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Dynamically-Typed Computations for Order-Sorted
Equational Presentations
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France - '
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Abstract

Equational presentations with ordered sorts encompass partially defined functions and subtyp-
ing information in an algebraic framework. In this work we address the problem of computing
in order-sorted algebras, with very few restrictions on the allowed presentations. We adopt the
G-algebra framework, where equational, membership and existence formulas can be expressed, and
that provides a complete deduction calculus which incorporates the interaction between all these
formulas. ' .

To practically deal with this calculus, we introduce an operational semantics for G-algebra
using rewrite systems over so-called decorated terms, that have assertions concerning the sort
membership of any subterm in its head node. Decorated rewrite rules perform equational replace-
ment, decoration rewrite rules enrich the decorations and record sort information. Therefore we
use the semantic sort principle, i.e. equal terms belong to equal sorts, rather than the syntactic
sort principle that does not use the equational part of a presentation.

In order to have a complete and decidable unification on decorated terms, we restrict to sort
inheriting theories. The sort inheritance property is undecidable in general but we provide a test to
check it on a given presentation. The test provides information on how to extend the presentation
in a model conservative way, in order to obtain sort inheritance .

Then a completion procedure on decorated terms is designed to compute all interactions be-
tween equational and membership formulas. When the completion terminates, the resulting set of
rewrite rules provides a way to decide equational theorems of the form (¢ = ¢’) and typing theorems
of the form (¢ : A).

N

*This work has been partially supported by the Esprit Basic Research working group COMPASS and by the GDR
PAOIA of CNRS.



Calculs avec typage dynamique pour les
théories équationnelles avec sortes ordonnées

Claus Hintermeier, Claude Kirchner, Héléne Kirchner
CRIN & INRIA-Lorraine,
BP 239, 54506 Vandceuvre-les-Nancy Cedex,
France,
E-mail: hintermeQ@loria.fr, ckirchne@loria.fr, hkirchne@loria.fr

Résumé

Les présentations équationnelles avec sortes ordonnées prennent en compte, dans
un cadre algébrique, les fonctions partielles et 'information de sous-types. Dans ce
papier, nous considérons le probleme de calculer, avec le moins de restrictions possi-
ble, dans les algébres avec sortes ordonnées. Nous nous plagons dans le cadre de la
G-algebre, ou des formules équationelles, d’appartenance et d’existence peuvent étre
exprimées, et qui fournit un systeme de déduction complet incorporant l'interaction
entre toutes ces formules.

Pour calculer en pratique avec ce systéme, nous introduisons une sémantique
opérationnelle pour la G-algebre, utilisant des systemes de réécriture sur des termes
décorés, qui contiennent dans chaque nceud des assertions concernant ’appartenance
du sous-terme a certaines sortes. Des regles décorées réalisent le remplacement équa-
tionnel, tandis que des regles de décoration enrichissent les décorations et enregistrent
les informations de sortes. Nous utilisons donc le principe des sortes sémantiques,
i.e. des termes égaux appartiennent a des sortes identiques, plutoét que des sortes
syntaxiques.

Afin d’obtenir une unification complete et décidable sur les termes décorés, nous
nous restreignons a des théories avec héritage de sortes. Cette propriété est indécid-
. able en général, mais nous proposons un test pour la vérifier sur une présentation
donnée. Ce test fournit en cas d’échec une indication sur la fagon d’étendre la présen-
tation en conservant ses modeles, pour obtenir I’héritage de sortes.

Une procédure de complétion sur les termes décorés calcule toutes les interac-
tions entre formules équationnelles et formules d’appartenance. Quand la complé-
tion termine, I’ensemble de régles résultant fournit un processus de décision pour les
théorémes équationnels de la forme (t = t') et pour les théorémes de typage de la
forme (t: A). '
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1 Introduction

Due to the need of dealing with partial functions, types and polymorphism, in particular in algebraic
specifications [EM85, BLK*90] but also in computer algebra [J592, Mio93], the two last decades
have seen the emergence of many frameworks integrating the notions of sort, subsort, equality and
polymorphism, both in the first and higher-order contexts {CG91]. In this work, we address the
problem of computing efficiently in order-sorted algebras with the less restrictive conditions on the
allowed presentations. -

1.1 The Problems

In most studies on order-sorted computations, a logic is defined and the notion of model is introduced
accordingly, together with results stating the correspondence between the model theoretic and the
proof theoretic levels. Let us mention, without any exhaustivity, the work of [Obe62] on order-sorted
logic, the introduction of order-sorted algebras in [Gog78], fully developped in [GM92], the order-
sorted semantics introduced by [SNGM89] and the term declarations used in [SS87]. Actually, these
works assume statements of the form A < B (sort inclusion declaration) and f : A B — C (operator
declaration), to be parsing-oriented declarations. They are used to define well-formed terms and
are not directly encompassed in the deduction process. This results in various problems to get a
Birkhoff-like completeness theorem or to decide local confluence [JKKM92, Wal92].

A typical situation is as follows: Suppose that A is a subsort of the sort B, the operator f is
declared as operating only from A to itself, a is a constant in A and b is a constant in B. If the
equality @ = b is given, it is problematic to deduce f(a) = f(b) since, considering the previous
declarations only as parsing assumptions, f(b) is not a correctly constructed term. From this point
of view, equality is no more a congruence. This problem has been overcome in several ways, for
example in [GM92] by adding restrictions to the signatures (such as coherence and regularity), or by
considering the concept of dynamic sort [WD89).

Another strange behavior of the approach considering sort inclusions and operator declarations
as syntactic assertions, is that the standard rewriting tools do not behave as expected. The following
specification, written below in an OBJ-like syntax and given by [SNGM89], presents a specification
with a rewrite system that has no critical pair but is not locally confluent.

sort A B
subsort A< B
opf:A— A
opf:B— B
opa:— A
opb: - B
rule:a — b

rule: f(z : A) — z

There is no (standard) critical pair between the two rewrite rules (or oriented equalities), but the
term f(a) can be rewritten into a using the second rule, then to b, and into f(b) using the first one.
But both b and f(b) are then irreducible. In this case, the rewriting process is not smart enough to
discover the fact that since @ — b and @ : A then b is also of sort A, which allows making the peak
convergent via the application of f(z : A) — z. A simple way to overcome the problem is to restrict
to sort-decreasing rules [KKM88], that is rewrite rules that always decrease the sort of the rewritten
term. The problem encountered by this first approach to order-sorted computations is that terms may
be syntactically ill-formed although semantically correct. A proposed operational solution, described



in [GIM85, JKKM92], is to add some retracts at execution time but this does not solve the problem
in full generality.

