N
N

N

HAL

open science

Dog bites postman: point location in the moving
Voronoi diagram and related problems

Olivier Devillers, Mordecai Golin

» To cite this version:

Olivier Devillers, Mordecai Golin. Dog bites postman: point location in the moving Voronoi diagram
and related problems. [Research Report] RR-2263, INRIA. 1994. inria-00074408

HAL 1d: inria-00074408
https://inria.hal.science/inria-00074408
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074408
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Dog Bites Postman: Point Location in the
Moving Voronoi Diagram and Related Problems

Olivier Devillers et
Mordecai Golin

N° 2263
Avril 1994

PROGRAMME 4
Robotique,
image

et vision

apport
derecherche

I INRIA

SOPHIA ANTIPOLIS

Dog Bites Postman: Point Location in the Moving
Voronoi Diagram and Related Problems

Olivier Devillers* et
Mordecai Golin **

Programme 4 — Robotique, image et vision
Projet Prisme

Rapport de recherche n * 2263 — Avril 1994 — 29 pages

Abstract: In this paper, we discuss two variations of the two-dimensional post-
office problem that arise when the post-offices are n postmen moving with constant
velocities. The first variation addresses the question: given a point g9 and time g
who is the nearest postman to ¢p at time {,? We present a randomized incremental
data structure that answers the query in expected O(log?n) time. The second
variation views a query point as a dog searching for a postman to bite and finds the
postman that a dog running with speed vy could reach first. We show that if the
dog is quicker than all of the postmen then the data structure developed for the first
problem permits us to solve this one in O(log®n) time as well.

The proposed structure is semi-dynamic, that is the set of postmen can be mod-
ified by inserting new postmen. A fully dynamic structure supporting also deletions
can be obtained, but in that case the query time becomes O(log3 n).

Key-words: Computational geometry, moving points, Voronoi, Delaunay, ran-
domized algorithms, dynamic algorithms, localisation.

(Résumé : tsup)

Research of O. Devillers was supported in part by ESPRIT Basic Research Actions 7141 (AL-
COMII) and 6546 (PROMotion). Work of M. Golin was supported in part by grant HK RGC CRG
grant HKUST 181/93E.

*INRIA, B.P.93, 06902 Sophia-Antipolis cedex (France), Phone: 433 93 65 77 63, E-mail: Oli-
vier.Devillers@sophia.inria.fr.

**Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
Phone: 4852 358-6993, E-mail: golin@cs.ust.hk.

Unitéde recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 93 65 77 77 — Télécopie : (33) 9365 77 65

Les chiens mordent les postiers : localisation dans le
diagramme de Voronoi mobile et problémes associés

Résumé : Nous nous intéressons a deux variantes du probleme classique du
bureau de poste dans lesquelles les bureaux de poste sont remplacés par n postiers
se déplacant & vitesse constante. La premiere variante concerne la question : étant
donné un point gy et une date ¢y quel est le postier le plus proche de gg au temps tg ?
Nous présentons une structure de donnée incrémentale randomisée permettant de
répondre & ce type de requéte en temps O(log” n). La deuxiéme variante considere
une requéte comme un chien cherchant & mordre un postier le plus rapidement
possible en se déplacant a vitesse vg. Nous montrons que si le chien va plus vite
que tous les postiers, la structure développée pour le premier probleme permet de
répondre & ce type de requéte dans le méme temps O(log? n).

La structure proposée est semi-dynamique, c’est-a-dire que les postiers peuvent
étre ajoutés un a un sans que la structure soit entierement recalculée a chaque
étape. Cette structure peut étre rendue completement dynamique (I’ensemble des
postiers est modifié avec des insertions et des suppressions) et le temps de réponse
aux requétes est alors de O(log® n).

Mots-clé : Géométrie algorithmique, points mobiles, Voronoi, Delaunay, algo-
rithmes randomisés, algorithmes dynamiques, localisation.

Dog Bites Postman 3

1 Introduction

The post-office problem is to pre-process the locations of a city’s post-offices (sites in
the plane) so that a customer (query point) can quickly find the closest post-office.
This problem is usually approached by constructing the Voronoi diagram of the post-
offices. The Voronoi diagram of n sites! divides the plane into n convex regions, each
region consisting of the set of all points closest to a particular site. The post-office
problem is then solved by performing a planar-point location in the Voronoi-diagram.
The basic problem, along with countless variations, has been extensively studied
[Aur91]. In this paper we propose and study yet two more variations, ones in which
the sites are allowed to move.

Suppose, then, that the town fathers of our mythical city have decided to cut their
fixed expenses, close down the post-offices, and replace them by postmen following
appointed rounds. A customer wanting to mail a package at 10:15 AM on Monday
morning needs to be able to locate the postman closest to his office at that time.
How can the postmen be preprocessed in a way that permits him to efficiently find
such a postman?

In this paper we study the problem of point location in the Voronoi diagram of
n moving, two-dimensional sites. We asssume that each site (postman) moves with
constant velocity:

pi(t) = ¢; + vit, i=1,...,n (1)
where p;(1), ¢;, v; € IR?; p;(¢) is the location of the postman at time ¢, ¢; its location
at time 0, and w; its velocity. As in the static case we would like to preprocess the
postmen so as to easily answer the question “given a query point gg, who is the
closest postman to it at specified time 3?”

In the static post-office problem the meaning of “closest” was quite clear. Because
the world did not change, the nearest post-office to a customer was also the post-office
that the customer could reach quickest. In the postman problem we must distinguish
between these two different types of closeness. Because the postmen are moving, the
nearest postman at time {y might not be the postman that can be reached quickest.
See Figure 1. With this in mind we define the following two different types of queries:
(|p — ¢| is the Euclidean distance between p and ¢)

(1) Moving-Voronoi queries: Given a customer at location gq € IR? find the nearest
postman at time {9 € IR. That is, given qg, {g, return ¢ such that

pi(to) = qol < |pj(t0) = qol, 7 =1....,n.

!To avoid confusion we use “site” to denote a postman or postoffice and “point” to denote an
arbitrary query point.

RR n~° 2263

4 O. Devillers & M. Golin

@ Ppostman

.\b / \postman speed
a
! "

Figure 1: The nearest postman to ¢ is @ but the postman that ¢ can reach the

feal™>

quickest is b.

(2) Dog-Bites-Postman queries: The query inputs are o € IR?, tg € IR, and vy > 0.
They specify a dog located at gg at time {y capable of running at maximum speed
vq. The dog is mean; it wants to catch and bite a postman. It is also hungry and
impatient; it wants to bite a postman as soon as possible. The problem here is to
find the postman the dog can reach quickest. Set

t] = mln{t Z tO . (t] - to)’()d = |p](t) - QO|}7 .7 = 17' RPN (2

to be the first time that the dog can catch postman j. Then the query returns ¢ such
that ¢; <{;, 7 =1,...,n. It is possible that the dog will not be able to catch any
postmen. If this happens the query returns that fact.

A moving-Voronoi query attempts to find the nearest postman to a query point at
a given time. This problem is equivalent to freezing time at { = {g and then locating
point ¢ in the Voronoi diagram of pi(%p),. .., pn(to). An essential characteristic of
this problem is that once time is frozen the later movement of the sites is of no
further importance.

