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L’inclusion pour les types avec union, intersection et
récursion

Résumé : Cet article poursuit les recherches de I'auteur sur l'inclusion de types avec
union (ensembliste), intersection et récursion. Il a été montré aupararant comment les types
pouvaient étre représentés par des expressions d’arbres réguliéres (contraintes d’ensembles).
Ceci a donné lieu a une procédure de décision correcte et compléte pour I'inclusion de types.
Cependant, le résultat était restreint a un langage de type assez spécifique.

Dans le travail présenté ici, nous généralisons le résultat et développons une technique
générale pour dériver des algorithmes d’inclusion de types pour des langages de types avec
union, intersection et récursion. Nous présentons une liste de conditions requises pour obtenir
un algorithme d’inclusion de types correct et complet. De cette maniéere, nous obtenons une
stratégie générique pour implémenter la relation d’inclusion de types pour une classe étendue
de langages de types trés expressifs.

Mots-clé : Théorie des types, Expressions d’arbres réguliéres, Contraintes d’ensembles,
Algorithme, Sémantiques, Idéaux, Intersection de types, Union de types, Types récursifs



Subtyping with Union Types, Intersection Types and Recursive Types I1 3

1 Introduction

1.1 Motivation

Type systems play an increasingly important role in the design of programming languages
as well as in the implementation of compilers. Type systems have, e.g., been successfully
applied in description of a broad class static analyses such as strictness analysis and tagging
optimization.

Our work is motivated by the desire to make use of the expressiveness of (set-theoretic)
union, intersection and recursive types. While recursive types are incorporated into many
modern programming languages, union and intersection types have to the the knowledge of
the author only been applied in a few experimental languages.

From a conceptual point of view, subtyping is a natural part of type systems including
such constructs. However, the practical problems related with these constructs are many.
To relate types properly, there are number of associativity, commutativity and distributivity
rules which must be observed [Dam94a]. The two equalities

T—=(nNm) = (r—=mn)N(r—7)

(mUm)—71 = (n—=7)N(r2—7)

are examples of such rules. Here, the type 7 — 75 denotes the set of functions which map
all values of type 7 into values of type 72, and U and M denote respectively the union and
intersection operator on types.

In addition to union, intersection and recursive types the type language considered in
[Dam94a] contains flat, basic types, product types and function types. The work demonstra-
ted how types may be encoded as regular tree expressions/set constraints. The basic idea is
that types denote structurally similar values, and with an appropriate representation of these
structures, types may be encoded as regular tree expressions. Since the inclusion problem
for regular tree expressions is decidable, this makes up the basis of a decision procedure for
the subtype relation. For the type language considered and its encoding, it is proved that
this decision procedure is both sound and complete with respect to the ideal semantics of
types.

However, most of the proofs are tightly bound to the specific language under consi-
deration. It is neither clear how the results should be generalized, nor whether they are
generalizable. Unfortunately, the language considered and its semantics subsume some very
adverse limitations. Most crucial is an assumption that all types denote infinite sets of values.

As is usual when proving completeness results, a very precise demarcation of the problem
is necessary. Since finite types obey very special subtyping rules, it comes as no surprise that
types must be assumed infinite in order to prove completeness. Unfortunately, the proofs of
respectively soundness and completeness are linked so closely together that the soundness
result relies on the same limitations.

RR n~ 2259



4 Flemming Damm

1.2 New Results

In this paper we reconsider the subtyping problem. The basic ideas are the same as in the
first paper. The main result is a generic technique for implementing the subtype relation for
a broad class of type languages. We deduce succinct requirements for the encoding of types
into regular tree expressions. By reading these requirements as a guideline for defining an
encoding of types, a general technique is obtained.

Type constructions to which our technique applies, include strict as well as lazy product
and function types, record types, and types carrying control flow information.

As a byproduct we have a separate soundness proof for the encoding presented in
[Dam94a]. This proof is liberated from the assumptions that all types must be infinite.
Thus, for the considered sample language with function types, product types and basic
types, we have a sound subtyping algorithm which is also complete when disregarding the
rules applying specificly to finite types.

The results constitute the foundation for a further generalization to a technique for sol-
ving type inclusion constraints—the core of many type inference systems. This generalization
is the topic of a forthcoming paper [Dam94b].

1.3 Related Work

Intersection types have been studied intensively in connection with the intersection type
discipline [Hin92], but this type system has neither union types nor recursive types. Amadio
and Cardelli [AC91] studied subtyping of recursive types. However, their techniques do not
seem to be able to account for union and intersection types. Mishra and Reddy [MR85], Free-
man and Pfenning [FP91], and Cartwright and Fagan [CF91] all defined type systems with
union, intersection and recursive types. None of them did, however, consider the subtyping
problem in its full generality.

The work by Aiken and Wimmers [AW93] comes very close to ours. They consider a
type language similar to ours, and their work is also based on a relation of types and regular
tree expressions. In fact they consider a more general problem: given a set of inclusion
constraints, does there exists a substitution for the free variables such that the inclusions
are valid. However, the underlying subtyping algorithm is strictly weaker than ours since
rough approximations are introduced in connection with contravariant function types.

1.4 Overview

A short introduction to metric spaces is given in Section 2 where we also outline how a metric
space of subsets of a given set may be defined. This is the core of both the interpretation
of regular tree expressions which we present in Section 3, and the ideal model of types. A
small type language with function types and product types is presented in Section 4. This
language is equivalent to that of [Dam94a], and serves as an example on how our technique
may be applied. Section 5 is the cornerstone of the exposition. Here we show how types may
be encoded as regular tree expressions, present succinct requirements for the encoding of the

Inria
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basic type constructors, and give generic soundness and completeness proofs. In Section 6 we
shortly demonstrate how some other type languages may be approached using our technique.

