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Abstract: We study the approximation problem of E f(X7) by E f(X}), where (X;) is the
solution of a stochastic differential equation, (X]*) is defined by the Euler discretization scheme
with step %, and f is a given function. For smooth f’s, Talay and Tubaro have shown that the
error IV f(Xr1) — f(X7}) can be expanded in powers of %, which permits to construct Romberg
extrapolation procedures to accelerate the convergence rate. Here, we prove that the expansion
exists also when fis only supposed measurable and bounded, under an additional nondegeneracy
condition of Hérmander type for the infinitesimal generator of (X;): to obtain this result, we
use the stochastic variations calculus.

In the second part of this work, we will consider the density of the law of X7 and compare
it to the density of the law of Xp.
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La loi du schéma d’Euler pour les équations
différentielles stochastiques:
I. Vitesse de convergence de la fonction de
répartition

Résumé : On étudie le probleme de 'approximation de I f(X7) par I f(X7}), ou (X])
est défini par le schéma d’Euler de pas %, et f est une fonction donnée. Pour des fonctions f
régulieres, Talay et Tubaro ont montré que 'erreur de discrétisation I f(X7)— f(X}) peut étre
développée en puissances de %, ce qui permet de construire des algorithmes d’extrapolation de
Romberg pour accélérer la convergence. Dans cet article, on montre qu'un tel développement
existe aussi quand f est supposée seulement mesurable et bornée, sous une condition supplé-
mentaire de non dégénérescence de type Hérmander pour le générateur infinitésimal de (X;):

pour obtenir ce résultat, on utilise les outils du calcul des variations stochastiques.

Dans la seconde partie de ce travail, nous considérerons la loi de la densité de X7} et la
comparerons a la densité de la loi de X7.

Classification AMS(MOS): 60H07, 60H10, 60J60, 65C05, 65C20, 65B05.

Mots-clé : Equations différentielles stochastiques, approximation, calcul de Malliavin.



STOCHASTIC DIFFERENTIAL EQUATIONS — LAW OF THE FULER SCHEME 3

1. Introduction

Let (X;) be the process taking values in [R?, solution to
dXt = b(Xt)dt + O'(Xt)th 5 (11)

where (W;) is a r-dimensional Brownian motion.

The problem of computing the expectation Ff(X;) on a time interval [0,7] by a
Monte—Carlo algorithm, (X;) being a diffusion process, arises from various motivations.
For example, in Random Mechanics, a random dynamical system with a white noise
being given, one wants to get the two first moments of the response of the system, or the
probability that the response reaches a certain level. In numerical analysis, this permits to
solve parabolic or elliptic Partial Differential Equations in situations where deterministic
algorithms become difficult to use or unefficient, especially when the dimension of the
state space is large, when the underlying differential operator is degenerate, or when the
objective is to compute the solution only at a few points. In economy, this permits to
compute option prices based upon a large panel of assets.

The algorithm consists in approximating the unknown process (X;) by an approxi-
mate process (depending on a parameter denoted by n) X/ which can be simulated on a
computer, and in simulating a large number M of independent trajectories of X7*, so that
Ef(X:) is approximated by:

1M .
M;f(Xt (wi)) -

The resulting error of the algorithm depends on the choice of the approximate process
and the two parameters M and n.

The effects of M can be described by the Central-Limit Theorem or large deviation
results; in practice, one estimates the maximum value of the variance of f(X;) for ¢ in
[0, T, and then chooses M according to the desired accuracy and the power of the available
computer. A sophisticated variance reduction technique has been developed and analysed
by Nigel Newton in [8]. Generally M must be large,and, as just mentioned, one chooses a
probabilistic technique because the problem is degenerate or high dimensional: therefore,
one takes advantages of simple procedures to approximate (X;).

A natural mean is to use a time discretization scheme of the stochastic differential
equation whose (X3) is the solution: T'/n represents the discretization step. For example,
the Euler scheme is defined by

n n n T k13 [
X(p—l—l)T/n = ApT/n + b( pT/n)E + U(XpT/n)(W(p+1)T/n o WPT/TL) : (12)
For % <t< W, X[ is defined by
pT

X7 = XK+ 0K (8= 2 ) 4 000, )(We = Woryn)

n

RR n° 2244



4 Vled BALLY , Denis TALAY

The effects of n can be measured by the quantity:
[Ef(Xr) = Ef(X7)]. (1.3)

Milshtein [6] was the first to show that the schemes built for the quadratic mean conver-
gence, and L? estimates of the corresponding errors, are not relevant in that context, since
the objective is to approximate the law of (X;).

