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Abstract: This paper is concerned with the performance analysis of a deadlock free
protocol for limited capacity ring networks. There are

�
nodes on the ring. Each

node is connected with an emitter and a receiver of messages and is equiped with
a buffer of capacity two for receiving and transmitting messages. The ring is of
uni–direction so that every node has a communication predecessor and a successor.

The system is modeled by a queueing system with finite capacities and blockings.
An approximate analysis is provided for computing various performance measures,
such as throughput, mean sojourn time of messages, and mean number of messages
on the ring. Techniques in use are based on aggregation of Markov chains. Marginal
queue length probability distributions are directly derived from aggregated state
transition probabilities.

Key-words: Performance evaluation, Distributed systems, Routing, Blocking
queueing networks
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Routage sans blocage sur un anneau:
Une évaluation de performance

Résumé : Ce rapport est consacré à l’évaluation des performances d’un protocole
de routage sans blocage pour les réseaux en anneau à capacité limitée. Chacun des�

nœuds de l’anneau est connecté à un émetteur et un récepteur de messages et
est muni d’un tampon de messages de capacité deux. L’anneau est uni-directionnel
et travaille en temps discret. Au début de chaque période de temps, un nœud peut
recevoir un message de son émetteur ou de son prédécesseur, et peut transmettre
un message à son successeur ou à son récepteur. Un message ne peut être transmis
au successeur que si ce dernier n’est pas saturé. Nous supposons également qu’un
nœud ne peut recevoir de messages de son émetteur que si son tampon est vide.

Ce système est modélisé par un réseau de files d’attente avec blocages et ca-
pacités limitées. Grâce à une analyse approchée, nous calculons diverses mesures
de performance, telles que le débit, le temps moyen de séjour des messages, le
nombre moyen de messages sur l’anneau. Les techniques utilisées sont basées sur
l’aggrégation des chaı̂nes de Markov. Les distributions de probabilité des longueurs
de files sont directement déduites des probabilités de transition des états aggrégés.

Mots-clé : Évaluation de performance, Systèmes répartis, Routage, Réseaux de
files d’attente avec blocages



Deadlock Free Routing on a Ring 3

1 Introduction

Most protocols proposed for distributed systems are based on some academic as-
sumptions, for example, processes are often supposed to be able to exchange mes-
sages in finite time, or some processes must never refuse or delay incoming messages,
there are message buffers of infinite capacities, etc... Such properties may be very
difficult to ensure in real systems, especially in the case of Transputers networks
when the basic communication principles are those of OCCAM [3], or analogous.

A Transputer processor can only use four communication links. Every two
processes can exchange information only by rendez–vous. In addition, memory
space is restricted on each processor by hardware, and dynamic memory is restricted
by software, so that buffering space is greatly limited.

Consider a Transputers network of ring structure. There are
�

nodes (or pro-
cessors) on the ring. Each node is connected with an emitter and a receiver of
messages and is equiped with a buffer of finite capacity for receiving and transmit-
ting messages. The ring is of uni–direction so that every node has a communication
predecessor and a successor. Every node has an emitting process and a receiving
process. The former transmits messages in the buffer to the receiver or the successor.
The latter receives messages from the emitter or the predecessor and put them into
the buffer. We assume that the receiving process never refuses or infinitely delays
the arriving messages. Figure 1 illustrates the system architecture.

In order to avoid deadlocks, Roscoe proposed and proved in [1] a protocol for
the communications between the nodes. The algorithm relies on a very simple flow
control on incoming messages. The receiving process of a node accepts a message
from its predecessor as long as the buffer is not full. Whereas it accepts a message
from its emitter if and only if the buffering space of the node will not be filled up
by the current message. Readily, this mechanism ensures that buffering space for
the whole ring will not be filled up. Consequently, no deadlock may occur, as no
receiving process is allowed to infinitely refuse messages.

This paper is concerned with the performance aspects of such a protocol. The
system will be modeled by a Markovian queueing network with finite capacities and
blockings. We provide an approximate analysis of the model in using techniques
of aggregations of Markov chains. We derive various performance criteria such
as mean message number, mean throughput, mean sojourn time of messages, and
probability distributions of buffer occupation.
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4 Z. Liu & P. Mussi

Figure 1: The Transputers ring
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Deadlock Free Routing on a Ring 5

The paper is organized as follows. In the next section we describe a probabilistic
model and its statistical assumptions. In Section 3 we analyze the model for the
steady state regime and compute the performance measures. In Section 4 we provide
numerical results in illustrating relations between these measures.

2 Modeling

In the sequel, we study a probabilistic model of a uni-directional ring, with limited
capacity buffers on the nodes, which follows the deadlock-free protocol described
above.