A dog-bites-postman query — henceforth abbreviated as a dog query — attempts
to find the postman that can be reached quickest when starting at point gg at time
tg. This type of query has one more parameter than moving-Voronoi queries; this
is vq, the speed at which the query point (dog) can travel. Notice that this type
of query also differs from moving-Voronoi queries in that knowing pi(to), ..., pn(to)
does not provide enough information for its solution; the solution may be highly
dependant upon the future movement of the points.

This paper contains two main results. The first is a randomized incremental
algorithm that builds a data structure M which permits efficient solution of moving-
Voronoi type queries. This structure answers such queries in O(log®n) expected

Inria

Dog Bites Postman 5

time, where the expectation is taken over the order in which the postmen, p;(t),
are inserted into the structure. The second result is an equivalence between moving-
Voronoi queries and dog queries that will hold whenever the dog’s speed, vy, is faster
than those of all of the postmen. If this condition — guaranteeing that given enough
time a query dog can catch every postman — holds, then the equivalence permits the
use of M to also solve dog queries in expected O(log? n) time.

Moving-Voronoi-type queries have already been addressed, albeit tangentally, in
the literature. A series of recent papers [Roo91], [Ro0o90], [AR92], [RN91], [FLI1]
study the Voronoi diagram of moving points. These papers examine changes in the
Delaunay triangulation (the planar dual of the Voronoi diagram) of moving points,
and how to detect when they occur, but do not address the problem of point location.
[GMRI1] give an O(n®) upper bound on the number of such topological changes
when the points are moving with constant speed as in (1) and a slightly more than
cubic bound for some more general motions.

General dog-type queries do not seem to have been discussed previously. See,
however, the description of Voronoi diagrams in rivers in [Sug92] which discusses
a problem equivalent to a special case of a dog-type query, one in which all of the
postmen move with the same velocity.

We can imagine two different approaches to the moving-Voronoi problem; one
approaches the problem as a collection of an infinite number of planar point-location
problems. The other transforms the problem into a three-dimensional point-location
one.

The approach followed in this paper is the second one. We start, though, by
quickly describing the first. Consider the Voronoi diagram of pi (%), .. ., p,(t), starting
with ¢ = 0. As time passes and ¢ increases the Voronoi diagram changes. In the
beginning, the changes are restricted to expansions, contractions, and movement of
its edges but the basic topology of the Voronoi diagram remains constant. During
this entire period its dual, the Delaunay triangulation, also remains constant.

After enough time has passed some edges disappear and/or new edges appear in
the Voronoi diagram. This causes its topology to change and this in turn corresponds
to a change in the Delaunay triangulation of the points. For some further period of
time the Voronoi diagram will again maintain the same topology while its edges move
and change size until it changes topology yet again, corresponding to yet another
change of Delaunay triangulation. This process continues forever but [GMRI1] tell
us that there are at most O(n®) changes in the Delaunay triangulation so there are
at most O(n?) corresponding topological changes in the Voronoi diagram. After the

RR n°2263

6 O. Devillers & M. Golin

last topological changes have been encountered the only further modifications can
the be expansion/contraction and movement of edges.

This approach of viewing the Voronoi diagram as changing with time leads to
the first solution to the moving-Voronoi problem. Goodrich and Tammasia[GT91]
describe an algorithm that enables point location in a planar subdivision that is
modified by shrinking/growing and adding/subtracting edges; their algorithm uses
O(T) space and permits O(log?T) point location in every one of the constructed
planar subdivisions where T is the complexity of the item to be stored. In the
moving-Voronoi case T = O(n®) which is the size of the original Voronoi diagram
plus the number of changes that it undergoes. Their algorithm can therefore be used
to build a point location structure that, for arbitrary tg, permits point location in
the Voronoi diagram of po(l), . - -, pa(to) in O(log? n) time. In other words moving-
Voronoi queries can be solved in O(log? n) time. The reason we do not follow this
approach in this paper it that it is not clear how to modify the technique to also
solve dog queries.

The approach sketched in the previous paragraph solves a moving-Voronoi query
by fixing the time 7y and performing a point location in the Voronoi diagram of
p1(t0), ..., pn(to). That is, it reduces the general problem to being able to solve an
infinite number of two-dimensional point location problems. The approach that we
follow in this paper is totally different. It views the problem as one of point-location
in a three-dimensional, (space, time), cell structure. This viewpoint permits the
exploitation of a correspondence between the moving-Voronoi problem and the dog-
bites-postman one.

We construct the point-location data-structure for the moving-Voronoi by using
a randomized-incremental procedure which is a variation of one devised by Guibas,
Knuth and Sharir [GKS92] for solving the static Voronoi diagram problem. The GKS
result for static cases is contained in the following theorem: (the radial Voronoi-
diagram, which we describe further in the next section, is a special triangulation of
the standard Voronoi diagram)

Theorem 1 The radial Voronoi diagram of n sites inserted in random order can
be maintained in O(logn) expected update time and O(n) expected space. Any fized
query point is located in O(log®n) expected time (the expectation is taken over the
random order of insertion).

Our modification of the GKS result will construct a data structure which permits
finding the nearest postman to g at time g in expected O(log? n) time where the
expectation is only taken over the order in which the postmen were inserted into the
data structure and not over the values of g, tp.

Inria

Dog Bites Postman 7

Our approach to solving the “dog” problem is to show that, if the dog is faster
than all of the postmen, i.e., vg > |v;|, ¢ = 1,...,n, then the three dimensional
cell-complex that describes the dog problem is topologically equivalent to the one
describing the moving-Voronoi one. A proper understanding of this transformation
will enable the same data structure to solve both moving-Voronoi queries and dog
ones.

The structure of the paper is as follows: in section 2 we quickly review the basic
ideas of the GKS algorithm and data-structure. In section 3 we discuss how to
solve the moving-Voronoi problem. In section 4 we define a correspondence between
moving-Voronoi queries and dog queries which permits us to solve dog queries using
the data structure developed in Section 3. In section 5 we describe how to modify
the algorithm so that it permits not only insertions but deletions of postmen in a
randomized model. We conclude in section 6 by reviewing our results and presenting
an open problem.

2 The GKS Algorithm

As previously mentioned our algorithm for the moving-Voronoi problem builds quite
strongly upon previous work of Guibas, Knuth and Sharir. To make this paper
as self-contained as possible we briefly sketch the ideas and analysis behind the
GKS algorithm. For further details we direct the interested reader to [GKS92]. The
algorithm sketched below differs from the basic one appearing in [GKS92] in that
its implementation uses pointers to travel from a triangle to the exterior triangles
that destroy it; as noticed by Guibas et al., this modification does not affect the
algorithm’s running time. We utilize the modified algorithm because it is easier to
generalize to the moving point case.

Strictly speaking, GKS do not construct the Voronoi diagram of their point set.
They construct its radial triangulation. That is, they triangulate each Voronoi cell by
drawing edges from the site at its center to all of the vertices on the cell’s boundary.
In Figure 2 the Voronoi edges are drawn with bold lines, the other triangulation edges
with dotted ones. Their algorithm allows them to locate points in this triangulation
and therefore in the Voronoi diagram. In what follows we call the triangulation the
radial Voronoi diagram.

