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Résumé

La détermination des énumérateurs des poids des translatés des codes linéaires est un sujet
de recherche important en théorie algébrique des codes. Les probléemes rencontrés intéressent
tous les spécialistes des structures finies (designs, géométrie finie, corps finis...). D’autre
part, lorsque ’on connait les premiers coefficients des énumérateurs des poids des translatés
d’un code, on dispose d’un outil fiable pour évaluer les performances du code. Nous étudions
ici les codes BCH 2-correcteurs binaires primitifs, étendus ou non.

Nous notons B le code BCH 2-correcteur binaire de longueur 2™ — 1 et B le code B
étendu. Lorsque m est impair, le code B a des propriétés remarquables et il est bien connu
que les distributions de poids des translatés de B sont au nombre de quatre. Notre principal
résultat est obtenu lorsque m est pair. Dans un article récent, CAMION, COURTEAU et
MONTPETIT donnaient explicitement les énumérateurs des poids des translatés des codes
BCH 2-correcteurs de longueur 15, 63 et 255. Dans tous les cas ils trouvaient huit énuméra-
teurs distincts. Ceci permettait de conjecturer que les énumérateurs des poids des BCH
2-correcteurs sont au nombre de huit, pour toute longueur 2™ — 1, m pair. Nous montrons
que cette conjecture est vraie. Noug donnons explicitement les matrices des distances des
codes B et B, quelque soit m.

Outre le résultat, de type combinatoire sur le nombre d’énumérateurs des poids des
translatés, nous avons voulu donner une expression formelle nouvelle de ces énumérateurs
Tout code C' qui est la réunion d’un translaté x+ B avec B lui-méme est un code linéaire
binaire, dont le dual est un sous-code du code de Reed et Muller d’odre 2. Pour chaque
type de translaté, nous avons calculé le polynéme des poids de C* et nous obtenons ainsi,
en utilisant la transformée de MCWILLIAMS, une expression de I’énumérateur du translaté
correspondant x + B , ne dépendant que de m.

Dans ce rapport sont rassemblés:

1. L’article résumé ci-dessus, qui est a paraitre dans les IEEE Transactions on Informa-
tion Theory (pages 3-35).

2. Quelques résultats numériques: toutes les distributions de poids en longueur 15, 16, 31
et 32 ; les matrices des distances pour des longueurs plus élevées (pages 36 et suivantes).
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Abstract

Let B be the binary 2-error-correcting BCH code of length 2™ —1 and let B be the
extended code of B. We give formal expressions of weight distributions of the cosets
of the codes B only depending on m. We can then deduce the weight distributions of
the cosets of B. When m is odd, it is well-known that there are four distinct weight
distributions for the cosets of B. So our main result is about the even case. In a recent
paper, CAMION, COURTEAU and MONTPETIT observe that for the lengths 15, 63 and
255 there are eight distinct weight distributions. We prove that this property holds for
the codes B and B for all even m.

Index terms - BCH-codes, weight distribution of cosets, quadratic boolean func-
tions, group algebra.

1 Introduction

In this paper we treat only primitive binary codes. Thus the length of the codes we
consider will be either n = 2™ — 1 0or N = 2™, m > 2. The Bose-CHAUDHURI-
HocQuENGHEM (BCH) codes will be always narrow-sense binary BCH-codes. The
distance and the weight will always be the HAMMING distance and the HAMMING
weight. References on coding theory are generally to be found in [23]. In order to
explain the context of our work, we first recall some general properties; for more details
the reader can refer to [18] and [27].

Let E be a linear code of length v and minimal distance d. Then E is a so-called
e-error-correcting code with e = [431] . Let ¢ be the number of distinct non-zero
weights in the dual EX of E; t is called the external distance of the code E, since t is
greater than or equal to the covering radius p of the code E. Recall that

p=maxmin{w(x+c)|ceE}, L=F;,
x€L

where w(x) is the weight of the codeword x. The code F is said to be perfectif p = e
and quasiperfectif p = e+ 1. The distance matnz of the code E is the 2V x (v+ 1)
matrix B(E) whose (x,j)-entry is

- B(x,j)=card {y€x+E|w(y)=j},x€F.

It was shown by DELSARTE that the distance matrix of a code with a given weight
distribution is uniquely determined by its first ¢+ 1 columns. Moreover, only the u
distinct rows of B(E) are significant, which give the distinct weight enumerators of the
cosets of E. The weight distributions of the cosets of £ can be calculated from the
reduced distance matrix of E, in fact a u x (¢t + 1) matrix. The code E is said to be

2 To appear in IEEE-Transactions on Information Theory



completely regular if each row of B(FE), labelled by x, only depends on the minimum
weight of x + E. Uniformly packed codes were introduced by SEMAKOV et al. [26)].
Another definition was given by VAN-TILBORG[27]: the code E is said to be uniformly
packed if and only if ¢ = e+ 1. A more general definition was given by BASSALYGO et
al. in [2].

Any 2-error-correcting BCH code of length 2™ — 1 is quasiperfect [21], so that its
covering radius equals 3. Moreover the weight enumerator of its dual is known [22].
Its external distance is 3 when m is odd; it is 5 when m is even. So when m is odd
the 2-error-correcting BCH codes are uniformly packed and their distance matrices are
known [2]. When m is even the 2-error-correcting BCH codes are not uniformly packed
nor completely regular.

An application of the theory of partition designs [8][10] to the study of distance
matrices of linear codes is given in [9]. The introduction of the combinatorial matriz
of the code improves significantly the effective computation of the distance matrix.
Thus CAMION, COURTEAU and MONTPETIT obtain the distance matrices of the 2-
error-correcting BCH codes of lengths 15, 63 and 255. They observe that in these
three cases there are eight distinct weight distributions. They asked for a theoretical
explanation of their observations which is the aim of our paper. Our main result is
that for m even there are eight distinct weight distributions for the cosets of any 2-
error-correcting extended BCH codes of length 2™; this property also holds for the
2-error-correcting BCH codes of length 2™ — 1, m even. Moreover we give the weight
distributions of the cosets of all 2-error-correcting extended BCH codes, for the even
and for the odd case. Each weight enumerator is given as the MAC WILLIAMS transform
of a polynomial, the coefficients of which only depend on m. Simple formulae allow us
to obtain the weight distributions of the cosets of a 2-error-correcting BCH code from
those of its extension.

The paper is organized as follows. In Section 2, we give some definitions and
properties, considering our point of view. We will study the cosets of extended BCH
codes; these codes are considered in the group algebra A = K[{G, +}], where K and
G are respectively the finite fields of order 2 and 2™. We show how the product in
the algebra becomes an interesting tool for our purpose. We want to obtain the weight
enumerators of the codes E = DU B (or equivalently the weight enumerator of E*1),
where B is the extended BCH-code and D one of its cosets. For this reason we present
the code B as a union of some special cosets of the Reed-Muller code of order 2.

The powers of the radical P of A are the Reed-Mullér codes. In Section 3, we
study the weight enumerators of the cosets y + B of the code B, for y € P\ P+
in the three cases i = 0, 1 and 2 (by convention P° = A). The differences between
the three cases are essentially due to the different values of the products yf?*. We
study in Section 4 the cosets of the BCH-codes themselves. Let us denote by B any
2-error-correcting BCH-code. We show how every weight enumerator of a coset of B
can be obtained from two distinct weight enumerators of cosets of B. In Section 5 we
give all distance matrices.

The weight enumerators we calculate here are formal objects whose coefficients
are formal expressions depending on the length 2™ of the codes. We have needed a
computer for the calculation and the simplification of every formulae given in Tables
3 to 9. Some proofs are obtained by solving equations involved by the first moments



of some weight distributions; in particular the coefficients of distances matrices are
obtained in this way. All these manipulations were made by means of the symbolic
computation software Maple.

Main notation

e The length of the cyclic codes is n = 2™ — 1 ; then the length of the extended
cyclic codes is N = 2™,

e G=GF(2™)and K = GF(2) ; G* = G\{0}.

e a is a primitive root of the finite field G.

e A is the-modular algebra K[{G, +}].

e R(i,m)is the Reed-Muller (RM) code of order ¢ and length 2™.

e Pi j € [1,m],is the jth power of the radical P of A, identified to R(m — j, m).
e The all-one vector in A is denoted by I and identified to (1,...,1) € KN.

e S(y) is the syndrome of a given codeword y (see (11) and (23)).

¢ w(x) is the Hamming weight of the codeword x.

¢ If E is a linear code, its dual is denoted by E+; the usual dot product is denoted
by < X,y > where x and y are any vectors in the ambient space.

e B is the binary 2-error-correcting BCH code of length n.
e B is the extension of B; it is a binary extended cyclic code of length N.
e v’s and 6;’s are weights of B! respectively for m odd and m even (see (17)).

e C, is the linear code BU (y + B), where y ¢ B.

2 Preliminaries

As usual a binary cyclic code of length n is an ideal of the quotient algebra K[Z]/(Z" -
1), where K = GF(2). Such an ideal is always principal; the roots of its generator
polynomial are the zeros of the code. A linear code of length n, dimension k and
minimal distance d is said to be an [n,k,d] code.

2.1 The 2-error-correcting BCH codes, B and B
‘Let n=2"-1and i€ [0,n]; we denote by cl(?) the cyclotomic coset of ¢ mod n;
c(i) = { i, 2i (mod n), ..., 2™ 1 (mod n) }. (1)

Definition 1 The narrow-sense 2-error-correcting BCH code is the cyclic code of
length n whose zero set is :

U{ o}, I=d(l)ue(3) ,

i€l

where a is a primitive root of GF(2™). This code will be denoted by B; it is an
[r, 2™ - 2m - 1, 5] code.



The dual of B, denoted by B*, is the cyclic code of length n whose zero set is :

YL &'}, I=[0,n—1\{c(n-1), cl(n=3)} .

i€l

Let E be a binary linear code of length n. Its extension is the code E obtained by
adding an overall parity-check:

n
(coy ooy ) EE =  (Cooy €0y -++, Cn) € E where c°°=2c,~ .
t=0

If the code E is [n,k,d], then the code E is [n + 1,k,d] , with d' > d. If d is odd
then d'=d+1. Let H be the parity check matrix of E; thus the parity check matrix
of E is as follows: '

A=,

Definition 2 The extended binary 2-error-correcting BCH code of length N = 2™ is
the code

’ n
B ={ (2o, Zoy ---y Zn) | (z0y ..y Zp) € B, x°°=z:v,~ }.