Talay ([12] and [13]) and, independently, Milshtein [7], have introduced the appropriate
methodology to analyse the error (1.3): it consists in writing this difference as a sum of
terms involving the solution of a parabolic PDE (this technique will be used also below).
These references provide schemes such that, under smoothness conditions on b, o, f:

«

[Bf(Xr) - Ef(X{)| < —, a=12.

Y Y

Several other schemes have then been proposed by Kloeden and Platen [4].

In Talay and Tubaro [14], a more precise result is proven : under the same conditions,
the errors corresponding to these schemes can be expanded in terms of powers of %, and
formulae for the coefficients of the expansion can be derived. In Protter and Talay [11],
the same result is shown for the Euler scheme applied to stochastic differential equations
driven by general (discontinuous) Levy processes.

Here, we will focus our analysis on the simplest scheme, the Euler scheme: as a conse-
quence of the existence of the expansion, linear combinations of results obtained with this
scheme and different step-sizes permit to reach any desired convergence rate (Romberg
extrapolation technique: see Talay and Tubaro [14]).

Our objective is to show the existence of the expansion under a much weaker hypo-
thesis on f than in [14]: we will suppose it measurable and bounded (the boundedness
could be relaxed); for example, f can be the indicatrix function of a domain: our result
applies when one wants to compute probabilities of the type P[|X7| > K]. In counter-
part, we suppose a nondegeneracy condition which in particular ensures that, for any
t >0 and any = € R, the law of the random variable X;(z) has a smooth density with
respect to the Lebesgue measure (essentially, this condition is the Hérmander condition
for the infinitesimal generator of the process): that condition is less restrictive than the
uniform ellipticity of the generator, and therefore our result applies for dynamical systems
whose solution, representing a pair (position, velocity), cannot have a uniformly elliptic
generator.

The organization of the paper is the following : in the section 2, we recall some results
of the Malliavin calculus that we will use in the sequel, in particular an estimate due to
Kusuoka and Stroock on the derivatives of the density of X;(z); in the section 3, we state
and comment our main result; the section 4 is devoted to the proof, except two technical
lemmas which are proved in the section 5; in the section 6, we give some extensions of the
result.

In the second part of this work [2], we will consider the density of the law of X7 and
compare it to the density of the law of Xr.

INRIA



STOCHASTIC DIFFERENTIAL EQUATIONS — LAW OF THE FULER SCHEME 5

Notation. In all the paper, ¢ being a smooth function, the notation 9°¢(, z, y) means
that the multiindex « concerns the derivation with respect to the coordinates of x, the
variables ¢ and y being fixed.

When v = (7%) is a matrix, 4 denotes the determinant of 7, and ~; denotes the j —th
column of ~.

When V is a vector, V denotes the matrix (9;V;)".

Finally, we will use the same notation K(-), ¢, @, for different functions and postive real
numbers, having the common property to be independent of 7" and of the approximation
parameter n: typically, they will only depend on L*-norms of a finite number of partial
derivatives of the coordinates of b and o and on an integer L to be defined below (see the

hypothesis (HU)).

2. Some basic results of the Malliavin calculus

One can now find several expositions of the Malliavin calculus: see, for example, Nua-
lart [9] (we use the notation of this book in preparation) and Ikeda- V\fatanabe [3]; a short
presentation on the applications to the existence of a density for the law of a diffusion
process can be found in Pardoux [10].

We only introduce the material necessary to our computations.

We fix a filtered probability space (2, F, (F:), IP), and a r-dimensional Brownian mo-
tion (W;) on that space.

For h(-) € L*(Ry, R"), we denote by W (h) the quantity [ < h(t),dW; >

Let S be the space of “simple ” functionals of the Wiener process W, i.e. the sub-space
of L*(Q, F, IP) of random variables F' which can be written under the form

F=f(W(h),...,W(hy))

for some n, polynomial function f(-) , k;(-) € L*(R4, R").
For F' € §, we denote by (D;F) the IR"-dimensional process defined by

Z a% e W (ha)ha(2)

The operator D is closable as an operator from L?(2) to LP(£; L*(0,T')), for any p > 1.
Its domain is denoted by ID'?, and we define the norm

1/p
1| p = [E[FI + 1DF |50 0:1)]

The j-th component of D;F' will be denoted by D{F.

