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Abstract: This paper presents an approach for deriving a FPGA machine from a high
level parallel programming model. The model is based on the chemical reaction metaphor:
the data structure is a multiset and the computation can be seen as a succession of chemical
reactions consuming and producing new elements according to specific rules.

Von Neuman architecture are not suited to this programming style; we show the utility
of FPGAs for deriving adapted hardware architectures. Feasibility has been demonstrated
on the DEC-PRL Perle-1 board with implementation of a representative algorithm.
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Synthese d’architecture en logique reconfigurable a
partir d’un modele de programmation de haut niveau

Résumé : Ce papier présente une approche permettant de dériver une machine en lo-
gique reconfigurable a partir d’'un modéle de programmation paralléle de haut niveau. Ce
modéle peut étre illustré par une métaphore basée sur les réactions chimiques : la struc-
ture de données est un multi-ensemble et les calculs peuvent étre représentés comme une
suite de réactions consommant et produisant des éléments nouveaux en fonctions de réegles
spécifiques.

Les architectures de type Von Neuman se prétent mal a ce style de programmation; nous
montrons 'adéquation des circuits logiques reconfigurables pour dériver des architectures
adaptées. La faisabilité a été démontrée sur le systéme Perle-1 développé au laboratoire
Parisien de DEC par le biais d’un algorithme représentatif.

Mots-clé : Gamma, logique reconfigurable, Perle-1, synthése d’architecture
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1 Introduction

Writing a correct program is difficult. It is even more difficult when the target machine is a
parallel machine and no parallel programming method is provided. A computational model
which allows one to describe algorithms with as few sequentiality constraints as possible is
then desirable. A model without any sequentiality, called Gamma (General Abstract Model
for Multiset mAnipulation), has been proposed by J.P. Banatre and D. Le Metayer [1]. The
power of Gamma is the possibility of expressing algorithms in an abstract way, without any
artificial sequentiality.

The basic structure in Gamma is the multiset and a computation proceeds by nondeter-
ministic local rewriting on that multiset. Programs based on this model are a mis-mach for
Von Neuman machine. This paper will show the relevance of FPGAs for deriving an adapted
hardware architecture.

The main idea suited for the Gamma paradigm is the ability of a Gamma program to be
decomposed into a restrictive set of primitive programs, called tropes [4]. From a hardware
point of view, this is an interresting property since each primitive program is well defined
and induces a specific architecture.

The paper present an investigation we have performed using the Perle-1 FPGA board [2]
[3] developed by the DEC Paris Research Lab. In order to show the validity of our approach,
we implement manually the prime factorization algorithm.

The paper is organized as follows: section 2 gives a short presentation of the Gamma
formalism; section 3 introduces the set of primitive programs ({ropes). Section 4 presents
the implementation of the prime factorization problem on the Perle-1 board.

2 The Gamma Programming Paradigm

The Gamma model can be described as a multiset transformer: the computation is a suc-
cession of applications of rules which consume elements of the multiset and produce new
elements. The computation ends when no rule can be applied. The application of rules is
performed in a non-deterministic way.

The basic information structuring facility is the multiset. A multiset is similar to a set
except that it may contain multiple occurrences of the same element. Atomic components
of multisets may be of type real, character, integer or tuple of arbitrary type.

The main feature of the model is the I'-operator, which can be defined in the following
way:

' (RA) (M) =
if 3 21, ...2, € M such that R(zy, ...zy)

then I' (RJA) (M-{z1,...2n}) U A(21,...2))
else M.

Operator R is called the “reaction condition”; it is a boolean function indicating under
which conditions some elements of the multiset can react. The A function (“action”) des-
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4 J.P. Bandatre, D. Lavenier, M. Vieillot

cribes the result of this reaction. We point out that if the reaction condition holds for several
subsets at the same time, the choice (which is made among them) is not deterministic; if
these subsets are disjoint the reactions can even take place at the same time.

Let us take one example to illustrate the programming style entailed by the Gamma-
model. The sieve of Eratosthenes can be written as follows:

sieve(n) = T' (R,A) ({2, ... n}) where
R(z1, 22) = multiple(z1, 22)
A(zl,22) = 22

multiple (21, 22) is true if and only if 21 is a multiple of 22.
The following figure describes the computation of sieve(8). The lines between elements
indicate reactions. Of course, this is one among the possible paths leading to the stable sate.

