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Abstract

Lempel-Ziv parsing scheme is a fundamental construction on words that finds a wide range
of applications, most notably in data compression, algorithms on words, statistical inference,
complexity theory (cf. test of randomness), and so forth. It partitions a sequence of length
n into variable phrases (blocks) such that a new block is the shortest substring not seen in
the past as a plrase. How many phrases M, one obtains from a sequence of length »? It
is known that almost surely (a.s.) M(n) divided by n/logn converges to h, where h is the
entropy of the alpliabet. But, in many applications one needs more refined information about
the deviation of M(n) around its mean, that is, one requires second-order behavior of M(n).
Ideally, we would like to know tle liniting distribution and the large deviation behavior. In this
paper, we derive such characteristics for the memoryless source with unequal probabilities of
symbols generation (the so called asymmetric Bernoulli inodcl). Thus, we extend and refine the
analysis of Aldous and Shields who obtained the limiting distribution only for the symmetric
Bernoulli model, that is, when symbols are generated with the same probability. We also
asymptotically enumerate the number of parsings of length n built from a given number of
phrases, thus providing new insights into the problem of Gilbert and Kadota. These results are
proved by establishing the limiting distribution of the internal path length in a digital search
tree. The latter is a consequence of an asymptotic solution of a multiplicative differential-
functional equation often arising in the analysis of algorithms on words. Interestingly enough,
our findings are proved hy a combination of probabilistic techniques (i.e., renewal equation,
uniform integrability) and analytical techniques (i.e., Mellin transform, differential-functional
equations, de-Poissonization, etc.).



1. INTRODUCTION

The primary motivation for this work was the desire to understand the asymptotic behav-
ior of the fundamental parsing algorithm on words due to Lempel and Ziv [12, 25, 26]. It
partitions a word into phrases (blocks) of variable sizes such that a new block is the shortest
subword not seen in the past as a phrase. For example, the string 110010100010001000 is
parsed into (1)(10)(0)(101)(00)(01)(000)(100). In passing, we note that one can partition in
a different manner that allows overlapping between phrases (cf. [22], [12]). For example, for
the above sequence the latter parsing gives (1)(10)(0)(101)(00)(01)(000100). In this paper, we
only consider the former parsing algorithm.

These parsing algorithms play a crucial réle in universal data compression schemes and
its numerous applications such as efficient transmission of data (cf. [25, 26]), discriminating
between information sources (cf. [7]), test of randomness, estimating the statistical model of
individual sequences (cf. [16]), and so forth. More importantly, such a partition of a word
reflects its underlying periodicities, and therefore finds applications in several algorithms on
words. The parameters of interest to these applications are: the number of phrases, the
number of phrases of a given size, the size of a phrase, the length of a sequence built from a
given number of phrases, etc. B.ut, by all means the most important parameter is the number
of phrases that is used to obtain the compression ratio in a universal data compression (cf. [3]),
while its distribution is needed in the analysis of other parameters of the Lenipel-Ziv scheme
{¢.g., redundancy rate [20], length of a phrase [14], and so forth).

In this paper, we shall study the number of phrases M, of a word of fixed length = in a
probabilistic framework. We assume that the word is generated by a probabilistic memoryless
binary source (extension to finite non-binary zﬂphabet is simple). That is: symbols are gener-
ated in an independent manner with 0% and "1 occurring respectively with probability p and
g=1—p. If p=¢=0.5, then such a probabilistic model will be further called the symmetric
Bernoulli model; otherwise we refer to the asymmetric Bernoulli model.

In view of the above, the problem of finding the limiting distribution of the number of
phrases in the Lempel-Ziv parsing algorithm is of a fundamental nature. It is a difficult
problem as attested by Aldous and Shields [1] who solve it only for the symmetric Berfnoulli
model. The authors of [1] state: “It is natural to conjecture that asymptotic normality holds
for a larger class of processes ... . But in view of the difficulty of even the simplest case (i.e.,
the fair coin-tossing case we treat here) we are not optimistic about finding a general result.
We believe the difficulty of our normality result is intrinsic ... .” In this paper, we extend the

result of Aldous and Shields to the asymmetric Bernoulli model (however, the methodology
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COMPORTEMENT ASYMPTOTIQUE DU SCHEMA DE LEMPEL-ZIV
ET DES ARBRES DIGITAUX

Résumé

Le schéma d’analyse des mots de Lempel-Ziv est une construction fondamentale qui trouve
de nombreuses applications, notamment dans la compression de données, les algorithmes sur -
les mots, les évaluations statistiques, la théorie de la complexité (test de la nature aléatoire),
cte. L’analyse d’une séquence de longueur n consiste a fragmenter cette derniere en plusieurs
phrases distinctes, ou blocs, de longneurs variables. La régle de fragmentation fait que tout
bloc nouvellement détaché est le plus petit sous mot qui ne soit pas identique & un bloc détaché
auparavant. Combien de phrases M(n) obtient on d’une séquence de longueur n? Il est connu
que M(n) divisé par n/logn couverge presque surement vers Uentropie h de ’alphabet. Mais
I’analyse de nombreuses situatious daus les applications requiert une information plus fine sur
le comportement de M(n) autour de sa moyenne (analyse an second ordre). D’une maniére
idéale nous voudrions connaitre la distribution limite de M(xn). Dans ce papier nous nous
attachons & déterminer cette distribution limite sous le modeéle probabiliste de la distribution
non uniforme mais saus wémoire des symboles dans la séquence. Nous appelons ce modele le
modele asymétrique de Bernoulli. En conséquence nous étendons et rafinons I’analyse d’Aldous

et Shields qui avaient obtenu la distribution limite seulement dans le cas symétrique, c’est a dire

lorsque les symboles sont tous équiprobables. Nous procédons également a ’analyse inverse
du nombre de séquence de longuenr = a partir du nombre de phirases obtenues, ce qui apporte
un éclairage nouvean au probleme de Gilbert et Kadota. Nous prouvons nos résultats en
établissant la. distribution limnite de la Jongueur de cheminement dans un arbre digital. Pour
cela nous étudions le comportement asymptotique de la solution d’une équation différentielle
non linéaire anx différences que 'on rencontre sonvent dans analyse des algorithmes sur les
mots. Nous combinons des techniques probabilistes & des techniques d’analyse complexe.



proposed here should allow — with some labor - to extend the results even to a Markovian
model). Actually, we do much more, and provide solution to some other problems that have
been open up-to-date, namely: the limiting distribution for internal path lengths in digital
trees (cf. [1, 11, 15]) and the number of parsings of given length built from a fixed number of
words (cf. [7]). | -

All of these problems are solved in a uniform manner by a combination of probabilistic and
analytical methods. We apply the renewal equation (cf. [2]) to reduce the problem of finding
the number of phrases in the Lempel-Ziv scheme to another problem on digital search trees,
namely that of finding the limiting distribution of the internal path length in a digital search
tree built from fized number of independent words. To see this, we recall that the Lempel-
Ziv parsing algorithin can be alternatively described on a digita] search tree (the fact already
known to Aldous and Shields [1] who explored this equivalence).

The reader is referred to [11, 15] for discussion and definition of the digital trees, however,
for the reader convenience we show in Figure 1 the digital search tree associated with the word
discussed at the beginning of this section. In particular, the root of the tree is empty (i.e.. we
start parsing with an empty phrase). All other phrases of the Lempel-Ziv parsing algorithm
are stored in internal nodes. When a new phrase is created, the search starts at the root and
proceeds down the tree as directed by the input symbols exactly in the same manner as in
the digital tree construction, that is, symbol "0“ in the input string means to move to the left
and "1 means to proceed to the right. The search is completed when a branch is taken from
an existing tree node to a new node that has not been visited before. Then, the edge and
the new node are added to the tree. The phrases created in such a way are stored directly
into the nodes of the tree. In passing, we note that for a word of fixed length n the size of
the associated digital search tree is random, and this fact gives a new twist to the analysis of
digital trees (cf. also [14]).

Second-order properties, such as limiting distributions and large deviation results of the
Lempel-Ziv scheme, have been scarcely discussed in the past with a noble exception of the
work of Aldous and Shields {1] who studied the symmetric model. Recently, Louchard and
Szpankowski [14] obtained the limiting distribution of a randomly selected phrase length in
the Lempel-Ziv scheme. On the other hand, digital search trees (built from fized number of
independent words!) have been quite thoroughly investigated in the past (cf. [4, 3, 10, 11,
13, 14, 22]). In particular, Knuth [I1], and Flajolet and Sedgewick [4] introduced analytical
methods in the analysis of digital search trees. This was continued by Flajolet and Richmond
[5], Louchard [13], and Szpankowski [22]. None of these papers, however, deal with second

order properties of the internal path length in digital search trees, which is main object of



Figure 1: A digital tree representation of Ziv’s parsing for the string 11001010001000100. ..

our study. Only very recently, Kirschenhofer, Prodinger and Szpankowski [10] obtained an
asymptotic expression for the variance of the internal path length in the symmetric Bernoulli
model (in fact, this allowed to close the gap in the Aldous and Shields analysis by deriving the
leading term in the variance of the number of phrases in the Lempel-Ziv parsing schemre). The
authors of [10], however, could not extend their results to the asymmetric model. We not only
provide such an extension, but we carry out this analysis to obtain the limiting distribution
for the internal path length. ] -

The paper is organized as follows. In the next section we present all our main findings
concerning digital search trees and the Lempel-Ziv scheme. All proofs are delayed till Section
3 which is of its own interest. In this section, we present a methodology that leads to an
asymptotic solution of a functional-differential equation that arises very often in other problems

of engineering and science.