RR n° 2244



6 Viad BALLY , Denis TALAY

One also defines the k-th order derivative as the the random vector on [0,7]* x Q
whose coordinates are defined by

Jlseesdk I o T)IE 71
DiitF = Dif . DI'F

bl
and we denote by ID™? the completion of S with respect to the norm

N 1/p
[Fllnp = [EIFIP+ Y E|D*F|lp,

0;T)k)
k=1

D> will denote the space ,>1 N;>1 D7,
For F' € §, one also defines the Ornstein-Uhlenbeck operator L by

LF =) af (W(h1),...,W(h,))W(h;) = > / (W(h1),...,W(hy)) < hi,hj >,
i=1 YTi ig=1 dxidx;
which is a closable operator. The domain of L includes ID*.

For F := (F',..., F™) € (ID*)™, we denote by vr the Malliavin covariance matrix
associated to F, i.e. the m x m-matrix defined by

Vi ;=< DF',DF’ > .

Definition 2.1. We will say that the random vector F' satisfies the nondegeneracy as-
sumption if the matriz yr is a.s. invertible, and the inverse matriz I'r := v5" satisfies

ITell € () £7(2)

pz1

Remark 2.2. The above condition can also be written (we recall that 47 denotes the

determinant of ~vp):
1
— e [)L°(). n

TF p>1

Our main ingredient is the following integration by parts formula (cf. the section V-9

in Ikeda-Wanabe [3]):

Proposition 2.3. Let F' € (ID™)™ satisfy the nondegeneracy condition 2.1, let g be a
smooth function with polynomial growth, and let G in ID*. Let {Hg} be the family of
random variables depending on multiindices B of length strictly larger than 1 and with
coordinates 3; € {1,...,m}, recursively defined in the following way:

Hi(F,G) = Hy(FG)
= =3 {G< DI}, DF/ > 4T} < DG,DF > 4T} -G - LF7} |
7=1
Hﬁ(F7 G) = H(ﬁl ----- ﬁk)(F7 G)
= Hg, (F, H(ﬁl ~~~~~ ﬁk—1)(F7 G@)). (2.1)

INRIA



STOCHASTIC DIFFERENTIAL EQUATIONS - LAW OF THE FULER SCHEME 7

Then, for any multiindex «,

B((0.9)(F)G] = Elg(F)H,(F, )] 22)
We can get the following estimate:

B) > 0 and

{

3), such that, for any measurable set

/

Proposition 2.4. For any p > 1 and any multiindex 3, there exists a C(p,
integers k(p, 3), m(p, 8), m'(p,8), N(p,B), N'(p,

l i

A C Q and any F,G as above, one has
E[[Hs(F,G)PP Valr <C(p,8) Ve Vallkes) 1GlInes)mwe 1Fnw.emme - (2:3)

Proof. We apply the Meyer inequality on ||LF||, (see the theorem 8.4 of the chapter 5
in lkeda-Watanabe [3], with & = 2, taking into account the definition 8.2 in the same
chapter):

ILE], < CllF]l2p

and the equality - o
DT = =3 T DM ;

k,l

the result readily follows from the definition (2.1). W

We now state another classical result, which concerns the solutions of stochastic dif-
ferential equations considered as functionals of the driving Wiener process. [A, A'] will
denote the Lie brackett of two vector fields A and A’

Definition 2.5. Let us denote by Ag, Ay, ..., A, the vector fields defined by

Ao(z) = ;bl(x)@
Aj(z) = Eaij(x)ai jg=1,...,r.

For a multiinder a = (ay,...,a;) € {0,1,...7}*, define the vector fields AY (1 <i<r)
by induction: A = A; and, for0 <j <r, Aled) = [A7, A2].

The Hormander condition is said to hold at the point x if the vector space spanned by
all the vector fields A%, 1 <1 <r and o multiindez, at the point z, is R°.

Theorem 2.6. Assume that the coefficients b and o are infinitely differentiable, with
bounded derivatives of order strictly larger than 1. Then, for all x, all t > 0 and 1 =
1,...,d, Xi(z) belongs to ID*°.

RR n’ 2244



8 Viad BALLY , Denis TALAY

Besides, suppose that the Hormander condition holds at some point x. Let v:(x) denote
the Malliavin covariance matriz corresponding to Xi(x), and I'y(x) its inverse.

