N
N

N

HAL

open science

The Calculus of explicit substitutions lambda-upsilon

Pierre Lescanne, Jocelyne Rouyer-Degli

» To cite this version:

Pierre Lescanne, Jocelyne Rouyer-Degli. The Calculus of explicit substitutions lambda-upsilon. [Re-
search Report] RR-2222, INRIA. 1994. inria-00074448

HAL 1d: inria-00074448
https://inria.hal.science/inria-00074448
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074448
https://hal.archives-ouvertes.fr

WINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Calculus of Explicit
Substitutions Av

Pierre LESCANNE
Jocelyne ROUYER-DEGLI

N° 2222
Mars 1994

PROGRAMME 2

apport

de recherche

The Calculus of Explicit Substitutions v

The main mechanism of A-calculus is 3-conversion which is usually defined as (Az.a)b —
a{b/z}, where {b/z} is the substitution of the term b to the variable z. In classical A-calculus
the mechanism of substitution is usually described at a meta-level by a specific and external
formalism unlike A-calculi of explicit substitutions which contain in a same framework both the
B-rule and a description of the evaluation of the substitutions. A-calculi of explicit substitutions
are first order term rewrite systems. Such calculi allow nice and uniform descriptions of imple-
mentations of A-calculus. Av is a new calculus of explicit substitutions very simple if compared
with others. '

(Beta) (Aa)b — alb/]
(App) (ab)ls] — a[s]b[s]
(Lambda) (Aa)[s] — A(a[t(s)])
(FVar) la/] — a

(RVar) ntlla)] — n
(FVarLift))] — 1
(RvarLift) n+1[fs)] — n[s][f]
(VarShift) n[f] — n+1

The main idea of Av (read lambda-upsilon) is that its set of operators is minimal in the sense
that it contains only operators that are necessary to describe the calculus. There are four
operators on terms namely abstraction, application, closure and variables. The three operators
on substitutions slash, lift and shift are introduced by need. The operator closure _[_]introduces
substitutions into the calculus. Av uses De Bruijn’s notations. In this paper we prove: that v
i.e., Av \ {Beta} is strongly normalizing, that §-reduction in Av is equivalent to classical §-
reduction, that Av is confluent as a consequence of a substitution lemma, that Av can be typed
and that typed terms are strongly normalizable and, that a lazy environment machine naturally
associated with Av implements correctly strong normalization in A-calculus.

Le calcul de substitutions explicites Av

Le mécanisme principal du A-calcul est la 3-conversion qui est habituellement définie par
(Az.a)b — a{b/z}, ot {b/z} est la substitution de la variable z par le terme b. En A-calcul
classique ce mécanisme est habituellement décrit & un méta-niveau par un formalisme spécifique
qui est extérieur au calcul lui-méme; cela le différencie du A-calcul & substitutions explicites
qui contient dans le méme cadre a la fois la §-réduction et une description de 1’évaluation des
substitutions. Les calculs des subtitutions explicites sont des systémes de réécriture du premier
ordre. De tels calculs permettent des descriptions agréables et uniformes du A-calcul. Av est un
nouveau calcul de substitutions tres simple quand on le compare aux autres.

La principale idée du calcul Av — prononcer «lambda-upsilon» — est son ensemble minimum
d’opérateurs qui ne contient que les opérateurs nécessaires. IIs sont au nombre de quatre, a savoir,
Iabstraction, 1’application, la cloture et les variables. Les trois opérateurs sur les substitutions
loblique, le décalage et 1'ascenseur sont introduits par nécessité. L’opérateur de cloture _[.]
quant a lui introduit les substitutions dans le calcul. Dans cet article nous démontrons: que
v, c-a-d. Av \ {Beta} est fortement normalisant, que la 3-réduction dans Av est équivalente a
la B-réduction classique, que Av est confluent comme conséquence d’un lemme de substitution,
que Av peut étre typé et que les termes typés sont fortement normalisables et qu’une machine
paresseuse & environnement qui peut étre naturellement associée & Av implante correctement la
normalisation forte dans le A-calcul.

The Calculus of Explicit Substitutions Av

Pierre LESCANNE and Jocelyne ROUYER-DEGLI
Centre de Recherche en Informatique de Nancy (CNRS)
and INRIA-Lorraine
Campus Scientifique, BP 239,
F54506 Vandeuvre-lés-Nancy, France

email: Pierre.Lescanne@loria.fr, Jocelyne.Rouyer@loria.fr

March 11, 1994

Abstract

Av-calculus is a new simple calculus of explicit substitutions. In this paper we explore
its properties, namely we prove that it correctly implements g reduction, it is confluent,
its simply typed version is strongly normalizing. We associate with it an abstract machine
called the U-machine. We prove that it is a correct implementation of the calculus.

1 The \v-calculus

The main mechanism of A-calculus is 8-conversion which is usually defined as (Az.a)b — a{b/z},
where {b/z} is the substitution of the term b to the variable z. In classical A-calculus [2] the
mechanism of substitution is usually described at a meta-level by a sﬁeciﬁc and external formal-
ism unlike A-calculi of explicit substitutions which contain in a same framework both the B-rule
and a description of the evaluation of the substitution. A-calculi of explicit substitutions are first
order term rewrite systems. Such calculi allow nice and uniform descriptions of implementations
of A-calculus. Several of them have been proposed [1, 7, 10, 6, 15, 8, 13, 14, 17]. Av is a new
calculus of explicit substitutions very simple if compared with others. The main idea of \v
(read lambda-upsilon) is that its set of operators is minimal in the sense that it contains only
operators that are necessary to describe the calculus. There are four operators on terms namely
abstraction, application, closure and variables. The three operators on substitutions slash, lift
and shift are introduced by need. The operator closure _[.] introduces substitutions into the
calculus. Av uses De Bruijn’s notations and we write variables 1, 2,..., n, n+1, .. A term
that does not contain closures is called a pure term. In Av the S-rule is replaced by a more
elementary rule namely
Beta (Aa)b — a[b/]

where b/ is the substitution with the intuitive meaning:

— b

1
2 =1

‘n+l — n

Other rules are given to get rid of substitutions, these rules will form the calculus v. v is the
calculus (Beta) U v. The first rule App distributes substitution into an application (ab).

(App) (ab)[s] — q[s]b[s].