2 Metric Spaces

The theory of metric spaces is one of more theories which provide mathematical methods
for giving semantics to recursive definitions, i.e. the theory is a fixed point theory. Some
of the advantages associated with metric spaces are that fixed points are unique, and that
the theory allows for finding fixed points of non-monotonic functions. The latter property is
crucial for the semantics of types presented in Section 4.

Definition 2.1 (Metric spaces) A metric space (D,d) is a set D together with a metric
d:Dx D — Ry subject to the conditions:

() dz.y) =0 iff 2 =y
(i) d(z,y) = d(y, z)
(iii) d(z,z) < d(z,y)+ d(y,z) (The triangle property)

A sequence <s;>;>q of elements of a metric (D, d) is called a Cauchy sequence if for
every € > 0 there exists an n such that for all p,q > n, d(s,,s,) < e. A sequence <s;>;>o
of elements is called convergent if there exists a limit § € D of the sequence. That is, given
any ¢ > 0, there exists an n such that for all p > n, d(s;, $) < e. A metric space is complete
if every Cauchy sequence is convergent.

A mapping f: (D,d) — (E,e) between two metric spaces is contractive if there exists a
constant ¢ < 1 such that for all z,y € D,

e(f(2), f(y)) < cd(z,y)

The generalization to n-ary functions requires

e(f(zr, ... zn), f(2), ..., 2)) < cmax{d(z;, ;) |i < n}

A mapping is non-ezpansive if this requirement holds for ¢ < 1. The Banach fized point
theorem states that contractive functions have unique fixed points:

Theorem 2.1 (Banach) If (D,d) is a non-empty complete metric space and f: (D,d) —
(D,d) is contractive, then f has a unique fized point in (D,d). This fized point is the limit
of the Cauchy sequence <fi(x0)>i20 where xy is an arbitrary point in D.

For composition of contractive and non-expansive mappings we have:

Lemma 2.1 Let f: Dy X ...x D, — FE and ¢g; : C — d; be arbitrary mappings. For the
composition fo<gy,...,gn> = +— f(91(x),...,gn(2x)) we have

RR n " 2259



6 Flemming Damm

1. fo<gi,...,gn> 15 non-ezxpansive if f and all g; are.

2. fo<gi,...,gn> 15 contractive if f and all g; are non-expansive and either f or all g;
are contractive.

A mapping f : (D,d) — (E,e) between two metric spaces is continuous if for all z € D
and all € > 0 there exists a § > 0 such that for all y € D, d(z,y) < 6 = e(f(2), f(y)) < e.
Continuous mappings preserve limits. That is, if f : (D,d) — (F, €) is a continuous mapping
and <s;>;>0 is a convergent sequence in (D, d) with limit §, then <f(5i)>i20 is a convergent
sequence in (F,e) with limit f($).

2.1 Metrics on Power Sets

Given any set D together with a rank function r : D — N, one can define a metric space of
subsets of D as follows. Let s1, s5 be two sets, then s; & s5 denote their symmetric difference
(s1\ $2)U(s2\ s1). The closeness ¢(s1, s2) of two subsets of D, s1,s2 € P(D), is the element
of least possible rank in the symmetric difference: ¢(s1,s2) = min{r(b)|b € s; © s2}. By
convention, min{} = co. The set P(D) of subsets of D constitutes a metric space with a
metric d, defined by: d,(s1, s2) = 2-¢(s1:52) By convention, 27°° = 0. This space is complete:

Theorem 2.2 The metric space (P(D),d,) is complete. If <s;>;>q is a Cauchy sequence
then its limit is § = {b € D | b is in infinitely many s;}.

It is worth noticing that this theorem is valid for an arbitrary rank function. In particular
notice that the limit of a Cauchy sequence is independent of the actual rank function. A
particular sequence may, however, fail to be a Cauchy sequence when the rank function is
replaced.

Neither union, intersection nor complement are contractive as functions on a power set
metric (P(D),d,) but they are all non-expansive.

Let f: Dx Ey x...x FE, — D be a function of non-empty complete metric spaces.
Assume f is contractive in its first argument. The “parameterized fixed point” function
uf o By x ... x E, — D is defined by taking (uf)(y1,...,yn) to be the unique element
x € D such that @ = f(x,y1,...,yn). The Banach fixed point theorem ensures that such an
z exists. In [MPS86] it is proved that if f is contractive (non-expansive) then so is pf. In
connection with fixed points, we will not distinguish between () — D and D. I.e. the fixed
point of f: D — Disuf:() — D.

3 Regular Tree Expressions

Regular tree expressions [GS84, AM91] are conceptually equivalent to set constraints [AW92].
The difference is mainly syntactic. Given a ranked alphabet X, a Y-tree as a labelled finite
tree with node symbols X.. For each node the number of subtrees is equal the rank of the
symbol at that node. By Hy we denote the Herbrand universe of the symbols in X. The
height hg(t) of a tree ¢ is the length of the longest path of ¢. A forest is a set of trees.

Inria
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As an instance of the power set construction presented in Section 2.1, a complete metric
space of forests may defined.

Theorem 3.1 The metric space (P(Hy), dpy) is complete. If <F;>i>¢ is a Cauchy sequence
then its limit is F = {t € Hy |t is in infinitely many F;}.