The Gamma-model presented above is not the most general definition; actually, the T’
operator can take any number of couples (Reaction,Action), each reaction condition indica-
ting in which case the associated action can be applied. As an example, consider the fibonacc:
computation. It can be expressed as follows:

fib(n) =T (R3,A3) (I'((R2,A2)(R1,A1)){n}) where
Rl(z) =z >1
Al(z) =2 -1,z -2
R2(z) =2 =0
A2(z) =1
R3(z1,22) = true
A3(z1,22) = 214 22

The initial number n is decomposed into a number of ones which are then summed-up to
produce the result. The couples of Reaction/Action (R2,A2) and (R1,A1) work in parallel.
Once the multiset is stable (i.e. no more reactions occur), the next Reaction/Action (R3,A3)
is performed.

Inria



From High Level Programming Model to FPGA Machines 5

3 TROPES

3.1 Presentation

Tropes are a way of decomposing Gamma programs. They constitute a set of primitive pro-
gram schemes, which together with just two basic combining forms provide an expressive
parallel programming language. The tropes take the form of parametrized conditional re-
write rules in which computation proceeds in a nondeterministic local rewriting of a global
multiset.

The following notation is used to denote multiset rewriting:

Ty, .y — Az, .y 2n) < R(21, .., 2)

This rule can be interpreted informally as the replacement into the multiset of elements
z1, ..., &, satisfying the condition R(z1, ..., z,) by the elements of A(zy, ..., #,). Viewed as a
single program, the result is obtained when no more rewrites can take place.

Two operators are used for combining programs: sequential composition P o Ps ; parallel
combination P; + P5. The intuition behind P; o Ps is that the result of Ps is passed as an
argument to P;. On the other hand, the result of P; + P, is obtained by performing the
rewrites of P; and P, in parallel.

Five rewrite rules, called tropes, have been selected to provide a set of primitive programs:

* Transmuter

* Reducer

* OPtimiser

* Expander

* Selector

They are defined in terms of multiset rewrites. As an example, the transmuter, the reducer
and the ezpander can be expressed in the following way:

transmuter T(C,f)y = z— f(z) < C(z)
reducer R(C,f) = =z,y— f(z,y) = C(z,y)
expander E(e, fi, f2) = ©— fi(z), f2(z) < C(z)

The transmuter applies the same operation to all the elements of the multiset until no
element satisfies the condition C. The reducer decreases the size of the multiset by applying
a function to pairs of elements satisfying the condition C. The ezpander decomposes the
elements of the multiset into a collection of basic values. The interested reader can find a
complete description of the {ropes in [4].

The examples taken in the previous section can both be expressed as a combination of
tropes. The sieve of Eratosthenes is simply a reducer:

sieve(n) = R(multiple(x,y),y){2,...,n}

The Fibonacci computation is a combination of three tropes Py, Ps and Ps :

RR n " 2240



6 J.P. Bandatre, D. Lavenier, M. Vieillot

fib(n) = Pso (Ps+ P1){n}

with

P=&xz>lLe—1z-2) expander
Py, =7T(xz=0,1) transmuter
P; = R(true,z +y) reducer

Note that this program can also be expressed using only the sequential combination
operator :

ﬁb(n):Pgonopl{n}

3.2 Synthesis

From an architectural point of view the decomposition into primitive programs provides an
interesting way to simplify the synthesis of Gamma programs. As the tropes are well defined,
a hardware skeleton may be associated with each of them.

The basic procedure for synthesizing a Gamma program is first to decompose it into
tropes. This step is done manually. In other words, the programmer has to write a Gamma
program using only a set of five primitives and two operators.

Once the tropes have been selected, the next step is to synthesize a corresponding archi-
tecture for each of them. Experiments have shown that the decomposition into tropes is not
sufficient : depending on the types of the elements processed inside a tropes, the architecture
could be rather different. An element can have the type singleton, pair, triplet, ..., etc and
be composed of integer, character, etc. A pair of integers and a pair of characters have a
different type. As an example, consider the transmuter :

T(C,f)=z— f(z) < C(x)

Remember that this tropes applies the same operation to all the elements of the multiset
until no element satisfies the condition C'. Two cases may be observed :

e the type of z is different from the type of f(x),

e the types of  and f(z) are identical.