Then, for anyt > 0, one has

ITe(2)ll € () 279,

pz1

and the random vector X,(x) has an infinitely differentiable density pi(x,-).

Actually, Kusuoka and Stroock [5] give an exponential bound for p:(x,-) in terms of
the following quadratic forms:

Vi(z,n) =% Y <Afx),n>*.
=1 |a|<L-1
Set

Vi(z)=1A ”i|r|1f1 Vi(z,n). (2.4)
T) =

The exponential bounds require some smoothness conditions on b and o, and are valid for
z in the set {z € R?: V(z) > 0}; as we will apply this estimate for z = X', we assume

(UH) Cp :=inf,cpa Vi(2) > 0 for some integer L.

(C) The functions b and o are C* functions, whose derivatives of any order are bounded
(but they are not supposed to be bounded themselves).

Under the conditions (C) and (UH), and a corresponding L being fixed (the smallest
one, for example), the corollary 3.25 in Kusuoka and Stroock asserts: for any integers m, k
and any multiindices o and 8 such that 2m+ |a| +|3| < k, there exist an integer M (k, L),
a non decreasing function K(7') and real numbers C, ¢, Q) depending on L,T,m,k, o, 3
and on the bounds associated to the coefficients of the stochastic differential equation and
their derivatives up to the order M(k, L), such that the following inequality holds’:

3 K(Z)(l—l—HxH;) _¢ Uz=yl[a1)” AL)?
o oxor [ < o(1+]|]|)? Y0 < T. 2.5
| te yPt(f,y)| - tq(l + Hy - :L’HQ)ke ’ = ( )

The same theorem provides the following estimate for I';(z): for any p > 1, for some
constants C, p one has
L+ =]
FT

ITe(2)[lp < € (2.6)

Remark 2.7. The rate of degeneracy of p;(x,y) as t — 0 is controlled by that of I';(z);
(2.6) gives an upper bound of order 1/t*; the lower bound 1/#*~! is proved in the theorem
5.1 in Bally [1]. W

!The constant vy of the statement of Kusuoka and Stroock is equal to 1 under (C).

INRIA
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3. Our main result

We denote by £ the second-order differential operator

L —ZbZ )0; + = Z (oo™ ” (2)0;; . (3.1)

2]1

Consider a measurable bounded function f and w(t,z) := E f(X7p_:(z)) which solves:

Qu iy = 0, 52)
u(T,:) = f(). '

Denote by a the matrix oco*. Let U(t, z) be defined by

1 & 1 d
W) = 5 S HEP 0t )+ 3 H @t

2,j=1 7,k=1
1 d - 82

+ 3 E a”(ac)akl(:l;)aijklu(t, x)+ Emu(t )

ik =1

d 0 1 & 0

+ Z bl( ) ==0iu(t, ) + = Z a’(x)=0;u(t,x). (3.3)
=1 a 2 7,7=1 at

Theorem 3.1. Let f be a measurable and bounded funtion. Under the hypotheses (UH)
and (C), the FEuler scheme error satisfies
0 Cs(T,z)  Qu(f, T, .
Bf(Xr(2)) ~ Bf(Xf(2)) = -T2y Sl L L), (3.

n n
the terms C¢(T,x) := I EV(s, Xs(z))ds and Q.(f,T,z) have the following property:
there exists an integer m, a non decreasing function K(T') depending on the coordinates

of a and b and their derivatives up to the order m, and positive real numbers q, () such
that

1
C4(T.2)| + supa|Qu(f, T, 2)| < K(T )HfHOOM |

The expansion (3.4) was first obtained by Talay and Tubaro in [14]. No nondegeneracy
assumption of Hormander type was necessary, but in counterpart the function f(-) was
supposed smooth enough; in that context, one obtains a bound of type

|Co(T, )| + supa|Qu(f, T, 2)| < K(T) D 1050 -

|a|<6

Besides, when f is smooth, the analysis shows that the simulation of Brownian paths is
unnecessary to get the existence of the expansion: the algorithm may involve appropriate
discrete lawed random variables as well (see [14]). In our context, this property does not
remain true. This has no practical incidence: the simulation of the increments of the
Wiener process can efficiently be performed.

RR n’ 2244



10 Vled BALLY , Denis TALAY

4. Proof of Theorem 3.1

The proof of the preceding theorem is based upon the two following technical lemmas,
which are interesting by themselves.