When a substitution goes under a A it has to be modified. A new operator is introduced. It
is called Lift and written f}. It performs this modification on the substitution and a rule of Av
called (Lambda) introduces this operator.

(Lambda) (Aa)[s} — Aa[(s)]).
Lift has the following intuitive meaning;:

fi(s) :

— 1
—

s(L[M)

N =

ntl — s@ll]

1 is a specific substitution that just shifts the variables in a term.

T

o
1

S
I
3
+
—

The meaning of Lambda can be explained as follows. In the expression (Aa)[s], s does not
affects the 1’s which occur in a. Similarly, in the expression A(a[{}s)]), fi(s) should not affect the
1’s which occur in @. On the other hand when [f}(s)] is applied to other variables, it has to take
into account that variables under A have been renamed and to reset the name of the variables in
s(n) accordingly. This is done by 7. Notice that in Av there is no need for closure rules. Indeed,
in a term of the form a[s][t] it is not necessary to tell how t acts on a[s] since by induction one
gets rid of s. Now to specify completely the behavior of substitutions one has just to describe
by rewrite rules their action on variables. Putting together all these ideas, we get the rewrite
rules of Figure 1. Notice that the system is essentially lazy, in the sense that the evaluation of
the substitution a[b/] created by (Aa)b can be delayed. The rewrite system v terminates. The
proof is easy and can be done with elementary interpretations (functions made of polynomials
and exponentials) [13, 12]. It is given in Figure 2. v is also an orthogonal rewrite system, which
means that it is left-linear and without superposition. This property is very important both
for implementation and proofs, for instance Luc Maranget (private communication) used it to
prove termination by structural induction. Av has three sorts of objects, namely

Terms = n|ab| Xa| a[s]
Substitutions s == a/| 1 (s)] T
Naturals n = n+1]1.

Av does not introduce composition of substitutions. This makes the system simpler. Indeed
for presenting a calculus of explicit substitutions, such a composition is useless, at least a the
logical level and its introduction in other calculi seems dictated by “efficiency”. If new rules
dealing with composition need to be introduced, they should be first proved correct as induction
theorems and then added to the system. See [13] for a discussion, a way to mechanize the
introduction of composition and a comparison with other approachs.

This paper is structured as follows. In Section 2, we prove that Av correctly implements
B-reduction. In Section 3, we prove the confluence of Av. In Section 4, we show how Av can
be simply typed. In Section 5, we prove that simply typed Av terms are strongly normalizing.
In Section 6, we present the U-machine, an environment machine that intends to implement Av
and finally in Section 7, we prove that the U-machine is actually a correct implementation of

Av.

(Beta) (Aa)b — a[b/]
(App) - (ab)[s] — a[s]b[s]
(Lambda) (Aa)ls] — Aa[f(s)])
(FVar) lla/] — a
(RVar) ntlle/] — n
(FVarLift) 1MNs)] — 1
(RVarLift) n+1[fi(s)] —- n[s][T]
(VarShift) n[l] - n+1

Figure 1: The rewrite system Av

[2]y = olnh [2]: = 9lr]2
[n+1]y = [nhi+1 [n+1]: = [n)2+1
(1, = 2
[ad]: = [adi +[b]1+1
II/\(I]]l = [[a]]1 +1
fals])i = [alilsh lals]}: = [a]2[s]:
Nk = [sh () = 2[s]:
Ith = 2 [1l. = 3
fa/}y = any

Figure 2: Interpretations for proving the termination of v

2 Correction of the 3-reduction in \v

We write v(a) the normal form of the term a w.r.t. v. 3 is the classical 3-reduction of A- calculus.
It is the relation a—: b between pure terms where a_— b’ and b = v(}), we also write b — .

- This definition is correct. Indeed, let us introduce an external definition of substitution og. The
classical definition of 3- reductlon in terms of this operation (with definitions from [8]), is

(Aa)b - oo(a,b)
where o¢ is the instance in 0 of a function o,, defined as follows.

m-—1 ifm>n+1
on(m,b)=¢ 73(b) fm=n+1

m ifm<n

on(ac,b) = an(a,b)on(c,b)
' on(Aa,b) = AM(ont1(a, b))

where:

Ttn(ab) = rz."(a)ri”(b) T:”'(m) _ m+n fm>i
Th(Ma) = Arh(a)) T m ifm<i
Notice that 7' o 7" = rntm

! and 7°(a) = a. We define a translation u that links impure terms
with o, and 7%.

p(a[f™(6/)]) = on(p(a),u(b))

wa[f*(M) = ra(p(a))
pn) = n
H(ab) = p(a)u(d)
u(ra) = A(p(a))

Notice that if @ is a pure term, then pu(a) = a, in particular, p(v(a)) = v(a). The following
proposition shows that both definitions coincide.

Proposition 1
1. a— b= pla) = p(b), hence v(a) = p(a).
2. v(alb/]) = oo(u(a), u(b)):
Proof: In order to prove the first assertion we consider each rule of v.
 (ab)fs]- als)tfs] | |
— case s ={"(¢/)

p((ab)ls]) = on(u(ab), u(c)) = onlu(a)u(b), u(c))
= an(p(a), u(c)) on(p(b), p(c))-
p(alslbls]) = p(a[s))u(d[s])

an(n(a), u(c)) on(u(b), u(c))-

— case s ={"(1)
w((ab)[s]) = . (n(ab)) = . (u(a) p(b)) = Ta(p(a)) T (u(b))-
p(a[sbls]) = p(als]) u(bls]) = 73 (u(a)) 7 (u(b)).
o (Aa)[s]— Ala[t{s)])
— case s =("(b/) _
#((Aa)ls]) = on(p(Aa), u(b)) = on(Au(a), 4(b)) = Adny1(u(a), u(b)).
H()]) = Mu(aH(s)]) = Admst ((a), w(b)).
— case s =1"(1)
H((A@)[s]) = r(k(Aa)) = TH(Au(a)) = A7l ().
#(A(a[f(s)])) = Au(alfi(s)]) = Arpyq(a).
* la/]+ a, p(1la/]) = oo(u(1), (a)) = oo(L, p(a)) = 73(p(a)) = p(a).
e ntlla/]-n
p(nt1a/]) = oo(u(nt 1), p(a)) = oo(nt 1, p(a)) = 2 = p(n).
o 1f(s)]+1
— case s =" (b/)
#(LN(S)]) = ong (1(L), (b)) = Tntr(L, (b)) = 1 = p(1)
- case s =1"(1)
PN = Toypa (8(L)) = 7o (L) = 1= p(l).
o 0t 1(s)]— nlsllf]
— case s =f*(b/)
u(n 4 M) = Tkt (it 1), 4(8)) = Gir (nt 1, u(b)). By case,
* op(n+1,u(d)=n+1ifn <k,
x opmi(n+L,pd))=nifn>k+1
x and orpy(n+ 1, u(b)) = 75t (u(b)) if n = k + 1.

