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Regularized discrete probability distribution with
dependence tree

Régularisation en discrimination qualitative par les
modeles graphiques décomposables

Abdallah Mkhadri®*) and Sami Bochi(**)

() Département de Maths, FSS, B.P.:515, Marrakech, Maroc

(**) Inria - Rocquencourt, B. P. 105, 78153 Le Chesnay, France

Abstract - In the context of discrete discriminant analysis, Chow and Liu intro-
duced the notion of dependenc tree to approximate a nth order discrete probability
distribution. More recently, Wong and Wang proposed a different product approx-
imation. These two procedures have some resemblance with the problem of the
choice between the classical linear and quadratic discriminant analysis. We propose
an alternative discrete regularized method which is intermediate between the condi-
tional independence model, the Chow and Liu’s method and the Wong and Wang’s
method. Our method is characterized by two regularization parameters. The choice
of the optimal regularization parameters can be computed explicitly by minimizing
the cross-validated misclassification risk. The method is illustrated through appli-
cation to real and simulated data. '

Key-words: classification, entropy, dependence tree, regularization.

Résumé : Cet article traite de la discrimination par les modéles graphiques décom-
posables sur variables qualitatives. Ces modéles fournissent une estimation la plus

proche de la densité de probabilité conditionnelle en tenant compte de certaines
relations de dépendance conditionnelle, définies par un graphe, entre les variables

explicatives. Nous proposons une méthode de régularisation, concernant les pe-
tits échantillons, a la place du choix entre un modéle graphique différent pour
chaque groupe et un seul modeéle graphique identique pour tous les groupes. Notre
méthode est un compromis entre trois méthodes : ces deux modéles et le modéle
d’indépendance conditionnelle. Elle utilise deux parameétres de régularisation qui
sont déterminés par minimisation du taux d’erreur évalué par validation croisée.
Deux applications sur données réelles et simulées sont présentées pour illustrer ses
qualités. par rapport a d’autres méthodes classiques.

Mots-clés : discriminalion, entropie, graphe de dépendance, régularisation.



1 Introduction

The design of intelligent information system such as pattern recognition, inductive
learning and expert systems is concerned with the problem of discrete classifica-
tion. In many of these applications, the central task is to estimate the underlying
n-dimensional discrete probability distributions from a finite number of samples. Be-
cause of the curse of dimensionality, the probability function is often approximated
by some simplifying assumptions, such as statistical independence. This hypothesis
is simple but may be unrealistic in certain applications. Lewis [1] and Brown [2] are
the first who considered the problem of approximating an nth-order binary proba-
bility distribution by a product of its component distributions of lower order. Lewis
[1] showed, under suitably restricted conditions, that the optimal product approxi-
mation can be obtained by minimizing a divergence measure between the true and
approximate distribution. However, the simple and practical solution to the problem
of selecting a set of component distributions, of given complexity to compose the
best approximation, was proposed by Chow & Liu {3]. They introduced the notion
of tree dependence, called 1-tree method, to approximate a nth order discrete prob-

- ability distribution by-a product of a n - 1 second-order component distributions.
One can then reduce the problem to find a dependence tree with maximum total
branch weight of mutual information. Wong & Wang [4] suggested another product
approximation, called 2-tree method, by minimizing an upper bound of the Bayes
error rate. Wong & Poon [5] showed that the later procedure is a special case of
a such minimization procedure of Chow & Liu. The important point is that 1-tree
procedure use one tree structure for each individual class, while 2-tree procedure is
obtained by using one tree structure for all classes. Based on simulation study, Wong
& Poon [5] conclued that I-tree method is more restricted than the 2-tree method.
In fact, the 2-tree method has the advantage of being computationally more effi-
cient, especially when the number of features is very large. However, if accuracy is
the predominant factor in a particular application, I-tree method is prefered. So,
there is some need to a compromise between these methods. This problem is similar
to the choice between Linear and Quadratic discrimminant analysis (denoted LDA
and QDA hereafter) for continuous data, in small sample high-dimensional setting.
Friedman [6] has proposed an alternative method, called Regularized Discriminant
Analysis (RDA hereafter). RDA has a median position between LDA and QDA. On
the other hand, Celeux & Mkhadri [7] proposed an alternative method for address-
ing the problem of discrete discriminant analysis in small sample setting. Celeux &
Mkhadri’s method is intermediate between: the full multinomial model (FMM), the
conditional independence model and the kernel discrimant analysis of Aitchison &
Aitken [8]. The main aim of this method is to regularize the FMM.
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The objectif of this note is to suggest an alternative approximation of discrete prob-
ability distribution which is intermediate between conditional independence model,
1-tree method and 2-tree method. Our Regularized approximating discrete proba-
bility distributions, denoted RADP hereafter, is characterized by two parameters.
The selection of the optimal values of the parameters is based on the cross-validated
misclassification risk. We show that these optimal parameter values can be com-
puted explicitly.

