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Mellin Transforms and Asymptotics:
Finite Differences and Rice’s Integrals

Philippe FLAJOLET and Robert SEDGEWICK
Rocquencourt and Princeton

Abstract. High order differences of simple number sequences may be analysed asymptotically
by means of integral representations, residue calculus, and contour integration. This technique,
akin to Mellin transform asymptotics, is put in perspective and illustrated by means of several
examples related to combinatorics and the analysis of algorithms like digital tries, digital search
trees, quadtrees, and distributed leader election

Transformation de Mellin et asymptotique:
Différences finies et intégrales de Rice

Résumé. Les différences d’ordre élevé de suites numériques simples peuvent s’évaluer asympto-
tiquement par l’entremise de représentations intégrales, de calcul de résidus et d’intégration com-
plexe. Cette technique qui s’apparente aux transformation de Mellin est mise ici en perspective et
illustrée par divers exemples issus de ’analyse combinatoire et de I’anlyse d’algorithmes, tels les
arbres digitaux, les treilles, les arbres quadrants, ou 1’élection distribuée d’un meneur.



MELLIN TRANSFORMS AND ASYMPTOTICS:
FINITE DIFFERENCES AND RICE’S INTEGRALS

PHILIPPE FLAJOLET AND ROBERT SEDGEWICK
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ABSTRACT. High order differences of simple number sequences may be analysed asymp-
totically by means of integral representations, residue calculus, and contour integration.
This technique, akin to Mellin transform asymptotics, is put in perspective and illustrated
by means of several examples related to combinatorics and the analysis of algorithms like
digital tries, digital search trees, quadtrees, and distributed leader election.

INTRODUCTION

The problem of estimating asymptotically high order differences of some fixed numerical sequence

{fk})

(1) | D=3 (Z)(—l)kfk

k=0

is delicate: the binomial coefficients get close to 2" while, for many explicitly given sequences, the
differences D, tend to be polynomially bounded in n, and thus exponentially smaller than implied
by the trivial bound

Dl f]] < 2° max |fel-

There is therefore a phenomenon of ezponential cancellation inherent in most sums of this type
which is bound to resist elementary attempts that rely on an asymptotic evaluation of individual
terms of the sequence {f,}.

The binomial sums of (1) are naturally basic objects of the calculus of finite differences [16, 22, 23].
They acquired interest in the community of researchers working in the average case analysis of algo-
rithms and data structures after De Bruijn, Knuth, and Rice in the mid 1960’s showed their central
role in the analysis of algorithms and data structures that are based on a binary representation
of data. The most famous of the first generation examples comprise radix exchange sort, digital
“tries” and digital search trees, for which we refer the reader to Knuth’s description in [20]: see
pages 131-134 (radix exchange sort) and Exercise 5.2.2-54 page 138 (assigned to S. O. Rice), as
well as Section 6.3 (tries, Patricia trees, and digital search trees).

This work was partly supported by the EsprIT Basic Research Action No. 7141 (ALcom II).
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2 PH. FLAJOLET AND R. SEDGEWICK

The basic approach to the asymptotic analysis of sums of the form (1) has become known as the
technique of “Rice’s integrals”. The starting point is the integral representation

(2) D= 5F [

There ¢(s) is an analytic function that “extrapolates” the number sequence {fi} in the sense that
(k) = fi for all integers k, and C is a contour that encircles the real interval [0, n]. Such integral
representations were known much earlier, as attested by the book of Nérlund [23, Chap. 8]; the
merit of Rice and his co—workers has been to show how these forms could be used to analyse
asymptotically sums like [20, p. 131-138] ‘

SN

which, in addition to exhibiting exponential cancellation, appear to involve subtle periodic fluctu-
ations of a very small amplitude. The sum U, is directly related to the expected number of bit
comparisons necessary to sort a set of n random bit strings by the radix-exchange algorithm [20,
Ex. 5.2.2-38].

The present paper is an expanded and updated version of an unpublished memoir of the au-
thors [12] that was written and distributed around 1983. The subject gained renewed interest as
similar and often closely related problems surfaced in diverse areas of the analysis of algorithms
like: text searching and string matching, communication protocols, variance analysis of digital
structures, suffix trees, index trees, multidimensional search and computational geometry, proba-
bilistic algorithms, etc.

The technique of Rice’s integrals entertains close ties with Mellin transforms. Asymptotic
estimates derive from sweeping over poles (for meromorphic ¢(s)) or circling around algebraic—-
logarithmic singularities, a feature strongly reminiscent of corresponding Mellin asymptotics; sin-
gularities of the extrapolation function then contribute asymptotic terms in direct relation to their
real part. In fact, the kernel of Rice integrals reduces for large n to a Mellin kernel, a property
explored by Szpankowski in [27]. There are other connections (the Poisson-Mellin-Newton cycle)
that are hinted at in [9] and briefly reviewed in Section 6.

The authors are extremely grateful to Helmut Prodinger and Wojciech Szpankowski for their
invitation to write down this new version of [12] in which we have added some ideas that had
remained partly implicit in our earlier manuscript. Rodney Canfield, by asking the question of the
behaviour of the sums D,[f] for f, = #~*, had provided the initial motivation for [12].