=0

The code B is [N,2™ —2m —1,6] . Let us denote by [ the all-one vector of length N.
The dual of B can be defined as follows:

BY=LU(l + L) where L={(0, o, ..., z,) | (20, ..., T,) EB* }. (2)

The weight distributions of the codes B' are given in [23], p.452 and 453. In accor-
dance with (2), the weight distributions of the codes B+ are easily obtained; they are
presented in Tables 1 and 2.

Consider the cosets x+ R(1,m), where x is an element of R(2,m)\R(1,m)(R(z,m)
is the Reed-Muller code of length 2™ and order i). These cosets are in one-to-one
correspondence with symplectic forms; the rank of a given symplectic form uniquely
determines the weight distribution of the corresponding coset (see [23], Chapter 15).
The code B* consists of the code R(1,m) itself and of some of its cosets of high rank
(more details can be found in Section 2.5). When m is odd the rank of any coset equals
m — 1 and we will say that the cosets are of type (I). When m is even the rank equals
m or m — 2 and will say the the cosets are respectively of type (II) or (III).

2.2 Mac Williams transform and cosets of B

In this paragraph we recall some formulae we need later for the computation of weight
distributions. The extended 2-error-correcting BCH code of length 2™ over GF(2) will

~

always be denoted by B.



Number | Number of words weights Total number
" of cosets in a coset of words
' om-1 om—1 _ 2(m-1)/2 (2m - 1)2m—1
(I) c9m i om-1 gm-1 + 2(m.—1)/2 (2m - 1)2m—1
2m _omt 22m 4 2™ -2
2m+1 -2 2m—1
R(1,m) 1 2m 1
1 0 1

Table 1: Weight distribution of B+, m odd

Number Number of words weights Total number
of cosets in a coset of words
m_ m m—1 _ 9gm/2-1 m+liom _ 1
(II) . 2(2_3_1). ;m gm_l +§m/2—l gm-f-lggm _ 1;;3
2m~2 2m—1 _ 2m/2 2m—2(2m - 1)/3
(1) « A gm-2 2m=1 4 om/2 2m-%(2m — 1)/3
3.2m—1 2m—1 22m—1 + 3'2m—1 -2
2m+] ) 2m—]
R(1,m) 1 2m 1
- 1 0 1

" Table 2: Weight distribution of B, m even

Theorem 1 ( [23], pp.127-132) Let E be a linear binary code of length v. We define
its weight enumerator:

We(X,Y) =Y AX"Y"
1=0

» Ai=l{ceElw(c)=i}],

where | H| denotes the number of elements of some set H. Then the weight enumerator
of the dual code E* is

1

WE.L(X,Y) = IEl

We(X +Y,X-Y) . (3)

Let A = [{ce EL| w(kc) =1 } | ; denote by k the dimension of E*. If the weight
enumerator of E is known, then the A’;’s can be calculated by means of the following
identities:

Vi . v U—'i Al = k—j j v—1 )
3 G €0,0] + > i i=250)" v A; . (4)
=0 1=0

Let D=y + E be a coset of E, where y is not in E. Since F is a linear binary
code, it is clear that the code E U (y + E) is also linear. If the weight polynomial

7



of its dual code and of EL are known, then one can obtain the weight enumerator of
D. We shall use this method to compute the weight enumerators of the cosets of the
codes B.

Lemmal Let N = 2™, y ¢ KN, y ¢ B; set Cy, = Bu (y + B) By eztending
the definition given in Theorem 1 to nonlinear codes, we denote by Wy+B(X,Y) the
weight enumerator of the coset y + B .

Then C} C B+, dim Cf =dim Bt — 1 =2m, and

1
W,s(X.Y) = (2Wep(X +Y,X -Y) = Wau(X +Y,X=Y)) . (5)

Proof: Recall that dim B = N —(2m+1). By definition we have B C Cy which yields
C# C Bt and dimCy = dim B+1 = 2™ ~2m. Thus dim Cjf = 2™ —(2™~2m) = 2m .
Applying (3), we have

1

We, (X,Y)= 7om

S=Wor (X +Y,X -Y).

But, by definition, W, (X,Y) = W, 5(X,Y) + Wp(X,Y), which yields

W, 5(X,Y) = WCJ.(X+YX Y) - = We (X +Y,X-Y) .

92m +1
m]

2.3 The codes B in the algebra A = K[G]

In order to study the codes Cy , we will consider the codes B in the group algebra

A = K[{G, +}], where K = GF(2) and G = GF(2™). The main interest of doing so

is in the use of the multiplication of the algebra as we will show in the next paragraph.
The group algebra A is the set of formal polynomials

X = Engg, zg € K, -
9€G

with O:deGOXg , I:ZyeGXg ’

X+y= D T X9+ Y 4 X9 = (z, +y,) X9,
g€G 9€G 9€G

and ' '
Xy = Z%X'qzyyxg= Z (E%yg+h) x*, (6)
9€G 9€G heG \geG

x and y any element in A. A linear code of A is a K-subspace of A. Let E be such a
code; then its dual code is:

L={yeA| <x,y>=0,forallx€ E} where <x,y>= Z:cgyg.
. gEG



The algebra A has only one maximal ideal, which is called its radical. The radical of
A is denoted by P and is defined as follows:

P={x€cA| Y z,=0}={x€A|x*=0}. (7
ge€G

Berman proved in [5] that the powers of the radical of A are the Reed-Muller codes.
More precisely:

Theorem 2 For any j, we denote by PJ the jth power of P; it is the subspace of.A

generated by the pmducts H,—1 Xi, X; € P . One obtains the decreasing sequence of
ideals of A: .

{0} = pm+! cP"'c...cP’cP,
(by convention P° = A). Then we have P’ = R(m — j,m) , for all j € [1,m).
From a well-known property of the RM-codes, we have then (Pt = pnitl | In
Section 3, we will study the cosets y + B with y € P\ P! | successively for i = 0, 1
and 2. We want now to identify precisely the extended cyclic codes in A that we will

use later. More details on properties of the algebra .4 and on codes of A can be found
in [13, 14].

Proposition 1 Let S = [0,n], n = 2™ —1. An eztended cyclic code E in A is uniquely
determined by a subset T of S such that 0 € T and T is a union of cyclotomic cosets
of 2 modulo n. Let us define for alls € S and for allx € A :

ds(x) = Z z,9°€ G .
9€G

By convention, ¢o(x) = 3_,cG T4 Then we have that

E={x€A|¢s(x)=0, forallseT}
We say that T is the defining set of the code C.

Definition 3 1) Let s € §; let Y5 8:2° , s; € {0,1}, be the binary ezpansion of
3. We denote by wy(s) the 2-weight of s; that is

m-—1
wo(8) = z S .

1=0

The RM-code of length 2™ and order m — r (i.e. the code PT) is the eztended cyclic
code with defining-set

T(P)={s€S5|¢s(x)=0 for 0<wa(s)<r} . (8)
2) The defining-set of the ertended 2-error-correcting BCH code B is
T(B)={0, cl(1), cl(3) } . (9)
8) The defining-set of the dual BL of B is
T(BY)=S\{n, cd(n-1), cl(n-3)} , S=[0,n]. (10) -



Remark 1: 1 - By definition, an extended cyclic code is a subspace of P. It can be
an ideal of A. For instance RM-codes and BCH-codes are ideals of A; a K-subspace
E of A which satisfies P/ C E C P’~! for some j, is an ideal of A [13].

2 - It is clear that there is a one-to-one correspondence between the cosets y+f? of
the code B and the following elements of G3: ¢;(y), i = 0,1,3. Indeed, in accordance
with (9), the parity check matrix of B can be taken to be:

1 . . e 1
1 a a2 o&® ... o™}
1 & af o ... o371

Hence the syndrome, say S(y), of y (or of the coset containing y) is the value of HyT
[23, ch. 9]. It is exactly:

S(y) = (¢o(y), a1(¥), #3(y)) » yeA\B. (11)

As for codewords of cyclic codes, we can define the MATTSON-SoLoMoON (MS)
polynomial of an extended codeword. For any x € P the MS-polynomial of x is the
following element of G[Z]:

M) =3 6,002" 2)

We recall the well-known property [23, p. 239]:

Proposition 2 Let a be a primitive root of the finite field G. Let x € P . Then for
all k € [1,n), we have M,(a*) = z,x. Note that M,(0) = ¢n(X) = To = Lyeqe 2y -

2.4 Multiplication in A
Proposition 3 Let x € A and y € A. Then the weight of the product xy satisfies

wixy)=card { he G| < X*x, y>=1}.

Proof: In accordance with (6), we have:

xy = }:(sz yy) x*
heG \geG
= Z(< X"x,y))X".
heG

Note that (xy)o =< x,y >.
a

Remark 2: The formula abpve shows that for any y € B and any x € Bt the
product Xy is zero. Indeed B and B* are ideals of A - i.e. they are invariant under
multiplication by any X*.
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Proposition 4 Any s € S 1s identified with its binary ezpansion (So,...,8m-1)-
Then we define a partial order on S:

AVs,tES : s<t <= Vie[opm-1] : 3, <t
Leth.AahdyE.A. ‘Then |

VSES : ¢o(xy)= Z¢i(x)¢a—i(y) .

1<s
Proof:
¢s(xy) = D 2o > g+ = 2 X wm)y, ( f ) gt
9€G heG 9€G heG $=0
) Z( i ) 2 zog’ 2wk =3 di(@)b-iy)
1=0 9€G heG i<s

since, by Lucas’s Theorem, ( j ) # 0 (mod 2) is equivalent to i < s [23, p. 404] .
a

Lemma 2 Let y € A\B, x€ B*\P™! and D=x+P™ 1.

(i) Assume thaty € P2\B . If xy =0 then ya=0 forall a€ D else ya=1 for
all a € D - i.e. eithery is orthogonal to all elements of D or no element of D
is orthogonal to y. We will say respectively that yD = {0} or that yD = {I} .
(ii) Assume that y € A\P? . Then
card D

card {a€ D | <y,a>=,0}=T=2”‘ .