In section 2, the approximating discrete probability distributions are sketched in the
context of discriminant analysis. Section 3 contains a detailed description of the 1-
tree method and 2-free method. In section 4, we detail our method of regularization
along with the discussion of the method of the choice of regularization parameters.

" In section 5, the performance of four approaches are 1nv1st1gated through applica-

tions to real and simulated data.

2 Approximating discrete probability distributions

In this section, we present three approximations of discrete probability distributions.
Let X = (X1, X3, ..., X) denotes a n-dimensional random vector. The component
X; of X represents the jth discrete-valued feature. Let W be a random variable
whose values are used to label the classes. We denote by P(x;w) the joint discrete
probability distribution for X = x = (1‘1,1‘2, ,Zn) and W = w, where x is a value
of the ramdom vector X. Let x!,x2, .. ,xN denotes the training sample of size N and
suppose that several classes G1,Ga, ..., Gk occur with prior probability 61,62, ..., 6k
(X;6; = 1). The Bayes classification rule classifies an individual vector x into Gy if

6k P(x; k) > 65 P(x; h) (1)

forh=1,.,K, h#k.

For discrete data, the most natural model is to assume that the conditional prob-
ability P(x,k), where x is the n-dimensional vector of discrete components and k
= 1,...,, K, are multinomial probabilities. This model involves 2® — 1 parameters in
each class for binary data. Hence, in practice and even for moderate n, not all of the
parameters are identifiable. One way to deal with this high-dimensional problem
consists in reducing the number of parametres needed to be estimated. The condi-
tional independence model (CIM) assumes that the n variables are independent in
each class k, k = 1,..., K. Then, the probability distribution can be written as

Pr(x; k) = ﬁ P(z;; k) (2)

i=1



The estimated probability distribution, by the maximum likelihood, is

n
Pi(x; k) = H N(zj; k)/Nk (3)
1=1
where N(z;; k) = #{y € Gk | y; = xj and Ny = #G;.
It follows that the number of parameters to be estimated for each class is reduced
from 2" — 1 to n. While this method of conditional independence is simple but may
be unrealistic in certain applications. An alternative method based on the product
_approximation of conditional dependence was suggested by Chow & Liu’ [3]. These
autors introduced the potion of tree dependence to approximate a nth-order discrete
probability distribution by a product of (n - 1) second-order component distribu-
tions. The probabilities that are permissible as approximations can be written as

n
P(x; k) = H P(zpm,; k| zm, ;) (4)

j
where 0 < i(j) < j,(m;,mg,..., mg) is an unknown permutation of the integers 1,
2, ..., n, P(zm,;k | zm‘(j)) is the joint probability of zn; and k condional on the
variable z,,, ;,, and P(z; | 2o, k) by definition equal to P(z;;k). The estimates of
P(zm;;k | Zm, ;) are based on the classical maximum likelihood (cf. [3]).
‘Wong & Liu [Qﬁ proposed another decision-derived approach in which the distribution
.estimation adopted is modified from the dependence tree. The modified dependence
tree estimate is

n n
Pr(x; k) = H Pz, k | zm‘,(’.)) H P(zm;; k)

ij=1 Jj=n'+1
where for each j (j = 1,...,n’), and (zm,, zm:(_,)) satisfies the significance test. The
associated probability distribution employs n’ second-order marginals and (n — n')
first-order marginals where n’ < n. So, this modified dependence tree approximation
estimates fewer numbers of parameter than 1-tree method. Hence, this modified
procedure with statistically insignificant dependence branches excluded yields better
results in certain cases where only a limited number of samples are available (cf. [9]).
For notation convenience, we will drop the subscript m and denote for example T,
by z; in subsequent discussions.