Completion procedures for order-sorted algebraic specifications have already been proposed. For
example, in [GKK90], the order-sorted algebra framework from [GIM85, KKM88] is considered. An-
other framework for order-sorted computations is developed in [SNGM89]. For a comparison between
the two previous approaches, see [Wal92]. In [Gan91], a translation from order-sorted to conditional
many-sorted specifications is proposed as an operational solution for order-sorted completion. All
these approaches need the additional hypothesis of sort-decreasing rules, in order to prove an ade-
quate version of the critical pair lemma.

More recent works on deduction with constraints [KKR90, Com92] lead to consider this last
problem as an instance of the more general phenomenon of interaction between constraints and
formulas. Typically, the rules of the above example can be expressed as follows:

a - b

fle)-z |l zcA

where the sort constraint £ € A accounts for the typing information (z : A).

Restrictions such as regularity, coherence and sort-decreasingness, can be understood as a way to
solve the interaction between sort constraints and formulas. But this is not quite satisfactory, and
alternative solutions to circumvent the problem sketched in the example above, have been searched.
A first direction is to modify the unification and matching operations so that they become more
powerful. This is the approach developed by H. Comon, using in particular second-order monadic
unification [Com92]. We propose here another approach, which relies on a general framework called
G-algebra introduced in [Még90] and allowing sorts, subsorts, equations and partial functions in a
first-order setting. This leads to a new logic and a notion of models briefly described in Section 3. In
particular the problem of the meaning of f(a) = f(b) in the above example is overcome, since it is
possible to infer from the presentation that b, being equal to a, is also of sort A. In such a context,
one can also write for example that i+:: R where ¢ is the well-known complex number, and terms like
pop(pop(push(a, push(a, P)))) evaluate in a natural way to P, without the help of retracts. Indeed in
G-algebra [Még90], typing becomes proving, and the deal is to automatize these proofs and to achieve
efficient computations in this framework.

1.2 Our Approach

With the previous motivations and ideas in mind, our goals in this work are first to introduce as
few restrictions on the order-sorted presentations as possible, second.to deeply understand why some
restrictions are needed to perform complete deduction in the proposed framework, and third to give
further hints on additional requirements that could be introduced to get better efficiency of order-
sorted computations.

In G-algebra, formulas are equalities (¢ = t') or term declarations (¢ : A) (also called membership
formulas) and the deduction process incorporates interaction between these two kinds of formulas. But
this generality leads to undecidability of typing, precisely because of the interaction between sort and
equality computations, and since non trivial term declarations are allowed. This has two immediate
consequences: matching and unification are undecidable in G-algebra. Thus, it is impossible to apply
the usual technique for simulating equational logic with rewriting logic [Mes92] via term rewriting
completion, since rewriting (using matching) as well as superposition of rules (using unification} is
undecidable.

To cope with this undecidability problem, we propose an operational semantics for the deduction
rules in G-algebra given in [Még90], based on an adequate representation of terms, called decorated
terms, and on a translation of the presentation formulas into rewrite rules.



The dynamic aspect of sort information and its interaction with equality is taken into account
through the notion of decorated terms. Decorations are sets of sorts, recording the currently proved
sorts of a term. They are spread out in the term and act locally as sort constraints during the
deduction. Managing sort information locally at each node of a term imposes the definition of adequate
matching and unification. Decidable matching on decorated terms allows defining rewriting with two
appropriate notions of rewrite rules. The first kind of rules corresponds to the equality axioms of
the presentation, turned into decorated rules that rewrite terms and possibly enrich their decorations.
The second one corresponds to term declarations turned into conditional decoration rules that only
enrich decorations without modifying the term structure.

Using these tools, we then come back to the semi-decision problem of equality formulas (¢ = t')
and membership formulas (¢ : A), in G-algebra. This is achieved via a generalization of the well-known
completion procedure [KB70] which works on decorated terms using the decidable versions of matching
and unification mentioned before. Doing so of course, we push all the underlying undecidability
problems at the completion level. :

The completion process that we propose is based on the hypothesis that the information in the
presentation is modularized in three parts. The first one (i) consists in all equalities (¢ = t'), the
second omne (ii) consists in all term declarations (¢ : A) and the last one (iii) in the sort ordering
structure defined by sort inclusions (A < B). The two first ones are handled via rewriting rules and
are thus modified and enriched during completion. On the contrary, the third one is considered stable
during the whole completion. In particular, matchers and unifiers are computed using as usual the
term structure but also the sort information given in decorations and in the —fixed- sort structure.
Since matching and unification use only the sort information available in the decorated term at
unification or matching time, they are correct but non complete in general. Therefore, in order to get
completeness for the critical pairs computation involved into completion, it is necessary that the sort
information given in part (iii) contains enough information to have the following property: if a term
t can be proven in the presentation to be of sorts A and B, then these two sorts have a non-empty
common subsort. This completeness property of the sort information part (iii) of the presentation
is called sort inheritance and we assume it true all over the completion.

The completion process is performed assuming the sort inheritance of the presentation, necessary
for the completeness of the critical pairs computation. If completion terminates, the resulting set of
rewrite rules provides a way to prove not only equational theorems of the form (¢ = t') but also typing
theorems of the form (¢ : A).

We then provide a procedure to check sort inheritance of a presentation. When sort-inheritance
is not satisfied, this is detected by a failure of this process. A counter-example is then provided that
can be exploited to enrich the sort structure.