Given a set of variables X, the set of regular tree expressions REg(X, X) is defined by
the grammar:

C:::bot|m|a((,...,()|C+C|C*C|Z|fixm.( (1)

For a constructor ¢ € ¥ of rank n the number of arguments must be n. A regular tree
expressions is well-formed if for all recursive regular tree expressions fixz.(, all occurrences
of the variable # in ( are embedded in constructions of the form o({i,...,(,). The set of
well-formed regular tree expressions is denoted RE(X, X).

The semantic interpretation of regular tree expressions is provided by the function
7 : RE(X,X) — REEnv — P(Hs) where REEnv = X — P(Hy) is the set of forest
environments (ranged over by 1) mapping variables into subsets of Hy.

I[bot]ln = ©
Ilzln = n(=2)
Ilo(Cry - C)ln = Aoty ta) [t €Z[GIn A - Atn € I[Ca]n}
I[G + Gl = Z[GInVI[C]n

I[Gi *CIn = Z[GInNZ[C2]n
I[KIln = Hs\Z[KIn
Iffixe.CIn = pAF . Z[CIn{F/=})

Well-formedness of regular tree expressions ensures that the application of the fixed point
operator u yields a well-defined result.

The set of trees corresponding to regular tree expression without free variables are stron-
gly equivalent to tree recognizers [GS84]. Such sets are called regular.

Set constraints have been studied intensively the recent years. For our purpose, the impor-
tant results are that for two regular tree expressions {1 and (s, it is both decidable whether
I[¢in € Z[¢2]n for some forest environment n [AW92], and for all forest environments 7
[GTT93].

4 A Type Language

In this section we present a small type language. It it similar to that introduced in [Dam94a],
and will serve as a sample language throughout of the rest of the paper. In addition to union,
intersection and recursive types, it includes a set of basic types, product and function types.

In order to give semantics to types, we adopt the ideal model of types [MPS86]. This
choice is essential for our development since many proofs relies on properties of this model.

RR n~ 2259



8 Flemming Damm

However, the type inclusion rules applying in this model seem to be typical, and we expect
them to be valid in most other models.

4.1 Syntax of Type Expressions
ro=Llu|..|w|t|txt|r=7 U |07 |pt.T (2)

The type L denotes the empty type and ¢; are basic types. In the sequel we assume without
loss of generality that all basic types are disjoint. Overlapping types may be defined in terms
of the union type constructor. Products are non-associative. The function type is the well
known contravariant function type. Union and intersection types are set-theoretic, and ut.7
denotes the unique type 7’ fulfilling the equation 7/ = 7[r'/t]. We assume all type expressions
are well-formed: for all of recursive types ut.7, every occurrence of the variable ¢ in 7 occurs
in the scope of a basic type constructor, i.e. in a product or function type. This requirement
ensures unique fixed points for recursively defined types. By TExp we denote the set of
well-formed type expressions.
A top type T which is the union of all types may be defined in terms of recursion:

T = ptal.. Uy U@ExHU(L—1)

4.2 Semantic Domains

The value universe in which the types will be interpreted, is a domain V satisfying the
domain equation:

V=Bi+..+B,+(VxV)+(V-=V) (3)

Here B; denote flat domains of basic values. These domains are assumed disjoint. By V x V,
we denote the product of V with itself, and V — V is the continuous functions from V
to V. Here we have two parameters to the semantics. At first, the product V x V may be
either the Cartesian product or the smashed product. The smashed product differs from
the Cartesian product by coalescing a pair <z, y> with the bottom element of the product
whenever z or y equals L. The other parameter concerns the function domain. Here we may
or may not include non-strict functions. For our example, we choose the smashed product
and assume all functions strict. In this way, we are consistent with [Dam94a]. The domain
operator + denote the sum operator. Here we have a third parameter to the semantics. Some
of the domains may be lifted. For example, one might want to lift the function domain to
obtain a separate bottom value for the functions Az . L # L. Again for consistency with
[Dam94a] we assume that none of the summand domains are lifted.

It should be emphasized that the ideal model (and thus the rest of this section) is
independent of these choices. However, as one may expect, the type inclusion rules depend
on the instantiations of these parameters. Other instantiations give other subtyping rules.
As an example, we have that T — 1 = 1 with the choices made. But this equality is not
valid if the function domain is lifted. We discuss the other possibilities in Section 6.

Inria
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Solutions of domain equations like (3) exists up to isomorphism and may be constructed
via the so-called inverse limit construction. The solution is a limit of the sequence of cpos
<Vi>;>0, starting from Vo = {L1}:

Visgi=Bi+...+B, + (Vi x V) +(V:; =V;)

This sequence constitute a sequence of increasingly better approximations to the solution.

An element d of a domain D is w-finite (or just finite) if for all increasing sequences
<Tp>n>o of elements of D, d C |_|n x, implies that there exists an n such that d C z,. The
finite elements of a cpo D is denoted by D°. The finite elements of a product domain D x F/
is D° x E°, and the finite elements of a sum domain D + F is D° + E°. For a function
domain D — F the finite elements are finite lubs of step functions. For d € D° and e € E°,
a step function d = e is defined by:

e ifx3d

(d=e)(z) = { 1 otherwise
Notice that for any finite function value f there exists a minimal set of step functions such
that f is the lub of these step functions. Given a set {a; = b1,...,a, = b,} of step
functions, the minimal set of step functions may be obtained by consecutively removing
those step functions a; = b; for which there exists another step function a; = b; such that
b; = b; and a; C a;. Whenever we in the following write a finite function value as a lub of a
set of step functions, we assume this set to be minimal.