Inria



From High Level Programming Model to FPGA Machines 7

In the first case (type(z ) # type(f(2))), if an element z reacts, it will be transformed in
y = f(z). As the type of y is different of the type of z, we are sure that it will never react
again. A possible skeleton architecture is :

SRCANC

The boxes f and C' stand respectively for the action and the reaction. The C box drives
a multiplexer which, according to the condition computation, outputs z or f(x).

In the second case (type(z) = type(f(z))), if an element z reacts, f(z) must be tested
since it may react again. A possible architecture is :

F(=)
multiset
D D

This second architecture is more complex and implies a more sophisticated control.

For each tropes, different skeleton architectures are provided depending on the difference
of the input/output types. The choice of the right tropes can be done automatically by an
analysis of the properties of the f function.

The idea behind the refinement of the decomposition in tropes is to simplify hardware
mechanism. It will be faster and will save FPGA resources.

The final step is to assemble the tropes. The combination operators o and + tell us how
this assembly must be done. Actually, we focus only on the o operator, since many programs
including the 4+ operator can be rewritten using only the o operator. Furthermore, writing
P, o P; leads naturally to considering the results of P as being passed as an argument to P;.
Thus, the P; o P, combination corresponds to a pipeline of the tropes P; and P, as shown
figure 1.

It must be pointed out that the parallel operator (+) is more difficult to implement.
Pipelining the tropes (using the + operator) is then not possible. Data produced by a tropes

multiset multiset
—_—=

IN P el ouT

Figure 1: implementation of the sequential combination P; o P

RR n "~ 2240



8 J.P. Bandatre, D. Lavenier, M. Vieillot

must return to the input multiset, in order to be computed by the other tropes. In a first
approach we discard this possibility for two main reasons:

e most of the programs can be written using only the o operator. The expressing capa-
bility of Gamma is thus restricted but is still an interesting computational model.

e one of the main objective of this work is to investigate the PAM synthesize pprocess.
The restrictive model is easily sufficient for that purpose.

3.3 Implementation

The hardware platform we use is the PRL-DEC Perle-1 board [2]. It is based on the PAM
(Programmable Active Memory) [3] concept : like RAM memory module, a PAM is attached
to the system bus of a host computer. The processor can write into, and read from the PAM.
Being an active hardware co-processor however, the PAM processes data between write and
read instructions. The specific processing is determined by the content of its configuration
memory.

The Perle-1 board is built around a large array of bit-level configurable logic cells. This
array is surrounded by local RAM banks used as a cache, a programmable clock generator
and some additional logic to manage the host bus interface.

The central computational array consists of a 4x4 matrix of Xilinx XC3090 program-
mable gate arrays [5]. Four 32-bit wide RAM banks (1 MBytes) are provided on each side.
The host bus interface is a TurboChannel interface delivering a 100 MBytes/s bandwith.

Programming Perle-1 consists of describing an architecture using an object oriented
language (C++) and built-in primitive functions. More compact designs may be achieved
by controlling the place and route process directly by software.

In order to manage efficiently a first implementation of tropes on Perle-1, we imposed
some restrictions :

e only one tropes per FPGA,
e 16-bit datapath,
e use of the memory only if necessary.

As the matrix is a 4x4 matrix, a maximum of 16 tropes can be implemented. Actually, this
is not really restrictive since the majority of Gamma programs can be written using very
few tropes.

The next section presents an experiment we have performed in order to validate our
approach.

4 Experiment

The goal of the experiment was twofold. First, we wanted to demonstrate that the Perle-1
board is a suitable platform to support the implementation of tropes. Second, we wanted to

Inria



From High Level Programming Model to FPGA Machines 9

show that a machine derived from high level specifications, such as Gamma, may have per-
formance as good as a Von Neuman machine executing a sequential program. As a validating
example, we choose the prime factorization problem.

4.1 Prime Factorization Problem

A fundamental theorem of arithmetic states that every positive integer n can be written
as a product of primes and that this decomposition in unique. This fact gives a one-to-one
correspondence between positive integers and a multiset of prime numbers: for example, if
n = 120 = 23 * 3 % 5 the corresponding multiset is {2,2,2,3,5}.