Proof: In accordance with (8), (9) and (10), it is clear that

PPcBcP? ad P™'cBtcpm?.
Recall that P? is the dual code of P™! and that P™ = {0, 1}. '
(i) Since y € P? then yP™ ! is included in P™*!, which is the set {0}. That implies:
yx = yafor all ain D. Since x € BL the product xy is an element of P™ and in this
case < X,y >= 0 is equivalent to xy = 0. '

(ii) The function f : u € P™! +— < y,u >€ K is linear. By hypothesis
y € (P™1)L. Then dim(ker f) = dim(P™ ') -1 = m which yields that the number
of u € P! satisfying < y,u >= 0 equals 2™. The equality < y,a >=< y,x >
+ < y,u>,aé€ D, completes the proof.

O
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2.5 Description of the codes B+

Every coset x + P™-1 contains 2™+1 codewords. The code B contains 22m+!
codewords; then it consists of 2™ cosets x + P™"! where x € P™~% . In this
paragraph we will identify such cosets D with the values ¢,_3(x). Note that ¢,_3(D)
is the set {¢,_3(x)}, since ¢,_3(a) =0 for all a € P™"1. We also will characterize
the codewords of D of a given weight.

Definition 4 Let 8 = "2 (a is a primitive root of G); we denote by Cg, the linear
code of A whose codewords x satisfy ¢,(x)=0 if s¢€cl(n—-3).

The code Cp is in fact the irreductible cyclic code, defined by the minimal polyno-
mial of 8, viewed in A. According to (12) we obtain its MS-polynomial

My(Z) = Tr(¢n-3(x)Z2%) forall x € Cp, (13)

where T is the trace-function from G to K. By definition the code Cp is included
in BY. It contains 2™ codewords; its non-zero codewords are not in P™1, since
wo(n — 3) = m — 2 (see (8)). Let x and y be non-zero codewords of C. Suppose that
én-3(x) = Pn—3(y) . Since ¢,_3 is a linear function, that means that ¢,(x+y) =0

for all s, which yields x = y. We have then proved that the code B consists of the
2™ cosets x + P™"1 where x € Cg ; moreover there is a one-to-one correspondence
beetween the set of such cosets D and the 2™ values ¢,_3(x), x € Cg . A special coset
is defined by the primitive idempotent of Cp, say 7; that is the codeword 7 € BL

satisfying

‘ ¢n(1') = ¢"_1(T) =0 and ¢n_3(1‘) =1. (14)
Some cosets are equivalent by the shift; we will denote by sh; the j-shift on codewords
of A; that is ,
shi © Dz X9 — Yz, X9, - (15)
9€G 9€G

Some properties of elements of the RM-code of order 2 (i.e. of P™~2) are used in
the proofs of the following propositions. We only recall the results we need. For more
details the reader can refer to [23, chapter 15] and to [11, chapter IJ.

Let a in P™2; then a can be identified to a quadratic boolean function f, :

a= Z fa(9)X? - te. ag= fa(g).
9€G

The associated symplectic form of f, is
¥, : (u,0)€G? +— U (u,v) = fa(0)+ fa(u) + fa(v) + fa(u +v) €K .
The kernel of ¥, is defined as follows: '
Ea={ueG|VveG : ¥(u,v)=0}.

The set £, is a K-subspace of G of dimension m — 2h, where 2h is the rank of ¥,. Let
D=a+ P™!;then ¥, =", forall b€ D. Moreover the weight distribution of D
only depends on h (cf. {23, p. 441]).

Now we can describe precisely the code B+:

12



Proposition 5 Letn = 2™ — 1, and let 7 be defined by (14). The code Bt consists of
2™ cosets corresponding to the 2™ codewords of the code Cp.

(i) When m is odd, B consists of P™~! and of the n cosets of type (I) :
shi(r) + P™1 , j€[0,n].

(i) Suppose that m is even and set v = n/3. Let x(V) and x(?) be the elements of Cp
satisfying respectively ¢n_3(x(‘)) =a',i=1and2. Then BL consists of P™"1,
of the v cosets of type (I11) ! ‘

shi(r) + P™71, je(o,],
of the v cosets of type (11)

shij(xM) + P e,
and of the v cosets\of type (I1) |

sh(x®®y + P, je(0,v].

Note that ¢n_3(sh;(T))y= ™% and that Fn-3(sh;(x(7)) = a3+ fori=1 and 2.

Proof: Obviously 3 divides 2™ —1 if and only if m is even. Remark that for any x € A
and any 8 € [1,n— 1] we have

$s(shi(x)) = 3 zg(a?g)* = oy (x) . (16)
9€G

When m is 0dd, o is a primitive root of G; thus the code Cp is equivalent to the simplex
code and its codewords are T and its shifts. Any non-zero codeword has weight 2m1.

Suppose that m is even and set s = n — 3 and n = 3v in (16). It is clear that for
each x € Cg the set {sh;(x)}; consists of v distinct elements. Now we must prove
that the coset 7+ P™! is a coset of type (I1I). Using Proposition 2, (13) and (14)
we calculate the associated symplectic form:

VU (u,v) = Tr(v®)+ Tr(v®) + Tr((u+ v)*) = Tr(u?v + uv?)
= Tr(v*(uv*+u)).

Clearly the equation u* = u has exactly four solutions in GF(2™), when m is even.

Thus the dimension of £, equals 2; therefore the rank of ¥, is m ~ 2 as the rank of

the symplectic forms associated to cosets of type (III) is. Then the remaining cosets

corresponding to x(1), x(?) and their shifts are of type (II) (see Table 2)

In all cases the values of ¢,_3 are deduced from (16).
a

Corollary 1 Let N = 2™, m even. Set v = (2™ — 1)/3. Then the weight enumerator
of the code Cp is:

(3)) m=0 mod 4 : W(X,Y)= XN 4 2uXN-dayds 4 yXxN-MyM |

13



(i) m#Z0 mod 4 : W(X,Y)= XN 4uvXN-2yh 4 opxN-2syls
where A\ = gm-1 _27;/2, A = 2m—1_2m/2-], Az = 2m-l+2m/2—1, Ay = 2m—1+2m/2'

Proof: When m is even, it is well-known that the code Cjs has only two non-zero
weights. The weight enumerator can be obtained as a corollary of Theorem 3 of [19].

We recall that a linear binary code is said to be t-divisible, t > 1, if the weights of
all its words are divisible by ¢. If ¢ is not a power of 2, then such a code is equivalent
to a degenerate code (in which every symbol is repeated ¢ times).

Since 3 divides n, it is clear from (13) that Cp is 3-divisible. So we can also deduce
the weight enumerator of Cg from Table 2 and Proposition 5. Each coset composing
B! has only one word in Cg, according to Proposition 5. It is sufficient to determine,
_for any weight A such that 3 divides A, the number of such cosets. There are words
of weights A; and A4 in the cosets of type (III), and words of weights A2 and A3 in
the cosets of type (II). When 4 divides m then 3 divides only A; and A4; otherwise 3
divides only A; and A3z. The number of codewords of weight A; in Cg is equal to the
number of cosets in BL containing codewords of weight A;.

8]

Proposition 8 Let a € P""2\P™"1 and D =a+ P™"! . Let A be a weight of D*
such that A\ # 2™~ and suppose that w(a) = A. We denote by k the dimension of the
kernel of the symplectic form ¥,. Then we have: ’

{X%a|geG}={beD|wb)=A},

and the cardinality of the set above is 2™~*. Hence each codeword b of D, of weight
different from 2™~ is invariant under 2" translations (ie multiplications by an X9).

Proof: Set k = m — 2h. According to Theorem 5 of [23, p.441], we have 2%h =
card { b € D | w(b) = X }, where A = 2™~1 £ 2m~h-1_ Let 4 and v in G. By
definition, ¥,(u,v) = ag + a4 + @y + @y4. Furthermore for any u # 0

(Xu + l)a' = Z avXu+v + Z a, X" = Z(au-{-v + au)Xu ’
veG veG veG

and we have obviously

card G

9 -
Card{XalgEG}_card{g€G|a.=X9a}'

An element u is in &, if and only if ¥,(u,v) = 0, for all v. Therefore u is an element
of &, if and only if '

(X*+1a= ) (a0+au)X"=(ao+au)l .
veG

Assume that v isin £,. Since w((X*+1)a) < 2w(a) then (X*+1)a =0 (equivalently
ao = a, ) in the equality above when w(a) < 2™~! . This result holds for w(a) > 2™~
because P™~! contains the all-one vector I; that means that there exists b € D such
that a=b+1 with w(b) <2™-!. Obviously (X*+1)a=(X*+1)b.

14



Conversely X“a = a implies ay4y = a, for all v, which means ¥,(u,v) =0, for
all v.
So we have proved that X“a. =a.if and only if u € £,. Hence

card { g€ G |a= X%} =card §, = 2%,

which yields card { X9 | g€ G } = 2™ = 2%% | completing the proof.
0 .

3 Weight distributions of cosets of extended
2-error-correcting BCH codes

Since they are quasiperfect the 2- error—correctmg BCH codes have covering radius equal
to 3. Let B be the extension of such a code B. The minimum weight of B is 6 and B
is included in P? whose minimum weight is 4. Then there are cosets of B of minimum
weight 4. Let H be any coset of B; we are interested in the minimum weight of H.
It is well-known that the code B is invariant under the affine permutation group of
G [4, 24]; in particular it is invariant under the translations (i.e. multiplications by
X"*). So we can assume that H has at least one minimum weight codeword whose
support contains 0. Then if the coset X° + H is different from B, its minimum
weight cannot be greater than the covering radius of B.. So it is clear that the covering
radius of any 2-error-correcting eztended BCH code equals 4; equivalently the minimum
weight of any H is less than or equal to 4. Another remark comes from the fact that
the automorphism group of B contains the affine permutations of G: all cosets H of
minimum weight 1 (respectively 2) have the same weight distribution.