w(nlsl(1]) = o (u(alt® (6/)))) = 3 (or(p(n), n(b))) = 76 (ok(n, u(b))). By

+ 1o (ok(p(n), u(b))) = 19 (0k(n, (b)) = 3 (n) = n+ 1if n <k,
* To(ox(p(n), u(0))) = 1 (ok(n, u(0))) = g(n-1) =nifn > k+1
+ 7o (ok(u(n), (b)) = d(o(n, p(8)) = T(E(R(E)) = 76 (u(b) if

n:k+1,fromr{‘or{"=r[‘+ .

— case s =1*(1)
N(B_'tl[ﬂ(s)]) = T;H(N(n +1)) = 7'1:+1(m.)'
Thus
*xn+2ifn>k

*x n+1ifn<k.
#(als[1]) = g (u(alt* (D)) = i (u(n)) = i (n).
Therefore
*+ To(nt1)=nt2ifn>k
x+ and ¢(n)=n+ 1lifn <k
o nfl~n+1
p(@f]) = rg(pn) =r(r) =n+1=p(ntl) A
The proof of 2 comes from go(p(a), (b)) = u(a[db/]), by definition of p. u([b/]) =
v([6/]) comes from Part 1. O

3 Confluence of \v

Av is conﬂuent and this requires a feyv lemmas. Notice that in Av, every term can be written
either a or a[f}**(s1)] ... [(sk)] .. .[f1*"(sx)] where @ is not a closure and sy is either T or /. We
want to prove that for every term a, a[b/][s] — a[f(s)][b[s]/]. We prove that v-convertibility

v

for @ a pure term, but the result remains true for impure terms since if a is impure

alb/)[s] — v(a)[b/][s] — v(a)[(s)][b[s]/] — alf(s)][b[s]/].

The same lifting from pure terms to impure terms is true for every lemma which follows. That
result is the Av version of the substitution lemma which plays a fundamental role in A-calculus.
For that we need to prove several lemmas about Av.

Lemma 1 Forn >1 and i > 0, n[ft"(s)] = n.
Proof: By induction on n. If n = 1, this is just rule FVarLift. In general,
n I (s)] - alt™H(s))1) = alt] - atl
a

We assume now that .
aﬂTz]] = G,[T] .. .ltimes... [T].
Obviously, _

Proof of next lemma resembles this of previous one,

Lemma 2 Forn > 1 andi> 0, n+ if*(s)] — n[s][T'].

Corollary 1 Forn > i > 1, n[ft(1)] —n+tl. '

5

Proof: By Lemma 2, ‘ .
o[t (1] = n=41][1"]

and it is clear that

n— i1 = 2 =4[1"""] - n+1.
O

Lemma 3 Fori> 1, a[f*(D][(b/)] = a.

Proof: By structural induction,

1. a is a variable n with n < 7, one uses Lemma 1,

(D)) = nlf'(6/)] — n.

2. a is a variable n with n > i, one uses Lemma 2,
o[(M) = o~ NIFNN0)] — .t L1(6/)]
P B (7] (|
3. a is an application a;aq,

(@1a2)[(DIN)] = (@I (a2 (DING) — aras.

The last rewrite comes by induction.

4. a is an abstraction A(a’),
M@ INE/)) — M DIb/))— Ma').

The last rewrite comes again by induction.

O

Lemma 4 For all j > i >0, a[f*(DI[V(1)] — o[(DIH(D)].

Proof: By structural induction,

e a is a variable n with n < 7, one applies Lemma 1
ol (DI (D] = a7+ (1)] = =,
o[(DIN(D)] == 2l ()] = n.

° aisavariab‘le@withi<n§j, |
AN O] = 2 (1)) = nt 1,
al Y (DOIN(D) = 2+ (1) — nt 1.

e a is a variable n with ;7 < n,

[(DIHD] < e [FT(D] = nt 2,

o[(DI(D] = nt (1] — n+ 2.

e If @ is an application it is trivial.

e If a is an abstraction A(a'),

A@) T MINT(T)] —

v

GRS))
by induction - |
— MDD = A@) P (DI,
a
Corollary 2 a[f][f*+!(1)] o—:—o a[f*(N][1], when i = 0 a[T][N(1)] ‘—:-' a[T](1].
Corollary 3 Fori> 0, a[T*][1*(1)] — a[1**].
. Proof: One iterates corollary 2 ¢ times. O
Lemma 5 a[fi*(1)][**'(s)] — a[f())(T)].
Proof: By structural induction

e ais a variable » with n < ¢, one applies Lemma, 1.

e a is a variable n with n > 7, one uses corollary 1.

[(DIH)]nt 1 (s)] o = als][17]

where the last derivation is Lemma 2.

2l (D) =z = ds)ITFI(] — n = d[s][1*']

the last statement is a consequence of corollary 3.

The two other cases, namely if a is an abstraction or an application work as previ-
ously. O

Lemma 5 has an important corollary.

Corollary 4 a[f]{f{(s)] — a[s][1].
By its corollary, the next lemma is the key of the confluence of Av.
Lemma 6 a[f**1(s)][1(b[s]/)] — alf'(6/)](1*(s)]-

Proof: By structural induction

e a is a variable n with n < 7, one uses routinely Lemma 1.