For a finite value v € V° we define the rank r(v) to be the least 7 such that v € V;.
Informally speaking, a value is finite if its structure is finite, and one can think the rank of
a value as the height its structure.

4.3 The Metric Space of Ideals

Order ideals are non-empty downward closed subsets of a partial order. For a partial order
D the order ideals are denoted by Jo(D). An ideal is an order ideal which is closed under
lubs of increasing sequences. For a partial order D the ideals are denoted by J(D).

As mentioned, we shall pay special attention to finite elements. The following theorem
establishes a close connection between order ideals of finite elements and ideals:

Theorem 4.1 The function I +— I° mapping an ideal I into the corresponding set of finite
values I° is an order isomorphism of (J(V),C) and (Jo(V°), Q).

Using the previously defined rank function r on finite values, we get as a special instance
of Theorem 2.2:

Theorem 4.2 The metric space (P(V°),d,) is complete. If <I;>;>0 is a Cauchy sequence
then its limit is | = {v € V |v is in infinitely many I;}.

RR n~ 2259



10 Flemming Damm

For a Cauchy sequence <I;>;»>¢ of order ideals the limit I= {z € V°|b is in infinitely

many I;} is an order ideal. Therefore, the subspace J5(V°,d,) is also complete and from

Theorem 4.1 it follows that the metric space (J(V),d,) is complete as well.
Corresponding to the basic type constructors x and — we may define the functions:

IxJ = {<z,y>eVxV]|zelAyel}
IaJ = {feV—=V|Vael.f(a)e J}

They are both contractive in the metric space (J(V),d,). But this fact is highly sensitive
to chosen rank function 7.

4.4 Semantics of Types

Let TEnv = Var — J(V) be the set of proper type environments (ranged over by p). The
semantic function on type expressions D : TExp — TEnv — J(V) mapping well-formed
type expressions into ideals, is defined by:

Pl = {1}
Dlu]p = B;
Dltlp = p(t)
Dl x m2]p = DlnlpxD[r]p
Dlri—m]p = Dln]pED[r]pr
Dlnun]p = Dln]euD[r]e
Dlnnw]p = Dln]enD[rle
Dlutrlp = w(M.Dlro{1/e})

Well-formedness of type expressions ensures that the semantics of a recursive type is well-
defined and unique. This gives well-definedness of D as well. By D°[r]p we denote the
finite values of D[r]p. We shall frequently consider the semantics of types in improper
environments: a type environment p is improper if for some type variables ¢, p(t) is a set of
values which is not an ideals. As long as types do not contain recursion, D is well-defined
for improper type environments.

4.5 The Metric Space of Ideals—Reconsidered

One of our results is a new soundness proof of the subtyping approach based on encoding
of types as regular tree expressions. This proof does not assume finiteness of types. The
proof includes a relation of the metric space of ideals with a metric space of sets of trees. In
this connection it turns out that the metric defined in Section 4.3 causes certain problems.
Fortunately, it is possible to redefine the metric without affecting the semantics of types.
The metric space of ideals is an instance of the subset construction presented in Sec-
tion 2.1. As noticed in Section 2.1, the completeness of such spaces is independent of the

Inria
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actual rank function on the underlying set. Consequently, we can redefine the rank func-

tion r on V° without affecting the completeness of the metric space of ideals. In particular,

the limit of a Cauchy sequence is independent of the actual rank function. Thus, as long

as the semantic function D is well-defined, it is independent of r. For well-definedness of

D the decisive factor is that for all recursive types pt.7 the sequence <Di(Io)>i20 with

D = A . D[r]p{I/t} must be a Cauchy sequence for all ideals I and type environments p.
The rank function v’ defined below serves our purposes:

T’/(J_) = 0
T’/(bij) = 1
r(<z,y>) = 1+ max{r'(z),7(y)}
r(ar = b U...Ua, =b,) = n+1+max{r'(a),7(b1),...,7"(an),r"(bn)}

Here we assume that a finite function value is described as the lub of a minimal set of step
functions. This ensures well-definedness of r'.

The important difference between r and 7’ is in the definition of the rank of a function
value. For the old rank function r we have:

rlar = b U...Ua, = by) = 1+ max{r(a),r(b),...,r7(an),r(bn)}

Thus in contrast to the old rank function r, the new rank function ' adds the cardinality n
of the function graph. In this way, the rank becomes a more precise measure of the size of
a value.

To complete these considerations, we must ensure that the semantics presented in Sec-
tion 4.4 remains well-formed when switching to the new metric space of ideals based on the
rank function 7’. One way to prove this is to adapt the proofs in the original work on the
ideal model of types [MPS86]. This causes no problems. However, we present here a different
and simpler proof. The important observation is expressed in the following lemma.

Lemma 4.1 For all ideals I, 15 € Jo(V), dp(I1, In) < dr(I1, I2).

Proof [Sketch]: For the two rank functions r and ' we have r(v) < r/(v) for all finite values
v € V. Let I, I € Jo(V®) be any order ideals. Assume I, I3 are different. From the above
it follows

min{r(v)|ve L &L} <min{r'(v)|ve L &I}
ie. ¢r(I1, I2) < ¢pr (11, I). Consequently, dy/ (I, In) < dr(I1, I2). O
From this lemma we may derive:

Lemma 4.2 The identity mapping I — I is continuous as a mapping between (J(V),d,)
and (J(V),d).