It is worth emphasizing that in this approach, typing information has two parts: the static part
contains only the subsort relation. The dynamic part covers the tefm declarations in form of rewrite
rules, which are handled outside of unification and provide automatically a typing algorithm in the
completed presentation.

As a consequence of this approach, we get quite general order-sorted computations that can be
very efficiently implemented because of the memorization of sort information in the terms and the
static behavior of matching and unification. Moreover the notion of retract is not needed anymore to
deal with syntactically ill-formed terms. ‘



1.3 A Simple Example

Applying this approach to the previous example leads to the following steps of computations. The
presentation is first translated into G-algebra formulas (second column below):

sort AB zu Ay B
subsort A< B z:B
opf:A— A flz): A

op f:B— B f(y): B
opa:— A a: A

opb: - B b: B
rule:a — b a=b

rule:Vz 1 A, f(z) >z  f(z)==.

Then, using the following set of decoration rules whose construction is explained later on, and where
the variable s can be instantiated by any set of sorts, the formulas of the first column are translated

in the formulas of the second one:

f@):A f@Wy o fEWyni i (a) ¢

fW): B fly®Bhy - f(yBh)yotBYif {B} ¢ s
a:A a® - oV if {4} ¢ s

b:B b — beUiBif (B} ¢ s.

a=b a® = »® '

f(:l:) =7 f(z:{A}):O - z:{A}
The presentation is saturated, using a completion process, into the following one:

f(zz{A,B}):s - f(z:{A.B}):sU{A,B} if {A,B} % 38
f(y:{B}):s - f(y:{B}):aU{B} if {B} %8
a* — a*ABYif {A B} ¢ s
bi* — bso{ABYif {A,B} ¢ s
a:{A.B} = b:{A,B}
'f(z:{A,B}):{A,B} — {48}

In this saturated presentation, the term f(a®)® is first decorated (using the decoration rules) into
f(a{ABHH{AB} Then it is rewritten using the two last decorated rewrite rules above into b{4:B},

Note that in this new framework the restrictions of regularity, coherence and sort-decreasingness
are not needed any more to get the usually expected results.

1.4 Structure of the Paper

The paper is organized in the following way. First the G-algebra framework is recalled. Then the
definition of decorated terms is introduced, with the corresponding matching and unification notions.
Based on this matching, we define rewriting with decorated rewrite rules and with decoration rewrite
rules. A completeness theorem states the equivalence of replacement of equal by equal on decorated
terms with deduction in G-algebra. Using unification on decorated terms, critical pairs are defined
between the two different kinds of rules. A completion process that involves both kinds of rules is then
described and we show how the completed presentation allows proving equational or typing theorems,
when the initial presentation is sort inheriting. A process to check sort inheritance is then proposed.
Our approach is eventually compared with other related works.



2 Basic Notions and Notations

Notations concerning classical terms, occurrences, replacements, substitutions and generality on terms

and substitutions are consistent with [DJ90, SNGM89]. In particular we write |¢| for the number of

function symbols occurring in a term t, subterm_set(t) for all subterms of t, VOcc(t) for the set of

all variable occurrences, VOce,(t) for the set of all occurrences of the variable £ and A'VOcc(t) for
" the non-variable ones in ¢. ‘

We refer to [DJ90)] in particular for the definition of the various orderings used in this paper.
Specifically, lexicographic orderings are written as a tuple (<;,..., <) of the orderings <,...,<n.

The notion of replacement will also be used in an extended way for occurrence sets and sequential
multiple replacements. Therefore, t{u]o stands for t with u at all occurrences w € O and t[u]o[v]or
for (t[u]o)[v]o:. Furthermore, the occurrence orderings extend pairwise to occurrence sets, i.e. O
is incomparable with O’ iff all occurrences in O are incomparable with all occurrences in O’ etc.
Additionally, the concatenation of two occurrence sets O and O’ denotes the set of occurrences
{ww'|w €O and v’ €0'}. Finally, if t|, =1 , for all w,w’ € O, then 1|, stands for |, w € O.

For a substitution o, Dom(o) = {z | o(z) # 2}, Ran(0) = Uzepom(s) Var(o(z)) is the set of
variables in the image of the variables in the domain of the substitution, and IZm(o) stands for the set
{t | 3z € Dom(g) : o(z) = t}. Moreover, terms(p) stands for the terms occurring in an arbitrary
structure p without. its subterms and subterm_set(p) is terms(p) together with all subterms of terms
in terms(p). '

All notions concerning unsorted matching, unification and term rewriting are consistent with those
in {JK91]. Notions on completion, equational proofs and proof reductions are consistent with [Bac91].

3 Short Introduction to G-Algebra

In this section we briefly define formulas and presentations in G-algebra. A main feature of this frame-
work is that term declarations, usually seen as part of the (static) signature in classical approaches,
become G-algebra formulas and are involved in proofs at the same level as equalities.

3.1 Formulas and Presentations

Let S be a set of sort symbols, containing always the universal sort symbol 2. For X’ a set of variables,
’::’ is a binary relation associating to any variable a unique sort in S, denoted sort(z). Then X is
called a S-sorted set of variables. Let also F be a set of function symbols with an arity function
arity() defined for each element of F. Then ¥ = (8, F) is called signature. A (T, X')-term is either a
variable z € X, or of the form f(¢y,...,t,) with f € F, ar(f) = n and t,,...,, being (¥, X')-terms.
The set of all (¥, X)-terms is denoted by T(X,X), the ground (X, X)-terms by 7(X). Notice that
except the condition on arity, there is no requirement of well-sortedness: the fact that a term is
well-sorted will result from an (arbitrary complicated) proof and is thus a semantical fact rather than
a syntactical one. '

A formula in a G-algebra can be an existence formula for a term ¢, written (EX t), a membership
formula for ¢ to be in a sort A, written (¢ : A), a variable declaration for = to be of sort A, written
(z :+ A), or an equality of two terms ¢ and ¢/, written (¢ = t’). All formulas are implicitly universally
quantified over all variables occurring in the formula. In the G-algebra framework, a set of formulas
built on a signature ¥ is called ¥-presentation. A pair (X,P) of a signature ¥ and a -presentation
is called specification.