¢ ais a variable n with n > i+ 1. By Lemma 2,

[(SN (Ls1/)] = n =i = 1[sJIT+](0°(0[s)/)]
by corollary 3

= = ST DIN(Ls)/)]

by Lemma 3 ' .
<en—i T
On the other hand, by Lemma 2

[(/)] — n=dlb/I[1°IIN(s)] — =i = 1[T](N(s)]

v

and by corollary 4 applied ¢ times,

Loai= 1l

7

‘ ¢ a is the variable i + 1. By Lemma. 2 and Lemma 1,
i+ URH()]I(6(s)/)) < £ 1[1(6[s]/)]
— 1B/ - BlsIl1]-

By Lemma 2,
L A GNIN(s)] = 16/IITTIN(s)] — BIITIA(s)]

v

and by corollary 4 applied ¢ times,
— o[s][1°]-

e ais an application ayas, |

| (ara2)[H ()] [1(b[s)/)) -,7 (ax [(B(s]/)]) (az[H (s)IIN(BLs)/)])
and by induction, -

= (a1 [GN)IN(S]) (a2l BN = (ara2)[(b/)]I(s))-
e ais an abstraction A(a),
(/\a')[ﬂm(s)][ﬂi(b[é]/)] M@ Bs1)D)
and by induction
AT BNIS)]) = (M) (B (s))-
(@]
Corollary 5 (Substitution Lemma) afb/][s] -~ a[fi(s)|[b[s}/]

Corollary 5 is the Av version of the fundamental substitution lemma of classical A-calculus which
is a key of its confluence. In [2] Lemma 2.1.16, it reads as

Mz := N]ly:= L) = My := L][z := N[y := L]]
and in [5], Exercise 1.2.7.2 as
Mk — N]n— P| - M[n+1« Pllk = N[n—k « P]|.
~ For its use in the next lemma, Substitution Lemma has to be iterated.
Corollary 6 afb/[s1)...[s,] —= a[f(s1)]...[fi(s,)])[bls1). .- [s,)/)-

Lemma 7 (Projection Lemma) Ifa e b then v(a) _;. v(b). If s ;= ¢t then v(s) _;. u(t).
Proof: We prove the statement for a and s together. Let u stands either for a
or s; v for either b or t. We proceed by noetherian induction on the lexicographic

product of the two well-founded relations (— , J), where J is the subterm relation.
We distinguish cases according to the structure of u.

e If a = @1a, is an application and if the Beta-redex is in aj, since ¢ya, J ap and
a1 ;= b1 by induction one gets v(a1)—~v(b1) and
eta . B

v(ayay) = v(al)v(az)%v(bl)u(ag) = v(byay).

We proceed likewise if the Beta-redex is in a, or if ¢ = Aa,.

8

o If the Beta-redex is a = (Aay)ay then b = a1{ay/] and v(a) = (Av(a1))v(as).
By definition of 3, one has

o(@)-o(o(a)[v(e)/) = v(b).

o If a is a closure then a = a'[s1]...[s,] and b = b[t4]...[¢,).

— a = (a102)[s1]...[sp) and b = (b1a2)[s1]...[sp). If the Beta redex occurs

inside @1 with a1 ;= by then ai[s1]...[sp] ;= bi[s1]...[sp], by induction

v(ay[s1]...[sp]) % v(by[s1]...[sp))
and
v((ar1a2)s1]. . .[sp]) = v(an[s1]. . . [sp])v(aalsi] . . . [sp))
= ollsi] - splaadsn) - [op)) = v((ba)in] (55D,

and the same if the Beta rewrite takes place inside a; or inside s.
- a = ((Maz)az)[s1]...[sp] and b = az[az/][s1]...[sp).

v(a) = Av(as[f(s1)] - .. (M(sp)))v(azlsi]. - . [s5])
= v((aglfi(s1)] . N(sp)Dv(azls1]. - - [sp])/])
= v(as[f(s1)]. . . [Nsp)][v(aals1] - . .[sp])/]
and by corollary 6,
= v(aslaz/][s1] ... [sp]) = v(b).

— a=(Aa)[s1].. [sp]. Har 7 by orsi— &,

ar[fi(s1)] - - - [((sp)] 5z, Or[M(E1)] - - [1(2p)]

and we can apply the induction hypothesis.
— a = nfsy]...[sp]- The Beta redex is inside a s; with s; =fVi(¢;/). If i > 1,
then Q[sl]—}al where a; is not a closure and

al'[.Sg] cee [SP]EJ; al[tzl .. [tp]

where all the t; are equal to s; except ¢; which is % (c;/) with ¢;— d;.
The result comes by induction. If the Beta redex is inside s,

s1 = (1)) = t1 =¥ (d1/).

Beta
By case, one gets:

* n=1and j; =0,
fer/)[s2] - -[spl rlsa] .- -[spl 57, dalsa] - - -[sp]

1 /Y] - -[sp)— dasa] .. [55]
and the result comes by induction.
* n=k+1and 5, =0,

E+ Lei/l[s2] - . -[sp]— Klso] - -[sp] -
k4 1[d1/][s2] - . (spl— kls2] - . .[sp]

and the result is immediate.

*' n=1and ji=3+1,
N (er/)lsa] - - [sp]— 1[s2] .. .[s]
L7 (dr/)lsal - - - [sp) = Llsa] - -[sp]

and like above the result is immediate.
*+n=k+1land j; =75+1.

E+ 117 (er/)][s2] - - [spl Kl (er /)] T][s2] - .- [s)
k4 1+ (di/)[sa) . . [spl— K1 (1)][1](s2) - - - [s5)

and the result comes by induction.

O
Theorem 1 (Confluence Theorem) Av is confluent.

Proof: The proof resembles this of Abadi et al. [1] itself based on Hardin’s inter-
pretation method [9] with- modifications due to the change of substitution calculus
from o to v. It relies on Projection Lemma. O

4 The typed Av-calculus

We can type Av. For this one introduces two new concepts, namely types and contexts. In
addition we type the operator A and we write AA.a instead of Aa where A is a type namely the
type of the variable 1 in a. We define now the system AT for typing Av .

4.1 The typing system AT

The grammar of AT is:

Terms a == n|ab| AA.a] a[s]
Substitutions s == a/| T | ()
Naturals n o= 1|n+1

Context r «= []]A4-T

Type A Ay| ...|A,|A=>1B

where A; ...A, is a family of atomic types.
Contexts and naturals are well-typed. The rules for typing Terms and Substitutions are:

Terms
''Fa: A==B T'Fb: A A-TFa: B
'+ ab: B ' M.ua: A= B
''Fa: A AF s: T ' Fn: A
ALl oafs]: A ATF1:A B-TFn4+l: A
Substitutions
'a: A ' v s: A

F'ta/: AT ATEFTT AT FMNs): 4-A

10

4.2 Correction of \v w.r.t the typing system AT

We show that for each rule of Av the type of the left-hand side is the same as the type of the
‘right-hand side.