A fundamental observation is that each (bounded) triangle depends upon exactly
four sites (three sites for unbounded triangles). For example, in Figure 2, the sites
p, q, 7 and s define the shadowed triangle ptu (and also gtu), where ¢ and u are the

RR n~° 2263

8 O. Devillers & M. Golin

Figure 2: The triangulated Voronoi diagram. The solid edges are Voronoi diagram
ones; the dotted edges are added to form the radial triangulation.

Voronoi vertices which are the centers of the empty disks circumscribing Delaunay
triangles pgr and pgs.

Given points py, pa, ..., pr the GKS algorithm works by incrementally construc-
ting the radial Voronoi diagrams of the sets {p1,p2,...,pr} where k =1,...,n.

Consider what occurs when a new site pg is inserted into the radial Voronoi
diagram of py,...,pr_1, creating the radial Voronoi diagram of pq,...,pr. Most of
the radial Voronoi-diagram remains the same but, near pi, some new triangles will
be created and some old triangles destroyed. The newly created triangles are of
two types. Interior type triangles are the ones that triangulate the Voronoi cell of
pi. Faterior type triangles are the ones which belong to Voronoi regions of other
cells. Note that if j < k then exterior triangles can be created in the Voronoi cell
associated with p; if and only if p; is a Voronoi neighbor of py, i.e. their Voronoi cells
share an edge. Furthermore, if p; is a Voronoi neighbor of p; at most three exterior
triangles may be created in its Voronoi cell.

A triangle that existed in the radial Voronoi diagram of pq,...,pr_1 but does
not exist in that of py,...,px is said to be destroyed by the insertion of site py.

Suppose that some triangle destroyed by the insertion of p; was, in the old
diagram, part of the Voronoi cell associated with site p;. In the new diagram the

Inria

Dog Bites Postman 9

Figure 3: The shaded region contains the triangles created the insertion of site p.

region covered by the old triangle must be contained in the union of the Voronoi cell
of pr with at most two new exterior triangles created in the cell associated with p;.
This fact permits the creation of an efficient point location structure.

See [GKS92] for proofs of the above statements and details.

The location structure

The structure built during the insertion of n sites can be represented as n successive
parallel horizontal planes, each plane containing the triangles created by the insertion
of the corresponding site.

If a triangle is destroyed when a site p is inserted, then it overlaps with one or
two exterior triangles and the Voronoi region of the new point. Pointers are created
from the destroyed triangle to the (at most two) exterior triangles that intersect it
and from the destroyed triangle to the site p. The interior triangles created by the
insertion of p are organized around p in a search structure sorted in polar order; this
structure is called a polar sorted list.

Finally, the structure contains pointers from each triangle to the ones adjacent
to it. Notice that these relations are not necessarily between triangles in the same
plane and may change when new sites are inserted.

RR n°2263

10 O. Devillers & M. Golin

Let Vi, ¢« = 1,...,n be the radially triangulated Voronoi diagram of points
P1, ..., p;. Tolocate a query point ¢ in the final radial Voronoi diagram V,,, we walk
through all the triangles on successive levels that contain ¢. We use the pointers
from destroyed triangles to let us skip levels.

The location process starts by finding the unbounded triangle containing ¢ in
the triangulated Voronoi diagram Vs.

The general step in the algorithm assumes that we know the triangle 7" that
contains ¢ on some level k, i.e. in Vj. Either T is in V,; and we are done, or T is
destroyed by the insertion of some site p;. In this second case we must find the
triangle on level 7 containing g.

To do this we first check if ¢ is inside one of the exterior triangles on level 1
pointed to by T. If ¢ is outside these triangles then ¢ must be located in one the
interior triangles arrayed around p;; this triangle can be found by performing a
binary search in the polar sorted list. In both cases the triangle in V; containing ¢
has been found and the search can continue.

Update algorithm

When a new point is added, it is first located in the structure and found to be in some
triangle T. The current radial triangulation is then explored using the adjacency
relationships to find all the destroyed triangles. A new horizontal plane is then
created, and all new triangles (exterior and interior) are computed from the destroyed
ones. Pointers from the destroyed triangles to the appropriate ones on the new level
are created. Using the adjacency relations it is possible to find the new interior
triangles directly sorted in polar order around the new points. Finally, the adjacency
relations are updated.

Analysis

This section give an idea of the randomized analysis of this algorithm using the
backward analysis technique [Che85, Sei91, Dev92]. We quickly sketch a proof that
the expected cost of locating an arbitrary point in the radial Voronoi diagram is
O(log? N') and that the expected cost of inserting point p,, into V,,_; is O(logn).

Location of a given point

During the location of a point ¢, the algorithm traverses all triangles containing ¢
which have been in the triangulated Voronoi diagram at some stage of the construc-
tion. Recall that we only visit a triangle T at the level in which it is first created. The

Inria

Dog Bites Postman 11

p

Figure 4: Triangle T in the radial triangulation is defined by at most 4 points p, ¢,
r, and s.

next paragraph proves that, for any query point ¢, the expected number of levels
on which a triangle that contains ¢ is created is O(logn) if the sites were inserted
in a random order. Since the next triangle on the path followed by the location
algorithm is determined either directly in O(1) time — if it is an exterior triangle —
or by searching in a polar sorted list in O(logn) time — if it is an interior one — the
total expected time complexity of the location process is O(log2 n).

Now, we count the number of created triangles. The crucial fact here is that
a triangle 7" in a radial triangulation is fully defined by (at most) 4 sites. (See
Figure 4.) Assume that at stage k, the radial triangle containing ¢ is 7. T will only
be physically present on the horizontal plane at level k if T was created by the
insertion of the kb site, i.e., if and only if the k™ site is one of the (at most) 4 sites
defining 7'. If k£ is not one of these sites then triangle T has already been found and
level k is not visited. Since the k sites were inserted in random order, a triangle at
level k is visited with probability (at most) % (if the k™M site is not one of these 4
defining ones then T was created at a lower level and was counted at that lower
level). Therefore the probability that level % is visited is O(%).

RR n~° 2263

12 O. Devillers & M. Golin

The result is obtained by summing these probabilities for all levels.
expected number of created triangles

n
= Z expected number of created triangles at level k
k=1

"4
< - =
< ;}Zl 2 O(logn)

Insertion of a site

The difference between locating a site to be inserted and locating an arbitrary query
point is that a site to be inserted is, by hypothesis, a random one from the set of
all sites. This fact can be used to prove that the expected length of the polar sorted
list of each level used during the location procedure is constant which in turn will
lead to an expected O(logn) location time for insertion.

To provide some intuition as to why this is so recall that, because the radial
Voronoi diagram is a planar graph, the average degree of its vertices is at most 6.
Also, the expected length of the polar sorted list at the kth level is exactly the degree
of the k™ site in the radial Voronoi diagram at stage k. Since the E™ site is equally
likely to be any site and the average degree of a site is at most 6, the expected length
of a polar sorted list is 6. Of course this off-the-cuff argument is not rigorous and
we must provide an exact proof.