For every signature X, a X-algebra A is defined by its domain |4| and by interpretations for each
symbol in § and F:

1. VA € 8, the interpretation of A, A% is a non-empty set, and Q4 = |A|,

8



2. Vf € F, the interpretation of f, f4 is a partial function f4 : |A[sritv(f) — | 4].

A variable assignment o of variables in a set ¥V C X in a I-algebra A is a function that assigns
forall z € V, (z : A) € P, an element in A4. Hence, given a T-algebra, where = is the equality
relation, formulas can be interpreted in the following way:

1. A = (EX t) if there is an assignment for all variables in ¢ and for every assignment a of the
variables in ¢, a(t) € Q4

2. A = (t: A) if there is an assignment for all variables in ¢ and for every assignment o of the
variables in t, a(t) € A4

3. AE (t =1t')if there is an assignment for all variables in ¢ and #' and for every assignment a of
the variables in t and ¢/, a(t) = a(t’)

A X-algebra A is a model of a Y-presentation P if for each ¢ in P, A E ¢. P = ¢ if ¢ is true in
all models of P. Note that if a function is not defined for some argument, the result of this function
application is not in the interpretation of any sort and two undefined results of function applications
are never equal. A I-term algebra for a L-presentation is a L-algebra A that uses the identity
function as interpretation for each symbol in F. Given a X-presentation P, the reflexive, symmetric,
transitive, substitutive and congruence closure of the equations in P defines a congruence =. The
quotient term algebra Tx,_, is a T-algebra which is proved initial in the class of X-algebras satisfying
the presentation P [Még90]. :

3.2 Deduction

The deduction rules for G-algebras are shown in Figure 1. When a formula ¢ can be deduced from the
formulas of a presentation P using these deduction rules, this is denoted P I ¢. The substitutions o
mentioned in the deduction system are supposed to be conform with the current presentation which
means that, for all (z — t) € o, we have P | (t : A) if (z :: A) € P. These rules are proved to be
sound and complete in [Még90] i.e. for any presentation P and formula ¢:

PE¢ & Pk

The number of rules for the complete and sound deduction system has increased with respect to
the unsorted or many-sorted cases, because membership proofs have the same status as equality and
existence proofs. Notice also that membership to  and existence formulas are equivalent statements
and thus this set.of rules can be simplified if needed.

4 Sort Membership

4.1 Associating a Partial Ordering over Sorts

In the following sections, we use a quasi-ordering <J'™ over the sorts, which is extracted from the

variable declarations in the current presentation P. This simplifies notations but mainly allows for
a modularization of deduction. In particular the unification process will heavily rely on this quasi-
ordering. .

Definition 4.1 Let P be a presentation. The syntactic sort ordering in P, written <g", is the
transitive and reflerive closure of the relation:



Globality EXt = 1:0
VariableMembership z :: A = 1:4
ExSubterm EX t{u] = Ku
ExMembership t: A = EXt
ExEquality t=1t = Kt
ExReplacement KX tlu,u=v = EX{[v]
MeReplacement tlu]: A,u=v = tv]:4
EqReplacement ful=w,u=v = tv]=w
ExSubstitutivity E 1t = KX o)
MeSubstitutivity t: A = o(t):A
EqSubstitutivity t=1t = oft) =o(t)
Reflexivity Xt = t=t
Symmetry u=v = v=1u
Transitivity u=v,v=w = u=uw
DeduceGAlgebra

Figure 1: Deduction rules for G-algebra

A<F"Bif 3{z: A, z:B}CP.

A is called subsort of B, if A<S"B. If A<Z™ B and B<Z" A, we write A ~¢™ B. The negation
is written A £ ¢™ B. When A<I"B but A #F™ B, A is a strict subsort of B, written A <™ B. If
neither A<P" B nor B<Z™ A, A and B are said incomparable, written A Xg™ B.

The upward closure of a sort A, written A 1, is the set {B | A<J"B}.

The (semantic) sort ordering in P, written <¥™, is the transitive and reflezive closure of the
following relation:

ALS" Bif 3(z:: A) € Psuch that Pl==z: B,
Clear]&, <F" C<¥E™, but not always <" =<¥™, as the following example illustrates:
Example 4.2 Let P = {z :: A,y :: B, f(z,y): B, f(z,y) = z}. Clearly,
PEz:Bandz:AcP.
Therefore A <¥™ B, but A<Z™ B is not true.
The following example illustrates the notions that we just introduced:
Example 4.3 Let P={z:: A,z:C,z: D,y:: B,y:C,2::C,u: D,u: A,z = y}.

Then A<F" C, B<I" C, D~F" A, D <F" C, AXZ™ B and D XI™ B. This is represented by
the following graph:

' °
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Therefore, we also have A <§™ C, B <g™ C, D ~¥™ A, D <¥™ C, A ~¥™ B and D }¥™ B.
Note that P f= = : B,y : A, but neither A<Z™ B nor B<Z" A.

Unfortunately, as one can expect, we get the following negative result for the semantic relation
<sem.
Ss

Proposition 4.4 It is undecidable whether for an arbitrary given specification ((S,F),P), and two
sorts A,Be€ S, A<¥™ B holds.

Proof: We actually show that A ~¥™ B is undecidable. This is sufficient since assuming <¥F™
decidable implies immediately that ~¥™ is decidable, too.

It is well-known, that there exist undecidable equational proofs, e.g. in equational theories
containing the Turing machine semantics (see [Dau89]). Let ((S,F),P) be a specification of
such a theory and (¢ = t’) an undecidable equality. Let 6§ = {A, B}, where A, B are not in
S and therefore not used in P, and 6P = {t = z,z :: A,t' = 2/,2’ :: B}. Thus A ~¥™ B in
((SUéS, F),PUbP) is undecidable, since it is equivalent to deciding (¢t = ¢') in ((S,F),P). O -

4.2 Assumptions Concerning the Sort Membership

In order to keep the unification of two variables decidable, we restrict the used signatures to sort
inheriting ones. This is a more semantical notion than classical regularity, i.e. the existence of a
unique least sort for each term. Sort inheritance just means that if a term can be proved (semantically)
to be of sorts A and B, then these two sorts have a common subsort:

Definition 4.5 Let ¥ = (S,F) be a signature. A specification (£,P) is sort inheriting if V¢ €
T(X,X): VA,BeS:
PHt:At:B=>3CeS:C<J"A,B.