Some of the reasons why sums investigated here are of interest in the analysis of digital structures
are surveyed in our paper [13] as well as in the combinatorial synthesis [10]. A follow-up to [12]
was written by Szpankowski [27], and Prodinger [26] gives an amusing discussion of the method in
comparison with standard Mellin transforms techniques.

In what follows, we emphasize general methodology. Bibliographical indications relative to more
recent works are given on the occasion of the examples.
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1. DIFFERENCES AND GENERATING FUNCTIONS

The differences of a sequence {f,} are classically defined by Af, = fayr — fa. The iterated
differences are then expressed by alternating binomial sums. In particular, one has

n

NVEDD (Z)(—n"-kfk = (1) Dal/,

’

in the notation of (1). By a slight abuse of language, the D, [f] are also referred to as “differences”.
The transformation of sequences

3) fomn =Y (Z)(—_l)*fk

k=0

is an involutive transformation, called the Fuler transformation, that is closely related to the
binomial transform and is best viewed as operating on generating functions, either ordinary or
‘exponential.

Ordinary generating functions. Let
[=<] oo
F(z)= Z fa2" and G(2)= Zgnz"
n=0 n=0

be the ordinary generating functions (ogf’s) corresponding to {f,} and {g.}. Then (3) translates
into

1 z

F(_-l—_z)’

(4) S G)=

1-2

which is also known as the Euler transformation of series. It plays a fundamental réle in the
" summation of divergent series [14)].

Ezponential generating functions. Let
.o P s 2"
(=S hy  ad @)=y
n= n=

be the ezponential generating functions (egf’s) corresponding to {f,} and {g,}. Then, the trans-
formation (3) translates into

¢y 9(2) = € f(~-2).

In particular, g(z) is a variant of the Poisson generating function (Pgf) of the sequence {f,}, which
is defined by

o) =2 e

In effect one has g(z) = f(-2).

High order differences thus present themselves whenever the Euler transformation or the Poisson
generating function induce simplifications in difference equations, differential equations, or recur-
rences. In the analysis of algorithms, such is the case for digital tries, digital search trees, and
quadtrees, as illustrated by several of the examples below. '



4 PH. FLAJOLET AND R. SEDGEWICK

2. THE INTEGRAL REPRESENTATION

The analysis of differences starts with a classical integral representation.
Lemma 1. Let ¢(s) be analytic in a domain that contains the halfline [no, +oo[. Then, the differ-
ences of the sequence {@(k)} admit the integral representation

n

(6) > (Z)(—l)’“so(k) -G #ls) 55 1)’,’,’, el

k=ng

where C is a positively oriented closed curve that lies in the domain of analyticity of ¢(s), encircles
[no, n], and does not include any of the integers 0,1,... ,ny — 1.

Proof. This is' a direct application of residue calculus, taking into account contributions of the
simple poles at the integers ng, ..., n. The integral equals the sum of the residues of the integrand,
n! (=1)"*n!
R = k),
AR C b P s vesy pumpey Sl STRAL)

fork=mny,...,n. O

The kernel in (6) is also expressible in terms of gamma functions,

n! : I'(n+ 1)I'(s—n) I['(n+ 1)I(-s)
s(s=1)---(s—n) I‘(s+1)' M(n+1-35)"

or equivalently in terms of beta functions,

= (-1

n!
s(s=1):--(s—n)

with B(z,y) = ['(z)['(y)/T(z + v).

A function ¢(s) is said to be of polynomial growth in an unbounded domain Q if it is analytic in
2 and satisfies |p(s)| = O(|s]") for some 7 as s — o0 in 2. We also call r the degree of ©(s). Then,
if p(s) is of polynomial growth (is of finite degree) in the half plane ®(s) > ¢ for some ¢ < ng, we
have the alternative representation

=B(n+1l,s-n)=(-1)""'B(n+1,-s),

n

(™) > (k) 0t = =58 [T o),

k=ng

valid for n large enough, namely as soon as » > r + 1. This alternative form results from taking as
integration contour a large segment of the line £(s) = ¢ closed to the right by a large semi-circle,
see also the proof of case (i¢) of Theorem 2. It relies on the fact that, for fixed n, the kernel of
Rice’s integral is O(s™"~'), as |s| — oo The sign change is due to orientation.

3. THE RATIONAL CASE

Rational functions are a priori of polynomial growth in the complement of some compact set.
Thus, in the representation (6), one can enlarge the contour of integration, only taking residues
into account. This gives rise to an exact representation. ‘



MELLIN TRANSFORMS: FINITE DIFFERENCES AND RICE’S INTEGRALS 5

Theorem 1 (Rational functions). Let ¢(s) be a rational function analytic on [ng, +oo[. Then,
ezcept for a finite number of values of n, one has

" (n . B n n!
(8) Y (k)(-l) (k) = (-1 3 Res o))

k=ng

where the sum is extended to all poles s of @(s)/((s(s—1)---(s8 — n)) not on [ng, +00].

Proof. Use the integral representation (6) of Lemma 1, and take as contour of integration a large
circle of radius R centered at the origin that avoids the poles. Then let R tend to +00. The integral
converges to 0 provided n > r 4+ 1, with r the degree of ©(s). By the residue theorem, the integral
which is 0 in the limit equals D,[¢] plus the sum of the residues of (8) at the other poles of the
integrand. O

Residues correspond to asymptotic terms in the expansion of the differences as made explicit by
Proposition 2 below.