Our proof uses the well known geometric fact that any site can only be the
nearest neighbor of at most 6 other sites

More precisely, we can bound the time spent at level k during the insertion of
the nth site q as follows. Let p; be the k™ site to be inserted into the diagram: the
k™ level is visited if the triangle in V) containing ¢ has p; as one of its defining
points. This occurs with probability % since this triangle is defined by 4 sites among
the k present in the diagram. If the nearest neighbor of ¢ (among the k first sites)
is not pg, then the new triangle containing ¢ is an exterior one and is determined in
constant time among the two possible candidates. Thus the total expected amount
of time spent by the algorithm searching exterior triangles is

n
>
k=1

If ¢ is not in an exterior triangle it must be in an interior one created at level k;
this only occurs when py is the nearest neighbor of ¢, which happens with probability

= O(logn).

I

Inria

Dog Bites Postman 13

%. In this case, the polar sorted list around p; must be searched; the cost of this
search is certainly bounded by the size of the polar sorted list which is the degree
of pi in the diagram of the k first sites.

Now use the fact that ¢ is also chosen at random from the given set. More
particularly, consider the set P of k + 1 sites formed by the k first sites plus ¢: ¢ is
a random site from this set and py is its nearest neighbor, something which occurs
with probability % Since a given site may be the nearest neighbor of at most 6 other
sites in P any point can be the nearest neighbor of a random point with probability

at most k+1 The average degree of the nearest neighbor of a random point ¢ is
therefore

k

EPr(pi is a nearest neighbor to ¢) - d; < m Zd < k 1 -6k < 36

=1

where d; is the degree of p; in Vi and Zle d; < 6k because the Voronoi diagram is
a planar graph.

Multiplying by 1/k, the probability that pg is the nearest neighbor of ¢, yields
that the average amount of time spent searching the polar list at level k is O(32).
Summing over all k yields that the total time needed to search polar lists while loca-
ting ¢ is O(logn). Adding the previously calculated time needed to search external
triangles we find that the total expected time needed to find ¢ is O(logn). (This
proof differs from that presented in Guibas et al. [GKS92].)

To conclude this section we point out that the expected number of triangles at
each level is constant. Therefore the expected total number of changes caused by
the insertion of ¢ will be O(1). This also implies that the expected size of the total
location structure is O(n).

3 Randomized incremental construction of the moving
Voronoi diagram

We now address the problem of moving points. A site is a two-dimensional point
moving with constant velocity: p;(t) = (z(¢),y(t)) = ¢ + vit, © = 1,...,n, where
¢; € IR? is the point’s location at time 0, and v; € IR? is its velocity. For the sake
of simplicity we assume that the velocity is constant but the technique that we
introduce can be used in many cases where the motion is not constant, e.g., (¢),
y(t) are polynomials in ¢ of bounded degree k. At time ¢, the moving sites define a
radial Voronoi diagram. As ¢ increases, this diagram changes.

RR n°2263

14 O. Devillers & M. Golin

A natural visualization of the problem considers the 3D space (z,y,¢) in which
x,y span the horizontal plane to which ¢ is orthogonal. In this space a moving site is a
non-horizontal line (or a curve of degree k if the components of p;(t) are polynomials
of degree k).

Let V(t) be the radial Voronoi diagram of py(t), ..., p,(¢). Consider any specific
Voronoi vertex of V(). As time increases this vertex sweeps up to become an curve
in 3-space. An edge in V(¢) will sweep up to become a surface in 3-space and a radial
triangle in V(¢) sweeps up to become a region in 3-space. We call this collection of
curves, surfaces (faces), and regions the Moving Voronoi-Diagram and denote it by
M. The vertices of M will be the points at which Voronoi edges/vertices of the
two-dimensional V(¢) appear and disappear. These are exactly the points which we
previously identified as the topological changes in the Voronoi-diagram as it moves.

For algorithmic purposes there are three facts concerning M which must be
emphasized. The first is that M is in fact a subdivision of 3-dimensional space
and finding the region R € M which a query point appears immediately solves a
moving-Voronoi type query. This is because every query point that appears in the
same region has the same postman as a nearest neighbor.

The second fact concerns the number of sites that can define a region in M. A
region (cell) of M corresponds to the space swept out by a triangle of V() between
the time when it appears and the time when it disappears. The moving triangle
is defined by 4 moving sites (as in the non-moving case), and the appearance and
the disappearance of the triangle correspond to topological changes in the 2D radial
Voronoi diagram, i.e., the disappearance and the appearance of another site in the
(empty) disk circumscribing three of the four sites. To summarize, a region of the
3D moving radial Voronoi diagram is defined by at most 6 moving sites (see Figure
5). Fewer than 6 sites define a region when the moving triangle is unbounded or
when a site which caused the triangle to appear or disappear is one of the four sites
defining the moving triangle.

The third fact is that the complexity of M, as measured by the number of its
vertices, edges, faces, and regions is O(7'(n)) where T'(n) is O(n) — the complexity
of V(0) — plus the number of topological changes that occur in V (¢) as ¢ increases.
This follows from the basic properties of the static Voronoi-diagram.

This section modifies the GKS algorithm to work on the moving Voronoi diagram
and proves the following theorem.

Theorem 2 The moving radial Voronoi diagram of a set S of n moving siles in-
serted in random order can be maintained using O(fs(k)logk/k) expected insertion
time and O(fs(n)) expected total space for the insertion of the k™ point where fs(k)

Inria

Dog Bites Postman 15

Figure 5: A region of the 3D moving diagram

s the expected size of the moving diagram for a random sample of size k of S . Any
fized query point can be located in O(log2 n) expected time (all expectations are taken
over the order of insertions of the sites into the data structure).

The complexity depends on fs since the size of the moving Voronoi diagram
can vary between Q(n) and O(n?). So, our algorithm is partially output sensitive.
More precisely, it is not sensitive to the size of the output but to the expected size
of intermediate results, a phenomenon which occurs in the analysis of other semi-
dynamic randomized algorithms [BDS*92]. Furthermore, no tight upper bound for
the size of the moving Voronoi diagram are known. It is not even known if it can be
larger than O(n?) [GMRI1]. If the worst-case size of the moving Voronoi diagram is
©(n?) then our algorithm will take O(n®logn) expected time and use O(n®) space
to construct the data structure.

3.1 Algorithm
The location structure

This section describes the structure used for locating query point ¢ = (4, y,,¢,) in
the 3D space. This solves the question “at given time {,, what is the nearest site
pi(ty) to the point (z,,y,)7”.

Following the notation developed above we use My to denote the cell-structure
of the 3D moving-Voronoi diagram of postmen py,...,pr. The algorithm works in
the same way as does the GKS algorithm described in Section 2. It successively

RR n° 2263

16 O. Devillers & M. Golin

constructs all of the My, &k = 1,...,n storing at “level” k the new regions created
by the insertion of the corresponding moving site.