Notation: In this Section we often will use the weights of the dual B+ of B, given in
Tables 1 and 2. They will be denoted as follows

modd : y =21 2mV2 gy mgmel gy = gmel g glme /2
meven : & =2m" 122 g =gml_ogm/2-1 | g5 = gl
§q=2m"1 4 om/271 | g = gml g gm/2 (17)

3.1 Cosets y+B ,ye P?\B

In this section we study the cosets y+ B withy € Pz\f? . Since the covering radius
of B and the minimum weight of P2 both equal 4, such cosets have minimum weight 4.
.By definition of P? there is a one-to-one correspondence between these cosets and the
syndromes (0, 0, #3(y)) , (see Definition 3 and Remark 1). Recall that the dimension
of P? equals dim B + m . So there are 2™ — 1 such cosets — i.e. ¢3(y) can take any
value in G*. We will denote by Cy the code BU(y + B) . We want to obtain the
weight enumerator of the code C;.L , for any y. We proved in Lemma 2(i) that Cj
is a union of some cosets x + P™7! x in BL. In accordance with this result, it is
sufficient to determine, for each type ((I) for odd m, (II) and (III) for even m} the
number of cosets D of that type which satisfy yD = {0}. It is very simple to do so
when m is odd; the following lemma will allow us to treat the even case.
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Lemma 3 Assume that m is even. Lety € P2\B . Denote by V, the number of
cosets of type (I11) contained in Cj . Then the value of V depends on 'y and there
are two distinct cases:
() If #3(y) =a® ,ke[0,n/3], then V =V, where

1. If m=0 (mod 4) then V, = (2m1-2m/2_1)/3 .-

2. If m#0 (mod 4) then V; = (2™ 142m/2_1)/3.
() If #a(y) =+, r € {1,2} and ke [0,n/3[, then V =V, where

1. If m =0 (mod 4) then Vy = (2m~142m/2-1_1)/3.

2. If m#0 (mod 4) then V, = (2™~ —2m/2-1 _1)/3 .

Proof: From Proposition 5, the cosets of type (III) are the sh;(r)+P™" !, j € [0,n/3[.
Since yP™~! = {0}, the number of such cosets D satisfying yD = {0} equals the
number of j such that ysh;j(r) = 0 . Moreover this last equality is equivalent to
&n(ysh;(T)) = 0, because ¢,(ysh;(r)) equals (ysh;(7))o (cf. Proposition 2). Applying
Proposition 4, we obtain _ .

$n(yshi(r)) = D $i(y)bn-i(shj(7)) = Tr(ds(y)ba-3(shi(7))) , (18)

i<n
since ¢,(7) = 0 unless s is in the cyclotomic coset of n — 3. From Proposition 5 (ii) we
have @n-3(shj(7))=a=%.
(i) Since B is invariant under the shift, we can suppose that ¢s(y) = 1. Then formula
(18) becomes : '
én(yshi(T)) = Tr{a”¥) for all j €[0,n/3] .

Now we use Proposition 2 and (13) in the following equalities:
Vi = card { shj(7) | j € [0,7/3[, da(ysh;(r)) =0}
= card { sh;(r) | j € [0,n/3[, Tr(c™) =0}

m — —
=card { s€{0,n/3[| M,(a®)=0}= (2 1; w(r) .
Indeed M,(2) = Tr(pn-3(1)2%) = Tr(Z®). From Corollary 1, the weight of 7 is
equal to 2™~ 4 2™/2 when 4 divides m and is equal to 2™~! — 2™/2 otherwise.

(ii) We can suppose that ¢3(y) = ", r =1 or 2. Then formula (18) becomes:
$n(yshi(r)) = Tr(a™¥*7) ,  for all j € [0,n/3].

Recall that x(7) | r = 1 or 2, denotes the element of Cs which satisfies ¢,-3(x(")) = o”
(cf. Proposition 5). Then, as previously, we obtain the following equalities:

V2 = card { 'Shj(r) | j€ [0,n/3[, ¢n(y3’ij(7')) =0 }

= card { shj(r) | j € [0,n/3], Tr(a™**") =0}
@™ - 1) - w(x)
. 3 ’
Indeed M, ()(Z) = Tr(¢pn-3(x\))Z%) = Tr(a"Z3). The cosets x") + P™~1 are of
type (1I) and from Corollary 1, the weight of x(*) is equal to 2™~! —2™/2-1 when 4

divides m; it is equal to 2™~! 4 2™/2-1 otherwise.
g .

=card { s €[0,n/3[| Myn(a®)=0}=
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weights m = 0 (mod4) , $(y) = a>* m =0 (mod4) , ¢3(y) = o3+
0 1 1
61 2m—2(2m—1 —_omf2 _ 1)/3 2m—2(2m—1 + om/2-1 _ 1)/3
8, 2m(2™ 4+ 2™/2 _ 2)/3 2m(2m — 2m/2-1 _ 2)/3
83 2m—l(2m—l —om/2 _ 1) +2mHl _9 2m—](2m—l + om/2-1 _ 1) + om+l _ 9
64 2m(2™ + 2m/2 — 2)/3 2m(2m — 2m/2-1 . 2)/3
85 2m-—2(2m—1 _ 2m/2 _ 1)/3 2m-—2(2m—1 + 2m/2—l _ 1)/3
2™ 1 1
weights m # 0 (mod4) , ¢a(y) = o m # 0 (mod4) , ¢a(y) = o>+
0 1 1
6 2m—2(2m—1 + om/2 _ 1)/3 2m—-2(2m—1 - 9om/2-1 _ 1)/3
&2 2m(2™m — om/2 _ 2)/3 2m(2™ + om/2-1 _ 2)/3
83 2m—l(2m—1 + 2m/2 _ 1) + gm+l _ 9 2m—l(2m—l _ 2m/2—1 _ 1) + gm+l _ 9
64 2m (2™ — 2™/2 — 2)/3 2m(2™ 4 2m/2-1 _ 2)/3
85 2m-2(gm-t 4 2m/2 — 1)/3 2m-3(gm-1 - 2m/2-1 _ 1)/3
2m 1 1

Table 3: The two distinct weight distributions of the codes C;-, y € P\B , m even.

Theorem 3 Se{ N =2™; let B be the 2-error-correcting eztended BCH code of length
N. Lety € P?\B and let Cy be the code (y+ B)UB .

(i) Ifm is odd, all cosets y+ B have the same weight distribution. It is the polynomial

Wy, given in Table 8. The weight enumerator of C;- is
&

WCyL (X,Y) = XN+ (222 _ 2m—1)XN—‘ny'71 (22 4 om - 2)XN_‘”Y'"
(@22 XNy LY, (19)

(i) If m is even, there are two distinct weight distributions for the cosets y+ B . They
are the polynomials W}z) and W}s), given in Table 9. These distributions depend
on the divisibility of m by 4. They are obtained from the weight enumerators of
the codes C+ we give in Table 3.

Proof: (i) When m is odd, the code BL consists of P™~! and of 2™ — 1 cosets D
of type (I). Clearly yP™~! = {0}. Since the code C&L is a hyperplane of BL, the
number of cosets D such that yD = {0} equals 2™~ — 1 and does not depend on y.
Thus, with Table 1, we obtain immediatly the weight enumerator (19). We deduce the
weight distribution of any coset y + B by applying formula (5).

(ii) Assume that m is even and set v = n/3. Then B* consists of P™1, of 2v cosets
of type (II) and of v cosets of type (I1I). Let D be any coset of type (II1I). The
weight enumerator of the code Cyl is uniquely determined by the number V of cosets
D such that yD = {0}. This number V is given by Lemma 3: there are two distinct
values of V, denoted by V; and V3, depending on the value of ¢3(y). That means that
there are two distinct weight distributions for the codes Cj .
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Let V be the number of cosets of type (II) contained in C;- . Since the code Cj
contains P™~1! and 2™-! — 1 other cosets, then V is equal to 2™~! —1—V . The
number of codewords of a given weight §; in a coset is known (cf. Table 2). Let us
denote by Ag the number of codewords of Cyl of weight k. We obtain

Ag=An =1 A, = gm=-2y A, = 2my
Agy, = 3.2m-1v ¢ (2m+1 -2) As, = Ag, As, = As, -

Indeed é;, 63 and 65 are the weights of cosets of type (III), §; and 84 are the weights of
cosets of type (II). We must add the codewords of P™~!: the null vector, the all-one
vector and 2™*! — 2 codewords of weight &;.

Using Lemma 3 we can give in Table 3 the precise value of Ax, depending on m.We
deduce the weight distribution of the cosets y + B by applying formula (5): there are
two distinct distributions depending respectively on V; and V2 (which only depend on -
m).
a

Corollary 2 Notation is that of Theorem 3; m is even. Recall that any coset y + B
has minimum weight 4. Let Ay be the number of codewords of weight 4 in the coset
y+ B . Then

Ay =2m%Y where V is given by Lemma 8.

Proof: We apply formula (4); knowing the weight enumerator of the code Cj, we
want to obtain a coefficient of the weight enumerator of Cy. The parameters are here
v=N=2™and j = 2™ — 4. We have also

k—j=dim(Cy)—j= (2™ —2m)— (2™ —4)=4-2m

[ 3
which implies 257 = 51,%. Now we write the jth moment:

om 16 om S 2™ -
(a)var = (7)) +5(75%)n).

yields, using a computer,

2™ 16 .. 2™ — &
b = —( 0, ) ey v (%)

i€{1,5}
16, my a1 2™ — 6, 16 = 2m - §;
+ 22—m(3.2 V+(2 —2))( 4 )+22—m2 V.Z ( 4 )
1€{2,4}
— 2m—2v

(replacing V by 2™~! — 1 — V ). Note that the number of codewords of weight 4 in
Cy is the same as the number of codewords of weight 4 in the coset y + B , since the
minimum weight of B is 6.

a

Remark 3: The result above shows clearly that the two weight distributions we
announced in Theorem 3 are distinct. Indeed, in accordance with Lemma 3, it is
impossible to have V; = Vj.
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3.2 Cosets y+ B ,ye P\P?

Now we will study the cosets y+ B y in P\P?; Cy still denotes the code Bu(y+B).
Let H =y+ B . Since the minimum weight of P is 2, there are cosets H of minimum
weight 2; such a coset has only one codeword of weight 2. All codewords of weight 2
are in P\P? ; then there are 2™~1(2™ — 1) cosets H of minimum weight 2. The
syndromes of the cosets H are the

S(y) = (0, $1(y), ¢3(y)) where ¢1(y)#0, y € P\P?.

There are 2™(2™ — 1) cosets H and finally there are also 2™~1(2™ — 1) cosets H of
" minimum weight 4. '

We want to obtain the weight enumerator of C;; we know from Lemma 2 that C;
contains exactly one half of the elements of x+ P™~! , for any x € f?L\P""1 . Then
we must describe, for any x, the set of elements of x + P™~! contained in Cyl ~ l.e.
orthogonal to y. So, for a gi\'len y, this set depends on x. However some properties
appear which reduce the problem. By applying the following lemma, we will obtain a
very simple expression of the weight enumerator of C)',L.

Lemma 4 Let y € P\P?,x € B*\P™ ! andset D =x+4P™ . Let ) be a weight
of D such that A # 2™~ and suppose that w(x) = A\. We denote by D) the number of
codewords of D of weight A\. Set

Dy=card{a€eD|w(a)=Aand <y,a>=0}.