Lemma 4.1. Let the function u be defined by (3.2). Then, for any multiindex o, for any
smooth function with polynomial growth g, there exists a non decreasing function K(t)
and positive constants q, (), uniform with respect to n and T', such that

Veel.T] . Bl )t o))l < KA )
and
we for -1 et e < ko )

Lemma 4.2. Under the hypotheses of the Theorem, for some integer ¢ and some non
decreasing function K(t), one has that

B 4 2l (43)

[EF(X3(2) = E(Prpn ) (Xg_g(2))] <

For a while, we admit the lemmas (4.1,4.2) which will be proven in the section 5.

We start with an easy other lemma.

Lemma 4.3. [t holds that
Ef(X7(x ))—Ef(XT( ) =
) Z E\I}( ! kT/n( ))

n k<n-—2

+Ef(X7(2) = E(Prinf )(X_gm(z) + D0 I, (4.4)

k<n-—1

where I} can be explicited under a sum of terms, each of them being of the form

i [ [ [ Ot 320

T/n
+", (X, (2)) Date(53, X, (2)))dssdsads| (4.5)

where |a| < 6, and the ¢%’s, ¢!,’s, ¢° s are products of functions which are partial deri-
vatives up to the order 3 of the a” s and b'’s.

INRIA



STOCHASTIC DIFFERENTIAL EQUATIONS — LAW OF THE FULER SCHEME 11

Proof. We follow [14], just changing the presentation.
For a fixed z in IR?, we define the differential operator £, by
d .
= b'(2)dig Z )0iig(-
=1 2] 1
We note that, for z = XET s L, is the infinitesimal generator of the diffusion process
(va BT <4 < M)
Asu(t,:) = Pr_f(-) = Ef(Xr_:(-)), one has
Ef(X}(2) - Bf(Xa(2)) = Bu(T, X}(2)) — u(0,2) = 3

k<n-1
with (i )T T
. +1 " n
ot o= 8 | (0L X o)) = o (B o) (1.6
The It6 formula implies

(k+1)T

oy = EﬁT (&tu(t,Xf(x)) + Lou(t, X[ (x)) R )) dt ,
= kT /n

from which, using (3.2), one gets

(k+1)T

& = EﬁT " (—Lu(t,Xf(:c)) + Loult, X7 (2))|

n

Denote
kT
I = Lou(t, X —Lou | —, X/,
= Lt X)L (X)) Ly
and
kT .
5=t (M @) | Ly - e X2
z= ‘XkT/n(l‘
kT . .
— 1o (S X)) - 2t X7 (0.
We have:

(k+1)T

6 = E/ (J, + 1,)dt .

k

n

We consider I; and J; as smooth functions of the process (X]*) and recursively apply the
It6 formula, using the fact that the function u solves (3.2), so that Lu solves a similar

PDE. 1
We can deduce the following corollary (note that this upper bound in terms of || f]|c

was stated nowhere else in the literature before, even for smooth functions f (to our
knowledge); but we do not focus on it, since our objective is a stronger statement):

RR n’ 2244



12 Viad BALLY , Denis TALAY

Corollary 4.4. There exist a non decreasing function K(T') and constants q, Q) such that:
. K| flloo 1
B3 () ~ B (@) < Sy o)L (4.7

Proof. We apply the lemma 4.2, and for k£ < n—1, we apply the estimates of the lemma 4.1
to W(EL, X7, (2) and 1. W

Let us now end our proof. The expansion (4.4) can be written again under the following
form:

Ef(Xt(z)) — Ef(Xz(z)) =

_ZE\II (k_T Xz )—I——ZE[ (kT TR E: )) —\I/(%T Xyr/n(a ))]

n’ k<n k<n
+ 2 I
k<n-—-1
Applying the preceding corollary, we get that, for any k such that % > %, one has
kT kT K(T)
B9 (U X (0)) - B9 (L X)) < ST+ 101,

For £ < 1, one applies the expansion (4.4) to the function f,x(z) := \Il(%, z). Denote
= Pr_ifor(z) and U, x(¢, 2) the function defined in (3.3) with w, ; instead of

kT kT 1 kT
B (L xp0,0)) = 89 (2T Keapae)) = L0 (L X 0)) + X

7<k—-1

where the J/’s are sums of terms of type (4.5) with u, ; instead of u. Therefore, in order
to prove (3.4), we are going to check that for g € C°(IR?) and s < % < %, one has

1+H I

[Elg(X{ () 0gun (s, XS (@) < K(T)|[ flloo—27 (4.8)

