The use of an intermediate
polyhedral mesh reduces the computational time: for each object, it depends on the

RR n~ 2264
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Figure 10: in the horizontal middle row, three intermediate shapes interpolated from the top
and bottom original shapes
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Figure 11: Axis interpolation: front-view (up) and top view (bottom).

number of vertices and faces of the object and on the fineness of the discretization.
The user may obtain approximate sketches of the deformation process using a rough
discretization during the sampling.

Moreover, our approach can be well adapted to compute transformations between a
sequence of shapes. In this case, all the objects have to be sampled with the same
discretization for the axes and the angular parameter. The axis interpolation and the
local interpolation have to be extented into spline interpolation.

e A general shape transformation adapted to any objects that are star-shaped around an
axis. In particular, our method can be simply extended to implicit surfaces [WBB*90].

This algorithm has been integrated in ACTION3D, a general interactive modeling system
developed jointly by SOGITEC and INRTA. The whole process (sampling and interpolation)
is interactive on a Silicon Graphics workstation.

Work in progress include attempts to interpolate the axes and to control the curvature
during the transformation (as it is done in [KTZ92] for the 2D case).

Another extension would be to generalize the method to other families of objects, i.e., to
generalize the sampling and parametrization to another kind of skeleton.

RR n~ 2264
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(A48

Figure 12: Shape transformation between a sickle and a fish.
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