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Abstract

A practical suboptimal algorithm (source coding) for lossy (non-faithful) data compres-
sion is discussed. This scheme is based on an approximate string matching, and it naturally
extends lossless (faithful) Lempel-Ziv data compression scheme. The construction of the
algorithm is based on a careful probabilistic analysis of an approximate string matching
problem that is of its own interest. This extends Wyner-Ziv model to lossy environment.
In this conference version, we cousider only Bernoulli model (i.e., memoryless channel) but
our results hold under much weaker probabilistic asswmptions.

UN ALGORITHME DE COMPRESSION DE DONNEES AVEC PERTES:
Analyse préliminaire et algorithmes sous optimaux

Résumé

Nous présentons un algorithme sous-optimal wmais pratigue pour la compression de don-
nées avec pertes. Le schéma est basé sur une recherclie approximative de motifs appliquée
avec Palgorithine de compression saus perte de Lempel-Ziv. La construction de ’algorithme
repose sur une analyse fine d’nn modele probabiliste de la recherche approximative de mo-
tifs. Nous étendons le modéle de Wyner-Ziv a un environement avec pertes. Dans ce papier
nous restreignons notre analyse an wmodele dit de Beruoulli (canal sans méinoire) mais nos
résultats tiennent sons des hypotheses probabilistes plus faibles.

.



A LOSSY DATA COMPRESSION BASED ON STRING MATCHING:
Preliminary Analysis and Suboptimal Algorithms*

March 1, 1994

Tomasz Luczak! _ Wojciech Szpankowskit
Mathematical Institute ' Department of Computer Science
Polish Academy of Science - Purdue University
60-769 Poznan -W. Lafayette, IN 47907
Poland U.S.A.
tomasz@plpuamill.amu.pl.edu spa@cs.purdue.edu

Abstract

A practical suboptimal algorithin (source coding) for lossy (non-faithful) data compres-
sion is discussed. This scheme is based on an approximate string matching, and it naturally
extends lossless (faithful) Lempel-Ziv data compression scheme. The construction of the
algorithm is based on a careful probabilistic analysis of an approximate sEring matching
problem that is of its own interest. This extends Wyner-Ziv model to lossy environment.
In this conference version, we consider only Bernoulli model (i.e., memoryless channel) but
our results hold under much weaker probabilistic assumptions.

1. INTRODUCTION

Repeated patterns and related phenomena in words (sequences, strings) play a central
role in many facets of telecommunications and theoretical computer science, notably in
coding theory and data compression, in the theory of formal languages, and in the design
and analysis of algorithms. For example: in faithful data compressions, such a repeated
subsequence can be used to reduce the size of the original sequence (e.g., universal data
compression schemes [14, 23, 21]); in exact string matching algorithms the longest suffix
that matches a substring of the pattern string is used for "fast” shift of the pattern over a
text string (cf. Knuth-Morris-Pratt and Boyer-Moore [1]; see also [7]).

However, in practice approazimate repeated patterns are even more important. Non-
faithful (or lossy) data compression aud molecular sequence comparison are most notable
examples. In this paper, we shall use approximate pattern matching to design suboptimal
lossy (non-faithful) data compression. Hereafter, we shall think in terms of data compres-
sion, but most of our analysis and algorithins can he directly used to molecular sequences
comparison (e.g., finding approximate palidroms).

We first briefly review some aspects of the distortion theory to put our results in the
proper perspective. The reader is referred to [8, 9] for more details.
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Additional support for this research was provided by KBN grant 2 1087 91 01.
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and in part by NATO Collaborative Graut 0057/89.



Consider a stationary and ergodic sequence { X} _, taking values in a finite alphabet
A (we later restrict our analysis to the so called Bernoulli model in which symbols in
{X,} are generated independently). For simplicity of presentation, we consider only binary
alphabet A = {0,1}. We write X" to denote X,, X,q1 ... X,-

In the data compression, one investigates the following problem: Imagine a source of
information generating a block # = («,,,...,r,) which is a realization of the process X .
To send it efficiently one codes it into another sequence y, ...y, of length £. Then, the
compression factor is defined as ¢{«}) = ¢/n < 1 and its expected value is C = Ec(X7]).
What are the achievable values of C' for lossless and lossy data compressions?