Remembering the definition of ¥ and W, ;, we note that

Ouni(s,2) = [Oproi(ey) VKT, y)dy
= > /aaPT (2, y)ha(y) O3 u(kT /1, y)dy

Ix|<6

= Z/astth/\ /aPT vy, y) fy')dy'dy

IN<6

INRIA



STOCHASTIC DIFFERENTIAL EQUATIONS — LAW OF THE FULER SCHEME 13

where the hy’s are functions which depend on the coordinates of @ and b. Since T' — s >
T — kT /n > T/2, one may apply (2.5) to get
K(T)

|0%un i (3,2)| < 7

— 2l e -

which readily implies (4.8).

Now, using [t6’s formula and the estimate (4.1), we get

B o+ 12]19)

kT
Ly E@(— Xiu(a ) / BV (s, X,(2)) ds| <
n k<n-1
We note that (4.1) also ensures that I E)w (s, Xs(x))|ds is finite.
That ends the proof of the theorem 3.1. W

5. Proof of Lemmas 4.1 and 4.2

We first state a technical lemma.

Lemma 5.1. Under the above hypotheses, for any p > 1 and 5 > 1, there exist an integer
Q) and a non decreasing function K(t) such that

sup || X7 ()]l < K(#)(1 + (1)

and

Is()
7

Proof. We just have to mimic the classical computations giving estimates for || X;(z)]|;,-

For example, let us show how we can proceed for j = 1. Let "(¢) denote %, where the

integer p is such that % <t< W. We remark that, for t — 6 > %, DEXT satisfies:

sup [| X () — X7 (2)llip < —= (14 [12]1°).

r 13
D{;XZL = O'(Xnn(e)) + Z/n( V4T /m aa'[( ))D@Xn (s )dWS

I=1"" o
t
(X)) D Xy dls
+/77n( oz O K@) Pa X
Under (C), a classical use of Gronwall’s lemma permits to get

sup sup || X7 (x e < K(T)(1+ [l2]9).

n>1 0<t<

For other values of j and for the difference X;(x) — XJ*(x), we proceed in the same way.
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14 Viad BALLY , Denis TALAY

5.1. Proof of Lemma 4.1.We only prove the part (4.2), the part (4.1) being
treated with the same arguments. We recall that 92¢(¢,z,y) means that the multiindex
« concerns the derivation with respect to the coordinates of x, the variables ¢ and y being

fixed.
As u(t,z) = Pr_(f)(x), one has

orult2) = [ Opr_ile,y)f(y)dy

Now we use the estimate (2.5) and get

I () (e 1
|05pr—i(z,y)| < 7(T Y (1 + || HQ)C( ’y)(l Fly = 2]?)* ’
so that
Ou(t, )| < K(T)%(l ). (5.1)

5.1.1. Small ¢. We first consider the case 0 < t < % As T —t > T/2 > t, the
inequality (5.1) yields (4.2).

5.1.2. Large t.Now, let us treat the situation % <t <T-— % The preceding
argument cannot be used, since for § — T the measure pr_g(x,y)dy converges weakly to

the Dirac measure at point z.

The principle of the rest of the proof is the following: in order to get rid of the
derivatives of u(t, ), we will use Malliavin’s integration by parts formula with respect to
the functional X7, which should be non degenerated for t > 7T'/2; estimates on ||}, can
be directly obtained under a uniform ellipticity condition but, under (UH) only, we are
led to compare ||[I'7]|, and ||I't||, and we will use a localization argument:

e let g be the set of events where |§]* — %] is larger than C4y; to prove that P () is
small, we will use two facts: first, (X]*) is a “good” approximation of (X;); second,
the |3, "||,’s are finite;

e on the complementary set of Qq, |4/ — 4| is small, which (roughly speaking) means
that the Malliavin covariance matrix of X]' behaves like that of X;, and allows
integrations by parts of type 2.2 with a good control of the LP-norms of the variables
H,.

Let ¢ € C;°(RR) such that ¢(z) = 1 for |z| < 1, ¢(z) =0 for [z| > 1 and 0 < ¢(z) < 1

for [z| € (3, 3).

Let us introduce

INRIA
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We have
Elg(X)0u(t, X)) = Elg(X])Iult, X{")(1 = ¢(r}))]
+ Elg(X{)5ult, X7")o(r})]
= A+ B.