Beta: (Aa)b — alb/]

B.TFa: A r-6:m8B
' ABa: B=> A 6B B.-ThFa:A r+%/:B-T
T F (AB.a)h: 4 T F afb)]: A
App: (ab)[s] — als]b[s]
're: B=A THF+Db: B
' Hab: A Ak s:T
A (ab)[s]: A
F'Fa: B=2>A AF s:T ''64: B AF s:T
Al als]: B> A AF b[s]: B
A & oafsjbfs]: A
Lambda: (Aa)[s].— A(e[f(s)})
AbFs:T
B-TFa: A -
TF)Ba:B=>A4 AFs:T B-Tha:A B-AFfs): BT
AF (ABa)s|: B> 4 B-A F a[f(s)]: A
’ ’ A F AB.(a[f(s)]): B= A
FVar: 1{a/] - a
'ra: A
A-TF1: A4 'a/: A-T
I'F la/]: A
RVar: n+ 1[a/] > n
F'n: A 'ta: B
B-TFn4l: A F'ta/: B-T
't ntlfe/]: A
FVarLift: 1[f(s)] — 1
AF s:T
ATF1 AAFf(s): AT

RVarLift: n + 1{f(s)] — n[s][1]

I''+n: A . AF s: T
BTFntl: A B-AF{(s): B-T
B-AF n+lfs)]: A

n: Fos:
At nfs]: A B-AFT:A

VarShift: n[f] - n+1

T'Fon:
B-TFn41: A
5 Typed Av-calculus is strongly normalizing

The essential difference between — and A—'— is that 3 rewrites with Beta and then normalizes |
with v in order to remove all the closures, whereas Av rewrites also with Beta but may postpone
reductions of closures created by Beta. In the case of simply typed A-calculus we know that
B-reduction terminates or is strongly normalizing. Is it the same for Av? The answer is “yes”,
but is not so obvious. Ritter [16] mentions this problem as open for any calculus of explicit
substitution. Indeed it could happen that @ — b and v(a) = v(b). In that case, the reduced
Beta-redex of a lies in the substitution part of a subterm which is a closure. That closure is
eliminated by rule Rvar or rule FVarL:ft which are the only rules of v that can delete a Beta-
redex!. Thus in the projection lemma, it could be the case that we perform a Beta-reduction
that does not correspond to a #-reduction in the “projected” part, we can therefore make more
(but not infinitely many more) Beta-reductions than 3-reductions. First let us remind the reader
what we call a position in a term. Although it has been understood in what precedes, it plays
a main role in the following rule and has to be made precise.

Definition 1 (Positioh) A position in a A-term t is a sequence of numbers 1 or 2, such that
. t|; =1
o Ift), = a[s], then t|p; = a and t)y; = s.
o If t), = Ma), then t), = a.
o Ift), = a1aq, then t),; = ay and tpy = as.

Definition 2 (Replacement) The term t{u}, obtained by replacing the subterm at position p
by u is the term written t{u}, and defined by

o (t{ulp)pp = wp,
o (H{ulp)p = tipr{ulpr if p=p'p".

o (t{u}p)y = tiq if p and q are disjoint, i.e., q is none of the above cases.

Rewriting the term t at the position p by the rule Beta into the term ¢’ means that there
exists a substitution (in the usual sense) f such that ¢, = f((Aa)b) and ¢’ = t{f(a[b/])},. We
write that t — ¢'. ' :

Beta,p
Before proving the next theorem, let us give two definitions and prove two lemmas.

! App also deletes Beta-redexes, but Lambda enables them immediately.

12

Definition 3 (External position) The set Ext(a) of external positions of a term a is the set
defined as:

Ezt(ab) = 1FEzt(a) U 2Ezt(a)U {¢}
- Ezt(Aa) = 1Ezt(a)U {€}
Ezt(a[s]) = 1Ezt(a)U{e}

Ezt(n) = {e}

Intuitively external positions are those under no brackets, i.e., in no substitution part of any
closure. A rewrite that takes place at an external position is said ezternal, otherwise it is said
internal. If one wants to make precise that a rewrite — is externa.l (resp. internal) one writes
1nt)

_, ext .
= (resp.

Lemma 8 Ifp € Ext(a) and if a— b, then v(a)-v(b). In particular, v(a) # v(b).
eta,p B8

Definition 4 (Minimal Av derivation) An infinite Av derivation

a; — al—oaz — a —oa:‘_‘.l
Beta,p; Bctap

18 minima.l'iffor ar...0n — b —,. . another infinite derivation, then for all p', q # ppp’ (see
ta,q
Figure 3).

That means that either p, and ¢ are disjoint positions or ¢ is above p,, (i.e., p, = ¢¢’). In other
words, one rewrites always the lowest possible redex to keep non termination.

Lemma 9 In an infinite derivation containing only external Beta-rewrites, one can assume
that there is no external v-rewrite either. More specifically if

alz‘ azT: .. .an;' An41 .- -

then there erists an infinite derivation
*
al—rbl:’ bgr .o b"TJ b'n.+1 ‘e

where the rewrites from ay to by are the only external rewrites. Moreover this construction does
not destroy the minimality of the Beta-rewrites.

Proof: One can prove that a— int — eTth implies a— ext —'»mtb The proof is
p P P

by induction on the structure of a. If the external rewrlte does not take place at
the root, the result comes by induction. If the external rewrite takes place at the
root of a this means that a is a closure and the proof comes by case on the rule of
v which is applied in the external rewrite. If the rule is App the internal rewrite in

a— " - — °'b is replaced by two internal rewrites in a— °** - _™b. If the rule

1sAZambda the result is evident. For the other rules, one notxcesAthat the internal
rewrite never applies to a term of sort substitution, therefore the - ezt rewrite is
preserved. _

The termination (strong normalization) of v limits the number of v-rewrites one

can perform starting from a,, thus completes the proof of the lemma. O

Theorem 2 Fvery pure well-typed term of AT is strongly normalizable.