It is well known [8, 9, 12, 13, 23] that the average compression factor in a lossless data
compression can asymptotically reacl entropy rate, .. For the lossy transmission, one needs
to introduce a measure of fidelity to find the achievable region of the compression factor C.
We restrict our analysis to Hamming distance defined as d,(¢7,7}) = n= ' 30, di(#, 75)
where d,(z,7) = 0 for # = 7 and 1 otherwise («,7 € A). Let us now fix D > 0. Roughly
speaking, a data compression or a code Is called non-faithful or lossy or D-faithful if a set
of sequences =7 lying within the distance D of a representative sequence z7 is coded as z7.

The optimal compression factor depends on the so called rate-distortion function R(D).
This is defined as follows (we give the definition of the operational rate-distortion function):
Let Bp(w,) be the set of all sequences of length n whose distance from the center w, is
smaller or equal to D, that is, Bp(w,,) = {«7 : d,.(«},w,) < D}. We call the set Bp(w,)
a D-ball. Consider now the set A" of all sequences of lengtl n, and let S, be a subset of
A". We define N(D,S,) as the minimum number of D-balls needed to cover S,. Then'

. log N(D, S,
R.(D,e) = i log N(D, S») )

i P(8,)21-¢ n
The operation rate-distortion is (cf. [12, 16])

R(D) = lim lim R.(D,¢) . (1)

Kieffer [12, 13] and Ornstein and Shields [16] proved that the compression factor in a
D-faithful data compression is asymptotically equal to R(D), and this cannot be improved.
(Observe that R(0) = h.) Note, however, that to coustruct an optimal data cormpression
one needs to “guess” the optimal (i.e., minimum) cover of the set A" by D-balls. (This
is actually ideéutical to guessing a probability measure on A" that minimizes the mutual
information [8, 12, 18] which is equally difficult task!). '

In this paper, we propose a practical suboptimal lossy data compression scheme that
extends the Lempel-Ziv scheme and that aclieves rate 7( D) which is asymptotically optimal
for D — 0, that is, imp_, (D) = h. Our scheme reduces to the following approximate
‘pattern matching problem. Let the “database” sequence z} be given. Find the longest L,
such that there exists i < n in the database satisfying d(w{™'*i» 27%i") < D. We shall
propose an algorithm to find L, that runs on the average O(nlog® n) (but O(n?logn) in the
worst case). More importantly, we also propose two compression schemes that are based on
this algorithm and our probabilistic analysis. Actually, the real engine behind this study

' All logarithms in this paper are with base 2 unless otherwise explicitly stated.



(and its algorithmic issues) is a pmlmlnllstlr analysis of an approximate pattern matching
problein:

Our probabilistic results are confined to the Bernoulli model (however, in the forth-
coming journal version of the paper we extend them to mixing models). Thus, we as-
sume that: symbols from A are generated independently and ‘07 occurs with probability
p while “L” with probability ¢ = 1 — p. We prove that L,/logn — 1/r(D) in probabil-
ity (pr.) where (D) represents the rate distortion, and in general (D) > R(D), except
the symmetric case (p = ¢ = 0.5) in which (D) = R(D). But, we shall show that
limp_o7r(D) = limp_y R(D) = h. Surprisingly enough, L,/logn does not converge al-
most surely (a.s.) but rather oscillates hetween to random variables s, /logn and H,/logn
that converge almost surely to two different constants. This kind of behavior was already
recognized in the faithful case (cf. [19, 20]).

Our results extends those of Wyner and Ziv [21] and Szpankowski [19, 20] to lossy
transmission. We observe, however, that in the lossless case the natural data structure
around which practical schemes could be built is a suffix tree (cf. [19, 20]) or digital
search tree. The situation with lossy data compression is much more complicated since the
decoder at any time has as a database a sample of the distorted process. We shall p1opose
two solutions to remedy this problem.

Our paper is closed in spirit to the one of Steinberg and Gutman [18] who also considered
a practical data compression scheme based on a string matching. But the authors of [18]
studied the so called waiting timme while we concentrate on approximate prefix analysis.
Finally, we should mention that there are results (cf. [12, 16]) indicating the existence of
the optimal (thus, achieving the rate R(D)) data compression. However, these scheme are
exponentially expensive in implementations (cf. [18]). Very recently, Zhang and Wei [22]
proposed an asymptotically optimal lossy data compression that is based on the so called
“gold washing” or "information-theoretical sieve” method.