Another way this definition can be understood is that a specification (X, P) is sort inheriting if
the sort information present in P is complete w.r.t. the semantic sort membership.
Altogether, we make the following general assumptions in all the paper.

General Assumption 4.6
4.6.1 The sort relation does not contain cycles.

4.6.2 The set mlb(S) of mazimal elements of the set of lower bounds of any subset of sorts § C S s
computable.

4.6.3 All sorts are non-empty.
4.6.4 The presentation is sort inheriting.
4.6.5 The specification has bounded membership, i.e. #{A | Pt t: A} is finite for allt € T(Z,X).

In signatures with finite sort sets, the points 4.6.1, 4.6.2 and 4.6.5 are obviously decidable [SS87].
However, if polymorphic signatures are used, more sophisticated properties and sort concepts have
to be introduced (see [Smo89]). Point 4.6.3 is undecidable in general but can be enforced by the
stricter but decidable requirement that all sorts are syntactically non-empty. Finally, point 4.6.4
is undecidable in general but a constructive test exhibiting terms that destroy sort inheritance is
developed in this paper. Of course all specifications whose set of sorts is finite have the bounded
membership property. For polymorphic sort structures, sufficient conditions for this point have to be
developed.

We give two non-regular examples to explain the difference between regularity and sort inheri-
tance in polymorphic signatures.

11




list(a)

0 0 0
0 0 0
0 0 . - 0

Figure 2: Two non-regular but sort inheriting sort structures

Example 4.7 Let list(a) denote the sort constructor for the lists over arbitrary objects of sort a and
(] the empty list, occurring in each of the list(c)-sorts. So the first structure illustrated in figure 2 is
sort inheriting but not regular.

Example 4.8 The second structure tn figure 2 extends the first ezcample by adding a sort constructor
for a-term sets called set(a), that is realized in this special case as a list with two elements and thus
is a subsort of list(a). So we would like to represent the empty set with the empty list and thus we
know that [] is contained in each of the two sorts list(a) and set(a), giving a more complez structure.

In each of the two cases the precondition of classical unification algorithms, namely regularity, is
not fulfilled, but unification is clearly decidable. Another solution. to the problem of non-regularity in
these cases would be the introduction of a new sort nil being subsort of all others and containing only
[}, i.e. the signature would become regular. This technique could even be extended to all elements of
a polymorphic sort being independent of the sort’s parameters, that are consequently elements of all
instances of the polymorphic sort. However, our approach seems to be closer to the intentions of the
specifier. Furthermore, the sort inheritance condition is intuitively easy to understand, even though
the formal definition seems to be complicated. In general these infinite sort structures! also resemble
a lot at the structures used in unified algebras (see [Mos89] for further details), although there is no
difference between the notions of sort and term. Comparing unified and G-algebras in more detail
will surely be one of the next steps concerning this approach.

Another problem in polymorphic sort theories, is the number of sorts, a term can belong to.
Therefore, we have to characterize suitable specifications.

‘IThey are not necessarily lattices, as the second example shows.
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Definition 4.9 A specification ((S,F),P) has bounded membership iff #{A | P+ t : A} is finite
forallt e T(L,X). '

Of course all specifications whose set of sort is finite have the bounded membership property.
For polymorphic sorts theories, sufficient conditions are still to be introduced. A weakening could
be reached by demanding a finite representation of all sorts of a term.

4.3 Eliminating cycles

For the resolution of peaks by critical pairs, presentations without cycles in the sort structure will be
required. In the case of finite sort sets the calculation of minimal, complete subsort sets of two sorts
is unique, i.e. the unification algorithm is also more efficient.

The transformation of presentations replaces all sort symbols occurring in such a cycle by a unique
representative of the sort symbols in the cycle. The theory described by the presentation remains the
same, because G-algebras force the models of a cyclic presentation P by the rule MeSubstitutivity
to include the domain of a sort S; in the domain of a sort S;4q, if {z; :: Si,z; : Si41} C P. Hence, all
the inclusions of sort domains in a cycle cause the equality of the sort domains for all sorts occurring
in the cycle.

We start with the formalization of cycles in the variable declaration part of a presentation P,
denoted in the following by Py.

Definition 4.10 A presentation is called cyclic in the variable declaration part or just cyclic, if there

is @ finite chain of declarations {z; : Si,z; :: Siy1}tigp.m) 0 Pv with §; = Sp. C def Uien.{Si} s

called cycle and a sort S is member of a cycle, written S € C, if there is a i € [1..n], s.t. § = 5.

The cycles of a finite presentation can easily be found with one of the various algorithms existing
in graph theory. The easiest one is surely the bounded depth first search with |S| as limit. For the real
transformation we wish to find a minimal set containing all cycles included in the variable declaration
part of the current presentation.

Definition 4.11 Let C be the set of all cycles contained in Py. Then the set C. is called @ minimal,
complete set of cycles in Py, if:

e VCeC3AC.eC. : CCC, (completeness)
s C.CC (soundness)
e #C,. is minimal (minimality)

Note that such a set of cycles does not necessarily exist. Just think of an infinite set of sorts and
presentations with an infinite number of disjoint cycles. But if such a set exists, it is trivially unique:

Proposition 4.12 Let P be a presentation and C. a minimal, complete set of cycles in Py. Then C,
s unique.

Proof: Let C! and C? be two different minimal, complete sets of cycles in Py and let ¢ be in C! but
not in C2. C? is complete and thus there is a ¢; € C2, such that ¢ C c;. But C} is also complete
and therefore we have a ¢; € C! with ¢y C ¢;. Furthermore, C! is minimal, i.e. ¢ = ¢; = ¢; and

Cl — C2
ergo C! = C2.