2. MAIN RESULTS

As discussed above, our result about the limiting distribution of the number of phrases
M,, in the Lempel-Ziv parsing is a direct consequence (through the renewal equation) of our
main finding concerning the limiting distribution of the internal path length in a digital search
tree built from fixed number of independent words. In sequel, we first carry out our analysis
for digital trees, and then provide necessary tools to derive the limiting distribution of M,,.
We recall that the tree constructed during the course of the Lempel-Ziv parsing algorithm (cf.
Figure 1) is a digital tree built from random number of words (phrases), namely M,,.

Let us first consider a digital search tree built from m statistically independent words each
generated according to the Bernoulli model. We leave the root empty, and then store the next
word in the first available node, as discussed above (cf. [11, 15]). Let D,,() be the length of a
path from the root to the ith node containing this word. In fact, note that D,,(:) = D;(i) for
m > i since the position of the ith node does not depend on words inserted after it. We define
the internal path length as L., = Y i, Di(%).

Hereafter, we shall consistbently use 1 as the length of a single word to be parsed according
to the Lempel-Ziv scheme, and m as the number of words used to construct an independent
digital search tree.

We infer probabilistic behavior of L,, from its generating function behavior. Thus we apply
“analytical approach” to the problem. Define for compllex u and z the following generating
functions L, (u) = Eul™ and complex z L(z,u) =) 55— L (u)2™/(m!). We also set Z(z, u) =
L(z,u)e™* which can be interpreted as the generating function of the internal path length in a
bfa.mily of digital search trees built from a random number of words that is distributed according
to Poisson with mean 2. Observe that this is a standard poissonization trick but disguised in
a generating function form. One expects a simpler equation for L(z,u) than for L,,(u), and it
turns to be true, as seen below.

There is a recurrence relationship on L,,(u) and L(z,u). Indeed, noting that the left and
the right subtrees of a digital search tree are characterized by Ly(u) and L,,4;-x(u), where &

is the number of words with the first symbol being “0”, we immediately obtain (cf. [10, 22])

Lipy1(u) = u™ Z (7:) pkqm,_kLk(u)Lm—k(“) . . (1)
k=0 :
with Lo(u) = 1. Hence, also '
_8_L(%2,_u) = L(pzu,u)L(qzu,u) (2)

with L(z,0) = 1. This is our basic functional-differential equation that we solve asymptoti-

cally to obtain the limiting distribution of L,,. We observe that the above equation is of a



multiplicative form which makes the problem hard to “crack”.
Before we formulate our main theorem concerning L,,, we guide the reader through the

proof of Theorem 1 below. Here are the main steps of the analysis presented in Section 3:

1. We first analyze the Poisson model that is characterized by the exponential bivariate

generating function L(z,u) satisfying (2).

2. In order to solve (2) we try to transform it into an additive functional equation by
considering log L(z,u). This is only possible if one proves the existence of log L(z,u)
in some domain. Hence, we shall prove that there is a convex cone (cf. Definition 1)
around the real axis and a real neighbourhood of u = 1 such that for some x(u) we have

log L(z,u) = ©(2%(")) (cf. Theorem 5 and proof in Section 3.2).

3. Next, we use the Taylor expansion of log L(z,u) in the convex cone to show that for large
z the generating function L(z,u) appropriately normalized converges to the generating

function of the normal distribution (cf. Theorem 6).

4. To prove the above we must compute precise asymptotic expansions for the average and

the variance of the internal path length in the Poisson model (cf. Theorem 6).

o

The final effort is to de-Poissonize the above results, that is, to transform the normal
distribution of the Poisson model into the normal distribution of the Bernoulli model (cf.

Theorem 9 and proof in Sectian 3.3).

In section 3 we shall follow the above outline to prove our main results concerning a digital

" search tree, which is stated below.

Theorem 1A. Consider a digital search tree under the asymmetric Bernoulli model.

(i) Asymptotically the average value EL,, and the variance Var L,, become

_m ha ‘ ,
EL, = 5 (log m+ o +7-1-a+ §(log m)>
1 h, _
+ E(logm+ﬁ— —logp—logQ-i-a)-i-O(l) (3)
Var L,, = camlogm+ O(m) (4)

where h = —plog p — qlog q is the entropy of the alphabet, v = 0.571... is the Fuler constant,
hy = plog?p + qlog? q, and c; = (hy — h?)/13, v

& ptllogp+gtllogg
T k=1 1 — pktl — gk+1 ’ (

[
N’



and §o(logm) is fluctuating funétions with small amplitude for logp/logq rational and zcro-
otherwise (cf. [9, 18, 22]).
(i) Let ¢y = 1/h. Then
Lm - ELm
v'Var L,

where N(0,1) is the standard normal distribution. In fact, a stronger result holds, namely for

— N(0,1) . (6)

a complex 7 in a netghbourhood of zero, and for any € > 0
. , |
e—ﬂclmlogm Eei?L,,. - ecz"Tmlogm (1 + 0(1/171’1/24-5)) . (7)

(iiij There exist positive constants A and a < 1 such that uniformly in k

Pr{ Lm - ELm

v/Var L,,
Actually, our analytical approach also works for the symmetric Bernoulli model. We need,

> k} < A (8)

for large m. W

however, in this a case to refine the method to obtain the leading term in the asymptotics of the

variance. Fortunately, this was recently done by Kirschenhofer, Prodinger and Szpankowski

[10] who proved that

Var L™ ~ (C + é(log, m))m (9)

where C' = 0.26600... and §(z) is a fluctuating function with small amplitude (cf. Theorem
1B). In the above, we write L;¥™ for the internal path length in the symmetric case. We have

the following result.

- Theorem 1B. For the symmetric Bernoulli model the following equivalence of (7) holds

e—t9m logz.mEeﬁLf,i’m — e"—:m(C+6(log2 m)) (1 + 0(1/77l1/2+5)) ’ (10)

for any € > 0, where §(z) is periodic continuous function of period 1, mean 0 and very small

amplitude (< 107°). Similarly, uniformly in k
Pr {

Equipped with Theorem 1, we now can attack the main problem, namely the limiting

L:ri/ﬂl - ELSyT".

m

vm(C + §(log, m))

>k}<Aak (11)

for large m. w

distribution of the number of phrases M, in the Lempel-Ziv parsing scheme. Fortunately,-
the problem can be reduced to the one discussed in Theorem 1 through the so called renewal

equation which we introduce next.



We recall that D;(z) is the lengfh of the ith phrase in the Lempel-Ziv parsing scheme
built from (fixed!) m words (cf. [7, 14]), that is, the depth of the ith node in the associated
digital tree. Fix now =, and start partitioning the sequence of length n into phrases. Clearly,
D;(1) = 1. After obtaining the second phrase, we check whether D;(1) 4+ D3(2) > n or not. If
yes, stop here, otherwise continue the process. It should be clear by now that the number of

phrases M,, can be computed from the following relationship
m
M, = max{m: L, = Z D;(?) < n} . (12)
k=1

The above equation is known as the renewal equation (cf. [2]). We also observe that it

directly implies the following
Pr{M, > m} =Pr{L,, <n}, (13)

which is useful in some computations. The following result is due to Billingsley [2] (cf. Theorem
17.3).

Lemma 2. Let M,, and L, satisfy the relationship (12), and assume D;(3) are positive random

variables. Then L , A
' —L'u"iaN(O,l), . - (14)

Om /
implies '
Mn - n/(“’n/n)
O (pn /1) =312
where p,, and o,, are positive constants that under mild standard uniform integrability argu-

—~ N(0,1) (15)

ments can be asymptotically interpreted as the mean and the variance of L. ®

Theorem 1 is next used to obtain the following result that proves the open pfoblem left in
Aldous and Shields [1]. Define A(m) = EL,, for all integer m, and let for all y > 0 A(y) be a
linear interpolation of A(m) between integer points. Now, let A~!(z) be the inverse function

of A(y) defined for z > 0. Note that A(z) ~ ’—k’,;sf and A~!(z) ~ lé‘gz for £ — oo. As easy to

check, the function A(-) is convex, hence A~!(-) is concave.

Theorem 3. (i) In the asymmetric Bernoulli model, the following weak convergence holds

M, - EM,
In 2 N
VarM,, .1 (16)
with
[ nh
EM, ~ Tog(n) (17)
cah3n
Var M,, ~ —— (18)
log“n



where ¢, was defined above.

ii) There exist positive real numbers A, @ a nd ng > 1 such that for all n > ng, and for real
p

number z > 0:

Pr{M, > (1+ %)A"l(n)} < Aexp (—a = a:) (19)
Pr{M, < (1 - %)A“(n)} < Aexp(—ax) (20)

. — _1 . . .
Thus, for all r > 0 the random variable Z, = M"hsA“ "2 s r-uniform integrable, and there-
c2h3n/log®n

fore all moments of Z,, exist and converge to appropriate moments of the normal distribution.