2. MAIN RESULTS

After formulating the pattern matching problem, we present some analytical (proba-
bilistic) results. These results are of prime importance for the algorithmic issues which are
discussed next.

2.1 Analytical Results

Let {X;}t2, be a stationary ergodic sequence generated over a binary alphabet A =
{0,1}. Wyner and Ziv [21] (see also [15, 19]) proposed the following mutation of the Lempel-
Ziv data compression scheme: Assume the first n symbols, X7, are known to the transmitter
and the receiver. Call it the database sequence. Find the longest prefix of X33, that occured
at least once in the database. Say, this occurrence is at position ¢, < n and it is of length
L, — 1. Tt was proved by Wyner and Ziv {21] that L,/logn — 1/h in probability (pr.),
where /v is the entropy of the alphabet. However, Szpankowski [19, 20] showed that L,,/logn
does not converge almost surely (a.s.) to any constant but rather oscillates between two
different constants. .

Based on these results, Wyner and Ziv [21] proposed the following data compression
scheme: The encoder sends the position 7, in the database, the length L, ~ 1 and one
sywmbol, namely X . Using this information the decoder reconstructs the original message,



and both the encoder and the decoder enlarge the database to the right, that is, the new
database becomes X7+t or X5 (the so called sliding window scheme). Based on the
probabilistic results discussed above, one easily concludes that the compression ratio of such
an algorithm is equal to the entropy, and it is asymptotically optimal. This scheme is called
a faithful data compression schee.

In this paper, we discuss a scheme that directly extends the above algorithm to a lossy
data transmission with a fidelity criterion. As in the introduction, we define the Hainming
distance d(x,7}) as the ratio of the nnmber of mismatches between = and Z to the length
n, and we assume that the database X is given (see Section 2.2 for a detailed discussion
of this point). We construct the longest prefix of X7, that is within a distance D > 0 of
a substring in the database. More precisely:

Let L, be the length of the largest prefix of X%, such that there exists 1 < n
so that d(X; ™'+t~ X)) < D.

We call L, the depth to mimic the name adopted in the faithful case (cf. {19, 20]).

As in the faithful case, the quality of the compression depends on the probabilistic
behavior of L,. It turns out that its behavior depends on two other quantities, namely s,
and H, defined in sequel.

The height H, is the length of the longest substring in the database X for which there
exists another substring in the database within the length D. More precisely: the height is
equal to the largest K for which there exist 1 < 7,7 < n such that d(X:'1+K,Xf'l+[() < D.
In the proof, we shall need another definition of H,, which is presented below. Let 1{A) be
the indicator function of the event A. Then, the following is true (this is a correct version
of the definition presented in [4])

{H, 2k} =J Ln) {lel(x,.‘-”‘ # X7 < Dl} : (2)

I>kij=1 \t=1

The shortest path s, is defined as follows: Let W, be the set of words of length k&, and
w; € Wi. The shortest path s, is the longest k such that for every w, € W, there exists
1 <t < n such that (l(Xf"“,m,J < D. .

Now, we are in a position to present our main results. As mentioned before, in this
preliminary version we discuss only Bernoulli model in which “0” occurs with probability p
and “1” with probability ¢ = 1 — p. We also define p;,, = min{p, ¢} and P = p* + ¢*. All
proofs are delayed till the next section.

Theorem 1. Let h(D,x) = (1 — D)log((1 —= D)/«) + Dlog('D/(l —)). Tizen

s 1
Li = .S, 3
e logn (D, pmin) (a.5.), (3)

and
. H, 2
lim =

n—rologn (D, P)

(a.s.), (4)

fO’I' 0 < D < Prin - B

Remark. Observe that for D > p;, the shortest path s, and the height H,, with high
probability grow faster than logarithmic function. However, this case is not too interesting
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from the algorithmic view point since the Hamming distance between the database sequence
and a string consisting entirely either of zeros (when p,,;, = ¢) or of ones (when pi, = p)
is smaller than D with high probability. Thus, we neglect this case in our analysis.

The next theorem tells us about the probabilistic behavior of L, which is really re-
sponsible for the asymptotic beliavior of a lossy data compression scheme discussed below.