Since continuous mappings preserve limits, we have that the semantic definition D is well-

defined in the modified metric space (J(V), d,/).

RR n "~ 2259



12 Flemming Damm

5 Encoding of Types

The main idea of the approach presented here is to represent the structure of a value in such
a way that the set of trees corresponding to a type is regular. Since the inclusion problem
for regular sets of trees is decidable, we may in this way gain a decision procedure for the
type inclusion problem.

We present succinct requirements to the encoding of types which are sufficient to ensure
respectively soundness and completeness. We show that the soundness requirements is fulfil-
led for the type language presented in Section 4 and the encoding presented in [Dam94al. As
a byproduct we have a new soundness proof which is free of the rather adverse assumption
that all types must be infinite.

5.1 Representation of Values

To motivate the presentation of values by trees, consider a tuple <z, y>. If {; and ¢, are
trees representing respectively z and y, then we may represent the tuple <z, y> by a binary
tree p(ts,ty). For function values it becomes slightly more difficult because a function does
not induce a tree like structure in the same simpler manner as a product. One solution is to
represent the graph grf,,;(f) of a function f:

9rfs1a(f) = {<z,y> €V xV]|y=f(x)}

However, since step functions may have an infinite domain, such graphs may be infinite
even for finite values. In order to obtain a finite representation, we introduce the notion
of minimalized graphs. Consider a function f and two arguments z; and z, such that z;
is strictly less defined than zs, i.e. xy T x3. From the monotonicity of f we have that
f(z1) T f(xo). If f(21) = f(x2) then the pair <z, f(z2)> does not really add any new
information. To obtain a minimalized graph from a “standard” graph, we remove such pairs.
More formally, the minimalized graph grf(f) of a function f is defined by:

grf(f) = {<z,y>€VxV]y=fz)AV2' Cz.f(z') Cy}
It 1s not difficult to see that the set
{a = b|<a,b> € grf(f)}

corresponds to the minimal set of step functions corresponding to f. Since step functions
have finite codomains, the minimalized graph of a finite function value is a finite set. In the
sequel we will assume that all graphs are minimalized.

A graph ¢grf(f) may be encoded as a sequence of pairs whose set of elements is exactly
grf(f). A sequence <ti,ta,...,1,> is represented by a right recursive tree

9(t1, g(ta, ... g(tn, nil)...))

Inria
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where ¢ is a new binary symbol and nil is a new 0-ary symbol. By seqs we denote the set
of all such sequences. The function elems yields the set of elements of such a sequence. We
make use of the following abbreviations for expressions denoting sets of such sequences.

[C13C2:"'aCn] = g(C1ag(C2ag(Cn:n21)))
[t fixt.g((,t) + g(¢, nil) where ¢ is not free in ¢

Since the same function graph may be represented by many different sequences, the repre-
sentation is lifted to sets of values. For each basic domain B;, we introduce a new 0-ary sym-
bol x;. A mapping 7 from finite values to trees over the alphabet ¥ = {x1,..., kn,p, g, nil}
may now be defined.

= 0
{ri}
{p(t1,t2) [t € T(x) Atz € T(y)}
= {t € seqs |V, € elems(t).
A<z, y> € grf(f).
t, € T(<z,y>)A
V<a,y> € grf(f).
qt, € elems(t).
t, € T(<z,y>)}

The function 7 is lifted to also work on sets of values as follows:
T(1:P(ve) = [JTW)
vel
It 1s a trivial consequence of this definition that 7 is monotonic with respect to inclusion.
As an approximation of the representation of all finite values, we define

(1 =fixt.ky+ ...+ K, +p(t, 1)+ [p(t, )T

Next we consider a function V going in the opposite direction of 7, i.e. a function mapping
trees into values the represented values. V is defined in terms of 7.

Vi) = {veVve|teT(v)}

It is immediate from this definition that v € V(¢) iff ¢ € 7(v). The function is lifted to work
on sets of trees in a similar way as for 7. The bottom value L is included by default.

V() = {LuJvw
ter
= {LJufveV°|3t.te FAteT(v)} (4)

Like 7', V is monotonic with respect to inclusion. With the definition of V, the representation
of function values may be expressed in a more comprehensive way.

T(f:(V=V)) = {te segs|elems(t) CT(grf(f)) A
grf(f) C V(elems(t))}

RR n "~ 2259
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5.2 Representation of Types

We are aiming at an encoding R of types into regular tree expressions such that the diagram

TExp TJ(V) <=L gy(ve)y —L=Ls pve)
R v (5)
RE(X, Var) = Hy,

commutes for all types and suitable type and forest environments. By the monotonicity of
V with respect to inclusion and the order isomorphism of J (V) and Jo(V?), it then follows
that D[r]p C D[r]p whenever Z[R[m]]n C Z[R]r=]]n (for suitable p and ).

The bottom type L, type variables plus union, intersection and recursive types are en-
coded straightforwardly as the corresponding operations on regular tree expressions.

R[L] = bot
R[L] = ¢
Rlnum] = R[n]+ R[]
R[nNrm] = R[n]*R[m]
Rlut.7] = fixt.R[7]

For the basic type constructors, we will allow some freedom. We give three succinct sound-
ness requirements. They capture the properties which are essential in order to make the
Diagram (5) commute.

The first requirement says that each all values—except L which is a member of all
types—must have a tree representation.

Soundness Requirement 1 Vv € VO \ {1} .7T(v) #0

To formalize the next requirement, we introduce two predicates P, and Pj.