. A pole of order v at a point sy contributes a term of dominant growth
n*°(logn)™"'.
Since n** = O(n®(*0)), a collection of residues arranged in decreasing order of real parts form an

asymptotic ezpansion of the differences D,[¢].

To make this precise, a few notations are- first needed. The incomplete Hurwitz zeta function is
defined by

1 . 1-
a+ay T o1+ pr

These quantities thus extend the usual harmonic numbers.

gmm:§+

The expressions to be derived also involve a variant of the Bell polynomials (see [3] for the
standard form). Let z,,z,,... be a collection of indeterminates. The modified Bell polynomials
L., = L, (z,,22,...) are defined by

o tk o0
exp (Z xkj) =14 Z L.,t".
k=1 k m=1
The expansion above starts as '

T2 3 . 2 2 4 ’
1+z1t+<ﬂ+ﬁ)tz+<ﬁ+x‘xz+ﬁ)t3+<3+x113+f—2+x—25+$‘>t“+~-,

2 2 37 2 6 473 "84 T
which fixes the first few values, the general formula being
1 z, m, z, mo (.’133)"13
Ln(zy,20,...) = _ 2} 2 =3 .
(21,22 ) 1m|+2m2§m3+~ e myImatmg! - - ( 1 ) ( 2 ) 3

Proposition 2. Let o be a complex number not in N. The quantity

" / 1 1
In(a) = (-1) nl&%ﬁf((s_ ay s(s—1)(s—2)--(s - n)) ’
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-

with v a positive inleger, is expressible in terms of harmonic numbers and modified Bell polynomials
as
I'(n+ 1I(-a)

In(a) = _mllr—l(<n+lil —a) Cn+l(2v —0)7 Cn+1(3a _a)v .. )
a

= ~T(-a)nLe (logn - 1) (2 -a), (B -),-.. ) - (1+0(3))

e D(—opelogn)
= T <+0(logn)>

Proof. The residue computation reduces to coefficient extraction:

1
(=)L =) (n—s)

(—ra-s)l—-a—-s)---(n—a-~s)

I(a) = —n!{(s—a)"]

= -n![s"!]

= —n!{s"exp | =D log(j —a - s)

—n! m

= (—a)(l '—0)"'(77.— [ . ]exp Z Qu+1 7Tl —0)_)

m=1

The steps consist in shifting the value of s, expa.nding logarithms, and exchanging summations.
The final form results from the definition of modified Bell polynomials. The approximation follows
from the estimate ’

r'(6)

ne1(1,8) =logn - + O
and from standard estimates of the gamma function [32]:
I(n+1)
Tn+tl-a) (1+O( ))

EXAMPLE 1. Differences of inverse powers and harmonic numbers. Define the sums

n /, EERY
Su(m)=Y (,f) .

k=1

for m an integer. For negative m, the 5,(m) are eventually null, the nonzero values reducing, up
to sign, to Stirling numbers of the second kind [3]. '

For positive m, the S,(m) are amenable to Theorem 1 with ng = 1 and ¢(s) = s™™. There is
only a pole of order m +1 at s = 0, whose residue is to be evaluated. A simple modification of the
computation justifying Proposition 2 is needed since s = 0. The sum S,,(m) reduces to a coefficient
extraction:

Salm) = 57u(s) where n9)= (1= D=3 D)
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This shows that —S,(m) is the power-sum symmetric function of degree m of the integer inverses
1,3,...,+. The coefficient may be evaluated by putting w,(s) under exponential form and appeal-

ing to the definition of Bell polynomials. We find

nls) = exp (i cn(k)%) ,
k=1

where the (,(k) are generalized harmonic numbers (equivalently, incomplete zeta functions):
1 1 1
n n 1 Ty ar -
G(r)=Gu(r )=+ o4t
Corollary 3. The sum S,(m) is expressible in terms of generalized harmonic numbers as

samy= % 1 _ (Cnil))m’ (cni(ez))"" (<n§3)>"‘°,,,,

! ! I,
mi42mat . =m m,.mo.Mg3.

and asymptotically

Sm = Y e egne g (S2) 7 (S2)

11700 11724
it 2met=m M1iMalms! 2
The first few values of $,(m) are

-5,(1) cn(1)=1+1+--- =lognty+0(3)

log n

-5.(2) = ?cnmw 56:(2)= gllog "+ vlegn + ] LT o
“5(0) = G0 SG06) + 560

1 3,7 2 7_ L Ty ) log® n
6(logn) +2(logn) + ( +12)logn+ 6 + B + 3 + O( n ).
Notice also that the polynomial giving the dominant asymptotic form of S,,(m) can be expressed

differently. Let P, (u) be such that

)

~5.(m) = Puflogn) + OB 1)
then, from the classical expansion of the Gamma function [32],
~ 12 z m ur
Pa(u) = e exp (u +7)z + {25+ G5 + -+ ) = [e™]eT(1 - 2),
so that
, _ 1 &K fm ka(k) m—k log™ n
(9) —.sn(m>——,lz;)(k)<—n D1 (logn)™~* + O(E-1),

This form generalizes to nonintegral values of m, see Ex. 6.