Let
�

be the number of nodes on the ring, denoted by ��� ��� 1 �����	�
� ��� ����� . They
are labeled in such a way that �
� ����� , 1 ����� �

, is the predecessor of ��� ����� � mod
�����

1.
Each node is connected with an emitter and a receiver of messages and is equiped

with a buffer of capacity two for receiving and transmitting messages. Messages
arrive from its predecessor or its emitter, and are transmitted to its successor or
its receiver. If the buffer is full, the incoming messages of a node are blocked on
its emitter and/or its predecessor. Otherwise, its predecessor can always transmit
messages to the node. A message is accepted from the emitter if and only if the
buffer is empty. A message can be transmitted to the successor only if the buffer of
the latter is not full.

We assume that all messages have the same length, and the transfer times are
the same for all messages. Hence our model will be time–slotted, with a time–unit
equal to the duration of a transfer. At the beginning of a time slot, a node can receive
a message from either the emitter or the predecessor, and can transmit a message
either to the successor or to the receiver, all of which terminate at the end of the time
slot.

We assume that at the beginning of each time slot, the emitter of �
� ����� , 1 ������
, tries to send a message onto the ring with a probability � � . We assume also that

a message in the buffer of ��� ��� � decides to quit the ring (i.e., go into the receiver
of ��� ��� � ) with probability � � . These events are called external arrivals and external
departures, respectively, and are assumed to be Bernoulli processes. Without loss of
generality, we assume that 0 ��� � � � � � 1 for all 1 ����� �

.

RR n˚2233



6 Z. Liu & P. Mussi

3 Performance Analysis

This section is concerned with the performance analysis of the above model. We are
particularly interested in the throughput of the network, the number of messages on
the ring, the sojourn time of a message, etc. The analysis will focus on the stationary
regime of the model. Readers can readily check that the steady state does exist. The
discussions are organized as follows. First, we define the performance measures and
some notation. Second, we study the stationary regime of the model, and compute
the state transition probabilities. The marginal queue length probability distributions
are then obtained. Finally the performance measures are shown to be the immediate
consequences of these queue length distributions.

3.1 Definitions and notation

Before proceeding the analysis, we need some definitions. The throughput � of the
network is defined as the mean number of messages leaving the ring per slot of time.
We will also use � to denote the throughput of a node, which is defined as the mean
number of messages leaving the node per slot of time. The mean sojourn time � of
a message is referred to as the mean number of time slots needed for a message to
reach its destination after its acceptance. We denote by � and � the mean number of
messages on the ring and on a node respectively.

Let � ����� � �	� denote respectively the events taking place on a node: receive a
message from the sender, receive a message from the predecessor, transmit a message
to the receiver, transmit a message to the successor. The notations 
�� � 
 � � 
 � � 
 �
are referred to as the case where these events do not take place.

Let the random variables � � ˆ��
�� 0 � 1 � 2 � denote respectively the number of
messages to be transmitted on the node at the beginning and at the end of a time
slot. Let � 0, � 1 and � 2 be respectively the probability that the node has 0, 1, and 2
messages to be transmitted.

3.2 Marginal Distributions

The state of the system can be described by the vector �������� 1 �������	� � ��� , where
the index � , ��� 1 �	������� � , is used to refer to node � . There are in total 3

���
1

possible states (due to the deadlock free property, the state ������ 2 � 2 ��������� 2 � will

Inria



Deadlock Free Routing on a Ring 7

never occur). One can easily check that under the assumption that 0 ��� � � � � � 1,
the system is irreducible and aperiodic. The stationary regime hence exists [2].

It is possible to write out all the possible state transitions of the Markov chain.
Nevertheless the � 3 � � 1

��� � 3 � � 1
�

transition probability matrix turns out to be
analytically (and numerically) intractable.

In this paper we consider the computation of marginal distributions. We approxi-
mate joint probabilities by products of marginal probabilities. We analyze all the
possible state transitions from � to ˆ� for an arbitrarily fixed node, and compute their
probabilities.

Observe that at the beginning of a time slot, all what occurs on a node are the
events � � ��� � ��� , 
�� � 
 ��� 
 � � 
 � and their feasible combinations. The conditions
under which they take place are determined by the values of the random variables��� � � � �

�
at that instant. The following table summarize the aggregated states tran-

sitions and their probabilities, where, for sake of clearness, we add exponents � and�
to refer to the successor and the predecessor of the node, respectively.