The prime factorization Gamma program can be expressed as a combination of 6 primi-
tive programs :

factor(n) = (F6oF50F40F30F20F1){(2,n):1}

where

F1 = (a,b)1 —(a,b)2,(a+1,0)1<a<h

F2 = (a,b)1—(a,b)a<=a>b

F3 = (a,b)y =< —~multiple(b,a)

F4 = (a,b)2,(c,d)2 — (¢,d)2 < multiple(a,c)
F5 = (a,b)s — (a,b/a)s, a < multiple(b,a)
re = F3

The initial multiset is composed of a pair, (2,n). Three different types of elements are
present : pairs of type 1, noted (a, b)1, pairs of type 2, noted (a,b)s and singletons.

The sequence (F'20 F'1) {(2,n)1} produces a multiset of pairs (i,n)z where 2 < i < n.
F'3 removes all pairs (4,n)z which does not satisfy the condition ¢ does not divide n (noted
—multiple(i,n)). After the execution of F'4, the multiset contains the pairs (4,n); where i
is a prime and i divides n. F'5 produces the prime factor and F'6 removes the double pairs.

Each primitive program is then associated with a {ropes. The correspondence between
the primitive programs and the tropes is done by analyzing the input/output types. As an
example, the primitive program F'1 is a particular ezpander which takes one pair of type
(a,b)1 and produces two pairs of different types ((a,b):1 and (a, b)s2).

RR n " 2240



10 J.P. Bandatre, D. Lavenier, M. Vieillot

'| RAM

F1

Fifo in — -—| Fifo out

Figure 2: prime factorization implementation on Perle-1

4.2 Perle-1 Implementation

The figure 4.2 shows the implementation done on the Perle-1 board. The tropes are pipelined
from the input FIFO to the output FIF0. One FPGA contains one tropes except for the tropes
corresponding to F'4.

Actually, this tropes requires to make test on two elements (say a; and as). To be efficient,
it was decided when defining the tropes skeleton architecture to implement concurrently two
tests (C(a1,a2) and C(ag, a1)) since both reactions have to be evaluated.

In the present case, the condition has to determine if a; is a multiple of as which is
not a low cost operator in terms of CLB resources. To minimize the size of this operator,
it has been implemented using a divisor operator proceeding sequentially. The division step
requires two operations, a shift and a subtraction (which are done in parallel).

Implementing this tropes in only one FPGA is nevertheless possible if one accept to
decrease performances by providing only one reaction operator. The two conditions are then
evaluated sequentially.

4.3 Performance Comparison

The implementation has been compared with a similar algorithm written in C and executed
on two Sun workstations (Sparc-2 and Sparc-10). The algorithm, like the Gamma program,
searches first for a prime number which divides n; then it produces the prime factors:

k = 0;
for(i=2; i<=n; i++){ /* F4 o F3 o F2 o F1 %/

Inria



From High Level Programming Model to FPGA Machines 11

if ((n%i)==0){
j=1
while((j<=k) && ((i%tab[jl) '=0)){
jH+s
}
if(§ > B{
k++;
tablk] = i;
}
}
}
for (i=1; i<=k; i++){ /* F6 o F5 %/
v =n;
while ((v%tab[i])==0){
printf ("%d ",tab[il);
v=v/tabl[i];
}
}

The diagram below shows the execution time versus the number n. The performances of
the Gamma machine are situated between the performances of the two Sun Sparc Stations.
This implementation demonstrates that using suitable architecture for executing high level
programming language, such as Gamma, may provide performance as good as a Von Neuman
machine executing a sequential program.

sec
06 |
SPARC 2
04 |
0.2 4 PERLE 1
SPARC 10
T T T

20 000 40 000 60 000
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12 J.P. Bandatre, D. Lavenier, M. Vieillot

5 Future Work

Deriving a FPGA architecture from high level programming model using the composition
of primitive programs (fropes) is a promising approach. Investigation for implementing the
Gamma formalism on the Perle-1 FPGA platform has shown that it is realistic.

The next step is to automate this approach. Presently, specific skeleton architectures cor-
responding to a set of primitive Gamma programs have been defined. From these skeletons,
the challenge is to synthesize efficient tropes and, given these tropes, to place them optimally
on the FPGA matrix.

Software tools provided with the Perle-1 board allow direct synthesis in the same way as
VLSI design. The tools support interactive placement of the CLBs, allowing the designer to
control the hardware topology of the design. Experiments have shown that a good assignment
of the CLBs with a few judicious routing directives may increase considerably the FPGAs
possibilities: temporal performance is better and CLBs are economized.
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