13

Figure 3: A minimal Av derivation

Proof: We use a method based on a least counter-example. Let us consider a
minimal infinite Av derivation starting freom a pure term a,

a; — al_»ag .a; — a’

—»(1,,+1
Beta,py Beta,p,;

1
From projection lemma and termination of 3, there is some N such that ¢ > N
implies v(a;) = v(an). This means that after N, v-normal forms remain the same.
According to Lemma 8, for ¢ > N, Beta-rewrites take place always in internal
positions. By Lemma 9, we can assume that for ¢ > N all the Av-rewrites are
internal. We have then a closure at an external position p such that

an —‘U~ aj, = a{bj[e; /1}p 7o @, = a{bj1 e/ 7o -0 @i = afbilei/Dp- -
The indices ji’s are chosen such that c]1 ST %2 37 -+ 5o G- is an infinite

Avu
sequence. By Lemma 8, we know that the closure b]l[] has been created sometime
before N, say at rank J, by a Beta-rewrite

aj = d{(/\e)c}pj se:_a,'p, d{e[c/]}m = aj41

e — b; and ¢ -;'~ ¢;,. By rewriting a subterm of ¢ at position say ¢ in d{(Ae)c},
Av v

we can create an infinite sequence that Beta-rewrites ay at position ¢ lower than pj,
which is a contradiction with the minimality of the sequence (a;). O

14

6 The U-machine

In this section we consider weak head normalization and strong normalization in A-calculus,
they can be done by an abstract machine. We define the U-machine which is an environment
machine, more precisely a SEC machine, similar to Krivine’s machine described by Curien in
his book [5]. A state of the machine has three components: a term, an environment in which the
term must be evaluated and a stack which contains closures. A closure is a pair of a term and of
an associated environment, whose evaluation is postponed. Transitions allow to go from a state
to another one. The U-machine is deterministic, each non final state is matched by only one
transition rule. Each rule corresponds to one rule of the Av-calculus, except for one (denoted
LBA — BET) which is connected with the two rules (Lambda) and (Beta).
Thus the structure of the U-machine is

state = term X env X stack
env = ((7 U closure) x IN) list
closure = term X env

stack = closure list

term’s are De Bruijn’s pure lambda-terms, i.e. they have no substitution part and use De Bruijn’s
notations. Elements of stack are denoted by p (for the French word “pile”). Since term is the
code and env is the environment the U-machine is SEC. The U-machine is defined by

(ab,e,p) — (a,e,(b,e€)::p) (APP)
(Aa,e,(b,e')::p) — (a,Liftenv(e) & [(b,€'),0],p) (LBA- BET)
(L(e,i+1)e,p) — (Lye,p) (FVARLIFT)
(nt1),(c,i+1)e,p) - (m,(c,1)u(T1,0):2¢,p) (RVARLIFT")
(1, ({a,€),0)::¢',p) — (a,e & €,p) (FVAR)
(nt1,({a,e),0)::¢,p) - (m€,p) (RVAR)
(z,(1,0):e,p) - (ntlep) (VARSHIFT)

where Lift_env is defined by

Liftenv([]) — []
Lift_env((c,i)::e) — (c,i4 1):: Lift_env(e)

and the operator @ appends one environment to another one.

The U-machine stops in a state of the form (Aa, e, []) or (n,[], p). For the computation of the
strong normal form of a term we need to call recursively the U-machine. Thus we introduce two
inference rules

(a,e,[) — (Xb,e,[]) (b, Liftenv(e)) —
(a,e) - Ac (L)
(a,6,[) o (= [, [(brsex)s i (breg)]) (bires) —cforl<i<y

(a,e) — ney...cq
ny

(V)

We will prove in the next section that the strong normal form of a term a, if it exists, is reached

by application of — until no more reduction can be applied.
nf

15

7 Correction of the U-machine

In order to prove the correction of the U-machine with respect to Av-calculus, we define two
translation functions 7 from environments to substztutzons and £ from states to terms:

T env — list(Substitutions)
[}~ 1
(criyiie m p((e,i)) s 7(e)

where p: (1 Uclosure) x N Substitutions

({(a,€),0) — a[r(e)]/ (a stands for al])
(1,0) -~ 1
(c,i+1) = f(p((c,1)))
and ¢ state — Terms

(a,€,[(br,€1);...;(bgrco)]) = a[r(e)lba[r(er)]. . .bg[T(eg)]
We extend 1 to lists of substitutions by 1} ([s1;...;8k]) = [ff(s1);.-.; 1(sk)] and we define @

as a[e@e’] = ale][e’]. Proofs of Lemma 10 and Lemma 11 are by induction on e.
Lemma 10 r(e @ ¢') = 7(e)@r(¢).
Lemma 11 7(Lift_env(e)) =fi(7(e)).
Proposition 2 For all the states (a,e,p) and (a’,€',p’) of the U-machine,
(a,e,p) o (d,€,p') = &(a,e,p) A_.J &(d,€,p).
Proof: Let p be [(b1,e1);...;(bg,€q)] with ¢ > 0. We have to consider each rule of

the U-machine.
* (APP) (ab,e,p) — (a,e,(b,€):: p).

E(ab,e,[(brer);. i Bped)) = (ab)lr(e)bilr(en)]. . bylr(e,)]
- alr(e)]b[r(e)]br[r(e1)] . . .bg[r(ey)]
= &a,e,[{be);(br,e1);. .5 (bg, €0)])
= &(a,e,(b,e) : p).
o (LBA-BET) (Xa,e, (b, €)) :: p) — (a, Lift_env(e) @ [((b, €'),0)], p).
— casee =[]

EO0ae,(b,¢) 2 [(Bryer)ie i bpred) = (Aa)lr(e)blr(eNilr(en)]. . .[by(r(e,)
(A@)b{r(e)ealr(er)] . - [bo(7(es)]
alblr(e))/1balr(en)] . [yl (ey)]
alp((b, ¢, 0)Jbalr(er)] ... [bg(7(e,)]
alr({({b.¢"),))Ibalr(e)] . .. bg(r(ey)]
£(a, [((b,¢),0)),p)

£(a, Liftenv(e) @ [((b, ¢, 0)], p)

since Lift_env([})=[].

noE|

— casee # []
E(Aa, e, (b,e) :: [(by,er);...;(bg eq)])
= (Aa)[r(e)]b[r(e)]br[r(e1)]. . - [by(T(eq)]
— Ala[f (r(e))])]b[r(e)]br[r(er)] . - . [bg(T(eg)]
= a[[ft (r(eN][b{r(eN}/1ba[r(e1)] . . .[bg(T(eg)]
2 £(a, Liftenv(e) @ [((b,€), 0)] [(bs,e1); - - (bos€q)])

16

by Lemma 10 and Lemma 11.