State Transitions

No. event ( ��� , � , � � ) ˆ� approximate transition probability
0 � , � , 
 � , 
 � (1-2,0, � ) 2 ��� �1 � � �2 � � 0 � � 1

�
��� �

1 � , 
 � , 
 � , 
 � ( � ,0, � ) 1 � 0 ��� � �0 ����� �1 � � �2 � ���	�
2 
 � , � , 
 � , 
 � (1-2,0, � ) 1 � 0 � � �1 � � �2 � � 1

�
� � � 1 � ��� �

3 
 � , � , 
 � , 
 � (1-2,1, � ) 2 � 1 � � �1 � � �2 � � 1
�
� � � � � 1 � � � � � �2 �

4 
 � , � , 
 � , � (1-2,1,0-1) 1 � 1 � � �1 � � �2 � � 1
�
� � � � � �0 � � �1 � � 1

�
� �

5 
 � , � ,
�

, 
 � (1-2,1, � ) 1 � 1 � � �1 � � �2 � � 1
�
�
� � �

6 
 � , 
 � ,
�

, 
 � ( � ,1, � ) 0 � 1 �	� � �0 � ��� �1 � � �2 � � � �
7 
 � , 
 � ,

�
, 
 � ( � ,2, � ) 1 � 2 �

8 
 � , 
 � , 
 � , � ( � ,1,0-1) 0 � 1 � �
�

0 � � �1 � � 1
�
� � � � �0 � ��� �1 � � �2 � �
���

9 
 � , 
 � , 
 � , � ( � ,2,0-1) 1 � 2 � �
�

0 � � �1 � � 1
�
� �

10 
 � , 
 � , 
 � , 
 � ( � ,0, � ) 0 � 0 � 1
�
� � � � �0 � ��� �1 � � �2 � �
���

11 
 � , 
 � , 
 � , 
 � ( � ,1, 2 ) 1 � 1 �
�

2 � 1
�
� � � � �0 ����� �1 � � �2 � � � �

12 
 � , 
 � , 
 � , 
 � ( � ,2, 2 ) 2 � 2 �
�

2 � 1
�
� �

Now using the relation

� � � ��� � ���
� ����� ˆ� ����� � � � 0 � 1 � 2 �

RR n˚2233



8 Z. Liu & P. Mussi

yields three equations for the marginal queue length distributions:

� 2 � ��� �1 � � �2 � � 0 � � 1 � � � �
� � 1 ��� �1 � � �2 � � 1

�
� � � 1 � � � � � � 1 � � � � � �2 �

� � 2 �
�

2 � 1
�
� � (1)

� 1 � � 0 � � � �0 ��� � �1 � � �2 � � � �
� � 0 � � �1 � � �2 � � 1

�
� � � 1 � � � �

� � 1 � � �1 � � �2 � � 1
�
� � � ��� �0 � � �1 � � 1

�
� �

� � 1 � � �1 � � �2 � � 1
�
� � � �

� � 2 �
� � 2 � �

�
0 � � �1 � � 1

�
� �

� � 1 �
�

2 � 1
�
� � � � �0 � ��� �1 � � �2 � � � � (2)

� 0 � � 1 ��� � �0 � ��� �1 � � �2 � � � �
� � 1 � �

�
0 � � �1 � � 1

�
� � � � �0 � ��� �1 � � �2 � � � �

� � 0 � 1
�
� � � � �0 � ��� �1 � � �2 � � � � (3)

In the sequel, we will restrict ourselves to the symmetric case, i.e. :

� � � � � � � 1 ���	��� � � ; � � ��� � � � 1 ���	����� � (4)

It follows from the nature of the ring network under consideration, that the stationary
marginal queue length distributions are identical, i.e. :

� �� � � � � � � 1 �������	� � � � � 0 �����	��� 2 � (5)

Hence the above equations can be simplified as

� 2 � � 1 � � ��� � � 1 � � 2
� � 0 � � � 1 � � 1 � � 2

� � 1 � � � � � 1 � � � � � 2 ��� � 2
2 � (6)

� 1 � � 0 � � � 0 ��� � 1 � � 2
� � � � � 0 � � 1 � � 2

� � 1 � � � � 1 � � �
� � 1 � � 1 � � 2

� � 1 � � � 2 ��� 0 � � 1
� � � 1 ��� 1 � � 2

� � 1 � � � �
� � 2 ��� � 2 � � 0 � � 1

� � 1 � � � � � 1 � 2 � 1 � � � � � 0 ��� � 1 � � 2
� � � (7)

� 0 � � � 1 � � � 1 � � 0 � � 1
� � 1 � � � � � 0 � 1 � � � � � � 0 ����� 1 � � 2

� � � (8)