For m = 1, the identity
L\ (=)
= 11117
(1)

k=1
with H, = (,(1) the more familiar notation for the harmonic numbers, is of course extremely well-
known and it surfaces in many problems related to random allocations and the theory of records. It
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FiGure 1. A plot of T, versus logn for n < 10,000 displays oscillations that arise
from the two complex poles s = £ of the function ¢(s) = (1 + s2)~1.

is also related to the exponential integral (by taking exponential generating functions of both sides).
More generally, Buchta [2] has shown that —S,(m — 1) equals the expected number of maxima of
n vectors in m—dimensional space, a problem of interest in computational geometry, and he has
derived second order asymptotics from representations by multiple real integrals of a special type.
a

ExXAMPLE 2. A fluctuating function. The asymptotic analysis of the sequence of numbers
n k
-1
Tn - Z: n (2 )
k=0 k k + 1

can be a,pproé,ched from several view points. The sequence is holonomic in the sense of Zeilberger
meaning that it satisfies a linear recurrence with polynomial coefficients:
1 n
TO = 1, Tl = 5’ Tn = —7:2-+—1((2n - I)Tn—l b (n - I)Tn_z).
This recurrence was communicated to us by Bruno Haible. No elementary asymptotic method
seems to be instrumental for estimating directly the rate of growth of this recurrence.

Theorem 1 applies with ((s) = (1 4 s?)!, taking the two poles at s = *1i into account, with
residues that are proportional to :
i — _Xilogn

n €

- This provides the asymptotic form
T, = pcos(logn + 6y) + o(1),
for two real constants p, 8, related to I'(z) and I'(=7). In particular, the amplitudé pis

p=IT()| = ——J-ﬁ

= 0.52156.
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The sequence thus oscillates boundedly, as shown on Figure 1. The sign changes are asymptot-
ically in geometric progression growing roughly in proportion to N, = e¥". The T, thus illustrate
some of the peculiarities of the asymptotic analysis of holonomic sequences, of which [33] contains
a general discussion. . 0

This last example demonstrates the fact that complez poles of ¢(s) induce periodic fluctuations
in log n? if s = 04 + 7o, then
n°° = n% exp(irylogn).

4. THE MEROMORPHIC CASE

The approach of the last section extends almost verbatim to merororphic functions that are
sufficiently well conditioned either on “large contours” or in half-planes.
Theorem 2 (Meromorphic functions). Let ¢(s) be a function that is analytic on [ne, +o0|.

(i). Assume that @(s) is meromorphic in the whole of C and analytic on Q = |JJ2, v; where the
7; are positively oriented concentric circles whose radius tends to infinity. Let o(s) be of polynomial
growth on Q. Then, for n large enough,

~ (" ko(kY = —(=1)" Y Res |p(s n!
> (1) -0teth) = -1y Skes st 5],

k=no

where the sum is extended to all poles s not on [ng, +00].

(ii). Assume that ¢(s) is meromorphic in the half plane Q defined by R(s) > d for some d < n,.
Let ¢(s) be of polynomial growth in the complement in Q0 of some compact set. Then, for n large

enough,
~ (" ko(k) = —(=1)"° es ! n®
> (k)<—1) o) = ~(=1)" 3 Res (o) oy + 000,

k:no'

where the sum is extended to all poles s in N(s) > d dnd not on [ng, +o|.

Proof. In the first case, integrate (6) along the contours 7;. In the second case, operate with a
contour formed of the segment [d — iR, d + I R} closed by the right semi~circle of radius R centered
at d. In both cases, take residues into account as in Theorem 1. [

EXAMPLE 3. Trie sums. The prototype of Rice’s method that goes back to Rice himself is the

treatment of the sum
= (n) (-1
U" - Z (k) k-1 _ 1§

k=2

Alternating sums like this arise {20, Ex 5.2.2.36-38] from probabilistic divide-and-conquer re-
" currences of the form

'i 1 (n
10 =a, +2 n k[ where Wpp = — ,
(10) fa kgo & e
and they are characteristic of a Bernoulli splitting process. There the a, normally constitute a
simple sequence, and the f, are to be determined; without loss of generality, we assume that
ao = a; = 0. One then introduces the exponential generating functions and the Poisson generating
functions: f(z) and f(2) for {f,}, a(z) and @(z) for {a,}, as defined in Section 1.
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The recurrence (10) translates into a functional equation for f(z),
f(2) = a(2) + 26721 (3),
which further simplifies in terms of f(z):
fz) =atz) + 27(3).
This implies for the coefficients, fa= n![z"]f(z)
fo = i——(?%——" so that f,,_ = g (Z) ?a;l_—k,

in which the quantities @, = k![2*]d(z), are usually simple. The quantity U, corresponds to the
case where @, = (—1)* for k£ > 2 itself arising from a, = (n ~ 1) for n > 2.

The analysis of U, is a direct application of Theorem 2 when taking as integration contours large
circles that go in between the poles of the function (2°~! — 1)~!. The poles are at

14 2ikw
Xk = log2’
‘Each of these induces a contribution of the form
nX* = ne?ikrlog,n‘

The solution appears in Knuth’s book [20, Ex. 5.2.2-54], pages 138 and 613-614:

1 T'(n+ DI(-1+ x
U, = l_rl,‘z—(H"'l—l)——n+2+i_2 (nr)(,-*_h)
og 2 082, 2ni0) (n+ &)
n log 2 n 2ikT | iem
= nl —(y-1- I'(-1- sthmicga n .
nlog,n+ log2(7 2 ) log 2 keZZ\{O} ( log'Z)e +0(Vn)

Fluctuations with a similar pattern surface in a great many areas of the analysis of algorithms.
Their amplitude is usually <« 1073 since the gamma function is of fast decrease along the imaginary
axis.