Then ﬁ,\ € {0, %D,\, Dy} and ﬁ,\ = ﬁgm_,\ . Moreover if there are only two
non-zero weights in D ~ i.e. D is of type (I11) and its weights are §; and 85 - then we

have:
| 1

~ ~ 1
Ds, = Ds, = ED&2 = 3

Ds, =271,

Proof: We denote by U the set { 0, 2™~!, 2™ } which is the set of the weights of
P™"1, Since yx € P™ 1, we have w(yx) € U . The value of w(yx) equals the
number of g € G such that < y,X9 >= 1 (cf. Proposition 3). Let « be the
dimension of the kernel of the symplectic form associated to D. From Proposition 6,
the set of the X9x, g € G, equals the set of the codewords of D of weight A ; moreover
XIx=x for 2" elements ¢ — i.e. Dy = 2™*. Hence we have:

D, = 27%card {ge G| <y, X% >=0}
2% (27 - w(yx) -

Since w(yx) € U , we can deduce that D) can only take one of the three values:
0, %D,\ or D). '

Since w(y) is even then < y,I>= 0. That implies that forall a€ D, <y,a>
is equal to < y,a+ I > (recall that I € P™"1). That means that there are in D as
much elements of weight ) as of weight 2™ — A orthogonal to y. Then Dy = Dam_,.

Assume now that D has only two weights, 6; and §,4. Since 6; = 2™ _ §, , we have
clearly bs, = Ds,. One half of the elements of D is orthogonal to y; thus the property
2™ = D52 + Dg‘ completes the proof.

a

N
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Table 4:

Weight || m odd, d(y)=2 | m odd, d(y)=14

0 1 1

" 22m—2 22m—2 — 2m-—l
¥2 22m—l -2 22m-1 + 2m _ 9
13 22m—2 22m—2 —om-1
2m 1 1

Weight | m even, d(y)=2|m even, d(y)=4

0 1 1

6 2m-3(2™ +2)/3 2m-3(2™ - 4)/3
82 2m(2™ - 1)/3 2m(2™ — 1)/3
63 22m—2 + 2m—l -2 22m—2 + 2m _ 9
84 2m(2™ — 1)/3 2m(2™ — 1)/3
85 2m=3(2™ 4 2)/3 2m-3(2m — 4)/3
2m 1 1

weight of Cy is denoted by d(y).

Theorem 4 Set N = 2™; let B be the 2-error-correcting eztended BCH code of length
N. Lety € P\P?; let C, be the code (y+ B)U B and denote by d(y) the minimum
weight of the coset y + B.

There are two distinct weight distributions for the cosets y + B. The first one
corresponds to cosets of minimum weight 2; the second one corresponds to cosets of
minimum weight 4. The weight enumerators of the codes C;,L are given in Table 4.
When m is odd and d(y) = 4 , we note that the weight enumerator of Cy* equals the
polynomial we obtained previously, when y € P?\B. (cf. Theorem 8 (i)).

When m is odd, the weight distributions of the cosets are respectively denoted by
W2 and W, and given in Table 8. When m is even they are denoted by W» and W,,(l)
and given in Table 9.

Proof: Notation is that of Lemma 4. In all cases we denote by D a;ny coset x4+ P™1 |
x € BL\P™"1 and by A; the number of codewords of weight j in Cyl. '
1. Assume that m is odd; so the cosets D are all of type (I). Recall that the three
weights of D are the 4,'s, i € [1~, 3], with y2 = 2™-land 7; = 2™ — 7.

First A, = A,, ,since D, = D.,, for all D (from Lemma 4). Let us denote

A,, by I. Since the number of elements of C;," equals 2™, A, is easily deduced. We
obtain: d

Ap=An=1, A, =A, =1, A, =22"—A, —A,, —-2=2""_-2]-2.

Now we apply formula (4) with E = C'yl, v=N,j=2"—-2and k—j=2-2m; the
A'’s are the coefficients of the weight enumerator of Cy. Since Ay =1 and A} =0 we *
have

The two distinct weight distributions of the codes C;-, y € P\P? ; the minimum

om
2™ — 2

4
)+A’2~ = o

20
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(where the v,’s are given by (17)). Hence
Al = 92-2m (2m(2m - 1) + (2m-1 4 2(m=1)/2 _ q)(om-1 4 2(m-1)/2y |
b=

2 2
+ (2™-1 — 1)2m-1(22™ — 2] - 2)
2 .
om-1 _ 9(m-1)/2 _ {}(9m-1 _ 9(m-1)/2y [

= 1-2m1lqol-my .

Thus the value of I is uniquely determined by that of A;. If d(y) =2 then A, =1
implies I = 222, If d(y) = 4 then A} = 0 implies I = 22m~2_2m-1  Replacing I
" by its value, we obtain Table 4 (m odd). When d(y) =4 we recognize the polynomial
(19). This result was forseeable because of the combinatorial properties of the code B
in the odd case; all its cosets of minimum weight 3 have the same weight distribution.
However we show here that these cosets correspond to strongly different objects.

2. Assume that m is even. The code B contains 2(2™ —1)/3 cosets D of type (II).
These cosets have two weights, §; and §4. It comes immediatly from Lemma 4 that
Ds, and Ds, both equal 2m-1 for all D. Hence for any code Cyl we have:

As, = As, = 2™(2™ - 1)/3.

Furthermore the code B! contains (2™ — 1)/3 cosets D of type (III); such cosets
have three weights, denoted by 6;, d3 and 5. These weights are different from é; and
84; moreover 83 = 2™~ 1 and §; = 2™ — §5. Then we proceed as in 1., when we treat
cosets of type (I). We have immediately Ao = Ax =1 and As = As, ; we denote

As, by I. Now we can deduce Ag,: :

2m 42
3

A53=22"‘—2A5,—2A5,—2=2"‘( )—21—2 :

Let j = 2™ — 2; the jth equality of (4) is:

() - (7))

(where §; is given by (17)). Solving it we obtain Aj:
& om-1_ 9
—
If .d(y)=2 then A} =1 implies I = (22™=342m-2)/3. If d(y)=4 then A} =0
implies I = (22™~3 — 2m~1)/3. Then we complete Table 4 (m even).
For any m we obtain the expressions of the weight enumerators W, 5(X,Y), by

means of formula (5).
a

3 =2"""1-

If a coset y+ B has minimum weight 2, it has only one word of weight 2. If it has
minimum weight 4, the number of its minimum weight codewords equals that of the
corresponding code Cy. We can determine this number in the same manner as we did

-in Section 3.1 (see Corollary 2). We present the result in the following corollary; note
that A, does not depend on y in this case.
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Corollary 3 Notation is that of Theorem 4. Assume that the coset y + B has
minimum weight 4 and denote by A, the number of codewords of weight 4 in this coset.
Then

m—2 . 2ml -

me1 2m—2 -1
m even =3 Ay =2 —

Remark 4: When y € P?\B and m is even, we found other cosets of minimum
weight 4. From Corollary 2, we know that the number of minimum weight codewords
of these cosets equals 2™~2V. Note that it is impossible to have

om-2 _
m—2 m—1
=2 S—
2 Vv ( 3 ) s

unless m = 2. Hence we have clearly three disctinct weight distributions for the cosets
of minimum weight 4.

3.3 Cosets y+B ,yec AP

In this section we study cosets y+ B such that y is in A\P ; Cy still denotes the code
BU(y+ B) . By definition, the radical P of A contains all codewords of even weight.
Hence y has an odd weight; therefore every codeword y + B has an odd weight. The
syndromes of such-cosets are

S(y) = (1, é1(y), ¢3(y)),

where the ¢;(y), ¢ € {1, 3}, take any value in G. Let H be any coset y + B ; there are
2™ cosets H. Clearly there are cosets H of minimum weight 1. Suppose that w(y) = 1,
which means y = X9 , for some g. Then &;(y) = ¢'. So the syndromes of the cosets
of minimum weight 1 are: (1,¢,¢%) , 9 € G. The remaining cosets H have minimum
weight 3. Finally there are 2™ cosets of minimum weight 1 and 2™(2™ — 1) cosets
of minimum weight 3.

We want to obtain the weight enumerator of any code C)',L, y € A\P. Let D =

x4+ P™1 be a coset of P! contained in B*+. From Lemma 2, we are in the same.

situation as in Section 3.2: one half of the elements of D is orthogonal to y. We must
determine the number of such elements of a given weight, for every D. As in Section
3.2, we first present some properties which will reduce the problem.

Lemma 5 Let y € A\P andx € BY ;set D =x+ P™ ! . Let A be a weight of D.
We denote by D) the number of codewords of D of weight A\. Set

Dy=card{a€eD|w(a)=XAand <y,a>=0}.

Then Dy = Dy — Dym_y. That means that the code C‘L contains ezactly one half of
the codewords of BL of weight 2m-1,
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Suppose now that A # 2™~ ! and x ¢ P™~1. Let k be the dimension of the kernel of
“the symplectic form associated to D. Assuming that y is a minimum weight codeword
in Cy, we have :

if w(y)=1 then Dy =27%(2™ - )
if wy)=3 then Dye{27" 272" -A)} .

Proof 1. We have < y,I>=1, since the ;\reight of y is odd. That means
<y,a+I>=<y,a> +1 ,forall aeD,
which implies
Dy=card {a€D|w(a)=2" - and <y,a>= 1.}=D2m_,\— Dam_y .

Moreover the cosets D satisfy Dy = Dam_». When A = 2™! the formula above
implies 2Dy = D, , for any D. Since Bt is a union of some cosets D we can conclude
that one half of the codewords of BL of weight 2™~! is contained in C)f'.

2. Note that a coset y + B of minimum weight 1 does not contain codewords of
weight 3. Suppose now that A # 2™~! | x ¢ P™~! and w(x) = A. From Proposition
6, we have .

{aeD|w(a)=A}={X%|geG} and Dy=2""".