O
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The uniqueness of the minimal complete set of cycles in Py allows us to replace all sorts in a cycle
by a unique representative.

Proposition 4.13 Let C. = {Cy,...,C,} be the finite, minimal, complete set of cycles in ’PV and
S ={S1,...,5m}. Then the set S;(C.) with:

SeC)  {Snpy | 1< i < mand Si € Cj) and 11(3) = mazs, ey, (k)}

is isomorphic with C..

Proof: The transformation of C. into S.(C,) is clearly the function S, itself. For the inverse transfor-
mation, we can easily reconstruct the C; from C, by searching the maximal cycles in P starting
with Sp(;). O

We can now introduce the transformation that eliminates the cycles in Py.

Proposition 4.14 Let P be a presentation, C. = {C1,...Cp} the finite, minimal, complete set of
cycles in Py and O the following transformation:

0(X) =2 02(01(X))

6, (P'U {z:8}) = 0,(PHYu{z = Sn(‘)} if SeC;
0,(P'U{t:8}) = O(PHU{t:Sny} fSed;
60, (P'U{t:S5}) = O,(PHU{t:S} if Aigel.n] : SeC;
0.1(P'u{X}) = ,(P)Hu{X} otherwise
O(P'U{z:8,2:5}) = O(P'uU{z:S})
0;(X) = 0.(X) otherwise

Then P Et: S iff O(P) =t : Snm)-

Proof: First of all we can state that for all variables z with (z :: §) € P and § € Cj, s.t. O
changes the sort S, we have P |= z : Sp;) using MeSubstitutivity and the definition of a
cycle. The same argument is trivially valid in the case of (z :: Sp(;y) € P, where we can use
VariableMembership. Therefore P |= z : Spy;) for any (z :: §) € P and any § € C;. This
proof is denoted by ®;. As S; and Sy;) are in the same cycle, we can also proof the inverse, i.e.
for any z with z :: Sp(;) € P, we can prove z : §; in P. Let ®; denote this proof in the sequel.
Let furthermore O(¢' : §') be defined as O({t' : 5'}). The following is a sketch of the proof.

e = : This is trivial, since any proof ® using P only has to be transformed replacing any
membership formula ¢’ : §” by O(¢’ : §') without loosing its soundness.

o < : Since all membership declarations ¢’ : Sk in ©(P) are images of some t' : S in P
under ©, we can construct a proof T of 7(t') : Sp(x) in P, where 7 replaces all z; € Var(t')
of sort §; by variables y; of sort Spy;),

. .o . . . g .
T:zu Sn(k) <:>V“"'“’ble;"”‘”’""""M’-‘I’ T Sn(k) <:>IV‘;eSub‘stitutiuity Tk : sﬂ(k)
(4 ! . T A
éMeSubstitutiuity t: Sn(k) <:>MeSubstit'u.ti‘uity T(t ) . Sn(k)
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where o; = {z — x4}, valid by &4, 0 is {zx — &}, trivially valid by t, € P, and finally

T = {z; — y;}, valid by the ®;s.

The resulting membership formula in Th(P) is equivalent to the one in Th(Q(P)), since we

consider all formulas as implicitly universally quantified and therefore any use of formulas
:: S(j) of a proof in ©(P) is equivalent to one using a variable z’ with z’ SH(J) in P.

Therefore the rest of the proof in Th(O(P)) can be kept without any changes giving a

proof ¥ of ¢ : Sty(m) in P.

Finally, we construct the proof ® of ¢ : S,, in P from T, using variables y of sort S,, and

z of Sn(m) in P:

. . . . 4 . 4 .
Yy Sm < VariableMembership Y ' Sm ﬁhnSubstitutiuity = Sm QMeSubstitutiuity t: Sm

where oy is {y — z}, valid by &/ , and 0 = {z — t}, valid by ¥.

In the case of a derivation based on an application of the Globality-rule, the proof is
trivial, since the previously performed membership proofs can always be followed by an
arbitrary number of Globality-rule applications.

(]

Corollary 4.15 Let P be a presentation, C. = {C\,...Cy} the minimal complete set of cycles in Py,
O the transformation defined in the precedent proposition and O the corresponding transformation
for the formulas in G-algebras. Then:

P ¥ iff O(P) F Op(¥).

Thus we proved that © is a conservative transformation in the sense of [SS87] - in fact the
factorization of equivalent sorts was already stated to be comservative there, but the proof sketch
there was even more fuzzy and the transformation less operational than this one. Finally, we give an
example for the defined transformation:

Example 4.16 Let S = {S1,52,53} and P = {z :: S1,y:: So,2 2 S3,2 : S2,9: S3,2: S1,t: S3}.
Then O(P) = {z :: S5,y :: S3,2 :: 3,1 : S5} and:

PEt: 5 iff O(P)Et: Snqg),
since II(1) =3 andt: 5, € P and t: 53 € O(P).

4.4 Non-empty sorts

The definition of models for a specification in G-Algebras doesn’t allow for non-empty sort interpre-
tations. But from a practical point of view it is interesting to give a syntactical test of non-emptiness
in order to make this condition on models of a specification superfluous. We restrict ourselves in
the rest of this paper to specifications with syntactically non-empty sorts, a notion that is defined as
follows:

Definition 4.17 Let (E,P) with ¥ = (S, F) be a specification. A sort A € S is called syntactically

empty, if there is no ground termt € T(F), s.t. P Fpedmem t : A, where DedMem is the set of rules
Globality, MeSubstitutivity, else A is called syntactically non-empty. (X,P) has syntactically
non-empty sorts, if all A € S are syntactically non-empty.
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MarkByDeclaration (NU{A},M,PuU{t: A})
= (N,M U{A},P)
if Yz € Var(t) : ((z::B)eP=>BeM)

Figure 3: Rule to search syntactically empty sorts

Figure 3 gives a decision procedure for the syntactical non-emptiness of sorts, assuming the set of
sorts to be finite. Starting with the triple (S, 0, P) the algorithm obviously terminates with (8, S, P’)
if all sorts contain at least one ground term. Else, the sorts in the first set of the tuple are those
without ground terms.