Theorem 2. Let

D \/P*4*+D*(p—g)*-2Dpq(p—9)*~pq forp#q

D
Ty = 2 2Ap—q) (5)
0 % forp=q=05.
Define r(D) = — log F' where
niv—2x04D  2¢42v,—-D .
F=— L 1 — . (6)
(o = ey (D = w0 (g = D ¥ aa)r Do
Then, for lurge 1 and ¢ coustant A
Ly 1 . Alogn -

Py - —|<ep <1 - 7
' { log 1'(D), - E} <4 ne ' (M

that is, Ln/'log n — 1/r(D) (pr.). But, L,/logn does not converge almost surely. More
precisely,
L 1 L 2
liminf —/— = limn s = 8
mn logn (D, pun) (5.) 13}_11:1) logn  h(D,P) (8)

provided 0 < D < pyiy- B

A lossy data compression scheme hased on Theorem 2 is presented below. Observe that
such a scheme is more intricate than in the lossless case due to the fact that the decoder
and encoder have different database (i.e., the decoder has as a database a sample of the
distorted process). Before we discuss algorithinic issues concerning such schemes, we first
estimate the compression factor.

It is rather clear that any compression scheme based on Theorem 2 should have compres-
sion factor C equal to r(D). Indeed, we observe that, as in the faithful case, any non-faithful
data compression scheme based on the approximate string matching needs a pointer to the
database and the length of the approximate matching. The former information costs logn
while the latter can be decoded in O(loglogn) bits. In other words, instead of sending
1/r(D)-logn bits of L,,, one transwmits log n + O(log log n) bits, thus the compression factor
is (D). ‘

In view of the alhove, one may ask how close is the rate (compression factor) r(D) of
our scheme to the optimal compression factor equal to R(D) as defined in (1). An explicit
formula for R(D) seems to be unkuown except for the Bernoulli case. For the memoryless
channel (i.e., Bernoulli model) it can be proved that R(D) = h—h(D) where h = —plogp—
qlog ¢ is the entropy of the memoryless chaunel, and (D) = —Dlog D —~(1— D)log(1 - D).
Note that R(0) = L. From Theorem 2 formmle (5)-(6) we conclude that the scheme is:

i}
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Figure 1: Cowmparison of gains in the compression factors for p = 0.4

e asymptotically optimal in the limiting case, namely

mr(D)y=h, (9)

—{} .

m R(D) = ll)i

li
D—0
e asymptotically optimal in the symmetric Bernoulli case (p = ¢ = 0.5) since

(D)= R(D) =log2 - D). (10)

In general, r(D) > R(D), however, a numerical study shows that the discrepancy be-
tween R(D) and r{D) is not too big as one may conclude from Figure 1 which presents the
gains in compression factors, namely, 1./+(D) and h/R(D) versus D.

2.2 Algorithmic Results

As mentioned above, the noun-faithful data compression is much more intricate than
the faithful one due to two reasons: In the faithful case, the prefix of length L, can be
found in O(n) time-complexity by a simple application of the suffix tree structure (cf. [19]).
Secondly, the encoder and the decoder have different view on the database. These two
problems must be solved in order to obtain an efficient lossy data compression based on
Theorem 2, and they are discussed in sequel.

We start with an approximate pattern matching algorithm that finds the longest prefix
of X7, that is within distance D of a substring in the database. We shall write below
lowercase letter 7, to denote a realization of the process X.

The following algorithin is an adaptation of the idea already applied in Atallah et al.
[3] to another problem.

Algorithm PREFIX

6
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begin
Fori=nto |l do
Apply Fast Fourier Transformn (FFT) to compute matches between
xhty and {:n;:*l“};‘ :
Select j < n that gives the longest substring with (1 — D)% of matches, .
doend ' ‘

end

=1

Clearly this algorithm works in O(n?logn) time-complexity since the FFT needs O(nlogn)
to compute matches between a string and ell substrings of another string.
Although, O(n?*logn) algorithin sounds like a good solution, it is too expensive in most

applications when PREFIX is expected to be run very often. One needs an algorithm that

most of the time is linear or poly-linear. The next algorithms give us such a solution.