Then . ' _
Dy=card { Xx |g€Gand <y, X% >=0}.
Applying Proposition 3, we obtain

D,\=51; card { g€ G| <y, X% >=0}=27""(2" — w(yx)) . (20)

fw(y)=1 then w(yx)=w(x)= A. Wesuppose now that w(y) = 3 . We can always
rewrite y as follows: )

y = X9 4 X9 4 X% = X91tg2t93 + (Xyl + X9 4 X9 4 X91+92+ys)
X9t902t9 Ly where §e€ PI\B . (21)

Note that g, g, and g3 are three distinct elements of G. Since the support of ¥ is an
affine subspace of G of dimension 2, y is clearly a minimum weight codeword of P?
(i.e. of the Reed-Muller code of order m - 2). Moreover x € P™~2 implies yx € P™
involving yx € { 0, I} . Hence ‘

w(yx) = w(X*Ox4+3x) € {w(x), 2™ —w(x)},
with ¢5(y) = g1 + 92 + g3. Using (20) we can conclude:

gx=0 = Dy=27%2™ - 1)
yx=1 = Dy=2""). (22)

Recall that yx = 0 is equivalent to §D = {0} (see Lemma 2 (i)).
a
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Theorem 5 Set N = 2™. Let B be the 2-error-correcting extended BCH code of
length N. Lety € A\P and let Cy be the code (y+ B)UB .

(i) If m is odd there are two distinct weight distributions for the cosets y + B : the
weight distribution of the cosets of minimum weight 1 and the weight distribution
of the cosets of minimum weight 3. These distributions are given in Table 8 as
polynomials Wy and W3. The weight enumerators of the corresponding codes Cy
are given in Table 5.

(ii) When m is even there are three distinct weight distributions for the cosets y + B .
All cosets of minimum weight 1 have the same weight distribution. There are two
distinct weight distributions for the cosets whose minimum weight is 3. These
three distributions are given in Table 9 as polynomials W, Wél) and W§2). The
weight enumerators of the corresponding codes Cy are given in Tables 6 and 7.

Proof: In all cases, we denote by A the number of codewords of C* of weight A and

by d(y) the minimum weight of Cy (ie. of the coset y + B). Notatnon is that of Lemma
5 and we use Tables 1 and 2 for the weight distribution of BL. The values Ag, AN and
Agm-1 do not depend on y. Obviously Ag = 1 and we obtain immediately A,m-1 from
Lemma 5:

1
Agm—y = 3 card { a€ Bl |w@)=2m"1}.
Furthermore y has always an odd weight; then < y,I>= 1 which yields Ay = 0.

(i) Assume that m is odd. In this case Ajm—1 = 22™~142m-1 _ 1. Suppose now that
A € {m,73}. The code B* consists of 2™ —1 cosets D = x + P™! of type (I)
whose associated symplectic forms have kernel of dimension « = 1 We suppose that
w(x) = A and apply Lemma 5:

1. If d(y)=1 then
™A

Ar= ("= 1Dy = (2" - 12

2. If d(y)=3 then y =7+ X% where y is an element of P? and 8 = ¢;(y) (see
(21)). We know that yx =0 for 2™~! —1 cosets D and that ¥x equals I for
the 2™~! remaining cosets D (see part 1 of the proof of Theorem 4). Then from
Lemma 5 and (22):

+ 2m—l é

\ = (2m—1 _ 1) 5

=2m12m — 1)+ A/2.

2m — A
2

Replacing A by its value, we complete Table 5.

(ii) Suppose that m is even. Thus Azm-1 = 22™~2 4+ 3.2™~%2 — 1. From now on A is
in {61, 63, 84, 65}. The code B* conmsists of 2(2™ — 1)/3 cosets D of type (II)
and of (2™ ~1)/3 cosets of type (III) which contain all codewords of weight A. The
dimension k of the kernel of associated symplectic forms is here:

cosets of type (II) = k=0, A€ {62,604}
cosets of type (III) = k=2, A€ {6,065} .

We apply Lemma 5:
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Weight diy)=1 d(y)=3
0 1 ' 1
T (2m _ 1)(2m-—2 + 2(m—3)/2) 922m=2 _ gm—-2 _ 9(m-3)/2
72 22m-—1 + om-1_1 22m-1 + om-1_ 1
3 (2m _ 1)(2m—2 - 2(m—3)/2) 92m-2 _ gm=2 4 9(m-3)/2

Table 5: The two distinct weight distributions of Cf,

m odd and y € A\P ;'d(y) is the

~minimum weight of the coset y + B.

Weight number of words

0 1

& | (@™ -1)/3)@n3+ 27/
8 (2™ - 1)/3)(2™ + 27/2)
83 27m=2 4 3.2m-2 1

b | (@-1)/3)(2™ 27
b (2~ - 1)/3)(2m~3 - 2m/372)

Table 6: The weight distribution of C;- when m is even, y € A\P? and the minimum
weight of the coset y + B is 1.

Weight || m =0 (mod4), ¢3(§) =o** [ m =0 (mod4), ¢3(y)=a>**"
0 1 : 1
6, (22m—3 — §5.9m-3 _ 2m/2—2)/3 (22m—3 + om-3 _ 2m/2-2)/3
5, (22m _ 2m/2)/3 (22m - 2m/2)/3 —9gm-1
b3 22m=2 4 3.0m"% -1 22m=2 4 3.2m-2_1
b4 (22m — gm+l + 2m/2)/3 (22m — 9m-1 + 2m/2)/3
85 (22m—3 + 2m/2—2)/3 + 9gm-3 (22m—3 + 2m/2-2)/3 — om-3
Weight || m # 0 (mod4) , ¢3(§) = a>* | m # 0 (mod4), ¢3(y) = o>+
0 1 1
6, (22771—3 _ 2m/2—2)/3 + gm-—3 (22h—3 _ 2m/2—2)/3 —9gm-3
62 (22m —om+l _ 2m/2)/3 (221» —_9m-1_ 2m/2)/3
b3 22m=2 4 3.2m"2 ] 22m=2 1 3.9m"2 1
IR (22m + 2m/2)/3 (22m + 2m/2)/3 . gm-1
b5 (22m—3 ~ 5.2m=3 4 2m/2—2)/3 ‘(22m—3 4+ 2m-3 4 2m/2—2)/3

Table 7: The two distinct weight distributions of the codes C;-, m even, y € A\B , when

the minimum weight of the coset y + B is 3. These distributions depend on the value of m
(4 divides m or not). ‘
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1. If d(y)=1 then

22m —1) - . 22™ - 1)
3 =73
om 1 . -1,
3 Dy = 2 2m-=-2).

A€ {62,6) = Ay= (2™ - A)

A€ {6,055} => A=

2. When d(y) =3, weget asin (i): y =3+ X% We proved in Section 3.1 that
there are V cosets D of type (III) (respectively V cosets of type (11)) satisfying
yD = {0} (see part 2 of the proof of Theorem 4). Hence we obtain from Lemma
5 and (22):

—2(2m ) _ o)

om _ ) 1 A
4 +( 3 _V)Z

/\6{62,64} => A)= V(2m /\)+(

A€ {61,55} = A,=V

where the values of V are given by Lemma 3 and V = 2™-1 — 1 — V . There are two
distinct values for V depending on the values of ¢3(y). Thus we obtain two distinct
weight distributions for the codes C l, replacing A and V by their values.

In all cases, m odd or even, the polynomials W, B(X Y) given in Tables 8 and 9
are obtained by applying formula (5).
o

Corollary 4 Notation s that of Theorem 5. When d(y) = 1 the coset y + B has
only one codeword of weight 1. Suppose that d(y) = 3 and let Ay be the number of
codewords of weight 3 in the coset y+ B . Then

gm-1_ 1
Ay y= 3 —
Ay =V,

m odd =

m even ==

Proof: We proceed as in the proof of Corollary 2. We solve here the (2™ — 3)th
moment of the weight distribution of Cyl; we obtain A5 which is in fact A,. Note that
Ay depends on y only when m is even.

a

3.4 Conclusion

Theorem 6 Let B be the binary extended 2-error-correcting BCH code of length 2™.

1. When m is odd there are five distinct weight distributions for the cosets of B.
Ezcept for the code B itself their minimum weights are respectively 1, 2, 3 and 4.

2. When m is even there are eight distinct weight distributions for the cosets of B.
Ezcept for the code B itself their minimum weights are respectively 1, 2, two times
3 and three times 4.

26



Wil e ol A& T & T A& 1A

W, A\P 1 |2m-17%gm 1) 0 _2(m—l)/2(2m D -1

Wo| P\P* 2 2m-=1 -(2™ +2) om-1 1

W3 A\ P 3 —9(m-1)/2 0 9(m=T1)/2 1
P\P? ‘_1 .

Wal oopr\p | * 2 ( )

Table 8: The four distinct weight distributions of cosets of the 2-error-correcting extended
BCH codes of length 2™, m odd. See explanations in Section 3.4.

Proof: The theorem summarizes the results previously stated in Theorems 3, 4 and 5.
Remarks 3 and 4 complete the proof.
0

Remark 5: We recalled in the introduction that when m is odd the code B is com-
pletely regular. Note that the same property holds for its extension B. Indeed each
coset of B is such that its weight distribution only depends on its minimum weight.
We are not surprised by this result which was proved in a more general context in [6,
p. 258].

The weight distributions of the cosets y + B , Y & B, are given in Table 8 when m
is odd and in Table 9 when m is even. In these tables each row is related with each set
of cosets having the same weight distribution. Each weight distribution was calculated
with formula (5) in which the polynomials ch; and Wy, are expressed with the weight

enumerators of the codes B and C; (for the related y). The minimum weight of the
cosets is denoted by d(y). The length of the codes is N = 2™. The weight enumerator
of the code B itself is omitted (since it was given in Tables 1 and 2).

Table 8 The set of weights of B* and of the codes Cy is {0, N,71,72,73} (see the
values of these weights in (17)). The table gives the coeﬁic1ents A; (where j is a weight
of BL) which appear in the following formula:

1 . 3 ) . ‘ o

WiX,Y) = gy ((X +Y)V + ZA%(X +YW WX -Y) + An(X - Y)N) .
=1

There are four distinct weight enumerators W, 5(X,Y), y ¢ B. They are denoted by

Wi(X,Y), where i is the minimum weight of the coset y + B.