Inria



Deadlock Free Routing on a Ring 9

In addition, we know that, in steady state, arrival rate and departure rate of the
network are equal. Therefore,

� � 0 ��� ��� 1 � � 2
�

(9)

Moreover, we have the following trivial relation:

� 0 � � 1 � � 2 � 1 (10)

Owing to the theory of Markov chains, stationary distribution is unique. Hence
marginal queue length probabilities � � 0 � � 1 � � 2

�
can be obtained with either three of

the equations (6)|(10). It follows from (9) and (10) that

� 0 � �
� � � (11)

and � 1 � � 2 � �
� � � (12)

Replacing the corresponding terms in (6) by (11) and (12) immediately yields a
quadratic polynomial in terms of � 2:

� ��� 2
� ��� 2 � 2

2 ��� 1 � 2 ��� 0 � 0 (13)

where

� 2 � � 1 � � � � 2 � �
� � � (14)

� 1 � � 1 � � � � 1 � � � � � ��� � �
�

1
� � � � � 2

�
1 (15)

� 0 � � 1 � � � � 2

��� � � � 2 � 1
�
� � � � � (16)

In view of (12), 0 ��� 2 ����� ��� � � � . We are going to show that
� ��� � � 0 has one

and only one real root between 0 and ��� � ��� � � . Indeed, it is easy to see that

� � 0 � �	� 0 
 0 (17)

RR n˚2233



10 Z. Liu & P. Mussi

With some simple manipulations one readily get

��������� 3 	 � �
�
��� ��� � 3 �
��� 2 � 2 � 2

� 4 � 2 � � 4 � � 2
� 3 � 3 � 2

� 3 � 2 � � 2 � 3 � � 2 � � ��� 2

Using the facts that
�

3
�
���

2
�

and
�

2
�

2
�����

2 yields immediately

	 � �
�
��� ���

0 (18)

In addition, observe that � 2
�

lim ����� 	 ������� � 2 is non–negative, so that the second
real root of 	 �!�����

0 is greater than
�"���#�$�����

.
Therefore, equations (11)|(13) yield an unique solution of the steady state pro-

bability distribution of
�&%

0 ' % 1 ' % 2
�

for any pair of
��� ' �(� . Such a solution will be

denoted as
�
Π0 ' Π1 ' Π2

�
.

3.3 Performance measures computation

The computation of the performance measures then becomes immediate. Node
throughput ) , ring throughput * , mean number of messages on a node + and on the
ring , , and mean number of visited nodes of a message - are given by:

) � �.�
Π1

�
Π2

�/� ���
�0�1� (19)

* � 2 ) � 2$���
�
��� (20)

+ �
Π1

�
2Π2

� �
�
��� �

Π2 (21)

, � 2 + (22)

- � 1� (23)

Using Little’s formula [4] yields the mean sojourn time of a message 3

3 � ,
*

� �
�
Π2

�#�0�1�(�
�4� (24)

Inria
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4 Numerical Results

In this section, we provide numerical results of the performance measures as func-
tions of external arrival and departure probabilities. We also illustrate the relations
between the performance measures.

For any given pair of parameters
��� ' �(� , we solve numerically (13), and choose

the smallest root Π2 to get the steady state probability distribution
�
Π0 ' Π1 ' Π2

�
for

the number of messages on each node.
Recall that the mean number of hops of a message - �

1
� �

. We hence compute
mean number of messages on a node + , throughput of a node ) , and mean sojourn
time of a message on the ring 3 , as functions of

�
and - . The results are illustrated by

Figure 2, where each curve corresponds to a particular value of
�

:
� � � �

20 ' � �
1 '������ ' 19.

In figure 5, we illustrate the relation between 3 , the mean sojourn time of
messages, and ) , the mean node throughput.

5 Conclusions

In this paper, we have studied the performance aspects of a deadlock free protocol for
a limited capacity ring network. A probabilistic model together with an approximate
analysis have been proposed. Numerical results have also been provided.

In the analysis, we assumed that the ring was symmetric, i.e.,
�

1
� �

2
�

�����
�

���
, and

�
1
� �

2
�

�����
� ���

. However, numerical computation is possible for
general cases. Indeed, using (1), (2), (3), (11) and (12), one can readily obtain
polynomial equations in terms of

%
1 or

%
2 for any arbitrary node.

For degenerated cases where some
�

or
�

equals 0 or 1, the analysis will be
simpler as there will be less state transitions.

Further research topics include analyzing models with Bernoulli external arrival
processes replaced by other kind of processes (such as geometry or exponential
processes), and with Bernoulli external departure processes replaced by more general
distributions on the number of hops of a message.
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Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex
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