The problem with the previous PREFIX algorithm is the do-loop which requires = itera-
tions. One possible solution (suggested by M. Atallah) is to apply binary search. The idea of
the new algorithm PREFIX-BS is as follows. Let Y* = X% . Using FFT we check if Y* has
(1~ D)% of matches with any substrings of X}'. If the answer is YES we stop, otherwise we
continue the binary search. That is, we divide the substring Y;* into two halves, and check
whether Y;*/? approximately occurs (i.e., with less than D% mismatches) in X7, Again if
answer is YES, we are fine and start investigating ¥;>*/*. The only problem arises, however,
when the algorithm returns NO. Say, it happens when checking Yl"/ ®. This, unfortunately
does not mean - as in the classical binary search ~ that we can proceed to Yl"/ * since still
there is a possibility that }’,3"/4 almost occur in X'. There are two possibilities:

(A) We use a heuristic PREFIX-BSH tlhat searches for YES in the right-side of the string
Y. More precisely, if NO occured when investigating YI"/2 before we consider Yl"“ we
check only few, say two, up:searches to see if YES does occur. For example, for NO
at position Y;*’* we only investigate ¥;/* and/or Y;{™/® for the approximate pattern
matching. If in any case, we receive the answer YES, we continue exact binary search.
Otherwise, we abandon the up-search, and the next check is at_ 1"/4.

(B) We append the binary search with the exact search to obtain the following algorithm
that is further called PREFIX-BSE. As before, consider NO at Y;*/%. Then, we search
all prefixes ¥,"/** with ¢ = 1,...,n/2 until YES is obtained. If no YES occured

. 4 .
during such a search, we then move to YI"/ as discussed above.

It is easy to see that the ahove two modifications work in O(n?logn) in the worst case.
But, as also easy to verify on the average their complexity is O(nP(logn)) where P(z) is
a polynomial with respect to x. Algorithm PREFIX-BSH is faster, but is returns the true
value only with high probability (whp) and sometimes we might be off. On the other hand,
the algorithm PREFIX-BSE always returns the longest prefix, but is slower than the previous
one. In our experimental studies, we used PREFIX-BSE.

To complete the description of our lossy data compression scheme we must describe how
the database is updated. There are two options, too. In the first one, the database is sent
faithfully by the encoder, for example using the Lempel-Ziv scheme. The lossy compression
refers now only to the new transiuissions and the references are inade to the common copy of
the database. We also systematically measure the compression ratio, and once it falls helow



some specified level, a new faithful transmission of database is required. This procedure
might be on-line.

The above scheme seewms to he appropriate for sitnations when the database is kept
unchanged for some time. For example, when sending pictures from a satellite,- usually
several pictures have the same background, hence the same database, so clearly our scheme
is suitable for such transmission.

In the case when the database is varying quickly, another algorithm is needed. We
suggest the following one. Instead of sending lossly a faithful database, we rather send
faithfully (e.g., by Lewmnpel-Ziv scheme) a non-faithful (distorted) database that is maintained
simultaneously by the encoder and decoder.

We only briefly present the main idea of this scheme leaving details to a journal version.
When a new prefix of length L, of X%, is constructed, it is not added directly to the
database but rather we add the center wy™ of a ball Bp(w;™) to which the prefix falls. For
example, this can be accomplished by finding the prefix of length L, by approximate pattern
matching,.say PREFIX-BSE, in the distorted datahase )~({‘ that stores only the centers of balls
Bp(-). Then, the encoder transmits faithfully the distorted version of the database X7 (i.e.,
the centers of D-Dballs). More precisely, the encoder sends only the pointer to the distorted
database (maintained the same by the encoder and decoder) and the length L,. Since the
pointer costs log n and by Theorem 2 we have L, ~ 1/r(D)logn, so one can conclude that
the compression factor is asymptotically equal to r(D). '

3. PROBABILISTIC ANALYSIS

In this section, we present a sketch of proofs of Theorems 1 and 2. To simplify our analy-
sis, we observe that the following foriulation of the problem turns out to be asymptotically
equivalent to our original model (see [19, 20] where a similar approach is used).

Let us generate unhounded sequences X (1), X(2),...,X(m+1) according to the original
distribution, independently from each other. Let L,, denote the length of the longest prefix
of X(m+ 1) that lies within the distance D from the prefix of X (z) for some : = 1,2,...,m;
let H,, be the largest k such that

d(XHD), X G) < D for some i, 1<i<j<m;

finally, let §,, denote the length of the longest string that has no approximate match among
prefixes of X (1), X(2),..., X ().

One can show (cf. [19, 20]) that the heliaviour of random variables L, H,, and $,
defined for the above independent model resemnbles that of L,,, H,, and s, in the original
model. Thus, tliroughout the following section we do not distinguish between these two
cases setting L, = I;,,,, H, = 1;(,,, and s, = §,,.