Remark: Since U works only on the highest part of the stack and leaves the
lowest part unchanged, it is sufficient to prove

(a,6,[) 7 (@,€,[]) = &(a,e,[D=6(d', €, 1])
to claim

('a7 e’ p) ? (a/’ e/, p) :> f(a, e’ p)—x:‘:’f(a’/’ el’ p)'
We use this in the following.

o (FVARLIFT) (1,(c,i+ 1) 2 e,p) — (L,€,p).
§L(ci+1)e(]) = Lr((e,i+1):e)]
= lp(e,i+ 1) 5 7(e)]
= Lp(c,2+ 1)][r(e)]
= 1fp(c,)[r(e)] 77 1lr(e)]
= &L ()

o (RVARLIFT”) (n+1,(c,i+ 1) e,p) 7 (m,(c,8): (T,0) e, p).

é(nt+1,(c,i+1) 6] n+1[7((c,i4 1) 1 €)]
n+ 1p(eyi+ 1) 3 7(e)]
n -+ 1p(e,i + D]r(e)]

n + 1(p(c,)lir(e)]
alp(e, IT[r(e))
afp(e,)][p(1,0)][r(e)]
nfp(c,1) = p(1,0) 1 7(e)]
nlr((e, i) (1,0) :)]

: €(n, (c,4) = (1,0) e, []).

o (FVAR) (L,({a,€),0):: €¢/,p) o (a,eD €, p).

£(1,((a,€),0) €, []) 1[r(({a,€),0) : €')]
1o((a,e),0) :: 7(e")]
1[o({a,€),0)][r(¢")]
1fa[r(e)]/1[r(e")]
afr(e)][r(e")
al[r(e)@r(e)] -
a[r(e ® €')]

£(a,ed €, []).

¢ (RVAR) (n+1,({a,¢),0):: €',p) - (n,€',p).
1,({a,e),0):: €,{])

wowononEl

oo |

{(nt n 4+ 1[r(({(a,€),0):: €')]
n + 1[p({a,€),0) = 7(e")]
n+ 1[p({a,e),0)][r(e")]
n + 1[a[r(e)]/][r(¢)]
n[r(e’)]

&(n, e, []).

R

17

o (VARSHIFT) (n,(1,0)::e,p) o (nt1,e,p).

{(n,(1.0)=e[]) = n[r((1,0)::¢)]
= nfp(1,0): 7(e)]
= ap(1,0)][r(e)]
= nt][r(e))

— n+tlfr(e)]

= {(nt1,e(]).
a

Proposition 3 For every terms a and b and every environment e

(a,e) — b > £(a,e,(]) i» b.

Proof: By structural induction on b.

e case b = Ac.
By Proposition 2, we have

(a,e,) 5 (Ae,€,[) = alr(e)] = (Ac)lr(e)]
T Aelf(r(e))]) = Ac[r(Liftenv(e"))])

Av
If (¢, Liftenv(e')) — d, then &(c, Liftenv(e’),][]) A—'» d by induction hypothesis.
nf v
Thus ¢[7(Lift_env(e’))] -f-» d and (Ac)[r(¢)] —;—» Ad, i.e. &(a,e,]]) A—'» b.

e case b = ncy...c.
We have)
(ase,[]) 5 (= [} [(br, €1); . . .5 (bg, €q)])

and .
(biy€;) — ¢; for 1 <3< gq.
nf
By Proposition 2 and by induction hypothesis,
a[r(e)] ,_‘J nbi[r(er)] .. .bg[r(e,)] ,_‘J ney ... 0.

O

Theorem 3

1. If (a,])) = b then a .. b and b is the B normal form of a.
nf

Av

2. If a admits a 8 normal form b then a . b and (a, 1); b,
A nf

v

Proof: . _
e By Proposition 3, (a,[]) - b = aA—'ob since a([r(e)]) = a([]) = a. Let us prove
nf v
that b is actually the Av-normal form of a. If ¢ is n then (=, []) X nandnis
nf

its own Av normal form. If b is of the form Ac or of the form ne;...c; we can
prove by induction on b, that b is the Av normal form of a.

By Proposition 1, we have u(a)=.u(b). a is a pure A-term, thus u(a) = a. b is
B
irreducible by Av, therefore it has no closure and no redex, hence p(b) = b and
b is irreducible by 8. Therefore at. b
)

18

e Assume a admits a 8 normal form 6. Then a—.b because a— b means a = b
and b = v(b). ’\/Ioreover a pure A-term Wthh is 1rreduc1ble by — is also

irreducible by — , thus a — b.
v Av

If (a,[]) - c then the first part of the theorem and the confluence of the Av-
calculus mjlply ¢ = b. We just have to prove that = terminates in order to
achieve the proof of the second part of the theorem fhe proof of termination
of —, is similar to the proof of termination of the KN-machine in [3, 4]. By

(:om’;‘)fosition of £ and p where g is the function defined in section 2, we have a
translation function ¥ of a state of the U-machine into a pure lambda term.
Let (a,e,p)— (d, €', p').

— If —+ is not the rule (LBA — BET') then

* {(a, €, p)T’ E(a/’ ela p/)

* and y(a,e,p) = v(d,€e,p").
Since the system v is noetherian, the set of rules of the U-machine without
(LBA - BET) is also noetherian.

— If — is (LBA—-BET) then 7(a,e,p)7 v(a’, €', p’). We can verify that the
rules of the U-machine imply that we always reduce the leftmost outermost
redex of y(a,e,p). This strategy is known to be terminating, hence we can

‘ apply (LBA — BET) only finitely many times.

— The application of —, builds a part of the § normal form of the startmg

A-term, if it exists. Thus we have only a finite number of = steps.

Thus the noetherianity of v and the safety of the leftmost outermost strategy
reduction in the A-calculus yield the second part of the theorem.

a

Conclusion

Explicit substitutions are a main tool for describing lazy evaluation of functional programming
languages, but the system Av has many other useful applications. For instance, as a first
order system it allows applying methods based on or derived from narrowing [11] to higher-
order unification. It may also be a tool to explore several implementations of A-calculus taking
advantage of sharing or parallelism. Indeed the U-machine is not the only way to implement
Av!