Pa(r) = T(D°[r]p) C I[R[]In
By(r) = VI[R[IIn) € P°[r]e

The environments p and n are assumed defined in the context. For P, the intuition is that
the encoding of a type 7 should contain all trees representing values of type 7. In other
words, P, accepts a type 7 if the encoding is representation closed. The predicate P, accepts
a type 7 if its encoding does not contain trees representing values outside type 7. Putting
it in another way, Pj accepts a type 7, if the type holds all values whose structures are
represented by a tree in R[7]. That is, 7 is closed under structural equivalence.

Soundness Requirement 2 For all basic type constructors ¢, type environments p and
forest environments n it s true that

Inria
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(a) Py(mi) A ... A Py(mn) = Pyle(m,...,m)) and
(b) Py(mi) A .APy(mn) = Pi(e(m1, ..., m)).
where n s the arity of c.

Notice that the requirements specify necessary relations between 7 and R rather than a
requirements on R solely. Furthermore, R[7] may contain trees which are not in 7 (D[r]p).
However, such trees should be meaningless in the sense that they do not represent anything.
This freedom is important as it may not be possible to define 7 such that 7 (D[r]p) becomes
regular.

Lemma 5.1 Assume Soundness Requirement 1 is satisfied. For all types T, if Py(7) and
Py(7) are true then

D°lrle = VIIR[7]In)
Proof: From P,(7) we get

VIZ[R[In) 2 W(T(DP°[r]p))
= eV |A.teT(D°[r]p) At eT(v)}U{Ll}
= eV | VOND[rlp #0At € T(v)} U{L}

Assume v € D°[r]p \ {L}. Then for all ¢t € T(v), V(t) N D°[r]p # 0. Since T(v) # 0
(Soundness Requirement 1) it follows that 3t € T (v).V(t) N D°[r]p # 0, and consequently
v € V(T (D°[r]p)). This proves that D°[r]p C V(T (D°[r]p)) and completes the proof. DO

At this stage it may seem a little strange that the requirement expressed by the predicate
Py, is an inclusion when P, and P together express a requirement D°[7]p = V(Z[R[7]]n)
which is stronger than FP;. The motivation for doing so is that we think the inclusion is
more intuitive and therefore serves as a better basis for defining encoding for actual type
constructors.

Under the assumption that 7 and R meet Soundness Requirement 2, it may be proved
that the properties expressed by the predicates P, and P are fulfilled for all non-recursive
types. In order to deal with type variables, we introduce the notion of semi-agreement which
expresses that P, and P, are fulfilled for all type variables.

Definition 5.1 (Semi-agreement) A type environment (not necessarily proper) p and a
forest environment n semi-agree if for all variablest € Var:

(a) T(p(t)°) Cn(t), and
(b) V(n(t)) € p(t)°

Lemma 5.2 Let p be any (possibly improper) type environment semi-agreeing with a forest
environment 1. Assume that all basic type constructors satisfy Soundness Requirement 2.
Then for all types T not containing recursion:

RR n " 2259
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(a) T(D[rlp) € Z[R[IIn, and
(b) V(Z[R[7]ln) € Plrlp
Proof: The proof is by the induction on the structure of 7.
case 1. Easy.
case t. Follows directly from Definition 5.1.
case 11 L 3. Easy.

case 7 M7y, (a) From the definition of D and the component-wise definition of 7 it is
immediate that

T(D°[mnmlp) = TD°[nlpnD°[r]p)
C T(D°[n]p) NT(D°[r]p)

It remains to proved that there does not exist any value v in the symmetric difference of
D°[r1]p and D°[r2]p such that 7 (v) intersects with 7 (D°[r1]p)NT (D°[r2]p). Assume
there exists such a value v, say v € D°[ri]p, and let t € T (v)NT (D°[r1]p)NT (D°[r=2]p).
By the induction hypothesis we have ¢ € Z[R[r:]]n. But since V(Z[R[r=]]n) C Plr=lp
we have v € D°[r]p which contradicts the assumption.

(b) Analogous to (a).

case ¢(7,...,T,) where ¢ is a basic type constructor of arity n. The proof follows from the
assumptions.

From Lemma 5.1 and 5.2, it follows immediately that Diagram (5) commutes for all types
not containing recursion.

Lemma 5.3 Let 7 be any type not containing recursion, p any (possibly improper) type
environment, and 1 any forest environment semi-agreeing with p. Assume Soundness Requi-
rement 1 and 2 are satisfied. Then

D°[rlp = V(IZIR[r]In)

We do, however, still need to consider recursion. Before doing so, we consider the encoding
of the basic constructors of the sample type language. The encoding presented in [Dam94a
is:

R[[LZ]] = Kj
Rln x ] = p(R[n], R[r])
Rln—m] = [pRIn], RIn]) +p(RIA] (., ()]t

Inria



Subtyping with Union Types, Intersection Types and Recursive Types I1 17

At first sight the encoding of function types may seem a little strange. As described above,
functions are encoded as the sequences (representing graphs) whose elements (pairs) repre-
sent function graph elements. Now reconsider the semantics of function types. Whenever
the first component of a function graph element is of type 7 then the second component
must be of type 79, i.e. values of type m are mapped into values of type m5. However, if
the first component of a function graph element is not of type 7 then there is no restric-
tion on the second component. These two possibilities are expressed by the two alternatives

p(R[m], R[r=]) and p(R[m1] * {1, ¢T) for sequence elements.

Lemma 5.4 For the sample language introduced in Section 4, the tree representation T and
the encoding R fulfills Soundness Requirement I and 2.