3.1 The Shortest Length

We first prove Theorem 1 for s, that is, (3). Let us introduce some additional notation.
~ To recall, we define W, as the set of words of length k. For a w;, € W, we write P(uy) for
the probability of wy. Let wy,;, € Wi be such that P(wy,,) = min,ew, {P(w)}. We also
write P(Bp(un,;,)) as the probability of a D-ball centered at w,;,. It is easy to verify that
P(Bp(wpyin)) = min,, ew, Pr{Bp(u)}.
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As defined hefore, the shortest path s, is the longest &k such that for every w, € W,
there exists 1 < i < m such that d(XF(7),w,) < D. Cleaily, the following is true

Pr{s, >k} < mnvl\}fl Pr{d(X}(3),wr) < D} = mP((Bp(Wmin)) - (11)

To estimate the above probability, one needs to assess P((Bp(wmin)).- Let puin =
min{p, ¢}. We note that w,,;, is a string that consists of all zeros or all ones depending
whether p < ¢ or p > ¢, hence

P((‘BD(,‘”"\“I)) = z—: (f)[’i;f(l - pmin)j .

By Stirling’s formula we have

(LkD> ”I.(«l - Di*-DDU)Y '

Thus, for large k and D < pyy,

()" (12)") = remotman <1 ((225) ™ (H52)”)

In view of the above, we obtain P((Bp{wyi,)) ~ 2754 PPein) where h(D, pmin) = (1 —
D)log((1 ~ D)/puin) + Dlog(D/(1 — prin)). Thus, for k = [(1 4 €)h™Y(D, Prmin) log m| we
conclude that Pr{s,, > (L + &)h="Y(D, pyin) logm} < 1/m®, which proves the upper bound
for the convergence in probability of s,,.

To get the lower bouud for s,,, we proceed as follows. Note that

Pr{sm < k} <> (1~ P(Bp(uy)))™ < 25(1 = P((Bp(Wimin)))™ -

W,

Using the above estimate for P((Bp(w,,,)) and setting & = |(1 — €)h~(D, pmin) log m| we
finally obtain
Pr{s,, <k} < exp(—m*/?)

which is the desired lower bound.
(From the above, we conclude that s,,/logm — 1/h(D,pmin) (pr.) but the rate of
convergence (upper bound) does not yet warrant direct application of the Borel-Cantelli

 Lemma. Nevertheless, one can use Kingman’s idea (e.g., see [17, 19, 20]) to extend this

result to the almost sure convergence. Indeed, one selects a subsequence like m, = s2"
along which s, /logm converge almost surely (a.s.), and then by noting that s,, is a
nondecreasing sequence with respect to m one can extend the last assertion to all m. This
completes the proof for s,,, and actually for s, since m = O(n/logn), hence all the results
above easily extend to this case, too.

3.2 The Height
The height was already treated by Arratia and Waterman [4] (cf. Theorem 1in (4]) for

the independent model, and the string model can be analyzed along the same lines.

9



For completeness, we only present the derivation of the upper bound, which also corrects
a minor problem of [4]. From the definition (2) we have

{Hn 2k} = U O {Zl{xt( )-Xt(J)}>al}
= U_Q {d(X (), X(j) < D} .

Now, we consider M = m(m. — 1)/2 new sequences Y (1),...Y (M) such that Y;(t) =1
(t=1,...,M, k =1,..) if and only if for 1 < 7,5 < m resulting in ¢ there is a match
between X;(z) and Xi(¥), i.e., Xi(?) = Xi(y); otherwise Yi(t) = 0. Note that Pr{Y,(t) =
1} = P =p* + 4%

The rest is easy, and we obtain

Pr{H,, >k} < m'AZP(BD(Y(I),w,)) ,
1>k
N

for some w; € W,. From our previous estimate of the probability of a D-ball, we observe
that P(Bp(Y(1),w;) ~ 2="™DP.P) Thus, for k = |(1 +£)h~(D, P)logm| and a constant B

Pr{H,, >k} < Bn?9-¥MD.F) — B [p2e

which is the disired upper bound. The lower bound can be derived by using the “second
moment method” in a similar fashion as in [19, 20].

So, far only convergence in probability was derived. But using again the ngman trick,
and noting that H,, is a nondecreasing, we prove Theorem 1.