Suppose that region (cell) R which contains point ¢ in Mj_1 no longer exists in
M. Then we say that R is destroyed by the insertion of site k. In such a case R
is contained in the union of some new regions stored at level k. As in the 2D case,
the regions created by the insertion of site py are divided into interior and exterior
regions.

Interior regions are the ones which are swept-up interior triangles. Equivalently,
these are the regions which have a segment of the line pi(?) as a supporting edge.
Exterior regions are the swept-up parts of exterior triangles, i.e. the regions which
are not interior. Both types of regions will be stored in a way which will enable us
to easily determine which of them contains g¢.

Exterior regions Fix time ¢ and consider what happens when going from the
radial Voronoi diagram of sites pi(t),...,pr—1(t) to the radial Voronoi diagram of
sites p1(1),...,pr(t). Suppose p;(t)’s Voronoi cell is a neighbor of py(¢)’s in the
new diagram. We have already seen that p;(Z)’s cell contains at most 3 external
triangles. Now sweep these triangles up in time; they become external regions in
M, (associated with postman p;). Note, though, that there may be many more
than 3 exterior regions associated with p; on level k. It is just that at any given
time, ¢, only 3 of them may exist.

For each p; that has external regions on level £ do the following: store the entire
list of its external regions sorted by the times ¢ that they start existing and the
times ¢ that they cease to exist. These times correspond to topological changes in
the moving-Voronoi diagram so there may be at most O(n®) items in each list.
Therefore, given any time ¢ we can search the list in O(logn) time to find the 3
external triangles that exist in p;(¢)’s Voronoi region.

Suppose region R containing points closest to postman p; is destroyed by the
insertion of site p;. Create a pointer from R to the sorted list of exterior regions
associated with p; that are created by the insertion of py.

Let R(¢) denote a cut at specific time ¢ of region R. R(t) is a triangle in the
two-dimensional radial Voronoi diagram of pi(t),...,pg—1(t). R(t) will overlap at
most two of the exterior triangles in the Voronoi cell associated with p;(¢) in two-
dimensional radial Voronoi-diagram of py(¢), ..., pr(?).

Given query point ¢ = (24, yq,1,) € R it is now simple to discover, in O(logn)
time, whether a new exterior region created by the insertion of p; contains g. Let
p; be the postman that R is associated with. Simply search the sorted list of p;’s

Inria

Dog Bites Postman 17

exterior regions for ¢, to find the three exterior regions that exist at time ¢, and
check if one of them contains q.

Interior regions The set of all interior regions created by the insertion of site k
is exactly the set of all the regions which have the line pi(?) as a supporting edge.
Note that a region can not be both interior and exterior.

As in the non-moving case, if the query ¢ does not belong to an exterior region,
we must examine the whole set of interior regions to determine the one that contains
q.

In the non-moving case, the interior triangles were sorted according to the angle
f that their supporting edges form with the horizontal around the newly inserted
site.

In this case, a two dimensional structure is used: the first dimension is the time ¢
and the second is the polar angle 8; around p(?). The whole set of interior triangles
created by the insertion of p(¢) defines a monotone subdivision of this 2D space (, 6;).
To find a query point ¢ we map it to ({,,8,) (where 6, is the angle between p(t)q
with the z-axis), and this mapped point is located in the above subdivision using any
static point location algorithm [EGS86, CS89, Pre90]. A vertex of this subdivision
corresponds to a topological change in the moving-Voronoi diagram. Since there are
O(n®) of these and point location can be performed in time proportional to the
logarithm of the subdivision size this implies that the internal region containing ¢
can be found in O(logn) time.

Point Location Location of a query point ¢ in the final moving-Voronoi diagram
M, follows the paradigm laid down by the GKS algorithm. The algorithm starts by
finding the region R € M3 that contains q.

The generic step of the algorithm assumes that we know the region R that
contains ¢ on some level k, i.e., in M. Either R € M, and we are done or R
is destroyed by the insertion of some site p;. In this second case we must find the
region on level ¢ containing ¢. Following the procedures described in the previous
subsections we first check in O(logn) time to see if ¢ is contained in an exterior
region. If it is not we use O(logn) time to search the monotone subdivision to find
the proper internal region containing g.

In both cases the new region on level ¢ containing ¢ has been found and the
search can continue.

RR n° 2263

18 O. Devillers & M. Golin

Update algorithm

To insert a new moving site p(?), it is necessary to determine all the regions destroyed
by the insertion of the new site, and to make the necessary updates. The regions to
be destroyed are found in the following way:

First use the data structure to locate the region containing p(0). This can be
thought of as mimicking the operation of the two-dimensional GKS algorithm. Next,
use the adjacency relationships to find all the regions that will be destroyed. This is
clearly possible, since the set of regions to be destroyed is connected (in any plane
t = constant, it is star shaped). The idea is to start from the initial region and work
our way “out” stopping at each region that is not destroyed.

After the destroyed regions are found, a new level corresponding to the new site
is created in the structure. All new regions are computed from the destroyed ones;
they are organized in the location structure described above comprising some sorted
lists and a planar monotone subdivision. Notice that these structures are static
and any location structure can be used, randomized [CS89], or not [EGS86]. The
adjacency relations must then be updated by modifying appropriate pointers. Notice
that all new pointers will be between regions visited during the update because all
the regions neighboring the destroyed area were visited during the search for the
destroyed regions.

3.2 Analysis
Location of a given point

The location algorithm follows the sequence of regions containing the query point ¢
through the n levels. Given a region containing ¢ the next region is determined in
O(log n) time by first checking the sorted list to determine if ¢ is in an exterior region,
and, if it isn’t, by performing a planar point location in a monotone subdivision to
find the proper interior region.

The number of regions in the sequence is expected O(logn) as in Section 2. This
result follows from the fact that a region is defined by at most 6 of sites so a given
region, the one containing ¢, will be constructed at the kth level only if the £ site is
one of these 6, which occurs with probability O(%) Therefore the expected number

of regions in the sequence is O (22:1 %) = O(logn).
The expected time complexity of the location of any query point is therefore
O(log® n), where the expectation is taken over the insertion order of the sites.

Inria

Dog Bites Postman 19

Insertion of a site

The insertion procedure is divided into two parts. The first finds some region des-
troyed by the insertion of pi. The second works its way out from this initial region
to find all the destroyed regions and update the data structure.

We find the first region destroyed by looking for a two-dimensional region in the
radial Voronoi diagram of p;(0),...,pr—1(0) that is destroyed by the insertion of
pr(0). This, in fact, is done exactly as in the two-dimensional GKS algorithm and
the analysis performed there applies here. We can find such a region in O(logn)
expected time. The search for an initial destroyed region is in fact the problem of
locating p(0) in the two-dimensional Voronoi diagram, so the analysis performed in
the two-dimensional case applies and the expected time for the search is O(logn).