Proposition 4.18 Let (Z,P) be a specification with.X = (S,F). The application of the rule
MarkByDeclaration is sound, complete and terminates when applied in a saturating way start-
ing with (S,0,P), i.e. if (M, N,P’) is the triple obtained after termination, then the sorts in M are
syntactically empty and those in N are syntactically non-empty.

Proof: Termination is obvious, since & is finite and the first member of the triple is strictly reduced
at each step of the application. In the rest of the proof we refer to the first triple member with
M, the second with N and the third with P. ’

The soundness is shown by induction over the number of rule applications. If a sort A is in M
after the first step, then there must be a constant declaration a : A in P, because M was empty
in' the beginning and so no variable can occur in the used membership declaration. Assuming
that there is a membership proof &; - t; : A; for any A; € M, we take U;c {z; : A; = t;} as
substitution ¢ for the application of MeSubstitutivity to ¢ : A as a ground term membership
proof implying the non-emptiness of A when MarkByDeclaration is applied to t : A with
Var(t) = {z; | j € J}. Remark, that the non-linearity of term declarations doesn’t pose any
problem here. Hence any sequence of MarkByDeclaration-rule applications corresponds with
a ground term membership proof in DedMem.

The rule’s completeness is also obvious, since any membership proof for a ground term t
based on the rules Globality and MeSubstitutivity can be transformed to a sequence of
MarkByDeclaration-rule applications, where Globality applied to t' : A is replaced by
MarkByDeclaration applied to z : Q for some z with z :: A in P - such a variable z
must exist in any presentation taken under consideration here, since any sort is a subsort of
Q - and MeSubstitutivity is simply replaced by the equivalent MarkByDeclaration ap-
plication. Starting from the leaves of the proof with DedMem upwards, it can happen that
MarkByDeclaration isn’t applicable anymore, because the sort A used in a membership dec-
laration is already in M or the membership declaration is not in P. But in this case there was
already a ground term membership proof for A, because of the soundness, and therefore A4 is in
M if and only if there is a ground term membership proof using DedMember. O

4.5 Sort completion

To compute the unifier of two variables in a sort inheriting presentation, we need an extended sort
structure (Sg, Sféi") containing new sorts representing sort intersections. The transformation is very
close to the one in [SS87], which performs the conversion of arbitrary signatures with flat, linear term
declarations into regular ones. However, we do not have a restriction to such term declarations, neither
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do we have syntactical sorts. Since typing in G-algebras does not only depend on term declarations,
but also on equalities, we cannot precompute the exact contents of sorts representing the intersection.

But, in order to avoid problems with empty sorts, as stated in [GM88, SNGM89], we only add
new sorts, which surely are non-empty. This can be granted by the condition that there is at least one
sort in S below the new sort. Finally, we want the number of new sorts to be minimal. Unfortunately,
the number may still be exponential, since the construction ranges over the power set 25.

Definition 4.19 Under the assumption 4.6 we can complete the poset (S,<d™) into (S, g;‘f‘) in
the following way:

1. VA€ S, (A)€S,,
2. VS €25, (S)€ S, provided:
(a) mib(S) # 0,

(b) all elements in S are incomparable w.r.t. <" in (S <&M,
3. (A) ’”" (B) if A<Z"B
4. (A) < <’”" (S) if (S) € Sp, and A € mib(S),
5. (S) <" (8 if SC 5.

Since (S,, <"”") is a natural eztension of (S,<J™), we identify A and (A) for any A € S and call
Sy and (S,, < S‘"‘) the inherited sorts and inherited sort structure of (S, <F"). In order to simplify
notations when S is given in extension i.e. S = {A,B,...}, we denote (S) by (A, B,...).

Remark that we do not want to speak of intersection sorts here, since S, does not contain all (5)
with § € §, due to the possible emptiness of such sorts.

Example 4.20 Let S = {A,B,C,D, E} with

A<aynB<aynC’
aynD

be the initial sort structure. Then, the associated sort inheriting sort structure is Sy =
{(A),(B),{C),(D),(E), (B, D)} together with:

(4) <5y (B) <5 (C),
(4) <"”" (D), '
(B, )<"’" (B),
(B,D) < "’" (D),
()<WWBD)

Clearly, the construction also yields the uniqueness of maximal common subsorts for a set of sorts

5C S,
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5 Decorated terms

The undecidability of typing in G-algebra and its dynamic behavior lead us to adopt a specific
term structure with a kind of memorizing technique for intermediate results of membership proofs.
Furthermore the equality of two terms and the membership of a term to a sort are two sources
of information that should be treated and maintained in a parallel way, because the corresponding
formulas have a proper separated status in G-algebras, although they are of course interdependent.
This is taken into account by the particular data structure, called decorated terms. As a matter of
fact, the reader familiar with deduction with constraints will notice that the decorations are actually
membership constraints spread in the term and defining a kind of local constraints.

5.1 The Term Structure

Given a G-algebra signature & = (S, F) and (8,,<g)") its inherited sort structure, a So-sorted
variable set X, and a set of set-variables V disjoint from X, we define as follows the decorated
(L, Xy )-terms. '

Definition 5.1 A decoration is either a subset of Sy, called ground decoration, or the union of a
ground decoration and a variable s in 'V, representing a ground decoration. Then, a decorated (£, X, )-
term, or decorated term for short if (X, X,) is clear from the contest, is:

1. either a pair (z,S) of a variable z € X, and a decoration S, written z°5,

2. or of the form (f, S){((t1,51),-..,(tn, Sn)), #f (t1,51),..-,(tn, Sn) are decorated (X, X,)-terms,
f € F with arity(f) = n and S is a decoration. Such a term is written f(t;'St,..., 1,57 )5.

Var(tzs) stands for the set of variables without their decorations contained in t*S.