3.3 The Depth

Now, we prove Theorem 2, and we hegin with the convergence in probability, that is,
we establish (7).

To accomplish our task, we need to show that a prefix of an independently generated
string X(m + 1) of length L,, is within distance d(X[™(m + 1), X(:)) < D for some
1 < ¢ < m. We prove that L, /logm — 1/+(D) (pr.) where r(D) is defined in Theorem 2.

Let w, be a given and typical word of length k. More precisely, w, € W, and by
Shannon-McMillan-Breiman Theorem (cf. [&, 9]) P(w;) ~ 27** where h is the entropy of
the alphabet. In the above P(w)) has the meaning of probability of w, occurrence, that
is, P(w;) = pl%wgl'lv where |0],, (J0],;) denotes the number of zeros (ones) in w;. For
the Bernoulli model, we can say that with Ligh probability the number of “0” and “1” in
wy s approximately equal to kp F j and kg F j where j = o(k), respectively. Below, to
simply further discussion we assume that these numbers are [kp] and |kq] respectively (and
actually we ignore the floor function). Naturally, log P(wy) ~ kh.

We should stress that the word w, is deterministic, hut since it is also typical the prefix
of X(m + 1) of length k is close in probability to w;. More specifically, for any € > 0

klim Pr{lk ' log P(Xf(mn + 1)) — k™' log P(u )| > €} =0 . (12)

10
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The above implies that instead of working with random string X (mn + 1) we can work with
deterministic word w; provided the bounds on L,, hold uniformly for all w;.

Let now Z; be a random variable denoting the nunber of strings X¥(1),..., Xk (m)
that lie within distance D from wy, that is Z, = {1 < ¢ < m; d(Xf(3),w) < D}.
Due to our deterministic choice, Z, has the binomial distribution with parameter m and

Py = P(Bp(wy)), i.e.,
Pr{Z, =1t} = (";‘) Pl(L— B)tt

The rest is a simple application of the first moment method and the second moment
method (cf. [2]). Indeed,

var Z; 1- P
T b1 < = 1
Pr{D, < k} < A (13)

Pr{Z, >0} = Pr{D,>k}<EZ,=mP; . (14)

P’I'{Z}; = 0}

To complete the proof, we need to estimmate the probability P, which is discussed next.
Clearly, the following is true (for P(w,) = plevlglkal) :

kp\ [ k¢
Pk = P(BD('“’L')) = E ( l[> ( .1>plcp+l—quq—l+r
' 0<i4r<kD T

where we assumed above for simuplicity that kp and kq are integers. Let now # = [/k, and

define A ‘
kp kq k(p—2)+(D-2)k, kz+k(g—D+z) '
- ’ p—x z x z . 1
P (mk) ((D - :n)k:) P 1 (%)

iFrom the above, we immediately observe that
C max{P,;} < P(B(u)) < Ck? max{P;}

where C' is a constant. Thus, by the above log P(Bp(wy)) ~ log(max,{P;}), and it suffices
to compute max,{F,}.
Observe that by Stirling’s formnula

(1)~ )

Thus, P, ~ (F(x))* where

—2z4 D 2q42x-D

P’ q
:L(I) - ;lt)l'_T(D — :,})D—z;(q - D + ;,:)q-D-f-:c .

F(r) =
&€
We need the following restriction on x: min{0,p — ¢} < = < max{p, D}.

Finally, to maximize F(ir) with respect to &, we are looking for =, such that F'(z,) = 0.
It turns out that this x, must solve the following (uadratic equation

w*(p=q)+#(pg+ D(q—p))—pg* = 0.

11



The solution 2 of the above is given by (5) in Theorem 2.

In summary, we have just proved that P(Bp(w;) ~ 2757 (®). Thus, by (12) and (13) with
k=[(1-¢ '—"(bD'—')‘_] we obtain the lower bound, while by (12) and (14) with & = [(1 +E);°(1=l%_|
we derive the upper bound, which complete the proof of the convergence in probability of

L,..

To establish the second part of Theoremn 2, namely (8), we proceed along the lines of
(17, 19, 20]). More specifically, we note that s, < L, < H,, and infinitely often (i.o.)
L, =s, as well as L,, = H,. This, and Theorem 1, suffice to derive (8). .