Furthermore, for any (fized) € > 0 and large n

Pr{Mn > .(1 +6)1:ghn (1 +0 (!Sig’_i_”_))} < Aexp (—ﬁ\/f(i::—-_g)_\/v_z> ' (21)

for some constants A,a > 0.

(iii) For the symmetric alphabet, the results from the asymmetric model stand as above if one

replaces the variance by

n(C + 6(log, n))
log3n

where the constant C = 0.26600 ... and é§(z) is defined in Theorem IB. In (ii) one must replace

Vv by /n/logn .

Proof. Part (i) is a direct consequence of Lemma 2 with an exception of (17)-(18) which follow

Var M¥™ ~ (22)

from part (ii) (see below). To prove part (ii) we will basically show that uniform integrability
over L, naturally translates into uniform integrability over M,, simply by renewal equation.
We refer to exponential tail of L,, established in Theorems 1A. Paraphrasing it, we can find

positive A and « such that for all m and y > 0, the following two inequalities hold:

Pr{l, < A(m)(1-y)} < Aexp(—ay\/./\(m)). : (23)
Pr{L, > ‘A(m)(l +9)} < Aexp(—ayy/A(m)) | (24)

Note that in the first inequality y < 1 since L,, cannot be negative.

Let us first consider inequality (23). We refer to the fundamental identity (13) to obtain
Pr{M\A(m)(1-y)] = m} = Pr{Ln, < A(m)(1 - y)} .

But, (23) implies

Pr{M, > A7 (n(1 - y)71)} < Aexp <_“\/yl\/—Tny>

.9



Using concavity of A™!(:) we also have A7!(3%) < AT therefore Pr{M, > A7 (n(l —

-z

y)™H} = Pr{M, > (1 — y)"'A~'(n)}. Thus, ’

y\/ﬁ).
vI-y

Pr{M, > (1 — y) 'A"Y(n)} < Aexp(—c

Identifying 1 + \/Lﬁ with ”Ty for £ > 0 we finally obtain

e s o) he i)
vn :

which proves (19).
To prove the second inequality (20), we use (24). Now y > 0. Using the same arguments

as above, we find

yy/n
2

By concavity of A~(-) we obtain A™}(n(1+ y)~') > (1+ y)~'A~'(n). Therefore. Pr{M,, <
AN (n(1+y)™H)} > Pr{M, < (1 + y)"'A~1(n)} and thus: -

yx/ﬁ)
Vity' '

Identifying 1 — —\/x—’—l with I—:L—y for z > 0 (but smaller than \/n becanse M,, cannot be negative)

we obtain as expected (20), namely

Pr{M, < A"} (n(l +y)"1)} < Aexp (—a

Pr{M, < (1+y)"'A7(n)} < Aexp(-a

Pr{M, < (1~ %)A‘l(n)} < Aexp (—a—ly{T

) < Aexp(—az) .
/n

Clearly, (19)-(20) imply for all r > 0 r-uniform integrability of Z, = —Mﬁ(%— thus the
2 n ogo n
sujtable convergence of its moments to appropriate moments of the normal distribution. In

’
particular

EM, = A~ (n)(1 + o(1/v/))

and

Var M,, ~ (Var L) - (A7 (n)/n)® .

and this proves (17) and (18). m

Theorem 1 and Theorem 2 have several important consequences for data compression,

coding theory, and so forth. To keep the length of this paper under control, we shall discuss

10



only two new results, namely the number of parsing of given length (cf. [7]), and a large
deviation estimate of the Lempel-Ziv code redundancy (cf. [16, 20]).

Let us start with the problem posed by Gilbert and Kadota [7], namely: How many parsings
of total length n one can construct from m words? For example, for m = 2 we have four parsings
of length three, namely: (0)(00), (0)(01), (1)(10) and (1)(11), and two parsings of length two,
namely: (0)(1) and (1)(0). Thus, let F,,,(n) be the number of parsings built from m words of
total length n, and let Fy,(z) = Y024 Fiu(n)z™ be its generating function. Note that (cf. [7])

Frti(z) =™ Z (7:) Fi(z)Fop—k(z). (25)

k=0

The next result is direct consequence of Theorem 1B and it answers the question of {7].

Corollary 4A. The number of parsings built form m words of total length n is
Fo(n)=2"Pr{L¥™ = n} . ©(26)

In particular, for n = mlog, m + O(y/m) we obtain asymptotically

2" (n ~— mlog, m)? o
m ~ - " 2%
Fa(m)~ e T S(log; mym < 2(C + 8(log, n))m ‘ (27)

where C' and §(z) are defined in Theorem IB. If n = (1 + ¢)mlog, m, then the large deviation
result (11) must be used.

Proof. Consider the recurrence (25) and note that F,,(z/2) = L;¥"(z). The rest follows from
Theorem 1B and the analysis of Section 3. &

Finally, we consider the redundancy rate R, of the Lempel-Ziv code. It is defined as (cf.

(16, 20)])
Rn _ (M'n, + l)lngn —nh . ‘ (28)

(Note that (M, + 1)log M,, is the length of the Lempel-Ziv code while nh is the length of
the optimal code.) The redundancy rate R, is a measure of the additiorllal cosf in using the
Lempel-Ziv code instead of the optimal one predicted by the Source Coding Theorem (cf. [3]).
It is known [16] that for the Bernoulli model ER,, = O(loglogn/logn), but very little seems
to be known about large deviation behavior of R, that is, ho@ quickly the Lempel-Ziv code

achieves the optimal rate. The next results solves this problem.

Corollary 4B. Forr < h and large n
Pr{R, > r} = Pr{(M, + 1)logM,, > n(h+ 1)} < Aexp (—ar\/n/(h - r)) (29)

11



for some constants A,a > 0.

Proof. It is a simple consequence of (21) from Theorem 3(ii), and an asymptotic solution of
(M,, + 1)log M,, = n(h + 7). Details are left for the interested reader. m

3. ANALYSIS AND PROOFS

This section provides all necessary details required to prove our main finding Theorem
1. We shall adhere to the plan outlined in the previous section. However, for the reader’s
convenience we describe the proof in three parts: First, we present main ingredients of the
proof (Sec. 3.1), then we discuss details of the asymptotic solution of the functional equation
(cfl. Sec. 3.2), and finally de-Poissonization (Sec. 3.3).

3.1. A Streamlined Analysis

We shall consistently use the notation from Section 2. In particular, we write L,,(z)
to denote the generating function of the internal path length, and L(z,u) for the bivariate

generating function. We assume the function equation (2) holds, that is,

——ang Y - L(pzu,u)L(qzu,u) (30)
with L(z,0) = 1.

As before, by I(z,u) = L(z,u)e™* we denote the moment generating function in the Poisson
model. Let also X(z)e* = L'(z,1) and V(z2)e* = LV (2,1) + L'(z,1) — (L' (z,1))* where
L (z,1)and L}, (2,1) denote the first and the second derivative of L(z,u) with respect to u at
u = 1. We observe that X(z) and V(z) are the mean and the variance of L,,(z) in the Poisson
model. We shall need a precise asymptotics of L(z,%), X(z) and V(z) as z — oo in a cone
around the real axis for u real and positive in a neighbourhood #/(1) of u = 1.

The domain of z we shall work with is a convez cone C(D,6) defined as follows.

Definition 1. CoNVEX CONE. The set C(D,6) of 2 = z + 1y is called the conver conc if for
§ <1 and z >0 we have |y| < Dzb for some D> 0. m

The crucial part of our proof relies on proving the existence of the logarithm of L(z,«)in a
convex cone and real positive u. For this, we need a precise bounds for L(z,u) in such a cone.

Let x(u) be a solution of the following equation
(pu)*™) + (qu)™ = 1. (31)

It is easy to notice that x(u) = 1+A(u—1)+O((u—1)?). In Section 3.2 we prove the following

result that is “heart” of our asymptotic analysis of the function equation (30).
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Theorem 5. (i) There exists a convez cone C(D,8), a neighbourhood U(1) of u = 1, and a

constant £ such that for |z| > € the logarithm of L(z,u) ezists and log L(z,u) = O(z*(4)).