3 Tree dependence approximation

Lewis [1] and Brown [2] are the first who considered the problem of approximation
of the nth-order binary distribution by a product of several of its components dis-



tributions of lower order. They showed, under suitably conditions, that the product
approximation has the property of minimum information. ‘However, Chow & Liu (3]
are the first who have developped a method to best approximate a nth-order distri-
bution by a product of n - 1 second-order component distributions. This method
is based on the minimization of the Kullback-Leibler distance between the true dis-
tribution P and it approximation P. For instance, let the nth-order probability
distribution P(zy,...,Zn; k), 2; being discrete, we wish to find a distribution of tree
dependence P,(zy,...,zn; k), such that I,(P, P;) < I;(P, P,) for all t € T},, where T,
is a set of all possible first-order dependence tree and

L(P,P.) =Y P(x;k) In{P(x; k)/ P:(x; k)}. (5)

The solution 7 is called, by Chow & Liu, the optimal fitst-order dependence tree.
Since they are n™~? trees with n vertices, the number of dependence trees in T}, for
any moderate value n is so large as to exlude any approach of exhaustive search.
So, Chow & Liu [3] showed that: the probability distribution of tree dependence
Py(x) is an optimum approximation to Px if and only if its dependence tree t has
maximum weight. Indeed, Iy(P, P;) can written as

WPR) = -3 (X5, Xig) + L H(X) = BiX)  (6)

where Hx(X) = 3"y P(x;k)In P(x; k), Hi(X;) = 17 P(z5;k)In P(z;; k) and
P(zi, zj; k)
P(zi; k)P(z5; k)’

I(X;,X5) = Z P(z;,zj;k)In

i, Ty

is the mutual information between two variables z; and z; for k = 1,..., K. Since
H(X) and Hi(Xj), for all j, are independent of the dependence tree and Ii(P, P;)
1s non-negative, then minimizing the closeness measure Ix(P, P;) is equivalent to
maximizing the total branch weight

n .
Y (X5, Xigy)-
j
To relay the dependence free selection criterion to the Bayes error rate, Wong &
Wang [4] suggested an other product approximation by minimizing an upper bound
of the Bayes error rate. In effect, let o, denotes the Bayes error rate. It was proved

by Hellman & Raviv [10] that"

o < H(E|X)

5



where the entl;opy function H(k | X) is defined by

H(k|X)=-> P(x)>_ P(k|x)lnP(k | x) (7)
x k

" where k = 1,..., K. Let H(k | X) be the estimator of H(k | X) in which P(k | x)
is replaced by the equation (4). Then, Wong & Poon [5] showed that if Hg(X) is
independent of the dependence tree chosen for each individual class, by minimizing
H(k,X) it follows that

minH(k | X) = maz zk: Z (X5, Xi5)) (8)

which is the result obtained by Chow & Liu. Kruskal’s algorithm [11] can be easily
applied to finding a tree with maximum branch weight

n
By =Y Li(X;, Xy;))
j=1
for each individual class, where P(z;; k) and P(z;, z;;k) are estimated by the maxi-
mum likelihood ([3]). On the other hand, as suggested by Wong & Wang [4], we may
assume that the probability distribution for all the classes can be approximated by
the same dependence tree. In this case, for 0 < i(5) < 7, the minimization problem
becomes

 minf(k, X) = maz S (3 P(6)(X;, Xisy) = 10X, Xigi)], ©)
7 k

where I(X;, Xi(j)) has the same form as I(X;, X‘(j)), but the conditional probabil-
ities are estimated from the total sample.

The important point is that Chow & Liu’s method uses one tree structure for each
individual class. In contrast, by adopting the same minimization procedure, the
result of Wong & Wang is obtained by using one tree structure for all classes. Ob-
viously, Wong & Wang’s method has the advantage of being computationally more
efficient, especially when the number of features is very large. However, if accu-
racy is the predominant factor in a particular application, Chow & Liu’s method
is preferred as showing by the simulation results of Wong & Poon [5]. Thus, this
problem is similar to the choice between the Quadratic discriminant analysis (differ-
ent covariance matrix for each individual class) and the Linear discriminant analysis
(the same covariance matrix for all classes) for Gaussian distributioins. So, there
is some need to a compromise between these methods of approximation of discrete
probability distributions.