References

[1] A.V. Aho, Algorithms for Finding Patterns in Strings, in Handbook of Theoretical
Computer Science. Volume A: Algorithms and Complezity (ed. J. van Leeuwen), 255-
300, The MIT Press, Cambridge (1990).

[2] N. Alon and J. Spencer, Thc Probabilistic Mcthaod, John Wiley&Sons, New York (1992).

[3] M. Atallah, P. Jacquet and W. Szpankowski, Pattern matching with mismatches:
A probabilistic analysis and a randomized algorithm, Proc. Combinatorial Pattern:
Matching, Tucson, Lecture Notes in Computer Science, 644, (eds. A. Apostolico, M.
Crochemore, Z. Galil, U. Manber), pp. 27-40, Springer-Verlag 1992.

[4] R. Arratia and M. Waterman, The Erdos-Rényi Strong Law for Pattern Matching with
Given Proportion of Mismatches, Annals of Probability, 17, 1152-1169 (1989).

[5] R. Arratia, L. Gordon, and M. Waterman, The Erdés-Rényi Law in Distribution for
~ Coin Tossing and Sequence Matching, Annals of Statistics, 18, 539-570 (1990)

[6] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compressxon,
Englewood Cliffs, N.J: Prentice-Hall, 1971.

[7] W. Chang, and E. Lawler, Approximate String Matching in Sublinear Expected Time,
Proc. of 1990 FOCS, 116-124 (1990).

[8] T.M. Cover and J.A. Thomas FElewnents of Infmmutwn Theory, John Wiley&Sons,
New York (1991).

[9] L Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memo-
ryless Systems, Academic Press, New York (1981).

[10.] J. Feldmman, r-Entropy, Equipartition, and Ornstein’s Isomorphisin Theory in R, Israel
J. Math., 36, 321-345 (1980).

[11] P. Jacquet and W. Szpankowski, Autocorrelation on Words and Its Applications. Anal-
- ysis'of Suffix Tree by String-Ruler Approach, J. Combinatorial Theory. Ser. A, (1994);
to appear.

[12] 1.C. Kieffer, Strong Converses in Source Coding Relative to a Fidelity Criterion, IEEE
Trans. Information Theory, 37, 257-262 (1991).

12



-

<

[13] J. C. Kieffer, Sample Converses in Source Coding Theory, IEEE Trans, Information
Theory, 37, 263-268 (1991).

[14] A. Lempel and J. Ziv, On the Complexity of Finite Sequences, IEEE Information
Theory 22, 1, 75-81 (1976).

[15] D. Ornstein and B. Weiss, Entropy and Data Compression Schemes, IEEE Information
Theory, 39, 78-83 (1993).

[16] D. Ornstein and P. Shields, Universal Almost Sure Data Compression, Annals of Prob-
ability, 18, 441-452 (1990).

[17] B. Pittel, Asymptotic Growth of a Class of random Trees, Annals of Probability, 13,
414 - 427 (1985).

(18] Y. Steinberg and M. Gutman, An Algorithin for Source Coding Subject to a Fidelity
Criterion, Based on String Matching, IEEE Trans. Information Theory, 39, 877-886
(1993).

19] W. Szpankowski, Asymptotic Properties of Data Compression and Suffix Trees, IEEE
1
Trans. Information Theory, 39, (1993).

[20] W. Szpankowski, A Generalized Suffix Tree and Its (Un)Expected Asymptotic Behav-
iors, SIAM J. Computing, 22 (1993).

[21] A. Wyner and J. Ziv, Some Asymptotic Properties of the Entropy of a Stationary
Ergodic Data Source with Applications to Data Compression, IEEFE Trans. Information
Theory, 35, 1250-1258 (1989). ¢

[22] Z. Zhang and V. Wei, An On-Line Universal Lossy Data Compression Algorithm via
Continuous Codebook Refinement, submitted to a jonrnal.

(23] J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data Compression, IEEE
Trans. Information Theory, 23, 3, 337-343 (1977).

13






Unité de Recherche INRIA Rocquencourt
Domaine de Voluccau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

Unité de Recherche INRIA Lorraine Technopdle de Nancy-Brabois - Campus Scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rennes IRISA, Campus Universitaire de Beaulicu 35042 RENNES Cedex (France)
Unité de Recherche INRIA Rhone-Alpes 46. avenue Félix Viallet - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Sophia Antipolis 2004, route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

EDITEUR
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

TR