From the analysis of U, and related quantities, one proves that the radix—exchange algorithm
sorts n uniformly distributed bit strings in

nlog, n + nP(log, n) + O(\/n)
bit comparis'ons, on average [20]. | O

As seen with T, poles with nonzero imaginary parts contribute fluctuations that are periodic
in logn. In the case of U,, regularly spaced poles (often originating in a periodic meromorphic
function) introduce asymptotically a Fourier series in logn. As is well known, such behaviours are
also captured by Mellin transform techniques whenever the alternating sums can be reoxgamzed as
“harmonic sums” [9].

The conditions of Theorem 2 are also susceptible of a large number of variants: rectangular
contours may be used instead of circles and contours may be taken that tend to complex infinity
in various ways.
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EXAMPLE 4. Probabilistic election of a loser. This example belongs to the orbit of the so-called
“Patricia” variant of digital tries [20, p. 490-504]. Its treatment via Rice’s integrals was developed
by Prodinger in [25]. The problem involves analysing the sum {25, Theorem 7):

n-1 n Bk
V":Z<k %1’

k=1

The sum is in fact alternating since the nonzero Bernoulli numbers themselves alternate in sign.

As pointed to us by Peter Grabner (private communication), Prodinger’s derivation is correct
but the analysis is more subtle than it seems. The corresponding integral representation is

B (_1)n 1/24ic0 n! C(l — S)
(1) o= T e GG TT T

The main observation is that the Bernoulli numbers are extrapolated by the Riemann zeta function
taken at nonnegative integers: B, = —k((1—k); the coefficients (—1)* disappear since the Bernoulli
* numbers of odd index > 3 are null.

To justify (11), a special argument (provided by P. Grabner), that we now sketch, is needed.
The integration contour cannot be extended arbitrarily to the right because of growth properties
~of {(s) for large negative values of R(s): for fixed o < 0, one has

C(o+it) = O(t"*°) ast— oo,

see (31, p. 95]. One thus integrates along the infinite rectangular contour with vertical sides R(s) =
n—3/4 and R(s) = 1/2. The integral along R(s) = n—3/4 converges because of growth properties of
¢(s); it is in fact identically zero, a property that generalizes an observation of [6, p. 297] according

to which one has
—1/44i00 n® ds
0 =/ s ,
-1/4-1c0 C( ) 3(3 + 1)

and is proved by the same means.

Now, the line of integration R(s) = 1/2 can be moved to the left, with residues being taken into
account in the spirit of Theorem 2. The contribution to (11) coming from the residue of the double
pole at s = 0 is ‘

1 1 1 1
-—(H, - - =-1 -+ 0(-),
and the complex poles at x;, = 2ikm/log?2 yield a an exact representation in terms of an infinite
series, itself asymptotic to a Fourier series:

Ho-~v 1 1 I'(n+ DI'(1 = x&)
Vo = - 1=y,
log 2 2 log2 keZZ\{O} F(n+1-x¢) ¢ =)
1 1 ik
= Togan — 5 + QUogy 1) + O(VA) where Q(2) =~ 3= (1= xo)I(1 - xe)e™.
kez\ {0}

Other examples appear in Prodinger’s paper [25] who deduced in this way that a “loser” can be
selected probabilistically by means of a tree algorithm on a broadcast network using = log, n stages
of coin flippings. - 0
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In general, this method may be used to analyse the so—called Patricia tree recurrence, a modified
form of the trie recurrence (10):

2 X (n
fo=an+ o kzzl (k)fk

Szpankowski et al. have extended it to the analysis of tries and Patricia trees under a biased
Bernoulli model, see e.g., [18, 28, 29, 30] and references therein. Flajolet and Sedgewick [13],
following Knuth, have developed the analysis of digital searching trees in this fashion: difference
equations then get replaced by difference-differential equations, with further analyses appearing
in [11]. Kirschenhofer, Prodinger, et ¢l. in [17, 19] have treated in this way several multidimensional
searching problems.

EXAMPLE 5. Ertreme points in quadtrees. The analysis of the cost of searching points with smallest
z—coordinate in a randomly grown quadtree of dimension d calls for estimating the quantity

W, =3 (Z)(—l)"[k] !

k=2

[k]! = (1—%) (1—%)---(1—2::),' [2)t=1.

The analysis of quadtrees is introduced in Mahmoud [21], and this particular example is borrowed
from [7] where cost measures of quadtrees are treated systematically by means of Lindel6f-Mellin
integrals and generalized hypergeometric functions. In the case of additive cost measures, the
Euler transformation simplifies recurrences by reducing them to first order, as detailed in [7] which
demonstrates the relation between W, and quadtrees.

where

The problem of analysing W,, then reduces to finding an analytic extrapolation of the s-equence
[k]!. By the product formula for the gamma function, one can take

[(s+1-w) - ['(3)
H —_I‘Ts_—f-T where K= H F(T-w_)

wd=2d-1

w(s) =K -

wd=24-1

This function is meromorphic in the whole of C and it remains O(1) as S(s) — Zoo in any right
half-plane.