To upper bound A, we use (5.1):

41 < K@) g o).

(5.2)
(T —1)
Since 1 — ¢(rp') = 0 for |r}| < 1, one has
n n o o ’A}/
Bh-od) < Pz ] =l - a0z 2
1
< P[%— 1/4]—|_ﬂD _%|—4 1/4]
1

= P37t > nt] +/P[| S EPn 1/4] .

Thus, for any p > 1, one has
EL = ¢(r})] < n7PE] 7 + (40 — 4
But (see the lemma 5.1): || X; — X[ |l1, < K()(1 + HxHQ)n_l/Q, so that
A= Aelly < (L4 [l2]|9) K (™2
On the other hand, under our nondegeneracy assumption, one has (see (2.6))
L 14+ ||z]|*
sup |7 1Hp <C tcll|L H
LT
As a consequence, it holds that
N _ 1
Bl = ¢(r})| < K(T)(1+ |l2] )~ 55
from which and (5.2), remembering that for ¢t <7 — %, (T'—1)? < Cnf, one gets
_ 1 .
Al < [ flloon® /K (T)(1 + l211) 72z - (5-3)

To obtain the desired result, it just remains to choose p = 4q.
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16 Vled BALLY , Denis TALAY

We now treat B. We apply the proposition (2.3), and get
B = Elu(t, X{")H]

where H? := H, (X}, g(X]")¢(r})). First, we observe that H? is a sum of terms, each one
being a product which includes a partial derivative of ¢ evaluated at point r}. From the
definition of ¢ it follows that HZ = HZ lig19(r}). On |rf| < L one has 47 > 14, and
therefore
Hy=Hy Vigpsis-
Consequently,
1B| < Cl[flleo £\ H ﬂ[@pz%%ﬂ .

We apply (2.3) and obtain, for some integers k, N, N':
Bl < Cllfl |

IE Upgps s, IXE@)Nm l9(XE) () w7 e
1+ ||z 1+ [z
< Cliflle HFtHkT < CHfHoo7-

5.2. Proof of Lemma 4.2.The preceding proof cannot apply to treat §7_,
(defined in (4.6)) because the last argument before (5.3) cannot be used. We still localize

by introducing ¢, but we do it at once: set

a = |B[(f(X{(x) = EPrpf(Xi_p/,(2)) (1= (r7 )l
b = |E[(f(X{(x) = EPr/nf(X7_r/,(2)) ¢(r7/2)] -
= BT, Xp(x)) —u(T =T /n, X3 _g/,(2)]]

)_
)_

Clearly
K(T)

n2

a <2 flle EIL = ¢(r7,)| < 1o (1 + []]|9) -

We then proceed as in the proof of the lemma 4.3, to decompose 6} in I; and J;, and
we apply the arguments used in the subsection 5.1.2 to treat the term 6. N

6. Extensions

In the theorem 3.1, the boundedness hypothesis on f can be relaxed: the preceding
technique can be improved to treat the case of functions f which are measurable and have
a polynomial growth, i.e such that

Ve, [lf(2)] < Cp(1+ |[z]|*)

INRIA
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for some Cy and gy; then in all the estimates of the proof, ||f||.c must be replaced by
a constant C' depending on Cy and ¢y; indeed, instead of upper bounding quantities of
type || f(X7(2))||lr) by || f|lso, one can use that I| X[ (z)||” can be upper bounded by
C(1 + ||x||?), where the constants C' and ¢ are uniform in n.

One can also show the existence of an expansion up to any order: as in [14], instead of
bounding the I}'’s of the expansion (4.4), one can apply the technique used at the end of
the proof of the theorem 3.1 and make appear an integral of type - [T BV, (s, X,(x))ds
(for some appropriate function Wy); this operation makes appear a new remaining term
for which one applies the lemmas 4.1 and 4.2.

Finally, the result can be extended to other schemes. The numerical benefit is less
clear, since they involve derivatives of the coefficients and therefore require a larger com-
putational effort than the Euler scheme (they also may lead to larger coefficients of % in
the expansion of the error).

7. Conclusion

We have proved that the error corresponding to the approximation of I f(Xr) by
Ef(X}), X} being given by the Euler scheme, can be expanded in terms of % when f is
a bounded and measurable function, under an hypothesis of uniform hypoellipticity.

It now remains to give estimates on the convergence rate of the density of X7 to the
density of Xy (when they do exist). This will done in the second part of this work, in
preparation [2].
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