(it) In addition, under the same hypothesis as above, for any 8 > 0 and all | > |

o1
'3215 log L(z,u) = Q(z~(4)+5) | (32)

for z € C(D,é) and z — oo. B

Now we are ready to formulate our main result concerning the Poisson model.
Theorem 6. In the Poisson model for (z,u) € C{D, 8] xU(1) the following holds for any 3 > 0
and z — oo (with u = € for some real t in the vicinity of zero)

~ ~ 12 - '
log L(z,€e') = z + X (2)t + V(z); + O3+ | (33)

where the mean X (z) and the variance V(z) become asymptotically

~ z | z h, , ' o
X(Z) = E]ng-{- —]_L (‘)’ -1+ ﬁ -« - 61(103,2)) + 0(1) s . (34)
and , \
o zlog?z 2zlogz h
V(z) = h% + hsg (7Iz + hy - cl ah — héi(log z)) + 0(z2) , (35)
where kot "
o0 o 1 g l
a= -3 Pttt (36)
k=1 -P q
The function §y(z) is identically equal to zero when %%gs is irrational, while for E‘ZL% =%

where 7,t are integers such that gcd(r,t) = 1, the function é;(log z) is fluctuating with a small

amplitude as given by the formula below

& I(shHe(-2) 2milr e
(51(10g2) = [gxmexp (—mlog Z) , (3()
40
where - v , -.
Q(s) = [T —p** +¢7%H), (38)
k=0

and s§ = —1 + 2milr/logp for € = Z = £1,42,... 1s a solution of 1 = p~5 + ¢~5.
Proof. Using Taylor’s expansion of log L(z,u) we obtain

132 a2
(u 21) —;Flog L(z,1)+ R(z,u)

log L(z,u) = log L(z,1 +(u—1)£logL z, 1)+
) - )

13



with ‘R(z,u) being the remaining term of the following form

R(zu) = /(”‘1)3—1ogL(~ 0)dv .

Due to Theorem 5 the error term is 0295 (4—1)3). Now it suffices to note that log L(z,1) =
z and to substitute u = e’ for ¢ in the vicinity of zero to obtain (33).

The remaining part of the proof is devoted to derive the asymptotics on X(z) and V(z).
Since we need several terms of such asymptotic expansions (to prove our main result concerning
the Bernoulli model; cf. Lemma 10 below) we use the Mellin transform method. The reader
may familiarize himself with the technique from [15].

Consider first the the mean X(z). Direct differentiation of our basic equation (30) leads to

the following recurrence
X(2)+ X'(z) = X(2p) + X(2q) + = . (39)

Let X(s) denote the Mellin transform of X(z), that is, X(s) = Jo? X(2)z°~'dz. It can be
easily proved that it exists in the strip s € (-2, —1). Observe that the Mellin transform of
X'(2) — z is also defined in Rs € (—2,—1). Then, (39) translates into

X(s)= (s~ DX(s— 1) = p~X(s) + ¢ X (s) . (40)

in terms of the Mellin transforms.
To solve the functional equation (40) we make a substitution X (s) = y(s)I'(s) where I'(s)

is the gamma, function (cf. [8, 11]), and v(s) satisfies the following recurrence
()= (s =1) =p77(s) + ¢7°(s) .

After some algebra one obtains

ﬁ pitr—g*tt  Q(-2)

-s+k + q—s+k - Q(q) (41)

() =

for s € (-2, —1). Applying the Cauchy residue theorem (cf. [8]) to the above (i.e.. inverting
the Mellin transform) one proves (34). In fact, the calculation are almost exactly the same
as the ones done in [22], so they are omitted (the fluctuating function é;(x) for logp/loggq
rational is derived below).

The variance is more intricate, as already seen in {10]. We observe (after quite tedious

algebra) that W(z) = V(z) - X (2) satisfies the following recurrence
W(2)+ W'(z) = W(zp) + W(2q) + 22pX'(2p) + 220X (z) + (X)) . (42)

14
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This functional equation is harder to solve due to the last term for which there is no closed
form expression for the Mellin transform. But, fortunately, we can prove that the last term
contributes O(2) and we need only terms up to O(z) (to recover the leading terms in the
variance in the Bernoulli model as indicated by (52) of Lemma 10). Indeed, let W(z) =
Wi(z2) + Wy(z) where

Wi(z)+ Wi(z) = Wi(zp) + Wi(zq) + 22pX'(2p) + 22¢X"(2q) (43)
Wi(z) + Wy(z) = Wa(2p) + Wa(zq) + (X'(2))* - (44)

Using the tools of Section 3.2, we will prove in the appendix the following simple Tesult.
Lemma TA. A solution Wy(z2) of (44) satisfies Wa(z) = O(z) for z — c0. ®
We concentrate now on solving (43) for W;(z). Its Mellin transform W;(s) becomes
Wi(s) = (s - DWi(s —1) = (p7° + ¢ *)Wi(s) — 2(p™° + ¢7°)s X (s) .
After substitution Wy(s) = I'(s)8(s) we find
Bl)1-p° —q7°) = B(s = 1) = =2(p7° + ¢7*)s7(s) ,
and after simple iterations as in the case of v(s), we finally obtain

Cor(sy S e~ k(e = b

W](S) (1 _ _5+m, _ q—s-f-m)

—o [Tn=o
_ ar Z kL (RS )
(=0 Mnmo(1 =74 — g=s+™)Q(s — k)
We must now find the reverse Mellin transform of W(s), that is
1 ~3/2+ic0
W) =55 [ e PO)70ds (46)

Clearly, the Cauchy residue theorem is the simplest way to estimate the above integral.
Note that the poles of the function under the integral are roots of 1 = p stk 4 g7tk for
k=0,1,.... We need the following result that detailed proof can be found in Jacquet [9] and
Schachinger [19].

Lemma 7B. Let si, fork=0,1,...and £ = Z2 =0,%1,%2,... be solutions of
p—s+k + q—s+k =1

where p+ ¢ =1 and s s complex.



(i) Forall€ e Z and k = 0,1,...
—~14+k <R <o+ k (47)

where ag is a positive solution of 1 + q~° = p~°. Furthermore,

(2¢-1)rm < 3(sl) < (2¢+ D)« .
logp log p

(ii) If R(s§) = =1 4+ k and S(sk) # 0, then logp/ logq must be rational. More precisely, if
%%g-s = * where gcd(r,t) =1 for r,t € Z, then

20rmi
log p

sE=-1+k+ (48)

forallte Z. m

Having the above, we can continue our investigation of Wl(z) given by (46). Asin [4, 11, 22]

we conclude that the dominating pole of the Cauchy integral is s = —1, and for log p/logq =

r/t (rational) we also must consider the poles s§ = —1 4 2¢rri/logp. Actually, we can assess
that the remaining poles for & # 0 contribute only O(log z) which is negligible compared to
O(z) contributed by 17172(2) (cf. Lemma 7A). We first consider s§ = —1 (irrespective whether

log p/ log q is rational or not). This results in evaluating the residue of f(s) = —2a(s)- b(s)

where
a(s) = 27%I(S) (P +¢ )1 -p° +¢7°) 2%,
b(s) Q-2 T[T -p* ~g=**) ' = Q(-2)/Q(s - 1) .
m=1

Using MAPLE, we find the following expansion for a(s) around s§ = —1

zlogz 1 zlog 2 (logz I v=-1 By 1)
202 T B2 h? B h +0(1).

A) =~ GrIE T+ D T s
Also, by Lemma 2.3 of [4] (cf. also Lemma 3.1 of [22]) we find that

b(s)=1-a(s+1)+0((s +1)%),

where a is defined in (36). Thus, taking the product of the above, and computing the coefficient
at (s + 1)7! we obtain the desired residue. This leads to the dominating term in (353) except
the function 6;(z) coming from the poles s§ for ¢ # 0.

Let now ¢ # 0. If logp/logq is irrational, then R(s{) = ao > —1, thus this pole only
contributes O(279 log z) and can be savely ignored in comparison with O(z) coming from
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Now we assume that log p/logq = r/t (rational) for some integers r,t € Z. By Lemma 7B
we know that s§ = —1 4 27ilr/logp for ¢ € Z. The residue of the function under the integral °

(46) becomes

0 F(Sé)Q(_Q)C—Zhl’r log,, =
A (log z) = — ,
= RRa D

00

where h(sf) = —p’sé logp — q‘sé log g. Bu.t h(s§) = h = —plogp — qlog g since prtrin/logr —

q¥rim/logP = 1. Thus, Ay(z) = h~26;(z), and this completes the proof of Theorem 6. m

As a simple consequence of Theorem 6 we obtain the following corollary that completes
the proof for the Poisson model. Actually, the Poisson model is “cracked” by Theorem 6. We
formalize it in the next corollary which provides the limiting distribution of the path length in

the Poisson model.

Corollary 8. For any ¢ > 0 the following takes place

i (z,et/\/V(z)> —tXEINVVE) _ 22 (1 L0 <1/7n1/‘2+e>) , (49)

i.e., the path length is normally distributed with parameters X(z) and V(z). Moreover. the

moments Z(z) converge to the appropriate moments of the normal distribution. B

The main problem that remains to be settled is to de-Poissonize Corollary 8, that is. to
obtain results for the original Bernoulli model. This work is of tauberian style, and needs

subtle arguments. In Section 3.3 we prove the following result.