Table 9 The weights of BL and of the codes Cy are 0, N and §;, i € [1,5] (see the
values of these weights in (17)). The table gives the coefficients A; (where jis a welght
of BL) which appear in the following formula:

Wy_H,e(X,Y) 22,14_1 ((X+Y)N+ZA5.(X+Y)N -6 (X - Y)6 + An(X - Y)N)
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Wi [ yim [d0) ] &) | As, [ As, |

W, [ AAP | 1 am/2=1(9m _1)/3 om/2+1(9m _1)/3
W, | P\PZ[ 2 2m=2 0
Wil AP 3 [ (au(y)P+e3* | 2m/2(-2m 6V, +1)/6 | 27/2(2™ — 6V, — 4)/3
Wi | AP | 3 | (dn(y)®+ 3 | 2m/2(_2m 1 6V, 4+ 1)/6 | 2m/2(2m — 6V, — 4)/3
w,'| P\P? | 4 | —gm-2 0
wA | p\B| 4 o3k 2m(-2™ + 6V, 4+ 1)/12 | 2™m(2™ - 6V, — 4)/3
w | pnB| 4 a3kt 2m(=2m 4+ 6V, +1)/12 | 2m(2™ — 6V, — 4)/3
I As, I As l As, l AN |
0 —9m/2+1(9m _1)/3 —2m/2=1(om _ 1)/3 -1
-(2"7 +2) 0 2m=2 1.
0 —2m/2(m — 6V, — 4)/3 | —2™/3(—2™ + 6V, +1)/6 | -1
0 —2m/2(Qm _ 6V, — 4)/3 | —2™/2(—2™ 4+ 6V, +1)/6 [ —1
om=1_2 0 —om=12 1
—2Tm-T 13V, 2™ + 5271 _ 2| 27m(2™ —6V; —4)/3 | 2™(-2™ +6V,; + 1)/12 | 1
—22m-T 1 3v,om 4 5.2m-1 21 2m(2™ -6V, - 4)/3 2™(-2m + 6V +1)/12 | 1

Table 9: The seven distinct weight distributions of cosets of the 2-error-correcting extended
BCH codes of length 2™, m even — see explanations in Section 3.4.

where y ¢ B. The V; are given by Lemma 3. The value of V depends on the corre-
sponding value of ¢3(y) which is also given in the table. When d(y) = 3, y and ¥y are
defined by (21). Recall that a is a primitive root of GF(2™).

There are seven distinct weight enumerators W 5(X,Y). In the table, they are
denoted by W; when they are weight enumerators of cosets of minimum weight i,
i € [1,2]. When there ‘are I weight enumerators for cosets of minimum weight i, they

are denoted by Wi(t), t e [1,1).

4 ‘Weight distributions of cosets of 2-error-cor-
recting BCH codes

Recall that the 2-error-correcting BCH code of length n = 2™ — 1 is denoted by B.
In the previous section we gave the weight distributions of the cosets of the extended
code B (i.e. of the code B). In this section we will state the relations which permit
to calculate the weight distributions of the cosets of B by means of those of B. At the
end we will be able to prove the conjecture of CAMION, COURTEAU and MONTPETIT
on the number of distinct weight distributions of the cosets of B, when m is even [9].

Let H be any coset of B. If H is a subset of P (respectively of- A\P ) then every
element of H has an even (respectively an odd) weight. We will say that H is an even
weight coset (respectively an odd weight coset). Set R = K" (where K = GF(2)).
Each codeword y* of R is extended to a codeword y of P, by definition of the extension
(see Section 2.1). This correspondence is one-to-one. We will write y* =3 cge y,X*
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and y = 3 ;G YgX? — where G* = G\{0} and yo = 3 ,cG yg- We then define the

syndrome of y* as _
S(y") = (1(y™), ¢3(y™) )- (23)
Clearly ¢i(y*) = ¢i(y), for i > 0. There are 22™ cosets for the code B.

Lemma 6 Let H be any even weight coset of B and let (0, A, ) its syndrome. Then
there is ezactly one odd weight coset H' whose syndrome is (1,\,pn) and ezactly one
coset H* of B whose syndrome is (A, u) . We ezpress as follows the weight enumerators
of H, H' and H* respectively :

N n
V(2)= f:A.- Z', VI(2)=)_ A Z', V(2)=) A} Z'. (24)
=0

=0 1=0

where the coefficient of Z* is the number of codewords of weight i. Then V*(Z) is
uniquely determined from V(Z) and V'(Z) by means of the formulae:

ke(l,(N=-2)/2] : A3 = Ax— Ay, _
ke0,(N-2)/2] : Alyr = A — A% R )
and Aj = Ao . '

Proof: Since the extension is a linear mapping there is a one-to-one correspondence
between a coset H* = y* + B and its extension as an even weight coset H =y + B,
where y is the extended codeword y*. According to (11) and (23) we have immediately
the equalities between the respective syndromes. Now set H’ = X%+ H ; H' is an odd
weight coset whose syndrome equals (1,1(y),#3(y)) . We will say that the subset of
G corresponding to the non-zero symbols of any codeword x is the support of x. To
extend an odd weight codeword of R consists in adding 0 in its support. A codeword
with even weight is extended to a codeword of same weight. Thus the first formula of
(25) is obvious, since writing

(N-2)/2
VN2 =45+ 3 (4B 2T AR 2¥) + 47
k=1

we obtain immediately the coefficients of V(Z) from those of V*(Z): Ao = AS
AN = A} and Ay = A + A% Moreover, since H' = X°+4 H , we have for every
kel[l,(N-2)/2):

tr = card { X°+clceH, w(X°+c)=2k+1}
= card {c€ H|w(c)=2k and 0¢ supp(c)}
+card {c€ H|w(c)=2k+2 and 0€ supp(c)}
= card {c*€ H*|w(c")=2k)} ’
+card {c*€ H*|w(c*)=2k+1}
2k + Ay

completing the proof.
@]
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Theorem 7 Let B be the binary 2-error-correcting BCH code of length 2™ —

1. When m is odd there are four distinct weight distributions for the cosets of B.
Ezcept for the code B itself, their minimum weights are respectively 1, 2 and 3.

2. When m is even there are eight distinct weight distributions for the cosets of B.
Ezcept for the code B itself, their minimum weights are respectively 1, two times
2 and four times 3.

Proof. Notations is that of Lemma 6. Let H* be any coset of B, H the extension of
H* and H' = X°+ H. We denote by d(H*), d(H) and d(H’) the minimum weight of
H*, H and H'. ¥ d(H*) = X then d(H)= A or A+ 1 depending on whether A
is even or not. Furthermore d(H’) = A+ 1 or A depending on whether ) is even or
not. Since few cases must be examined it is easy to determine from H* and d(H*) the

possible H and H'.

1. Assume m is odd. The result is well-known [27]; so we only give the procedure
for the effective computation of cosets enumerators. Weight distributions of the cosets
of B are given in Table 8 as polynomials W;. In order to obtain the polynomial V* we
indicate the corresponding polynomials ¥/ and V' we need for the use of formulae (25).

dH)| V|V
1 W, | W,
2 | W, | Ws
3 | Wa|Ws

2. From now on m is even. Weight distributions of the cosets of B are given in
Table 9 as polynomials W; or W( ). The possible weight distributions V*, by means of
V'’ and V are below summarized.

dH)| V | V'

dH) |V | V'

ORETL)

TRLART A L/ L
2 |w, | w! o
7) 3 W, W,

2 |w|wl e
3 | Wi ws

We will now explain these results and prove that the eight weight distributions are
distinct. All cosets H* of minimum weight 1 have the same weight distribution; only
W, (respectively W;) corresponds to ever (respectively odd) weight cosets of minimum
weight 2 (respectively 1). It is more complicated when H* has minimum weight 2 or
3. :
For the following it is necessary to recall that a codeword ¥ of weight 4 in P?\B
has as its support an affine subspace of dimension 2 of G. A subspace of dimension 2
of G and its cosets are supports of codewords of a same coset of B and then correspond
to the same syndrome, because B contains the RM-code of order m — 3 (i.e. the code
P3. These syndromes are the triples (0,0,u), 4 € G*. Now Let H’' be an odd weight
coset of B of minimum weight 3. Let y € H’' such that w(y) = 3. According to (21)
we have: y =7+ X% where 7 is an element of P? of weight 4 and 6 = ¢1(y) Thus

#3(y) equals ¢3(y) + 63 .
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Suppose that d(H*) = 2. Thus d(H) = 2 and d(H') = 3. Hence V is the
polynomial W,. With the notation above the weight distribution of H’ is either Wa(l)
or Wéz) depending on whether ¢3(¥) is or is not a cube (see Table 9). Since d(H)=2
there exists only one codeword of weight 2in H,let X9 4 X*. Thus there is only one
codeword y in H’ such that w(y) =3 and 0 € supp(y);itis y = X+ X9+ Xh,
Hence

supp(3) = {0, 9, h, g+h}, g#h#0 . (26)

Conversely every codeword X9+ X", with g # h # 0, uniquely determines an H and
its corresponding H*. In accordance with the reminder above, that means that ¢3(¥)
can have any value p in G*. Hence both equalities, V' = Wél) or V' = Wé"’) , OCCUTr.
From Corollary 4 we know that the coefficient A} of V'’ equals V. Applying (25) we
obtain Aj = A; — A} = V ~ 1, which indicates that the two weight distributions are '
distinct (as are distinct the two possible values of V).

From now on d(H*)=3. Thus d(H)=14 and d(H') = 3. Note that a codeword
y of H' of weight 3 cannot have 0 in its support. Then we have here

3
y=X94 X%+ X% and supp(y)={ g1, 92, 93, I _Gi }
i=1
where the g;’s are any nonzero distinct elements of G.

I $7,9i=0 then H C P?,in which case the syndrome of H is any syndrome
(0,0,u) , u € G*. Moreover ¢3(¥) = ¢3(y). Thus either V = W4(2) and V' = Wél) (n
is a cube) or V = W}a) and V' = W§2). Assume that Y2 g, #0;s0 V = Wil) and
the support of y is any coset of any subspace of dimension 2 of G. Then V' can be
either Wa(l) or Wéz) and both equalities occur. '

In all cases we obtain A} = A4 — A} = V . According to Corollaries 3 and 2 we
know A4 which, from (25), is equal to A} + A3. Thus

3
v=w® o WP = A;=vE"i-1).

m-2 __
v=w{ = Aj=2! (—-——2 1) -V

For a same value of V (V; or V;, see Lemma 3) the two values above are distinct;
indeed the equality V = 2(2™~% —1)/3 is impossible unless m = 2. That means that
the four weight distributions corresponding to d(H*) = 3 are distinct."

a

5 Distance matrices of 2-error-correcting BCH
codes

We will denote by B the distance matrix of the code B and by B the distance matrix
of the code B. These matrices, which uniquely determine the weight distributions of
cosets, will have u rows and t+ 1 columns, u being the number of distinct weight
distributions of cosets and t the external distance of the code [18]. Each row of the
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distance matrix corresponds in fact to each coset weight distribution. Since we deter-
mined all weight distributions of cosets of codes B and B in previous sections, we are
now able to express coefficients of B and of B essentially by means of identities (4)
with respect to the appropriate code Cy. Recall that the covering radius of B and of
B equals respectively 3 and 4.