The singularity of largest real part occurs at s, = 2(4=/¢ — 1, Thus,
W, = K*n27" (1 4 0(1)),

for some constant K'* expressible with gamma functions. For instance, when d = 2, 3,4, W, grows
like '

- 2/3_ 3/4 _ -
n\/§ 1 ~ n0A41421, n? 1 ~ n0A58740, n? 1 z n0,681/9.
In [7], other applications are given to path length, search costs, as well as paging constants. O

Apart from quadtrees, the Euler transformation also permits to analyse explicitly generalized
digital search trees, as shown in [11]. Thus, Rice’s integrals may also be used in this context.

The last two examples also illustrate what is sometimes a nontrivial stage of the method, namely
finding a suitable analytic function that extrapolates a given number sequence involving sums or -
products. The basic principle is as follows. Write a; «x afs) if a(k) = a, for all integers k£ € N, so
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that a(s) “lifts” the given numerical sequence to the complex.” Then, assuming convergence, one
- has ‘

ar x as) = A,,:ﬁak X A(s):H%ﬁ—%
a; x afs) = A, = Zn:ak x A(s) = i[a(k) - ok + 3)).

In general, additional convergence terms must be introduced. See {13] for-an application to digital
search trees and [17, 18, 19] for applications to analysis of variance and of multidimensional search.

5. THE ALGEBRAIC CASE

Differences of functions with algebraic or logarithmic singularities are estimated by means of
integration contours of Hankel type. The situation is analogous to the asymptotic analysis of co-
efficients of functions with nonpolar singularities (the method of singularity analysis of (8]), to the
application of Mellin-Perron formula to Dirichlet series with algebraic or logarithmic singulari-
ties [15], or to the analysis of Mellin transforms in the nonpolar case [5].

Rather than stating general conditions that would be rather heavy, we content ourselves here
with presenting in some detail the analysis of sums that generalize the S,(m) when m is no longer an
integer. Figure 3 then summarizes the general correspondence between the nature of singularities
and the asymptotic form of differences that results.

EXAMPLE 6. The differences of k=* for nonintegral A. In view of the earlier discussion of the case
A = m, the resulting sums may be considered as providing harmonic numbers of fractional order.

We define: .
Sa(A)= S (:)(—1)%-*.
k=1 -

Theorem 3 (An algebraic singularity). For any non integral A, the sum 5,(A) has an asymp-
totic ezpansion in descending powers of logn of the form

> - TOX(1) 1

— n ~(log71 Z(_I)J]|F(1+)\_])(logn)1

=0
This expression therefore generalizes the finite expansion obtained when A = —m. We have for
instance: ‘ |
_ 2 -5/2
—Sa(=1) = - + O((log n)5/?)
vrlogn o /o log3 n
log n
—S.(4 = 2 O((logn)~3/?
In general the coefficients are expressible ra}txona.lly in terms of v, ['(=X) and ((2),((3),.... a

Proof. The starting point is again the integral representation

1 o ds s s, s \7!
(12)  S.(A) = gi—‘/'r./c:wn(s);r‘ where wu(s) = <(1 - T)(l - 5) (= ﬁ)) .
By Lemma 1 and Equation (7), the integration contour C may be Taken either as the circle of
diameter (3,7 + 1] or as the vertical line R(s) =

1
-
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FiGUrRE 2. The Hankel contour relative to an algebraic or logarithmic singularity
(here for s = 0).

The basic idea consists in deforming the contour C so that it extends to the left of the singularity
at s = 0. However, since the singularity is no longer polar, the contour must avoid it. The
contour employed resembles the one used in the method of singularity analysis, though the scaling
is different: it consists of a loop around the singularity close to it (at a distance of about 1/logn)
in order to “capture” the main contribution of the algebraic singularity at s = 0.

We shall only give the main steps here, since a full proof can be developed along lines quite
similar to those of singularity analysis [8]. The estimation relies on the composite contour depicted
on Figure 2,

’ C_:ClUCQUC;;UC.q,

where R > n is a large number and
Ci = {s/|s|=R,|S(s)] > == or R(s) > 0}

logn
Co = {s/s=(i-1)/logn, 120, |s|<R)
C3 = {s/s=¢€%logn, 8 €[-5,+3]}
Co = {s/s=(-i—1t)/logn, t >0, |s| < R}.

We decompose the integration path, express in (12) S, (A) as
Sn(/\) = Jl + J< + J),

and prove that the main contribution comes from J, associated to a part of the contour close to
s =0. '

(2). First, we may let R tend to infinity. The integral J, along the outer circle (C,) tends to 0 as
the integrand there is O(R=""*-!}. In the limit R = +o00, one has '

(13) Jy = 0.

Thus, it only remains to estimate the contribution due to C, U C3 U C4 with the two branches of C,
and C4 now extending all the way towards —oo.