The proof may be found in Appendix A. It makes use of the following general lemma which
is also proved in Appendix A.

Lemma 5.5 For all types 7 (and environments p and n), if P,(7) and Py(7) then

(i) VIRl = VIR ) v {1}
(1) T(D°[r]p) = T(D°[rlp) NT(V°)

In order to generalize Lemma 5.3 to recursive types, we would like V to be a continuous
mapping between the metric space of sets of values and the metric space of forests. In terms
of closeness, this means that for all forests Fy and m > 0 it must be possible to come up
with an n such that for all F', ¢py(Fo, F') < n whenever ¢, (V(Fp), V(F)) < m. Since some
values may be represented by arbitrary big trees, we must first of all restrict our attention to
forests which contain a least representation. This requirement is most easily accommodated
by requiring all forests to be representation closed.

Unfortunately, this is not always sufficient to ensure continuity of V. As an example of this
problem, the encoding of our sample type language leads to a V which is not continuous—
even not for representation closed forests. Basically, the problem is that from the rank of
a value we cannot determine the height of the least tree representing that value. For the
type language in Section 4, it is the function values which cause the problem: the rank
of a function value does not say anything about the cardinality of its graph. We need a
closer connection between the rank a value and the height the least corresponding tree.
The important property is that the distance between two forests does not “jump” (or the
closeness does not “shrink”) when applying V. This is the essence of the third soundness
requirement.

Soundness Requirement 3 There must exist a rank function r on V° such that D is
well-defined, and there is constant ¢ such that for all values v € V°,

min{hg(t) [t € T(1)} < er(v)

It is not difficult to see that the alternative rank function ' introduced in Section 4.5 satisfies
this requirement.

RR n " 2259
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Lemma 5.6 If the rank r for finite values satisfies Soundness Requirement 3 then the map-
ping V is a continuous mapping from the representation closed part of (P(Hx),dpg) to
(P(V®),d,).

Proof: It issufficient to prove that for all Fy, F' € P(Hyg) and allm > 0,if ¢, (V(Fp), V(F)) <
m then cpy(Fo, F) < m. Assume ¢, (V(Fy), V(F)) < m. Let v, € V(Fy) © V(F) be such that
vy < m. By the element-wise definition of V, the set {t | vy, € V(¢)}N(FyUF) is a non-empty
set of witnesses of Fiy and F'. Since Fy and F' are representation closed, this set is equal to
{t|vw € V(t)}. By Soundness Requirement 3 is follows that cp,(Fo, F) < m. |

Lemma 5.7 Let 7 be type, p any proper type environment and n any forest environment
semi-agreeing with p. Assume Soundness Requirement 1, 2 and 3 are satisfied. Then it holds
that:

D°[rlp = V(IZIR[r]n)

Proof: For every recursive type ut.7’, we have that D°[ut.7']p is the limit of the Cauchy
sequence <D"({L})>,>0 where D = Al .D°[r']p{I/x}. Also, for all i > 0, D'(D°[r"]p) =
Di=YD[r'[7"/t]]lp). Therefore, the denotation of 7 may be described as the limit of a
Cauchy sequence of types which do not contain pt.7 as a subexpression. By simultaneous
unfolding all recursive subexpressions of 7, we can obtain a Cauchy sequence of types with
the denotation of 7 as the limit but without types containing recursion. Since V(Z[R[7']]n) =
D°[[']p for all non-recursive types 7/, and since V' is continuous, it follows that V(Z[R[r]]n) =
D°[r]p for types T containing recursion. |

Theorem 5.1 (Soundness of subtyping) Let R be an encoding fulfilling Soundness Re-
quirement 1, 2 and 3. Let 11,7y be any types. If for all forests environments n, Z[R[n]]n C
I[R[r=]ln then there exists a (semi-agreeable) type environment p such that D[r]p C

Dlr=]p-

We now shortly sketch how to obtain completeness. The proofs may be adapted from
similar proofs in [Dam94a]. First, we define the predicate P..

P(r) =Vt e Z[R[r]In.V(t) # 0

The predicate P, essentially requires that the encoding of a type 7 may not contain “garba-

ge” | i.e. trees not representing any value.

Completeness Requirement 1 For all basic type constructors ¢, type environments p and
forest environments n it is true that

P.(m) A ... AP(1n) = Pe(c(m1,..., ™))

where n s the arity of c.

Inria
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Completeness Requirement 2 There must exist a rank function r on V° such that D is
well-defined, and there is constant ¢ such that for all values v € V°,

¢ minfhg(t) |t € T(W)} > r(v)

The latter requirement is sufficient to ensure that V is continuous as a mapping from
(P(V°),d,) to (P(V°),ds,). Both requirements are satisfied for our sample language pro-
vided that all non-empty types are assumed infinite. To make type variables meet Comple-
teness Requirement 1, the notion of agreement is necessary.

Definition 5.2 (Agreement) A iype environments p and a forest environment n agree if
for all variables t € Var:

(a) T(p(t)°) =n(t)
(b) V(n(t)) € p(t)°

Lemma 5.8 Let 7 be type, p any proper type environment and n any forest environment
agreeing with p. Assume that both Soundness Requirement 1, 2 and 3, and Completeness
Requirement 1 and 2 are satisfied.