Theorem 9. DE-Po1ssoNIZATION. Consider the Bernoulli model, and let X (m) and V(m) be
the values of the mean and the variance of the Poisson model at z = m. Then, for any 3 > 0
and real t in the vicinity of zero '

Lo, (ez/ﬁ) exp (_ X\}ﬂ_@)t _ V(m) - m()?/(m))'ztz) s O(1/7n‘/7-'—f3) 50)

m 2m

for large m. m

The rest is easy. Let X,, = )?(m) =c¢ymlogm+ O(m) and V,,, = V(m) - 7712(.,‘?’(m))2 =
c;mlog m+O(m). We shall prove below that EL,, ~ X,,, and Var L,, ~ V,,, and furthermore
L,, converges to the normal distribution with parameters X,, and V,, which completes the

proof of Theorem 1. More formally:

Lemma 10. There ezists ¢ > 0 such that
L, (et/M) exp (—tXm/\/VJ> = (/2 (1 +0 (l/ml/2+e>> (1)
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with the variance
Vi = Var L,, = V(m) — m(X'(m))? + O(m) = cymlogm + O(m) . (52)

Proof. Observe that -(fm(t) = Lm(e‘/m)e‘x"“/m is the Laplace transform of a random
variable €, = (L., — X;,)/V/Vn. From Theorem 9 we know that for any real ¢ the moment
generating function £,,(t) converges to e'’/%, that of the standard normal distribution. But,
clearly the convergence is also true for any complex ¢ since |4, (t)] < &,.(|t]) + &n(=]t]), so

Theorem 9 implies also the convergence in moments. Hence

ELm - X

lim E(6,) = lim Sem = X0m) g
m—oo m—oco ‘/Vm

"}in}x’ Var(¢,,) = mlinéo Yar L =1.

m

Observe that (52) follows directly from the above and (50) (cf. [9, 18]). ®
3.2 Asymptotic Solution of the Functional Equation

Our goal is to solve asymptotically the functional equation (30) for u real positive in a
neighbourhood U(1) of u = 1 and z — oo in the convex cone C(D,8). More precisely, in this
section we prove Theorem 5 presented in the previous section.

We start with establishing Theorem 5(i), that is, we show that log L(z,u) = O(2*(*)) in
C(D,8) x U(1) where k(u) is defined as a solution of (31). We found, however, working with
L(z,u) rather inconvenient due to the fact that its exponential growth makes it hard to control
the function even in a small domain. Therefore, we introduce a polynomial kernel which is a
function f(z,u) defined as
L(z,u) L(z,u)
L(z,u)  L(quz,u)L(puz,u)

flz,u) =

Note that f~1(z,u) = 1/f(z) = leog L(z,u).

In the first part of this section, we shall work with f(z,u) as a function of 2, so we often
simplify the notation to f(2). We also write f'(z) to denote the derivative of f(z) with respect
to z. Clearly, the kernel f(z) satisfies the following differential equation

"(2) =1~ pu av z) . . 5
10 =1 (o * Fgem) 1 o4

Since L(0,u) = 1 and L(z,1) = €* we also have f(0,u) =1 and f(z,1) = 1.
Instead of proving Theorem 5(i) we establish the following result that directly implies
Theorem 5(i) by noting that log L(z,u) = [5 f~!(z)dz.
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Theorem 11. .There ezists a polynomial cone C(D, ), a neighbourhood (1) of real positive
u = 1, and a constant £ such that for |z| > & uniformly in (z,u) for some a(u) and A(u)

(independent of z) the following holds
a(u)z' | < 1f(z,u)] < Aw)|e' )] (55)

with a(u),A(u) = lasu— 1.1 ‘
The proof of Theorem 11 proceeds into steps, namely, we first show it for real 2 (cf. Theorem
11A) and then extend it to complex z (cf. Theorem 11B). We formulate this formally in the

following two theorems.

Theorem 11A. There ezist a neighbourhood U(1) of u = 1, a constant £, and non-necgative
a(u) and A(w) such that for all real z > € and u € U(1) the following holds: a(u)x!="() <
f(z) < A(u)z! ") where a(u), A(u) = 1lasu—1. 8
Theorem 11B. Foré < 1 and any' 8 > 0 (with §+8 < 1) there existsU(1), a constant &, and a
convez cone C(D, §) such that for a constant B(u) the following is true | f/(2){ < B(u)|z|~*(W)+8
for|z| > €& m

Before we proceed to prove Theorems 11A and 11B we observe that they directly imply

Theorem 11. Indeed, note that
S = JRED + [, S

Thus, f(z) — f(R(2)) = O(z*W+5+F) which establishes (55) provided § + f < 1.
We now formulate five facts that are used in the proofs of Theorems 11A and 11B.
Fact 1. Consider a differential inequality of the form f'(z) < b(z) — g(z) f(2). Let (G(2) be the

primitive function of g(z). Then for any z and 2o
f(2) € f(z0)eC()=G) 4 /z b(z)e &~y
20
Proof. Note that (f(z)exp(G(z))) < b(z)exp(G(z)). Thus, integrating this over (z, z) we
establish our claim. m

Fact 2. For all a and d in a compact set such that a,d > 0 and r — 0o we have the following

for some constant A > 0

T d _ .d
[ (=5
0 d

yd - z¢ ;
/o(m“—y“)exp( e >dy = aAzr*T'""H(14+0(1/2)),
d

/Oxe“yddy = (1+0/2)) .

adzd-1

=1+ 0(1/2)) ,




In particular,

T yd—l'd
/Oexp< y )dyzAxl_d(l+()(17;n)).

Proof. These asymptotic formulas seem to be well known (cf. [21]), however, for completeness

we provide a sketch of a proof. Therefore, we only sketch a proof of the first two formulas. Let

z d _ ..d
I(z) = / y* lexp (y i ) dy .
0 d

Using the Taylor expansion of the form y* = £ + (y — z)bz*~1(1 + O(z~1)), one obtains

I(z) = /ox (25" + (y = =)@ - Dz*2(1+ 0(1/2))) exp (v - 2)2*~1(1 + O(1/x))) dy
(1+0(1/2)) [ o exp(-ya"")ay

2*~4(1 + 0(1/z)) /0 Y e vdy .

To prove the second formula, let

z d_ gd
J(a:):/o(z“—y“)exp(y y )dy.

Using the same Taylor expansion as above y® = zb 4 (y — z)bz®~'(1 + O(z™!)), one obtains

J(z) = / (=27 + (v = m)(a = Da" (1 +0(1/2)) exp ((y - )z (14 0(1/2))) dy
= a a—1 z _ d—1
= az /0 yexp(—yz®)dy

o ¢]
2121+ 0(1/2) [ yeay,
0

and this completes the proof. B

Fact 3. (i) Let y.(z) be a sequence of nonnegative continuous functions of = satisfying the
recurrence inequality Ym41 < ym(i) < F(z,ym). If F(z,y) is continuous in (z,y), and for
all y € [0,y0(0)]wehaveF(0,y) < 1 — ¢ for ¢ > 0, then there exists a neighbourhood U(0) of
z = 0 such that y,,(z) uniformly decreases to zero with an ezponential rate; more precisely
ym(z) = O((1 - €)™).

(ii) Under the same hypotheses as above, let now ym41(z) < B(z) + ym(z) - F(z,ym). If for
a small neighbourhood U(0) of * = 0 we have F(z,y) < 1 — ¢ for e > 0 and max{B(z)(1 +
1/€),y0(z)} < D, where D > 0, then the sequence yn(z) is uniformly bounded for x € U(0),
that is, ym(z) < D. '
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Figure 2: Mustration to the convex cone C(D,¢) and the domains D,, defined in Fact 4.

(iii) Under the same hypothesis as in (i), the solution Y, (z) of yms1(z) < max{ym(x), ym(z)"
F(z,ymn(z))} uniformly decays to zero. Similarly, under assumptions of (i) y,.(z) satisfying

Ym+1(z)-< max{ym (), B(z) + ym(z) F(z,ym(z))} is uniformly bounded.

Proof. These results are direct consequences of the fixed point theorem. For completeness,

we show how to prove part (ii). Note that the recurrence has the following solution
’ m m
Ym41 < B(IE) (1 + Z F(IE, yk)) + yo(l') H F(‘r9yl\) .
k=1 k=0

The result follows directly from the above and the assumptions. &

Fact 4. Let us consider U(1) of u = 1 such that 0 < max{pu,qu} < v < 1. Define for
m = 1,2,... a sequence of increasing compact domains D, as D, = {z : R(z) € [£,r™™]}

with £ > v (cf. Figure 2). Then,
2 €Dpy1 — Dy = puz, qur € D, .

forallz. m

Fact 5. Let f(2) be a holomorphic function defined on a convezr cone C(D,§) on which f(z) =
0(2%) for some a when z — oco. Let f*)(z2) = d—'i’%f(z). Then, for all k > 1 there exists

smaller convez cone C(D',8) with D' < D such that: f*)(z) = O(z*=*9).
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Figure 3: Ilustration to the proof of Fact 5

Proof. The Cauchy formula reads (cf. [8])

- flw) 4.
G C 2im f (w — z)*+1 fw - o "

with the integration being done on a complex loop encircling 2. Fix z € C(D, §), and let z also
belongs to the boundary of another (smaller) cone C(D’,$) (i.e., z = z + iy with y = D'z?%).
We now consider a circle of integration that is the largest possible but still contained in the
bigger cone C(D,§) (cf. Figure 3). Note that the circle we are working with has the radius
smaller than (D — D')|z|°. Thus, using the fact that | f(w)| < Bjw|® for some B and complex
w, we finally obtain after a trivial majorization in the above Cauchy formula
21°
(=F(D - D))F

|F*)(=)) < (kDB

This proves Fact 5. m
A. AnALYSIS ON REAL AXIS

We now prove Theorem 11A. For simplicity we write a and A for a(u) and A(u). and & for
k(u). Let A,, and a,, be upper and lower bounds for f(z)z*(*)=" on the domain D,, (restricted
to real line) defined in Fact 4. If we prove that both a,, and A,, are bounded (with respect to
m). then we establish our result. We concentrate on the upper bound since the lower bound
mimics the proof of the upper bound.