(7). Let J. denote the contribution to S,.(A) corresponding to the integral taken along the
portion of C, U C,4 that is restricted to

~

R(s) < —

Viegn'
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It turns out that J. is of a smaller order than any negative power of logn. We prove here the
simpler but characteristic estimate:

= [ Y - _ 1
p(n) = «/zo +O- 0+ O(e ). where ty = =

The quantity u(n) is split into

1/3

1 n e}
pn) = () 4 m) 4 () where w(m)= [y = [ = [

1/3
First, we have by the unimodality of I'(s) and Stirling’s formula

' all(1+1)
'(n) = —_ 2 dt
win) to I‘(nl+ 1+1)
0(1)/ n~t di
to

O(e——tologn) = 0(6—1/2\/Iogn)'

Second, by trivial bounds,

nt/3 ) 1
" — n. — 1/3 _1_ - -2/3
u(n) /1 T 4= O x 1) = o),

Third, by trivial bounds and integration,

b dt 1,,1/3
" - — -711
n (n)</"”J —(1_*_&) O(e ).

Proceeding in the same way with a triple decomposition of J, one establishes
(14) Jo = Oe”5Vloen),

(iiz). Let J, denote the contribution given by the integral along the portion C° of C; U C3 Uy
defined by .

1
M) 2~ Toga

By Stirling’s formula the approximation

logn

w(s) = n°I(1 = s)(1+ O(—))

n

is valid uniformly over C°. Thus,

s/ 1 ds
_ 70 —24/logn o __ s
(15) J> =J°+ 0(6 2 g ) where J® = E /Co n F(l — s)‘s>\—+‘-

We now perform the change of variable ¢ = slogn, so that the integrand and the contour both
get rescaled. This gives

1 ¢ o
o _ s ) ¢ _
J° = (logn) 5im /;)oe r(1 logn)dg’

with D° the image of C° by { = slogn. Along D®, one has

K] = O(V/Tog n).
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Thus, one can expand ['(1 —(/logn) into a convergent expansion in powers of (/logn. Interchang-
ing the order of summation and integration, we get

i ey 1 1
o __ -A _1ym -
(16) J* = (logn) Z( 2 m!  (logn)™ 2ir

m=0

/ 6(Cm+/\—l d(

Let finally £ denote the loop contour obtained by extending the two branches of D° towards
—o00. The completion of D° into £ in the integral is a classical device of asymptotic analysis (e.g.,
in Laplace’s method); here, it introduces only terms that are smaller than any power of logn.
(technically, one must appeal to terminating forms of (16)). On the other hand, the complete
integrals along £ have a known expression, by Hankel’s representation of the gamma function [32):

-1

1 A .

21

Thus, by (16), J° admits the asymptotic expansion as stated for 5,(A). By (13), (14), and (15), as
well as formula (16), (17), the statement follows. [

In summary, we have proved that only a “central” part of the contour matters. This part is small
enough, so that the integrand can be locally expanded. Termwise integration after completion of
the contour yields the desired expansion.

EXAMPLE 7. Another fluctuating sum. The sum

2 (n\ (—1)
X, = —_—,
" Z; (k‘) V1 + k2
is reminiscent of T,, considered above. The extrapolation function now has two branch points at

s = +i with a local behaviour of the form (s + ¢)~!/?, which induces a growth of the form /logn.
Thus:

X, = pVlogncos(logn + 8,) + O((log n)~/2).

ExXAMPLE 8. The logarithmic differences and a superezbonential jump. Exactly the same contour
integration technique applies to functions with a logarithmic singularity (details omitted). The
integral now normalizes to a Hankel integral relative to the derivative of the Gamma function. The
result involves iterated logarithms (loglog n).

Theorem 4 (A logarithmic singularity). The logarithmic differences

Y, = ; (Z)(—nk log n

satisfy

v
logn  12(logn)?

Y, =loglogn + v + (1 +67%) + O( ).

(log n)?

b
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Singular Part - Asymptotics
A singularity of ¢(s) at sp = 09 + i7p approximately n°° = noog'7ologn
Simple pole: (s — s0)* —I(=sg)n*

1 r—1
Multiple pole: (8= s¢)7" ——F(—so)n“"(&n)lj

A=

Algebraic singularity: (s — so)* —I‘(—-so)n”(lo—rg(’})/\T
Logarithmic singularity: (s — so)*(log(s — $0))" | —=T(=s0)n ’°(—g)T(log logn)".

FIGUrReE 3. A summary of the major correspondences between singular parts of
functions at s; € N and the asymptotic form of corresponding differences.

A curious form of this result is that the product

2(3)4(2)6(5)
Fn = 3(3)5(:)7(:)...‘

is asymptotic to e logn. Although the factors grow doubly exponentially, the product only in-
creases logarithmically. a

Entire functions. The situation where ¢(s) is an entire function can also be treated by the method
of Rice integrals in conjunction with the saddle point method. This reflects the corresponding
situation for the analysis of inverse Mellin transforms [4]). For instance, the sequence of Kooman
and Tijdeman (related to Laguerre polynomials)

no —1)*
Zn :Z<Z>( k!)

k=0

involves the entire function ¢(s) = (I'(s))~'. This sequence is holonomic as it satisfies the recurrence

' 2 1
Zn+2 - (2 - ;)Zn+l + (1 - -T_L)Zm
and its asymptotic behaviour is of the form
- Z, = cn~Y4sin(2n!? 4 6) + o(n"1?),

for some constants c,d. Alternative apploaches are discussed in Odlyzko’s survey: see [24] and
references therein.

6. MELLIN TRANSFORMS AND RICE INTEGRALS

Rice’s integrals entertain close ties with inverse Mellin transforms and their modus operand: is
very similar. We only discuss here the formal ideas underlying the analogy. A variety of sufficient
validity conditions are easily supplied.