T(DP°[r]p) = Z[R[1n

Theorem 5.2 (Completeness of subtyping) Let R be an encoding fulfilling Soundness
Requirement 1, 2 and 3, and Completeness Requirement 1 and 2. Let 71,79 be any types. If
Dlrilp C D[ra]p for all (agreeable) type environments, then there exists a forest environment
n such that Z[R[m1]n C Z[R[r=]ln-

6 Other Examples

We shall here shortly sketch how some variations on the semantics of our sample language
may be reflected in the encoding. First, assume we want to distinguish L and Az . L. This
just means that a function graph may be empty. The encoding may account for this by
allowing empty sequences in the representation of function types. This also rules out the
inclusion T— 1 < 1.

Next, assume that types are interpreted in a domain including non-strict functions and
products. This may be accommodated by the encodings (undef is a new 0-ary symbol):

Rlm x 1] = p(undef + R[], undef + R[r=])

Rln—m] = [p(undef +R[n], R[r]) + p(R[n] * (v, (r)]" where
(t = fixt.k1+ ...+ &y + p(undef +t, undef +t) + [p(undef +¢,t)]"
[€]" = fixt.g({,t) + nil where ¢ is not free in ¢

RR n " 2259
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7 Concluding Remarks

We have presented a generic technique on encoding of types into regular tree expressions. The
approach has been applied to a sample language which constitute the core of many languages.
The complexity results for set constraints are quite discouraging ((NEXPTIME]) [AKVW93],
but it is not clear what these worst case results mean in practice for our subtyping approach.
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A Proofs

Proof of Lemma 5.5:

(i) Notice that Z[R[7]]n = Z[R[r]]n- Using Equation (4) we may derive:

VR[N = {veV®|T(v)NI[R[]]n # 0}
VR[N = {veV®|T(v) CI[R[Iln} \ {1}

Since AN B =0 iff A C B, it just remains to prove that for all v # L

T(v) CI[R[r]ln = T()NI[R[]n#0

(=) Follows directly from Soundness Requirement 1.

(<) Rewriting Py(7) we derive Vi .t € Z[R]7]ln = Vv.t € T(v) = v € D°[r]p which

RR n " 2259

in turn is equivalent to

Vo Vi teZ[R[r]In=t e T(v) = veD[r]p

This proves that v € D°[r]p. From P,(7) it follows that 7 (v) C Z[R[r]]n-
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(ii) Combining P,(7) and Py(7) we get V(T (D°[r]p)) C D°[r]p.
V(T (D°[r]p)) € D°[rlp
vt € T(D°[r]p).V(t) CD°[r]p
V. Vt)ND[r]p #0 = V(t) CD°[r]p
t. V) LD[r]lp = VE)ND°[r]lp =0
t.V(
{tlv(t) ND[r]p # 0} C{t|V(t)ND°[r]p = 0}
T(D°[r]p) CT(D°[r]p)

U R R

Next we have

T(D°[r]p) = {t|V(t)nD°[r]p =0}
= {t|v(t) c D°[7]p}
C T(Vo)ult|v(t)nDe[rlp # 0}
= T(V)UT(D°[r]p)

which is sufficient to establish the goal. O

Proof of Lemma 5.4: Since we in the definition of the value universe V have used smashed
product and all functions are strict, it is not difficult to see that for all v £ L, 7(v) # 0,
i.e. Soundness Requirement 1 is satisfied.

To verify Soundness Requirement 2 we consider each of the basic type constructors.

case k;. Basy since all basic domains are assumed disjoint.
case 11 X T3. Easy.

case 1, —T2. To prove Property (a), assume 7(D°[r1]p) C Z[R[m]ln and T (D°[r2]p) C
Z[R[r=1]n-

T(D°[r1— m2]p)
= {t€seqs|IfeD°[rn—m]p.elems(t) CT(grf(f)) A
grf(f) € V(elems(t))}
07}({03; y>|z € D°[ri]p = y € D°[r2]p}) A
T({<z,y> |z e D°[n]p Ay € D°[r]pV
reD[r]pAyeVHA

C  {t € seqs|elems(t) C
elems(t) #
= {t € seqs|elems(t) C

0}
(bl ) [ty € T(D°[]o) Atz € T(D*[12]0)
t1 € T(D°[n]p) Atz € T(V°)} A
elems(t) # 0} Inria

elems(t) #
= {t € seqs|elems(t) C
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By Lemma 5.5 we have 7(D°[r]p) = T(D°[r1]p) N T(V®). From the assumptions we
finally get:

T(D°[r1— 72]p)

C  {t € seqs|elems(t) C {p(t1,t2) |t1 € Z[R[n]n Atz € Z[R]7]In vV
t1 €Z[R[n] *(rlnAte € Z[Cr]nt A

elems(t) # 0}
= I[RIn—rlln

For Property (b) we have

V(Z[R[r— 7]ln)
{veVe|FHeT(w).t eI[R[rn—mlIntu{Ll}
{f€(V —=V)°|V<uy,v2> € grf(f).
I, € T(<vr,v2>).
ty € TI(RIn, RIm Dl U
Ilp(R[m] * ¢r, ¢r)ln}
= {f (V= VP gf(f) C VE(RInD, RImDIn U
VIZ[p(R[r] * ¢, ¢r)Im)}
{f e (V=V)lgrf(f) CVIIR[n]In) x VZ[R[r]ln) U
VZ[R[n] *¢r]n) x V(Z[¢r]n)}
{fe(V—=V)lgrf(f) CD°[n]p x D°[r2]pU
Do[n]pe x V°}
fe(V—=V)lgf,af) CD[n]p x D°[r]p U
Do[r]p x V°}

N

= D[ —nls
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