We use induction with respect to m. Clearly, 4, is bounded on Dy N C(D,§) since L(z,u)
is nonzero on this set for some (1) due to compactness of D, N C(D,8) and L(z,1) = ¢°.

So, let now z denote a real number belonging to D,,4+; — D,,. By induction assumption,
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f(puz) < A, (puz)’~" and f(quz) < An(quz)'~*. Observe now that (53) and the above
implies f/(z) < 1~ 2% 14! f(z). Thus, by Fact 2 with zo = vz we have

1< ey (U2 4 [ (£ Y0y

xr m

Multiplying the above by z*~! | we obtain A,,4+1 < max{A4,,, Al 41} where

. 1 - I/N s T K froald
;n“ < A, max {l/ exp(_( — ) )+/$exp <y—nA _) dy} .

€[y~ mp-m-1]

We proceed in two steps. First, we let v,, = A,;,, ™™, and prove that v,, exponentially decays
to zero. Secondly, we prove that A,, is an increasing sequence uniformly bounded from the
above. '

We know, by Fact 2, that

xex Yy - dy - zl—r& 1-— e—x"(l—u") 140 1/.17)) — zl—n‘,,] :IT) ,
p P .
where 5(z) = 1 + O(1/z). Thus
Am+l < III&X{A,,,,, Apv™" exp (-'V_xm/(AmK)) + A1:L7I(’/_7)L/(A771)]/N)} . (38)

which can be reduced to
VUm41 < va(u, vm) (59)

where F(u, v,,) = ma.x{z/"',exp(—(vmﬁ)")+V"n(v,§]/"). Note that F(-,-)is of the form already

discussed in Fact 3. Clearly, there exists mg such that F(1,v,,,) < 1 for m > mg, which implies
exponential decay of v,,. To see this it is enough to observe that F(z,0) = v* < 1 and F(-,)
is a continuous function (for u = 1 one also has A,, = 1, as desired). Thus by (i) of Fact 3,
the exponential decay of v,, follows.

Now we return to (58) to get
A1 < Ay max{1, (z/"" exp(—(vmk)™!) + 7)('0,;1/"))} ,

and then A, 41 € (14 O(vn))A,n- Thus

m

Anir < A J] (14 0(@)) < o0, (60)

7=0

which proves that A,, are uniformly bounded by A,. Clearly, as #4(1) becomes smaller and

smaller (i.ev., u — 1) the constant A, (u) tends to 1.
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The lower bound can be shown along the same lines. In particular, we derive a,,41 >

min{a,,,a,,} where

9 1- R K z K _ ok
a;n+1 .>_ a,, min {1/—"‘ exp(—L__V_)x__) +/ exp <y A ) (]y} .
vz .

T€[p—m p—m-1] Kap, Kay,

Since an V™™ < Uy, we get aymt1 2 (1 — O(vy,))am. This gives the expected result. We also

have the uniform lower bound a(u) for a,, tending to 1 as u — 1.
B. ANaLYsIS ON THE COMPLEX PLANE

Now we prove Theorem 11B which extends Theorem 11A to the complex plane (more

precisely: to a convex cone). We need the following preliminary lemma.

Lemma 12. Let A, a and U(1) be defined as in Theorem 11A, and let z = z + jy be such that
z € C(D,8). If | f'(z)] € Bx=")*B for some 3 > 0, and |y| < 2177 with § < 1 — 3, then

(a= B2t < (f(z) < (A4 Bel|Z]at e (61)
U < B8 2) (62)
21" (g — BP N < R(f(=z < '~ (A + Bz® gl ’ (63)
( =) (2)) .
Bzr&(u)—lxﬁlﬂl

xf £—-1 L )

)= (q — Bzf|Y|) i z*-1(A + BaP|¥|) .
A+ B+ (BT = "TNSR - 0 )

Proof. The proof is a straightforward application of f(z) = f(z)+ [ f'(y)dy and the following
estimate | [ f/(y)dy| < |z — z| maxye(z{f'(¥)} (cf. [8]). For example, the left-hand side of

(63) can be proved as follows:

R 2 £ = | [ 1)y aa =~ ol B

The last two inequalities are direct consequences of the previous ones and

L RUE) o SU(R)
&) TR+ W) + @)

This completes the proof. ®

Equipped in this result, we proceed to the proof of Theorem 11B. The proof is by induction
over the domains D,, as defined in Fact 4. We have already proved in Theorem 11A thatin a
neighbourhood /(1) there exist a(u) and A(u) satisfying Theorem 11A such that a(u), A(u) —

1 as u — 1. We further briefly denote these quantities as ¢« and A. We consider a convex
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cone such that the domains D,, inside such a cone form a compact set (cf. Fig.2). Finally, we
assume throughout the proof that 6 < 1 — /.

Let B,, be an upper bound of |f’(z)|z"(“)‘ﬁ where z = ®(z). If we prove that B,, are
uniformly bounded, then our theorem is shown, since |2] = O(R(z)) in our convex cone. Clearly,
B, is bounded, so we proceed as before by induction. Below, we write z = R(z) and y = 3(z).

Let g(2) = 7E55 + 7¢5a7y» and then f'(z) = 1-g(z)f(z). By Gi(z) we denote the primitive

~ function of g(z). Using Fact 2, we just have (with 29 = vz)

1
F(2) = f(vz) exp(G(vz) - G(2)) + / exp(Gi(t2) = G(2))=dt
Differentiating the above, and after some elementary algebra, we obtain
. :
£12) = r(2) exp(G(v2) - G()) + [ (glt2) = g(2)) exp((i(ez) - G(N)=dt (66)

with r(z) = (vg(vz) — g(2)) f(vz) + vf'(vz) + (1 - v).

Our next task is to estimate various terms in (66) to get a suitable recurrence for B,,. This
- is possible since by Fact 4 we have putz and qutz belong to D,, for all t € (v, 1] if =z € D, 4,
and thus we can invoke the induction hypothesis.

Let us start with an estimate for g(tz). Using (64) and (65) of Lemma 12, we immediately

obtain
(g(t)) < (t2) " Bul¥|Fila, A, Bu)

R(g(tz)) > (tz)~1(A - Bmzﬁ1%|)|Fl(a,A,Bm),

where Fi(a, A, B,,) = a~%(1 — B,)~? and Fy(a,A,B,,) = 1/((A + B,,)? + B?) are ratio-

nal functions of a, A, B,, such that Fj(1,1,0) = F;(1,1,0) = 1. More precisely, we have

limy—y Fl(a(.u), A(u), Bi(u)) = limy— Fa(a(u), A(w), By(u)) = 1. .
We now estimate R(G(z) ~ G(tz)). Observe that for 2’ = z + iy

1 1
R(G(z) - G(tz) = [ R(g(z8)2)d6= | (aR(9(82)) - yS(o(82))d6
t t

1
_>_ =" ((a - Bm)F2(a’ A’ Bm) - 13_] |y|Bm Fl(a’ A, Bm)> / 9'{_1(10
t

J1—ts
K

e

F(a, A, B,) (67)

where F3(a, A, B,,) = (e — By )Fy(a, A, B,,)) — By, Fi(a, A, B,,,) being a rational function of
a, A, B, such that F3(1,1,0)=1.
Now we are ready to give estimate on the terms of right hand side.in (66). We start with

estimate over r(z). We refer to the previous estimate over g(tz) to get the following:

lvg(v(2)) ~ g(2)| < (1 + v Nz Fi(a, A, B.).

25



We also have
fw2)] € ' (A + 272 [Bo)

hence

[(rg(v(z)) — g(2))f(rz)| < (1 + v*"YFy(a, A, B,,)

with Fy(a, A, Bm) = Fi(a, A, B,)(A + B,,). We easily check that F4(1,1,0) = 1.