When m is odd, it is well-known that the code B is uniformly packed with param-
eters A = (2™"1-4)/3 and pu=(2™"1-1)/3 . So the distance matrix of B is the
4 x 4 following matrix [2)[27):

> O o

0
0
1

SO -
[— 2 =)

0 00 u

Extending B we obtain the code B whose external distance ¢ equals 4. As well as B,
the code 1§ is completely regular and its covering radius equals its external distance.
This last property implies that B is a uniformly packed code in the sense of [3] while
it does not satisfy the condition ¢ =e + 1 (the necessary and sufficient condition for
an e-error-correcting code to be uniformly packed, in the usual sense).

Corollary 5 The distance matriz of the eztended 2-error-correcting BCH code of length
2™, m odd, is the 5 x 5 following matriz:

1000 0O
0100 0

B=| 0010 i
000 O
0000 v
-2

where u = (2"“l - 1)/3 , =2m 2= 2u etvy =2m" 2,

Proof: The values of v, and u are respectively given by Corollaries 3 and 4. We obtain
vy by solving the (2™ — 4)th identity of (4), applied to the code Cy, whose dual
weight distribution is given in Table 4. Since B has minimum weight 6, the number of
codewords of weight 4 in Cy equals the number of codewords of weight 4 in the coset
y+ B.
O

From now on we treat the even case. The external distances of codes B and B are
respectively equal to 5 and 6.

Corollary 8 Set N =2™, m even.
(i) The distance matriz B of the extended 2-error-correcting BCH code of length N
is the 8 x 7 following matriz:
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[100 0 0 0 4 ASN(N — 1)(N — 4)?
010 0 0 (N —1)(N - 4)? 0
001 0 (N-—4)? 0 ‘ 735(N —4) (N3~ 11N?% + 42N — 92)
000 V, 0 ?O(N 4)(N? - N - 30V,) 0
000 V, 0 25(N —4)(N?* = N - 30V,) 0
000 0O N(N 4) 0 7120N(N 4)(N?% - 11N + 40)
000 0 1iwnv, 0 755 V(N —4)(N2 — N - 60V,)

[ 000 0O ?sz 0 75 N(N —4)(N2 - N - 60V)

1




(i) The distance matriz B of the 2-error-correcting BCH code of length N — 1 is
the 8 x 6 following matriz:

(100 0 0 #,(N—-l)(N—tt)z
010 0 2 (N - 4)? 155 (N — 6)(N —4)?

001 Vi-1 L(N-4)2-Vi+1 (N -4)(N?-6N-30V;+20)+V,—1
001 V-1 L(N-4)2-V,+1 5(N-4)(N?-6N-30V;+20)+ V-1

000 WV, ZN(N-4)-V, os(N —4)(N2 - 6N - 30V,) + V,

000 V, 7 N(N —4) -V, 5(N —4)(N?—6N —30V2) + V,

000 Vv, 1v,(N -4) ll?,(N—4)(N'~’—N - 60V;)
000 V, iVa(N -4) 25(N = 4)(N? = N - 60V3)

where the values Vy or V; of V are given by Lemma 3.

Proof: (i) Table 9 involves the form of B below. By using results of Section 4, we can
express the matrix B depending of B :

(1.0 0 0 0 0 A (1 0 0 0 0 A
01 90.0 0 XA O 010 0 7 A—
001 0 pm 0 p 001 ;=1 mm-p+1 i—-—wm+p-—-1

g=1000p, 0 »n 0 g=|0 01 p2—1 m—p2+1 vu—p+p-1

000 p2 0 v O 000 P1 € — M n-g+m
0 00 0 ¢ 0 mn 000 po € — p2 va — €1 + p2
000 0 ¢ 0 m 000 p € —p1 n-+m

| 0 0 0 0 & 0O 73 ] | 0 0 0 P2 €3 — p2 v, — €3+ p

Corollaries 2, 3 and 4 provide respectively the values of ¢; and 3, €, p1 and p;. For
the remaining coefficients of B, we use formulae (4) with respect to codes Cy, whose
dual weight distributions are given in Tables 3, 4, 6 and 7. We must first compute the
number A of codewords of weight 6 in B. Indeed we have not the same situation as in
the odd case, because we need the number of codewords of weight 6 in a coset y + 1§;
this number equals the number of codewords of weight 6 in the corresponding code Cy

minus A.
a

6 Conclusion

In this paper we treat the problem of weight distributions of cosets of the 2-error-
correcting BCH codes. It is clear for us that it is possible to treat other codes by
means of the tools we use here. This is quite evident for the codes whose dual weight
distributions are given in [23, p. 450 and 453]. The extensions of these codes have
duals which are special subcodes of the RM-code of order 2, with dimensions less
than or equal to the dimension of the duals of 2-error-correcting extended BCH-codes.
Moreover these duals can be described in the same way as we describe the codes B+
(cf. Section 2.5). Furthermore, some properties we have presented can be placed in
a more general context, to give information on weight distributions of cosets of other
codes [16).
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Numerical results

1. Cosets of the 2-error-correcting BCH-code of length 15 and of the ex-
tended code of length 16

The height weight enumerators of the cosets of the extended BCH-code, with pa-
rameters [16,7,6], (by using Table 9) :

[weights JO[1[2]3[4[5[6]7[8[9]10][11]12]13]14[15]16]

weight i1 48 30 48 1
distrib. 1 18 45 45 18 1]
of 1 6 31 52 31 6 1
the 1 21 42 42 21 1
8 3 15 46 46 15 3
cosets 8 32 48 32 8
4 48 24 48 4
12 16 72 16 12

Applying Formula (25), we find again the height weight enumerators of the cosets
of the BCH-code of parameters [15,7,5)], computed in [9]:

| veights [[OJ1]2[3]4|5[6[7[8[9]10]11]12]13]14]15]
veight |1 1813015153018 1

distrib. 1 6§12)19126|26;19[12] 6 1
of 1 6115|16|26|26(16{ 15| 6 1
the 1{214[11120]26[26|20{11]4 2] 1
8 1714718 (2424 (18|14 7] 1
cosets 315(10]|22(24|24(22(10| 51 3
1(3}118(30|12(12130(18| 3 | 1
319/ 6|10136|36|101 6| 91| 3
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2. Cosets of the 2-error-correcting BCH-code of length 31 and of the ex-
tended code of length 32

" The five weight enumerators of the cosets of the extended BCH-code, with para-
meters [32,21,6), (by using Table 8) :

[ weights | The five cosets |

0, 32 1
1, 31 1
2, 30 1
3, 29 5
4, 28 30 40
5, 27
6, 26 992 907 864
7, 25
8, 24 10540 10220 10320
9, 23 26815
10, 22 60512 63065 62944
11, 21 127162 125963
12, 20 228160 : 220482 220504
13, 19 337900 339275
14, 18 446400 460315 460480
15, 17 553071 552444

16 603942 587112 586848

Applying Formula (25), we find the four weight enumerators of the cosets of the BCH-
code of parameters (31,21, 5],

[ veights || The four cosets |
0, 31 1
1, 30 1
2, 29 1
3, 28 4 5
4, 27 30 26 35
5, 26 186 156 171 162
6, 25 806 751 736 702
7, 24 2635 2690 | 2546 2580
8, 23 7905 7530 7674 7740
9, 22 18910 19285 19736 . 19670
10, 21 41602 43780 43329 43274
11, 20 85560 83382 82634 82689
12, 19 142600 137100 137848 137815
13, 18 195300 200800 | 201427 201460
14, 17 251100 | 259515 | 258888 | 259020
15, 16 301971 293556 293556 293424
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o

3. Distance matrices of 2-error-correcting BCH-codes and of its extension.
for the length 2™ — 1, m even. '

When m is odd, it is very easy to compute the distance matrices, by means of the
formula given in Section 5. So we only give the distance matrices of B and B for small
even values of m. We use the formal expressions given in Section 5.

3.1. m = 6 (we find again the matrix B which was computed in [9]).

b

COO0OOCOO0 O -

COOoOOoO OO ~=O

QOO0 K- ~OO
-
w

0
150
138
142
147
151
195
135

1890
1740
1683
1739
1674
1730
1626
1746

e

o
I

CO OO0 O -

OO OO0 O O

cooco o ~OO
coow o000

o

0
150
0
0
160
208
144

0

1890

1821
1881

3.2. m = 8 (we find again the matrix B which was computed in [9]).

O OO0 OO0 O -

3.3. m=10.

OO OO O O M~
S OO OO O =0

COOO =M OO

COO0OOCOO O

OO OO -mMOO

180
164
181
165
181
165

0

36
44
37
45
37
45

433
431
431
433
433
461
420

0
2646
2610
2602
2651
2643
2331
2835

134946
132300
132147
131651
132106
131610
132426
131418

8869410
50 8826060
70 8814867
86 8818931
39 8814698
55 8818762
55 8811882
75 8820042

-

=~

-

o
il

OO OOO O
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OO0 OO O =0

OO0 OO OO

C OO OO OO -

p— bt
OOO&@OOO

OO0 o OO0 OoOo O

et

OO0 OO0 ~OO0O
> W
g e e e

[ e i )

0

0
43350

0

0
43520
46336
42240

0
0
2646
0
0
2688
2368
2880

0

0

20160
18307
18304

17344
18624

5757696

134946 0

0

5623443

134757 0
134253 0

0
0
0

8869410

0

8858037
8862117

0
0
0

5623296
5650176
5607168

1513712640
0
1504854739
0
0
1504851968
1503894528
1505287168




3.4. m =12.

o
i

OO OO OC O

[=J == =l =2 ek,

OC OO O0OO OO

DO OO0 OO O -

DD
O OO WO OO

COOoOO0CCOO O

W

0

660
692
661
693
661
693

CO OO -~ OO

0

0
697686

0

0
698368
676864
709632

0
697686
697026
696994
697707
697675
676203

708939

0

571404834
570707148
570590163
570557459
570589482
570556778
570610986
570545514

390079033344

571404834 0

0

389507814355

571287189 0
571254453 0

0
0
0

39

389507768320
389537099776
389492404224
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