4 Regularization and Shrinkage

Friedman [6] proposed a regularized discriminant analysis (RDA) conceived in a
Gaussian framework. RDA has a median position between LDA and QDA. In the
same line, Celeux & Mkhadri (7] proposed an alternative discrete version of RDA,
called DRDA, which has an intermediate position between the FMM, the CIM and
the kernel discrimination of Aitchison & Aitken [8]. The performance of this method
with an other bayesian procedure is discussed in Mkhadri [11]. RDA and DRDA are
controled by two regularization parameters which are selected by the minimization
of the cross-validated misclassification risk. Alternative regularized approximation
of discrete probability distributions (denoted RADP hereafter) are proposed in the
following section.

4.1 Regularization scheme

Recall that x!,x?, ..., x" denotes the discrete training sample of size N. Let Pg (x; k)
(resp. Pw(x; k)) denotes the approximation probability distribution based on the
1-tree dependence of Chow & Liu (resp. on the 2-tree dependence of Wong & Wang).
As mentioned above, Chow & Liu’s method uses one tree structure for each class.
Hence, this method is clearly ill-posed if Ny = #Gr < n for any class k, and
poorly ill-posed whenever N is not considerably large than n. One method of
regularization is to use one tree structure for all classes as suggested by Wong &
Wang. This applies a considerable degree of regularization by substancially reducing
the number of parameters to be estimated. The choice between 1-tree method and
2-tree method represents a fairly predective set of regularization alternatives. A less
limited set of alternatives is represented by

Pa(x, k) = (1 - ) Pe(x; k) + aPw (x; ) (10)

where P,(x; k) denotes RADP estimates of the group conditional probability for
any discrete vector x, with & (0 < a < 1) denoting the regularization parameter.
It controls the degree of shrinkage of the individual class probability distribution
estimates based on 1-tree method toward the pooled estimate (i.e. estimates based
on 2-tree method). So, the value a = 0 gives rise to 1-free method, whereas a = 0
yields 2-tree method. Values between these limits represent degree of regularization
less severe than 2-tree method. But, this regularization is still fairly limited and is
not the only natural way to regularize the 1-tree method. For instance, if the total
sample size N is less than or comparable to n, then even 2-free method is ill- or
poorly-posed. To this end we further regularize the RADP estimates of the group



conditional probability defined By Equation (10) throuéh
130,,.,(x; k) = (1 _7)130("3 ")'*"7131("5") (11)

where P,(x; k) is given by Equation (10) and Pj(x; k) is the estimates of CIM given
by Equation (3). For a given value of a, the additional regularization parameter
v (0 € 4 < 1) controls shrinkage toward a conditicnal independence model (CIM).
Some experiments show that CIM performs well, for small or moderate sample size,
relative to other classical methods of discrete discriminant analysis ([13]).

‘Now, our RADP is defined by Equations (10) and (11) using two regularization
parameters, (0 < a < 1) and (0 < 4 < 1). The three corners defining the extremes
of the a,7 plane represent fairly well-known classification procedures. The 1-tree
method corresponds to the case « = 0 and ¥ = 0. The 2-2ree method corresponds to
the case « = 1 and ¥ = 0. The CIM corresponds to the case ¥ = 1. Holding ¥ fixed
at 0 and varying a produces methods between 1-tree method and 2-free method.
Holding o fixed at 0 (resp. at 1) produces methods between 1-tree method (resp.
2-tree method) and CIM. V '

4.2 Model selection

Now, the problem is to select the best values of @ and 4. As in [6], we can choose
a grid of points on the (a,v) -plane (0 < a < 1),(0 < ¥ < 1), evaluate the cross-
validated estimate of future misclassification risk at each prescribed point on the
grid, and then choose the point with the smallest estimated risk as its estimates for
the optimal regularization parameter values @ and 4. While this approach has the
advantage of selecting regularization parameters on the basis of the actual misclas-
sification rate, it can partially ignore information from a substantial portion of the
data ([14]). However, by using the method of Celeux & Mkhadri [7], it is possible
to select the regularization parameters explicitly and in a nearly optimal fashion.
Holding v fixed, we can find in closed form the complezity parameter a* which min-
imizes the cross-validated misclassification risk; holding a* fixed, we can find the
shrinkage parameter ¥* which minimizes the cross-validated misclassification risk.
We opted for this strategy which is saving a substantial amount of computation. We
restricted our attention to two groups case (K = 2) and for the general case ([7]).
This strategy is defined as follows:

Step 1: v is fixed and is assumed to be 0. Since RADP is essentially a variation
arownd 1-free and 2-tree dependence methods, it is natural to choose ¥ = 0 when
deriving the optimal complezily parameter a®*. Then it is easy to show that:
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Propositioh 1: The optimal complezity parameter which minimizes the cross-
validated misclassification rule is either 0, 1 or takes the form

Bc(x‘) :
Bo() - Bw (<) (12)

for each x* € {x!,...,xN}, where
Bo(x') = 612§ (x'; 1) - 6P (x';2),
Bw (') = 61 BY) (x'; 1) — 6,55 (3 2),

and 13(") (x*; j ) (resp. P (x )] denotes the estimate conditional probability Pc(x i7)

(resp. Pw(x 31,1 =1, 2) where z* is removing from the sample.

Proof: It is similar to the proof of proposition 1 in [7]. A .
Remark: Recall that the cross-validated clgssiﬁcation rule for any x* (1 < i < N) is:
x* is assigned to class 1 if and only if C(x*,a) > 0, where

C(x',a) = (1 — &)Be(x') + aBw(x')

So, in practical situations, the number of sample points x* (1 < i < N) for which
the linear equation C(x', a) = 0 has a solution « in (0,1) is very small. This num-
ber represents the number of points for which both models (Pc and Bw) provide
different assignments. '

Step 2: Now, holding fixed the optimal complezity parameter a*, we proposed to
choose the shrinkage parameter 4* which minimizes the cross-validated misclassifi-
cation risk. In the same manner as above, it is easy to show that:

Proposition 2: the optimal shrinkage parameter 4* which minimizes the cross-
validated misclassification rule is either 0, 1 or takes the form
B, xi
,'a ( ) - (13)
B+ (x') = Bi(x')

for each x* € {x1;...,x"}, where
Bi(x') = 6, PP (xf; 1) — 6,200 (', 2),

Boe(x) = 86, PO (xf; 1) — 6, PO (i 2),



and Pi';) (x*; k) (résp. 'P}‘)(x‘; k)) denotes the estimate conditional probability Py (x'; k),
defined by equation (11) (resp. Pr(x‘;k) defined by equation (3)), where x* is re-
moving from the sample.

Remark: Now, the general case (K > 3) can be takled, for the regularization pa-
rameters o and v, in the same way as in [7]. It is worth noting that, for each x*
(1 < i < N), there are, generally, at most two possible optimal values for each
parameter.

4.3 Alernative choices for the regularization parameters

Our strategy of selecting the regularization parameters is not optimal as shown
in example 1. An alternative strategy is to choose a grid of points on the (a,v)-
plane (0 € a € 1,0 € ¥ £ 1) as Friedman did [6]. But this solution is expensive.
Other more intersting approaches consist in using our strategy, described in Section
4, permeting the role of a and 4. More precisely, holding o = 0, we derive the
optimal shrinkage parameter 45. In this case, the formula (12) becomes, for each

xte {x},...,x"N},
Be(x') .
Be(x') — Bi(x')
where Bj(x') = 6113[(i)(xi; 1) - 62151(")(x";2). Then holding ¥ = 9§, we derive the
optimal complexity parameter a®, which in this case takes the form
B (x') + Bi(x')
B (x") — Biy (')

(14)

(15)
where

By(x') = (1-7")6 P8 (x'51) - (1 - 76 PY (x;2),

Biy(x) = (1-7)6PJ ;1) - (1 -1)6P0 (x;2),

Bi(x) = v6PPx1) - 7'52P}‘)(x‘;2).
RAPDI1 denotes this modified version of RAPD.
An other modified version of RAPD, which we call RAPD?2, is to hold a =1 and
we derive the shrinkage parameter 4*. It is similar to RAPDI in which the role of

Pc and Py are permited. In this case, the shrinkage parameter 77 is obtained by
the equation (14) in which we replace B¢ (.) by Bw(.). Holding v = v}, we derive

10



the optimale complexite parameter a* from the equation (15) in which By, takes
the role of Bg. '

Our examples illustrate that these modified versions of RAPD can perform better
than RAPD in certain situations.