The cost of the update step, is output-sensitive; it is necessary to compute the
expected number of new regions, but also the expected number of adjacency relations
that must be updated. Standard techniques of analyzing randomized algorithms can
be used to count the expected number of new regions. After the insertion of the kth
moving site, the moving Voronoi diagram has fs(k) regions (expected) and, since
a region is determined by at most 6 sites, the expected number of regions created
by the insertion of the k™ site is less than 6f5]£k). Since the number of neighbors of
a regions is not bounded, the analysis of the number of adjacency relations invol-
ved in the update algorithm requires a hint first used by Boissonnat and Teillaud
[BT93, BDS192] (the so called bicycle hint). The idea is to associate adjacency re-
lations with regions. Two adjacent regions correspond to two 2D adjacent moving
triangles, these triangles are determined by 5 sites (4 sites each, but 3 are common)
and the appearance and disappearance of the adjacency at two critical instants are
determined by two other sites. In fact an adjacency is determined by at most 7 sites;
if the expected number of adjacency relations in the moving Voronoi diagram is
fs(k) (it is the number of faces in the diagram which is less than fs, the total com-
plexity of the diagram) the number of adjacency relations modified by the insertion
of the kth site is less than 7f5T(k).

We must also build the point location data structure for the monotone subdi-
vision and the sorted lists of exterior regions. The size of the monotone subdivi-
sion is exactly the number of internal regions created plus the number of adjacen-

cies/vertices between them. As shown above this is O (fST(k)) The location structure

Fs(k)log k
s(ig)

for the monotone subdivision can be constructed in O (using any classical

technique, randomized or not.

RR n~° 2263

20 O. Devillers & M. Golin

There are at most O (Mskﬁl) exterior regions created by pj (since they are a
subset of the total set of regions created) and each region appears in exactly one

sorted list so the total size of the lists of exterior regions is also O <fST(k)) The

collection of these lists can therefore be built in O (fs(k])cﬂ

The algorithm therefore updates the diagram in O (fs(k)#) time using O (fslgk))
space.

) time .

If the postmen travel with non-constant velocity the algorithm can, in many
cases, be generalized without difficulty. The subdivision in space (¢,6;) is still a
monotone subdivision (the degree of the edges may change) and the function fs
can be different, but the general ideas still work.

4 The dog and postmen problem

We now consider dog queries. Imagine that the moving sites are postmen. A query
asks “a dog capable of running at maximum speed vy is put outside at time ¢4 and
location (z4,yq). It will run and bite a postman. Which postman can it reach in a
minimum time?”

These types of queries differ from the “moving Voronoi” type addressed in the
previous section. It is possible that the dog might be able to reach a postman further
away (that is travelling towards it) quicker than it can reach a nearby one (that
is travelling away from it). The answer to the query depends strongly on v4. For
example, in Figure 6, although postman A is closer to the dog than postman B, the
dog will be able to catch B before being able to catch A because A is moving away
from the dog.

In what follows we will assume that vy > |v;], ¢4 = 1,...,n, i.e., the dog is faster
than all of the postman. This ensures that the dog will always be able to catch at
least one postman. Later, we will discuss what happens if the dog is not as fast as
some of the postmen. Note that as we let vy — oo the postman that can be reached
quickest becomes the nearest postman. In this sense at least, the moving Voronoi
problem can be thought of as the limiting behavior of the dog problem.

We will prove the following theorem:

Theorem 3 The postman that any fized query dog can reach quickest can be found
in O(log?® n) expected time, with the same space and preprocessing time as in Theorem

2.

Inria

Dog Bites Postman 21

N A

Y

Figure 6: A dog query not reaching the nearest site

We do this by showing that if the dog is faster than all of the postmen then there
is an efficient way to transform a dog query into a moving-Voronoi query.

In the previous section we described the Moving-Voronoi diagram of n points
which we denoted by M. Now consider its topology: M can be considered as the
stacking, one on top of another, of an infinite number of static Voronoi diagrams,
V(t),t €]0,00), where V() is the Voronoi diagram of points pi(%),...,ps(t).

First recall the following facts about a static Voronoi diagram, such as V(¢) : a
point is a Voronoi vertex if and only if it is the center of an empty (horizontal) circle
that has three sites on its circumference and a point is on a Voronoi edge if and only
if it is the center of an empty circle that passes through two sites.

Now consider the structure of M. A Voronoi vertex in the static diagram V()
will be swept-up in time to become an edge in M; an edge in V() will be swept up
to become a face of M; a two-dimensional region in V() will be swept up to become
a three-dimensional region of M. Finally, a point is a vertex of M if and only if it
is a point where some Voronoi vertices of V(¢) appear and disappear. Thus, a point
is a vertex of M if and only if it is the center of an empty horizontal circle that
contains four points on its circumference.

We now return to the dog problem. Given a query (24, Yd,td, va), it is clear that
the dog can reach any point in space contained in a vertical cone of apex (24, ¥4, {q)
and angle arctan vy which we denote by Cy. The postmen travel along the lines p;(t).
Therefore the answer to the query is the lowest intersection of one of the lines p;(¢)

RR n~° 2263

22 O. Devillers & M. Golin

the dog bitewft%i

Figure 7: A query dog

with Cy. (see Figure 7). The different answers to this query split space into different
regions in each of which the answer remain the same. Denote the three dimensional
cell-structure that this splitting induces by D. It is in fact the Voronoi diagram of
the lines p;(t) with the convex distance function associated to an upward vertical
cone of angle arctan vy (bounded below by a horizontal plane)?.

Although the “moving-Voronoi” and “dog” problems seem so different we will
soon see that, under the hypothesis that the dog is faster than the postmen, i.e.,
vg > |v;], 7 =1,2,...,n, they are actually quite similar3

First of all, under this hypothesis, verifying the solution to a dog query is easy.
Suppose that d = (z4,yq,t4,v4) is a dog query such that the quickest reachable
postman is p;. Let {; 4 denote the time when the dog reaches p; (which depends only
upon d and p;): ¢; 4 is the unique positive solution of the equation |p;(¢; ¢)— (24, yq)| =
vg(ti 4 — tq) and is also the unique time that the line p;(¢) intersects cone Cy.*

Lemma 1 The quickest reachable postman for a dog query d = (x4, Yd,td,va) 15 p;
if and only if the nearest neighbor of (xz4,yq) at time t; 4 is p;.

Proof.

2See [Kle89] for more on convex distance functions. Unfortunately there are no general purpose
efficient algorithms for finding Voronoi diagrams for convex distance functions.

*The two problems are even more closely related than we prove here. It is possible to show that
M and D are topologically equivalent: there is a continuous one-one function from 3-space onto
itself that maps the vertices, edges, faces and regions of M into those of D. We do not go into the
details here because they are not required for the algorithm.

*Each line pi(t) intersects cone Cy4 exactly once because the cone is expanding with speed vg >
|vil.

Inria

Dog Bites Postman 23

Suppose the dog can catch p; quickest but the nearest neighbor of (z4,y4) at time
tiq is p;. Then the point p;(t; 4) is inside the cone Cy so the line p;(¢) is inside Cy
at time ¢; 4. This line must therefore intersect the cone at some time ¢;4 < 1; 4, i.e.,
the dog can catch p; before catching p;, contradicting our assumption.