Acknowledgment. We would like to thank Georges Gonthier and Luc Maranget for suggestions
improving proof of Theorem 2.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of
Functional Programming, 1(4):375-416, 1991.

[2] H. P. Barendregt. The Lambda-Calculus, its syntar and semantics. Studies in Logic and
the Foundation of Mathematics. Elsevier Science Publishers B. V. (North-Holland), Ams-
terdam, 1984. Second edition.

(3] P. Crégut. An abstract machine for the normalization of A-calculus. In Proc. Conf. on Lisp
and Functional Progamming, pages 333-340. Association for Computing Machinery, 1990.

19

[4]

[5]

[10]

[11]

(12]

[13]

[14]
[15]

[16]

[17]

P. Crégut. Machines a environnement pour la réduction symbolique et ’évaluation partielle.
PhD thesis, Université de PARIS 07, 1991.

P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming.
Birkhauser, 1993. 2nd edition.

P.-L. Curien, Th. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi
of explicit substitutions. RR 1617, INRIA, Rocquencourt, February 1992.

J. Field. On laziness and optimality in lambda interpreters: Tools for specification and
analysis. In Proceedings of the 17th Annual ACM Symposium on Principles Of Programming
Languages, Orlando (Fla., USA), pages 1-15, San Fransisco, 1990. ACM.

T. Hardin. Eta-conversion for the languages of explicit substitutions. In H. Kirchner
and G. Levi, editors, Proceedings 3rd International Conference on Algebraic and Logic
Programming, Volterra (Italy), volume 632 of Lecture Notes in Computer Science, pages
306-321. Springer-Verlag, September 1992. '

Th. Hardin. Confluence results for the pure strong categorical combinatory logic CCL:
A-calculi as subsystems of CCL. Theoretical Computer Science, 65:291-342, 1989.

Th. Hardin and J.-J. Lévy. A confluent calculus of substitutions. In France-Japan Artificial
Intelligence and Computer Science Symposium, Izu, 1989.

J.-P. Jouannaud and Claude Kirchner. Solving equations in abstract algebras: a rule-based
survey of unification. In Jean-Louis Lassez and G. Plotkin, editors, Computational Logic.
FEssays in honor of Alan Robinson, chapter 8, pages 257-321. MIT Press, Cambridge (MA,
USA), 1991.

P. Lescanne. Termination of rewrite systems by elementary interpretations. In Hélene
Kirchner and G. Levi, editors, Proceedings 3rd International Conference on Algebraic and
Logic Programming, Volterra (Italy), volume 632 of Lecture Notes in Computer Science,
pages 21-36. Springer-Verlag, September 1992.

P. Lescanne. From Ao to Av, a journey through calculi of explicit substitutions. In Hans
Boehm, editor, Proceedings of the 21st Annual ACM Symposium on Principles Of Program-
ming Languages, Portland (Or., USA), pages 60-69. ACM, 1994.

N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantical framework.
Technical report, SRI International, May 1993.

A. Rios. Contributions & l'étude des A-calculs avec des substitutions ezplicites. These de
Doctorat d’Université, U. Paris VII, 1993.

E. Ritter. Normalization for typed lambda calculi with explicit substitution. In Conference
on Symbolic Logic, 1993. Also available as University of Cambridge, Computer Laboratory,
Technical Report.

T. Strahm. Partial applicative theories and explicit substitutions. Technical Report IAM
93-008, Univeritat Bern, Institut fiir Informtik und angewandte Mathematik, June 1993.

An ML implementation of the U-machine

The

U-machine can be easily implemented in ML as shown by the following programs. Here we

have chosen Caml-light.

20

-

type term = L of term | App of term * term | V of nat
and nat =1 | S of nat ;;

type env = Empty_env | Cons of (item * int) * env \
and item = Shift | Cl of term * env
and closure = C of term * env ;;

type stack == closure list ;;
~ type state == term * env * stack ;;

let rec Lift_env = function
Empty.env — Empty_env
I Cons((c,i), e) — Cons((c,i+1), Lift_env(e)) ;;

let rec append_env = function
(Empty_env,e) — e
| (Cons(it,e), f) — Cons(it, append_env (e,f)) ;;

let rec machine = function
(App(a,b), e, p) — machine (a, e, C(bse) :: p)

| (L(a), e, C(b,f) :: p) —
machine(a, append_env(Lift_env(e), Cons((Cl(b,f), 0), Empty_env)), p)

| (V(I), Cons ((Cl(a,e),0),), p) ~ machine(a, append_env(e,f), p)
| (V(S(n)), Cons ((C)(a.),0), f), p) — machine(V(n), f,p)

| (V(n), Cons((Shift,0), e),p) — machine(V(S(n)), e, p)

| (V(I), Cons((c,i), e), p) — machine(V(I), e,p)

| (V(S(n)), Cons((c,i), e), p) — machine(V(n), Cons((c,i-1), Cons((Shift,0), ¢)), p)

Fx—x 35

let rec nf (a, e) = match machine (a, e, []) with
(L(a), e, []) = L (nf (a, Lift_env(e)))

| (V(n), Empty_env, p) — let rec mapnf = function
[]— V(n)
| C(b,f):: p — App(mapnf(p), nf(b,f)) -
in map-nf(rev(p))

| - — failwith "not_possible” (* this case cannot be a result of machine *) ;;

21

IS

-\

Les rapports de recherche de I'INRIA
sont disponibles en format postscript sous
ftp.inria.fr (192.93.2.54)

st vous n'avez pas d'acces fip

la forme papicr peut €tre commandéc par mail :
e-mail : dif.gesdif@inna.fr

(n'oublicz pas de mentionner votre adresse postale).

par courrier :

Centre de Diftusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

INRIA rescarch reports
arc available in postscript format
ftp.inria.fr (192.93.2.54)

if you haven't access by ftp

we recommend ordering them by e-mail :
e-mail : dif.gesdif@inria.fr

(don't forget to mention your postal address).

by mail :

Centre de Ditfusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

Unité de recherche INRIA Lorraine
Technopole de Nancy-Brabois - Campus scientifique .
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers lés Nancy Cedex (France)
Unité de recherche INRIA Rennes - IRISA. Campus universitaire de Beaulieu 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhane-Alpes - 46, avenue Félix Viallet - 38031 Grenoble Cedex 1 (France)

Unité de recherche INRIA Rocquencourt - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis - 2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

ISSN 0249 - 6399

_2222%