‘5 Exprimental results

In the following section, the pe}formance of the four procedures (CIM, 1-tree, 2-tree
and RAPD) is examined through application to real and simulated data sets.

5.1 Example 1

The data consists of 241 patients suffering from arthose disease. The whole sample
was divided into two groups. The first group contained patients for which an aggra-
vation of disease has been discovered from a radiology examination and the second
contained the other patients. For each patient, the values of 10 binary variables
were available ([7] ). For our illustrative experiment, we drew at radom a training
sample of 141 patients and the rest constitutes the test sample. Tablel summarizes
the results of four classification methods for this data set.

- Table 1: Misclassification risk and regularization parameter values for arthose

data set
Methods test o ¥
CIM 42
1-Tree 41
2-Tree 46
RAPD 44 .85 .0
RAPDI1 40 .5 47
RAPD2 40 .0 .33

For each.method, we give the misclassification estimated on the test sample. Also
shown, are the selected regularizations parameters (a, ) for RAPD rule. The prior
probabilities were taken to be equal, 6 = 1/2 (k = 1, 2), for each group.

11



According to 1-tree method, the following tree structures were selected.

553}

Fig. 1 Dependence trees of group 1 and group 2 for data set arthose

For the same sample, the tree structure for both groups selected by 2-tree method
is shown below

Fig. 2 Dependence tree of all groups for data set arthose

From Table 1 it can be seen that 1-tree performs better than CIM and CIM gives
best result than 2-tree. Since RAPD is essentially a variation of 1-tree and 2-

12
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tree, it is natural that it works worse than 1-tree. While the modified versions of
RAPD, RAPDI1 and RAPD2, provided better misclassification risk because there
are essentially a variation of 1-tree (or 2-tree) and CIM. The same result of RAPDI1
and RAPD2 was obtained by DRDA in [7].

5.2 Example 2

The performance of these methods is evaluated through one additional Monte-Carlo
sampling-experiment implemented from the Bahadur model as discussed in [7]). The
training data set consists of 50 points in {0,1}® randomly generated as described
in [7] with different correlation matrices for each group. There are two groups with
equal size ny; = ny = 25. An additionnal test data of the same size was randomly
generated with the population structure and classified with the 6 rules derived from
the training data set. The prior probabilities were taken to be equal.

In the following, the tree structures selected by 1-tree and 2-tree methods are shwon
below.

Fig. 3 Trees for group 1 and group 2 Fig. 4 tree for all groups

13



Table 2: Misclassification risk and regularization parameter values for simulated

data set
Methods test « v
CIM 32
1-Tree 20
2-Tree 28
RAPD 18 43 0
RAPDI1 .20 .0 .0
RAPD?2 28 .0 .99

Table 2 summarizes the results of the six methods. Here, RAPD was the best
method. As in the example 1, 1-tree method gave the best result than 2-tree method
which in turn performs better than CIM. Hence, it is natural that the modified
versions of RAPD did not perform better than RAPD in this situation. Also, this
example showed that the model selection of the regularization parameters depend
on the structure of the training sample. Thus, there is no unique solution to the
optimal regularization parametrs. So, if the optimal regularization parameters exist
then the choice of one verion of RAPD will be based on the result of the three
classical method (1-tree, 2-tree and CIM) as example 1 and 2 showed.

6 Conclusion

The numerical experiments showed that good performances can be expected from
RAPD. However, unlike RDA in the Gaussian framework [6], we have not yet ex-
hibited situations where RAPD improved substancially on both 1-tree and 2-tree
(or CIM). Roughly speaking, in our experiments, RAPD is related to both 1-tree
and 2-tree. While the modified versions of RAPD are related to both 1-tree (or
2-tree) and CIM. Nevertheless, if the difference in misclassification risk between two
classical methods (1-tree, 2-tree and CIM) is more important, then RAPD could be
expected to dominate these three methods. While, if this difference is less important
(for example less than 4), then RAPD will not be really useful.

Despite these restrictions, we think that RAPD can be quite beneficial for discrete
discriminant analysis in a setting for which sample sizes are small and the groups
not well separated.

14
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