Conversely, suppose that p; is the nearest site to (z4,yq) at time ¢; 4 but the dog
can catch p; before catching p;, i.e. {;4 < {; 4. By definition |p;(¢;4) — (24, y4)| =
vq(t; 4 — tq). Since the speed |v;| < vy this implies

Ipi(tia) = (za,ya)l < Ipi(tia) — pi(tia)l + [pi(tja) — (2, ya)l

[0 [(tia = tj,a) + va(lja — ta)
< wq(tig —tq) = |pi(tig) — (2a, ya)l|-

Thus, at time ; 4, p; is nearer to (z4,yq) than p;, leading to a contradiction. U

Recall now that our algorithm for locating a query point in M actually found
the location of the query point in all of the diagrams My, &k < n. We use this fact
together with the previous lemma to develop an algorithm for solving dog queries.
It is just a variation of our algorithm for solving moving Voronoi queries and uses
the same data structure.

Let S, = {p; : i < k} be the set of the first k& postmen. The idea of our new
algorithm is that we will walk down the levels My, k < n, keeping track at each
level of the postman p; € Sk that the dog can reach quickest. Lemma 1 tells us that
this is the postman that is nearest to the point (z4,y4) at time ¢; 4. At each level
we also keep track of the region R € My, such that (z4,yq4,4,4) € R; R is a region
associated with postman p;. To derive an efficient algorithm we will also need the
following lemma:

Lemma 2 Given a a dog query d = (x4,Y4,td,v4) let p; be the postman in the
set Sp_1 that can be reached quickest. and R € Myp_1 be the region such that
(24, Ydstiq) € R. Suppose that the dog can reach postman py faster than it can
reach postman p;. Then the insertion of p. destroys R in My.

Proof.

We are given that {5 4 < t; 4. By definition R is a region such that if (z,y,t) € R
then the closest postman to (z,y) at time ¢ is p;. To show that the insertion of py
destroys R it therefore suffices to show that for the particular point (z4,y4,%;,4) € R
the point (z4,y4) is closer to py at time ¢; 4 than to p; or

Ipk(tia) = (2a, ya)| < |pi(tia) — (2a, ya)l-

RR n~° 2263

24 O. Devillers & M. Golin

The proof is similar to that of the previous lemma:

Ipe(tia) — (za,ya)| < |pe(tig) — pe(te,d)| + [pe(tr,a) — (24, ya)|
= |vel(tia — thd) + va(te,a — ta)
< wvg(tig —ta) = [pitia) — (2d,ya)l-

O

Suppose now that we know that p; is the postman in Si_; that the dog can reach
quickest and know the region R € My_; such that (z4,y4,t;4) € R Lemma 1 says
that p; is a nearest neighbor to (z4,yq) at time ¢; 4 among Sk_q so R is a region
associated with p;.

If R is not destroyed by the insertion of py then R remains a region of My and
Lemma 2 implies that the dog can not reach pj faster than it can reach p;. Therefore
p; is still the postman in Sy that the dog can reach quickest and we do not have to
do anything.

If R is destroyed by the insertion of pj, then we first compare ¢; 4 and t 4; if
l;d < tk,q then p; remains the answer to the dog query and we must find the new
region in My, containing (24, yq, i 4). This region is associated with postman p; so it
is one of the external regions that R points to. Otherwise, ¢; 4 < {4, pr is the new
answer to the dog query, and we must find the region in My, containing (24, y4, tk,qd)
which will be an internal region associated with py.

We now describe the algorithm. It starts by finding which of the postman
p1, P2, p3 the dog can reach quickest, calculates the time ¢’ at which the dog reaches
the postman and then finds the region R € M3 that contains (x4, yq4,t').

In the general step we suppose that at the previous step of the algorithm we
had junped to level k of the data structure and found that in S the dog can reach
postman py quickest and also found the region R € My, such that (24, yq4,tkq) € R.
We now follow the pointers from R to level ¢ where the insertion of p; destroys R.
If there is no such pointer then we are finished and pj is the postman the dog can
reach quickest.

Now, in O(1) time, compare {3 4 and ¢; 4;if {5 4 < {; 4 then pj remains the answer
to the dog query and we find the new region containing (4, ¥4, tx,q¢) in O(logn) time
by searching the list of external regions that R points to. Otherwise, p; is the new
answer to the dog query and we must find the region containing (4, yq,%;,q4). We do
this in O(logn) time by searching the monotone subdivision describing the interior
regions.

Inria

Dog Bites Postman 25

This algorithm takes O(logn) per level examined and the same analysis as used
in the previous section shows that it examines O(logn) levels on average. Therefore
the algorithm uses O(log® n) time on average.

5 Dynamization

The algorithms presented above are semi-dynamic in that sites/postmen can be
added to, but not removed from the data structure. In what follows we sketch how
to modify them to become fully dynamic in the randomized model. In a fully dynamic
scheme random sites/postmen can be both added to and deleted from the structure.

In situations in which a randomized algorithm stores the history of the incremen-
tal construction of its data structure two different approaches have been developed
for making the algorithm fully dynamic. One, proposed by Schwarzkopf [Sch91],
stores the history of the structure for both insertions and deletions; the other used
by Devillers et al. [DMT92, DTY92] and also by Clarkson et al. [CMS92] constructs
a new history taking into account only the insertions of remaining sites. (Mulmuley
[Mul91, MS91] describes yet another method which does not use the history of the
construction.)

The reconstruction of a new history requires sophisticated algorithms to update
the structure and seems to be too complicated for our needs. Instead, we describe
how to use Schwarzkopf’s method to devise a fully dynamic algorithm with O(log® n)
query time. We briefly sketch the technique below.

In our algorithm, when a new site p;41 was inserted, all regions in M;,; that
overlapped any destroyed region R € M; were organized into a location structure,
namely a sorted list and a monotone subdivision.

To implement Schwarzkopf’s method, it is necessary to to design a similar loca-
tion structure for the case in which R is destroyed by the deletion of a site p; instead
of by the insertion of a new site. Unfortunately, the set of regions overlapping R in
the new diagram M’ after the deletion of p; could be fairly complicated, in fact
as complicated as M’ itself. The idea, therefore, is to recursively use the algorithm
to design the location structure. More precisely if p; is deleted, the moving Voronoi
diagram of all sites that are neighbors of p; is computed and all the destroyed regions
store pointers to this structure.

Following Schwarzkopf’s ideas, we can bound the number of regions in history
visited during a location query by O(logn). Since the transition between two suc-
cessive regions can be done in O(log?n) time by a call to Theorem 2 one finds that
a location query can be performed in O(log®n) time.

RR n~° 2263

26 O. Devillers & M. Golin

The following theorem summarizes the results concerning dynamization:

Theorem 4 The moving radial Voronoi diagram of a set § of n moving siles
can be maintained in O(fs(n)logn/n) expected update time (insertion or deletion)
and O(fs(n)/n) expected space per update. where fs(r) is the expected size of the
moving diagram for a random sample of size v of § . Any fized query point is
located in O(log3 n) expected time (all expectations refer only to the random order
of insertion).

The dog and postmen problem can be solved with the same time and complexity
if the dog is faster than all postmen.

6 Conclusion

We have presented a randomized dynamic structure for the moving Voronoi diagram
able to answer queries in the Voronoi diagram, at any time ¢, in O(log*n) expected
time.