By hypothesis |f'(vz)| < (1/:1:)""+[’Bm, hence |r(z)| < B,,L(V:IT)—"'Hj + R(u, B,,) with
R(u,B,)) = (1 + v V) Fy(a, A, Br) + 1 — v

Estimating the integral on the right hand side of (66) is more intricate to deal with, and

needs careful computations. First we estimate g(tz) — g(z) under the integral in (66). We take

advantage of the identity g(tz)— g(z) = ft1 g'(82)zd6. We formally have —g'(z) = ”'}).2({;‘?;“) +

iQ_“f):(L'i%il_ We refer to the estimate |f'(z)| < B,z "t’.and |f(z)|7' < z ' Fi(a, A, B,,)

quzs
valid for z € D, to get

B4x=2

B+kK+2

We observe that (pu)*t? +(qu)*t# = u < 1. Using the estimate on R(G(¢z)~((z)) established

l9(tz) — g(2)| < Bmz ((pu)™* + (qu)**’)(Fi(a, A, By))? (68)

in (67), one shows

<

/Vl(g(Zt) — g(2)) exp(G(zt) — G(z))zdt

T zﬁ+x—1 _ yﬁ+x—1

exp (y i Fi(a, A, B,,L)> dy .
K

2
Bump(Fi(a, A, Bn)) /uz B+K-1

" By Fact 2, we obtain
{ / N(g(2t) — 9(2)) exp(Gzt) — G(2))=dt

with Fy(a, A, Bn,) = (Fi(a, A, Bn))2(Fs(a, A, B)) L.
Putting everything together we finally obtain

< pBuna? (14 O(1/2))Fs(a, A, B.))

lf’(z)l S R(u7Bm)exp(—(1 _VN):EKF3(G', AaBm))
+ Bzt (uFs(a, A, Bo) + v exp(~(1 - v*)2"Fy(a, A, B,.))) -

We use this global esfimate to carry out the recurrence for B,,4; which becomes

Bm41 < max{Bn, B, .} (69)
- with
B,’n+1 < B, (qu(a, A, B,)+ ports exp(—(1 - 1;“)1/'”"‘ Fs(a, A, Bm))) +

+  R(u, Bp,)exp(—(1 — v®)z"Fs(a, A, B.)) . (70)
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Let us choose (u, Bp)in a compact neighbourhood of (1, 0), such that, for example F};((i, A, Bm.) >
1/2. We can rewrite (70) as:

Bi.y1 € Bu(pFs(a, A, Bn) + 60) + 6,

where &, = exp(—(1 — v*)v*™ [2) and &, = v*™&,, are two sequences both tending to 0 when

m — oo. For any € > 0 we can take mg large enough such that for all m > mg:
B;n+1 < Bm(#FS(aa A’ Bm) + 5) +¢

In summary, we have
Bm+1 < max{Bnl, BmFG(u, Bm) + 5}

with Fg(1,0) < g+ ¢ < 1. Since B,,(1) = 0 and € > 0 can be made as small as needed in a
neighbourhood U(1) of u = 1, by Fact 3(iii) the sequence B,, is uniformly bounded. Note that
By (u) is continuous and that By, (1) = 0.

In passing, we observe that we have also proved that f~1(z) = O(z*(*)~1) and g(z) =
O(zn(u)—l).

C. FINISHING THE PROOF OF THEOREM 5.
We now prove Theorem 5(ii). We start with a simple result.

Corollary 13. Let f(}(z) be the lth derivative of f(z). Then, for any 3 > 0 and 6§ (with
B+ 6 < 1); there exists U(1), a constant £, and a convex cone C(D,§) such that FO(z) =
O(2~HW+BA=I+1Y for |2] > €.

Proof. The corollary was already proved for / = 0 and [ = 1. For arbitrary /, applyving Fact 5
to f'(z) yields f(z) = O(z~#¥+8-(-1)8) Set now § > 1—¢ (withe > 0)and 8’ = B+ (I—1)e

to prove the corollary due to arbitrariness of 5. m

In order to establish Theorem 5(ii) we need an estimate on higher derivatives of f(z,u)

with respect to u (hereafter, we put again u into the function f(z,u)). Define

Ry ) = O
£ (z,0) = 5 f o w)
We prove the following

Theorem 14. For any 3 > 0 and § < 1, there exists (1) and a convex cone C(D,8) such
that for (z,u) € C[D, 6] x U(1): f,fl’m(z, w) = Oz~ (8-t

Proof. Observe that it suffices to show that f{%*)(z,u) = O(2'~*(*)+7) since by Fact 5 we
obtain f{*)(z,u) = O(z~*W+A=1+1) for any B > 0 as in the proof of Corollary 13.
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To prove f{O%)(z,u) = O(z'~*¥)+F) we proceed by double induction: one with respect to
& and the other with respect to increasing domains D,, as discussed in Fact 4.

For k = O, our clalim is true by Theorem 11B (in fact, in this case 3 = 0). So, we assume
now that our theorem is true for all : < k and all I > 0.

After taking the derivative with respect to u, our basic functional equation (54) is trans-

formed into

0% f(z,u) = fOD(z ) = (puf(o,l)(l’uz,u) quf(O,l)(quz,u)) f(z,u)

9204 Flpuz, )2+ (flquz,w))?
pruzf1O(puz,u) - pfON(puz,u) | PuzfO(quz) — qufOV(qusz, u))
s (Flrur)? (Flpuz )7
(i ) foN(z,u) .

fpuz,)  flquzu)

This formula suggests the following general scheme

PRz, 0) = by(2) + aa(2) — 0(2) 19z, w) (1)

=

where ay(z) being of the form (!(z}:::()))k“ + U(f:z()’)%“ and R;(z)’s are polynomials of degree

k+ 1 with terms of the form as zlf(l’i)(z, u) at points z, puz and quz for 7 and [ strictly smaller

than k. Furthermore,

A= [P OBy )+ T H 0K (s z.u).
06) = (s s+ (g o) S

We can easily estimate ax(z) and bg(2). For the former, we just note that by the iuduction
assumption for ¢ < k — 1 we have 2/ f{(z,u) = O(2!=*(*)+#) hence ax(z) = O(1). For the
latter, we use the induction with respect to the increasing domains D,,, as in the previous proofs.
Thus, after elementary calculus we obtain |by(2)| < pa(u)z? due to (pu)=(¥)+5 4 (qu)()+8) =
p < 1, where a(u) — 1 asu — 1.

Let now (', be the upper bound on |f(°'k)(z, u)z"(“)‘ﬁ"ll over the domains D,,,. As before,
we shall prove that C,, are uniformly bounded for all m which will complete the proof. To

develop a recursion for C,, we apply Fact 2 to the differential equation (71). One derives
FOR 2, u) = fvz, u)ef)=G0E) 4 / (ax(z) + bi(z))eF @GR g (72)

In sequel, we estimate the terms of the above equation in order to obtain a recurrence on (/,,.

From (67) we have

|exp(G(vz) — G(z))] < exp (—z"(“)(l - u"(“))Fz‘l(a, A, Bm))
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here F3(a, A, B,,,) was defined below (67). Furthermore, by Fact 2 we also have the following

/ﬁak(x)ea(x)_c(”)d:z: < py(w)ztr)

/ bi(2)eC@ -G gz

YRl

© Cpa(w)e? 1701+ O(1/2))

IN

where p;(u), a1(u) < 0o do not depend on 2, and a(u) — 1 as u — 1.

Putting everything together, we finally obtain
Cm+1 < max{Cy,C},
where
Cris1 < pr(w)v™ + Coy (ﬂaz(u) + l/lw_"‘(’;) exp (—pz(u)u—"(“)"‘(l - u"(")))) (1+0(1/x))
for some 0 < p2(u) < oo and g < 1. Clearly, the last recurrence can be re-written as
Cim+1 < max{Ch,,c(d)+ F(d,C,,)Cn}

for some functions, ¢(-) and F(-,-) such that F(0,y) < 1 and ¢(d) < co where d is the diameter
of U4(1). As in Section 3.2, we can now use Fact 3(iii) to show that (', are uniformly bounded

for some (1), and this completes the proof of Theorem 14. B

Finally, we are ready to complete the proof of Theorem 5(ii), that is, we show that for any
> 0 all derivatives of log L(z,u) are of order O(2*(*)*#). First, we note that the derivative
in z of 9*L(2z,u)/0u* is equal to 8*(f(z))~!/0u* which leads to

0 =9, '
T o3 log L(z,u) = / 3u"‘f (z,u)dx .

But, the kth derivative of f~!(z,u) is a sum of terms like f{O*(z2)(f (z)v)"z and terms like
(fOV(2))¥(f(2))"F=1. By Theorem 14 the former term is of order O(z~*)~1+8) while the

[

latter is O(2" w(u)= ~1+kB)  Since B > 0 is an arbitrary positive number, the proof of Theorem 5

is finally completed.
3.3 De-Poissonization

In this subsection, we prove the de-Poissonization Theorem 9. We use the Cauchy formula

d
Ln(w) = 22 § 102,055 (73)

where the integration is over a circle with the center at the origin and radius m. We split this

circle into two non-overlapping arcs A,,(6) U A, (0) = {z : |z| = m} where w = me* is a
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(0,m)

Ay (6)

Figure 4: Nlustration to de-Poissonization.

point of the circle. (We use standard notation for polar coordinates, that is, for z = pe'? we
set p = |z| and 8 = arg(z).) More precisely, for w = me'? (6 > 0) the arc A,,(8) is defined as
An(0) = {v: Jv| =m & -6 < arg(v) <8}, and A,.(8) = {v: |v] = m} — A, () (cf. Figure
4). We also write A(w) and -./_t(w) for these arcs.

Our proof of the de-poissonization is based on the ideas already used in Jacquet [9], and
Rais et al. [17]). Namely, we shall show that the main contribution of the Cauchy formula (73)
comes from the integration over the arc A4,,(6) while the remaining contribution over A,,(4)
is exponentially small.