First, the the Rice kernel asymptotically reduces to an inverse Mellin kernel. From the asymptotic
form of w,(s), one may expect

1 d+i00 ‘ (—'l)n‘ll! N 1 d+io0 .
——.—/d cp(s)s(s_ - ds = ——.—/{; P(s)0(~s)n’ ds.

27 Ji—ico 1)---(s=~n) 20T Ja_ico
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{/:}
Poisson G ice’s integral

- f )
I Mellin transform (©)

—ane % “fo L)t - 'dt

FiGurE 4. The Poisson-Mellin-Newton cycle.

This heuristic is discussed by Szpankowski [28] who states some sufficient validity conditions. Note
though that its direct application may cause difficulties due to a lack of uniformity of the approx-
imation employed. In this paper, we have preferred to develop a direct approach based on the
observation that residues of Rice integrals are approximated by residues of inverse Mellin mtegrals
at corresponding points.

Another aspect is summarized by the following informal statement:

Poisson-Mellin-Newton Cycle. The coefficients of a Poisson genercting function
are ezxpressible as a Rice integral applied to the Mellin transform of the Poisson
generating function.

This observation follows from the computation of the Mellin transform of a Poisson generating

function: -
/ F)r-1dt
0

S I /oo e~ dt

F(s)[f0+f, +f°g( + 1) + -

The last series is a. Newton series whose coefficients are blﬂ]pl)‘ recovered by differencing:

Jn = i (:)(ﬂ)kn(k) with  7(s) = S(=s)

f(s)

k=0 [(—S)

The differences are then computable by Rice’s integrals. This schema is thus described (at least
formally!) by the twin relations

_ GO Fe n!
S T 2n /c (F(-s) s(s—1)-+--(s—n) ds

” e“Zfr—": 1 dt
Y n nn! |

This method, nicknamed the “Poisson-Melin-Newton” cycle in [9], is summarized by the diagram
of Figure 4.

f(s)

Tries and digital trees. For instance the treatment of trie sums in Example 3 involves the
following Mellin transforms of Poisson generating functions:

Fris) = 7o)
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Thus, a formal solution to the trie recurrence (10) is

=2 (Z) [?((__j))]m 1(_,_;3:' ‘

k

This “explains” the shape of U,,.

An important class of application is to digital search trees, see [13, 20, 21]. There, the basic
equations for exponential generating functions are in the form of difference-differential equations

{
SH(1) = alt) + 2674 (3),

- which simplify under the Poisson generating function:

- ~ ~t

d
sz(t)+f(f)'—‘f(§

This last scheme is ‘directly solvable by Mellin transforms,
(1= )f(s = 1)+ f(s) = 2 J*(s) + @(s),

which, being an inhomogeneous difference equation of order 1, admits an explicit solution (as an
infinite sum of finite products). We thus have here another general class of problems where the
Mellin- transform of a Poisson generating function is explicit, so that the Poisson-Mellin-Newton
cycle applies. In many ways, this “explains” the success of Rice’s method in the analysis of digital
. trees in {13]. .

De-Poissonization. The Poisson-Mellin-Newton Cycle is more generally useful for the process
called “de-Poissonization” which is involved in recovering coefficients of a generating function from
values (especially real values) of its Poisson generating function whenever enough explicit analytic
structure is present. It then permits to justify on such particular examples the Poisson heuristic
which reads:

) +a(t).

If f(t) is a Poisson generating function
- e 20
f(t) = Z,fne_ PR
= n!

then, for “smooth” {f,}, one has the estimate
fn ~ A(n) as n — +oo.
The intuition behind this heuristic that is familiar to probabilists is as follows: the Poisson gen-
erating function f(t) of a sequence {f,} is a sum of the sequence weighted by the Poisson law of
parameter t. For large ¢, the Poisson law has mean t and standard deviation /7. Thus, the weights
form predominantly an average of the values of f, for n near ¢; if {f,} is known e priori to be
smooth enough [roughly f, ~ f,10(/m), then the estimation follows.

The Poisson heuristic thus relates conditionally the value of a function f(t) on the real line
to the value of its coefficients. As such, it belongs to the category of Tauberian problems. It
was known to Ramanujan who investigated it in some detail [1, p. 57]. For the analysis of digital
structures, the process is useful for two related reasons: (i) Poisson generating functions often satisfy
functional equations of a simpler form than standard exponential generating functions; (iz) Poisson
generating functions normally represent expectations of parameters under a Poisson arrival model,
which entails strong probabilistic independence properties.
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7. CONCLUSIONS.

The method of Rice’s integrals is « priori useful in applications whenever high order differences
occur, a clear source being the Poisson geunerating function (c¢f the example of trie sums) and
the Euler transformation of series (¢f the example of extreme points in quadtrees). As already
mentioned this situation arises frequently in the analysis of digital structures and quadtrees.

The importance of the digital trie model and its variants in the theory of data structures, mul-

tidimensional searching, and communication thus justifies in our view to consider the method of
Rice’s integral that was surveyed here as one of the basic asymptotic techniques of the analysis of
algorithms.
Acknowledgements. A question originally posed by Rodney Canfield lead to the first version of this
paper. Helmut Prodinger and Wojciech Szpankowski deserve special thanks for inciting us to update [12]
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