As described, the data structure assumes that the sites are moving with constant
velocities. The structure can be extended to handle postman moving with certain
other types of speeds, e.g., polynomial motion (where each component of a postman’s
location vector is a polynomial of fixed degree in t).

In the case of sites moving with constant velocities, the structure can handle
more complicated queries, “dog” queries. In this type of query we assume that the
customer/dog is also moving, with constant speed which is faster than the speed of
all of the postmen. Since the speed of the dog is part of the query this type of query
is in fact a 4-dimensional one as opposed to the 3-dimensional moving-Voronoi ones.

If the dog is slower or the same speed as some of the postman, the problem
becomes more complicated: a postman moving with velocity v can be viewed as a
line in three-dimensional space of slope |11j—| where |v| is the speed of the postman,

and a dog can be viewed as the upper half of a cone of slope Ul—d. For a fast dog we
have vy > |v| and there is exactly one intersection point between the line and the
half-cone. For a slow dog there may be zero or two intersection points meaning that
the dog might have two ways to reach the postman running at full speed with one
way being quicker than the other.

For these reasons it is still an open problem to solve dog queries efficiently when
some of the postmen move faster than the dog. For the same reasons the dog and
postmen problem is more difficult to generalize to other kind of motions for postmen,
because it is not possible to guarantee that there is only one point of intersection

Inria

Dog Bites Postman 27

between the half cone (dog) and the postman trajectory. It is still an open problem
to devise satisfactory algorithms for these motions.

The algorithms as originally described were semi-dynamic: postman could be
added but not deleted. We also sketched how to utilize a technique originally due to
Schwarzkopf [Sch91] to derive a fully dynamic algorithm in the randomized setting
that permits O(log® n) expected location time for the queries.

We conclude by noting that the dog diagram can be viewed as a Voronoi dia-
gram of lines using a convex distance function; developing bounds for these kind of
diagrams is an open problem in computational geometry.

Acknowledgements

The authors would like to thank M. Goodrich for pointing out the applicability of
[GT91] to the moving-Voronoi problem. They would also like to thank Jean-Pierre
Merlet for supplying us with his interactive drawing preparation system JPdraw .

References

[AR92] G. Albers and T. Roos. Voronoi diagrams of moving points in higher
dimensional spaces. In Proc. 3rd Scand. Workshop Algorithm Theory, vo-
lume 621 of Lecture Notes in Computer Science, pages 399-409. Springer-
Verlag, 1992.

[Aur91] F. Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric
data structure. ACM Comput. Surv., 23:345-405, 1991.

[BDS192] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec.
Applications of random sampling to on-line algorithms in computational
geometry. Discrete Computl. Geom., 8:51-71, 1992.

[BT93] J.-D. Boissonnat and M. Teillaud. On the randomized construction of
the Delaunay tree. Theoret. Comput. Sci., 112:339-354, 1993.

[Che85] L. P. Chew. Building Voronoi diagrams for convex polygons in linear
expected time. Report, Dept. Math. Comput. Sci., Dartmouth College,
Hanover, NH, 1985.

[CMS92] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomi-
zed incremental constructions. In Proc. 9th Sympos. Theoret. Aspecls

RR n~° 2263

28

O. Devillers & M. Golin

[CS89]

[Dev92]

[DMT92]

[DTY92]

[EGS86]

[FLI1]

[GKS92]

[GMRO1]

[GT91]

[Kle89]

Comput. Sci., volume 577 of Lecture Notes in Computer Science, pages
463-474. Springer-Verlag, 1992.

K. L. Clarkson and P. W. Shor. Applications of random sampling in
computational geometry, II. Discrete Comput. Geom., 4:387-421, 1989.

O. Devillers. Randomization yields simple O(nlog" n) algorithms for dif-
ficult Q(n) problems. Internat. J. Comput. Geom. Appl., 2(1):97-111,
1992.

O. Devillers, 5. Meiser, and M. Teillaud. Fully dynamic Delaunay tri-
angulation in logarithmic expected time per operation. Comput. Geom.
Theory Appl., 2(2):55-80, 1992.

O. Devillers, M. Teillaud, and M. Yvinec. Dynamic location in an ar-
rangement of line segments in the plane. Algorithms Rev., 2(3):89-103,
1992.

H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a
monotone subdivision. SIAM J. Comput., 15:317-340, 1986.

J.-J. Fu and R. C. T. Lee. Voronoi diagrams of moving points in the
plane. Internat. J. Comput. Geom. Appl., 1(1):23-32, 1991.

L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental
construction of Delaunay and Voronoi diagrams. Algorithmica, 7:381—
413, 1992.

L. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi diagrams of mo-
ving points in the plane. In Proc. 17th Internat. Workshop Graph-
Theoret. Concepts Comput. Sci., volume 570 of Lecture Notes in Compu-
ter Science, pages 113-125. Springer-Verlag, 1991.

M. Goodrich and R. Tamassia. Dynamic trees and dynamic point loca-
tion. In Proc. 23rd Annu. ACM Sympos. Theory Compul., pages 523-533,
1991.

R. Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture
Noles in Computer Science. Springer-Verlag, 1989.

Inria

Dog Bites Postman 29

[MS91]

[Mul91]

[Pre90]

[RN91]

[R0090]

[Ro091]

[Sch91]

[Seiol]

[Sug92]

RR n~° 2263

K. Mulmuley and S. Sen. Dynamic point location in arrangements of
hyperplanes. In Proc. 7th Annu. ACM Sympos. Compul. Geom., pages
132-141, 1991.

K. Mulmuley. Randomized multidimensional search trees: dynamic sam-
pling. In Proc. 7th Annu. ACM Sympos. Compul. Geom., pages 121-131,
1991.

F. P. Preparata. Planar point location revisited. Internatl. J. Found.
Comput. Sci., 1:71-86, 1990.

Thomas Roos and Hartmut Noltemeier. Dynamic Voronoi diagrams in
motion planning. In Compulational Geometry — Methods, Algorithms
and Applications: Proc. Internat. Workshop Computl. Geom. CG 91, vo-
lume 553 of Lecture Notes in Computer Science, pages 227-236. Springer-
Verlag, 1991.

T. Roos. Voronoi diagrams over dynamic scenes. In Proc. 2nd Canad.
Conf. Comput. Geom., pages 209-213, 1990.

T. Roos. Dynamic Voronoi diagrams. Ph.D. thesis, Bayerische Julius-
Maximilians-Univ., Wiirzburg, Germany, 1991.

O. Schwarzkopf. Dynamic maintenance of geometric structures made
easy. In Proc. 32nd Annu. IFEFE Sympos. Found. Comput. Sci., pages
197-206, 1991.

R. Seidel. Backwards analysis of randomized geometric algorithms. Ma-
nuscript, ALCOM Summerschool on efficient algorithms design, Arhus,
Denmark, 1991.

K. Sugihara. Voronoi diagrams in a river. Internat. J. Comput. Geom.
Appl., 2(1):29-48, 1992.

JINRIA

Unité derecherche INRIA Lorraine, Technpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derechercheINRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derechercheINRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