To proceed along these lines, we need upper bounds for L(z,u) over the arcs A,,(6) and
A, (8) for some w = me*® on the circle of integration. In Theorem 5 we have already developed
a suitable bound over the first arc, so we need only a bound for |L(z, )| for z € A,,(#). We
denote such a bound as L(w, ) for w = me®, that is, maxvejmw){lL(v,u)l} < L(w,u). In
passing, we observe that for w = R(w) = z real (i.e., § = 0) the arc A4,,(0) coincides with the
whole circle of integration (of radius m), and L(z,u) = L(z,u). Also, for any complex w we

have L(w, 1) = [e¥|.
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Before we formulate our result, we must introduce some new notation. Let «(8) and p(u)
be two positive functions of # and u in a neighbourhoods Uy(0) and U, (1) respectively of 0
and 1. Actually, we want «(0) = 1 and p(1) = 0, and, if § # 0, then cos@ < () < I, and if
u # 1, then 1+ p(u) > x(u).

We prove the following theorem that provides the desired bound for L(z,u) over the arc
A (6).
Theorem 15. There exist neighbourhoods Up(0) of 6 = 0 and Uy(1) of u = 1 such that for
some w = pe'’

max ){|L(v,u)|} < I(pe', u) < aB) exp (a(e)p“‘#(")) : (74)

veA (0

when p — oo, provided a(f) = 1 — 62/4 and 1 + p(u) > k(u) .
Proof. The proof is by induction over increasing domains as already discussed in Fact 4.
However, since we work now wit.h polar coordinates we redefine them. Let F,, = {z =
pe : 8 € Up(0) & p € [Epo,v ™ po]} such that 0 < max{pu,qu} < v < 1 and € > v (cf.
Figure 4), Moreover, we request po > 1 such that for all p > £pg we have a(6) exp(pa(8)) >
exp(p cos @) for § # 0 and for some (small) Uy(0) and U, (1). A

Take now such a small U, (1) that L(pe®, u)< a(8)exp (0(0)p1+“(“)) holds for v # 1 or
0 # 0 (i.e., for z € F). This is possible due to our choice of po. Now, we assume (74) is true
for all m’ < m and we prove it also holds for m + 1. Let z € F,,41 — Fp,. From our basic

functional equation we have for z9 = poe*
L(z,u) = L(zp,u) + /~ L(puz,u)L(guz,u)dz ,
%0
which for w = pe*® and wg = pge*’ translates into
T nnif T ib & 9 . W 9
L(pe”,u)< L(poe”,u)+ | L(puze'”,u))L(quze’”,u)dz .

PO

Since puzr and quz both belong to F,, we have by the induction
L(puze®, u))L(quae”, u) < a*(8) exp (a(f) ((pu) +4() + (qu)i+4() g14u()

Observe now that due to 1+ u(u) > x(u) we have (pu)'t#(¥) 4 (qu)1+4#(*) < 1 by the definition

of k(u). Therefore,

L(pe®,u) < L(poe”,u)+ /p o?(6) exp (a(O)z1+“(“)) dz

o

IN

_ ) . u(u)
Lpoe, )+ [ a(0) (2] oxp (alo)e ) da
0

PO
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which, after integration by parts, leads to

— . —_ . 0(0) 1 { l+u(u)
L(pesu) < Tlpoe,u) + ——2b— (exp (a(8)p™)) = exp (a(8)p}

< L(poe®, u) + () exp (a(ﬂ)p”“(“)) — a(f)exp (a(ﬁ)pé’L“(“))

since in Uy, (1) we can always choose pg > 1 such that pg(“)(l + u(u)) > 1. Finally, by induction
L(poe™, u) < a(8) exp (a(8)py ™) s0

L(pe®, u) < a(8) exp (a(8)p! ()

in Frn41 — Fm, hence also in F,,, ¢, and this completes the proof of Theorem 15. &

Finally, we are ready to finish the proof of our main result Theorem 1, by completing the

proof of the de-Poissonization Theorem 9. To recall, we want to prove the following (cf. (50)

vm 2m

We now split the Cauchy formula (73) into two parts, namely

L (V) exp (— X(m), V(m)- m()?'("‘))zt2> =14 0(1/m!/2-8)

’ Lm(u) = Im(u) + Em(“)

with /,,(u) being the part of the integration over A,,(8) and E,,(u) the integration over A, (#)
for some w = me'? belonging to the circle of integration and lying on the boundary of a convex

cone C(D,6). More precisely, we set

ly,~m  pDmé=1 ) '
() = P [ Mo, (75)
= mim ™™ 16 —1imé _
En(u) = or /Iole[Dm6-1,7r] L(me*™,u)e de . (76)

We compute the above integrals separately.

We start with (76). From Theorem 15 we have
Eo(u) < m!m™™ exp (a(Dm&_])mH“(“)) .

Now, by Stirling’s formula: m! = m™e™™v2rm(1 + O(1/m)), and after some algebra we
obtain (setting a(8) = 1 — 82/4 and 1 + p(u) > s(u))

Epn(e/V™) = exp (—0.2-')'- D*m*-1 4 O(v/mlog m)) .
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)

Thus, as m — co we have E,,(e!/V™) — 0 exponentially fast as long as 6 > 3/4. By Theorem
6, X(m)/v/m = O(y/mlogm) and (V(m) — m(X'(m))?)/m = O(log m), so

17}1—2})0 E, (e'/‘/’_';) P ( \}ZT,:') tl ‘/ (Tn) - ;’lll(l){ ("L)) ) B 0(6_1”‘)

for some ¢ > 0 and 6 > 3/4.
Now, we turn our attention to the evaluation of I,,(u). Let us examine the following

expression

_ mTe ™/ 21m ¢/ X(m) ,V(m)
Im(t) = — I (e )exp ( t T t sweall I

After a change of variables (i.e., @ = 6/,/m) we obtain

Dtz Xm)y V()
- 8/ /m _t/\/m _ (nL) _ ("l') _ .
I (t) = \/2_7F/Dm6—1/2 L(me ,€ ) exp ( Jm Sy m(:0+ 1)) db

We now assume that § > 1/2. Then, by Theorem 6 for any' f > 0 and some 4, (1)

log(L(me,et)) = me? + X(me®)t + V(";e )t‘)' + O(m'tPe3y |
X(me'¥) = X(m)+ miX'(m)+ 0(6*m'+¥)

V(me?) = V(m)+0(m'*?),
and me’¥ — m — mif = —m6?/2 + O(m#°). Thus,
log(L(me'®, 1)) = X (m)t=V(m) 5 = m(i0:41) = X/(m)mibt—mZ +0(m™(6] +1") (77)
which proves that
2

: X(m)t V(m)t? . L= 6 2=
9/ /m t/ym _ _ _ _ ’ _ - 1/2-0
L(me ,€ ) exp ( N 5 m(i0 + 1) | —exp | itX'(m)0 5 O(1/m )

provided m!+#m=3/2 — 0, that is, § < 1/2. Furthermore, since ®(me®* —m —mif) < —mé?/4

it is easy to see that for any € < 1/4 uniformly in ¢ on a compact set and m large, we have

, % % 2
L (tha/\/m’ee/\/m) exp (_X(m)t _V(m)tt m(i0 + 1))

NG Py < exp (E + €6 — (0.25 - 5)()"">

which, by the dominated convergence theorem, leads finally to

Im(t) — X/ m-5 4g = O(1/m!135) |

1
w0
To complete the proof of Theorem 9 it suffices to observe that the above integral is equal to
exp(~(X'(m))*2/2). After multiplying the above by exp(—(X'(m))*t?/2) we obtain (50) of
Theorem 9. '
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In passing, we note that in the course of these derivation we establish a relationship between
the mean X (z) and the variance V(z) of the Poisson model and the mean EL,, and the variance
Var(L,,) of the Bernoulli model. For example, a refinment of the above leads to (¢f. Lemma
10)

Var(L,,) ~ l7(m) -~ m(}?'(m))2 + 0.:’)7712()?”(771,))2 )

Thus, after this long trip we completed the proof of Theorem 1A (and also Theorem 1B
if one “borrows” the variance result from [10]). We note that the large deviation result (%)
follows directly from our analysis and the Markov inequality. The proof is exactly along the

lines of Flajolet and Soria [6], and the details are left to the interested reader.

APPENDIX: ProoF oF LEMMA TA

We prove Lemma 7A. More generally, let
v(z) + v'(2) = v(2p) + v(2¢) + g(2) (78)

be a differential-functional equation of v(z) such that g(z) = O(log? z) for |z] — oc. We prove
that v(z) = O(2).
The proof is by induction over the increasing domains D,, as as defined in Fact 4. From

Fact 1 we conclude that (78) has the following solution.

v(z) = v(yz)e‘z(l—l/) +e7 7 /i e (v(px) + v(gz) + g(x))dx .

vz
Let now V;, be the upper bound on |v(2)z~!| over the domain D,, in the convex cone C(D.48).

where z = 2 + iy. From the induction hypothesis one obtains the following recurrence
‘/m-i-l S Illax{‘/ﬂl’ Vx,,}

where v
ma1 < Vi (1 + t/e_"_m(l“’)) +vmmilogy .
The above recurrence falls under the pattern discussed in Fact 3(iii), hence by the same

arguments as in Section 3.2, we show that V,, are uniformly bounded. Lemma 7A is proved.
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