Ta(So, F, Xy) is the set of decorated (I, Xy )-terms, 74(S,, F) the set of ground (X, §)-terms. For
any decorated term or in general any formula v involving decorated terms, the set Vary(v) is the set
of all decorated variables including their decorations in v, considering the same variable with different
decorations as different elements. In order to precise the difference between Var(v) and Varg(v), we
give an example:

Example 5.2 Let T = {z5, f(y'V),g(a), h(z'T)}. Then, we have:

Var(T) = {z,y}
VarydT)= {z5,yY, 27T}

Now we can extend the classical notions of undecorated terms to decorated terms.

Definition 5.3 Let t'S be a decorated term in Ta(So, F, Xo).
The theory of occurrences, written Occ, is the monoid (N U {A},-), where A denotes the neutral
element. '

The occurrences of t*5, written Occ(t'S), with Occ(t:S) C Oce, are defined as follows:

Occ(z*5) = {a} ifred,
Oce(f(tr, -+, tn)®) = {AUiepn.m{iw | @ € Occ(t;)}  otherwise.

Let w,v € Occ. The occurrence prefix ordering < is the smallest binary relation over occurrences,
s.t. w < v if there exists some v € Occ with v = w.v. '

18



The lexicographic occurrence ordering <. is the smallest binary relation over occurrences, s.t. w <(er
v if there ezist v,vy,v9 € Occ and m,n € N, s.t. w = v.m.vy, v = v.n.vy and m < n.
The term projection function .| : Ta(Sy, F, Xy) X Oce = Ty(So, F, Xy), is defined as follows:

t:S —_ tS

A -
f(tly-natn):shu = t,'|u ifie [ln]
t:sl... = 1 otherwise

The variable occurrences of t*, written VOcc(t'S), are defined as {w € Occ(tS) | tls|u € Xy}
The non-variable occurrences of t*5, written N'VOcc(t*S), are those in Occ(t:) \ VOecc(t:F).
The decoration S of a term t*° is denoted by Deco(tS).

The term (), is ¢ without its decoration, i.e. a term in T((S,, F), Xy).

Instead of t{4-B}, we may also write 48 and, when the top decoration does not matter, we also
omit the exponent, in order to simplify the syntax.

A undecorated term t is a T(Z, X)-instance of 5 € X,, if t € T(E,X) and if (z = (Aidiz )
then Vi = 1,...,n, Pt (a(z) : (Ai)). In this case the homomorphism generated by (z — t) is called
a T(E, X)-assignment of £, in the term algebra 7((Sy, F), Xo).

This extends canonically to sets of decorated variables and decorated terms, where the condition
must hold for all decorated variables in ¢5. The set of 7(Z, X')-assignments of a decorated term t'5
is written ASST(E'X)(t’S).

The extraction of the formula part present in a decorated term is defined as follows:

Definition 5.4 The decoration formulas associated with a decorated term-t, noted Py, are the set

{v':B| 3V € subterm_set(t),3(B,...) € U and
v’ is a T(Z, X') — instance of uV}

A decorated (Z, Xy )-term 5 is valid in a presentation P, if P.s C Th(P). ValidTy(S,, F, X,) and
ValidT4(Sy, F) are the set of all valid, decorated terms, and valid, decorated ground terms, respectively. .

Hence, valid decorated terms are a combined representation of terms and true membership for-
mulas. Obviously, all subterms of a valid term are also valid, since P, C Py, for all w € Occ(t).

Each term ¢ in 7(Z, X) is identified with the decorated term ¢!® with an empty set of sorts at
each node except the variable positions, where the decoration contains the sort of the variable only.
Notice that the definition of valid terms allows for empty decorations, i.e. every t'® € Ty(Sy,F, Xs)
is valid.

This notation also extends to sets, i.e. {t4% | t € T} is written 7% for any 7 C Ty(S,, F, Xs)-

All other notions concerning decorated terms are defined in the same way as for classical terms.
The top occurrence in decorated terms is denoted by A. The equality over decorated terms, noted
=4, is the conjunction of classical equality over variables and function symbols with the set equality
over the corresponding decorations. The negation of =, is denoted #4. t5 =4 5" stands for
(tzs)nd = (t’:s,)nd'

Several decorations may seem to be in conflict when we write for instance: Vw €
Occ(tS) : (t'5,)5 =4 t' in the case where w = A. Then the actual decoration of ¢’ is always
the outermost mentioned, i.e. in this case S’ and not S. The only exception is of course the replace-

ment of subterms, i.e. the decoration of ¢°[u'%'], at occurrence w is clearly S’ and not the one of
=

Furthermore, we need to adapt the notion of sort inheritance on decorated terms. The definition
given now is relative to a subset of valid decorated terms.
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Definition 5.5 Let T C ValidTy(S,,F,X,) and < be a subsort relation. A specification ((S,F),P)

is 7-sort inheriting with respect to <, if:
vitTeT : ABeT=>(3CeS : C<A,B).

Clearly, ValidTy(S,, F, Xy )-sort inheritance w.r.t. <™ is equivalent to sort inheritance of the
specification. Consequently, we can write “sort inheritance” instead of “Valid74(S,,F, X,)-sort in-
heritance w.r.t. <J™”. As an immediate consequence of this definition and since <™ C<¥F™, the
following implication holds:

Lemma 5.8 If ((S,F),P) is T-sort inheriting w.r.t. <", then it is T-sort inheriting w.r.t. <¥™.

In the rest of the paper, we mean implicitely 7-sort inheritance w.r.t. <&", when we use 7-sort

inheritance. The motivation for the following definition is to generalize the fact that when a term ¢
belongs to a sort' A, it also belongs to all sorts greater than A.

Definition 5.7 Let (X,P) be a specification with & = (S, F), § C 8, and t5 € Ty(S,,F, X,). The

sort inheritance closure of S, written S is the set:
S={De8 | AT),(TYeS : (TUT')€ Sy and (TUT') S;’:" D}.

The sort inheritance closure of 'S is the term t"*S' satisfying 5 =pq t*% and Vo €
Occ(t®) : Deco(t"®")) = Deco(t:5),).

We illustrate this with an example:

Example 5.8 Let S = {A,B,C,D,E} with C<J"E, D<JI"B,C and therefore S, =
{A,B,C,D,E,(B,C)} with C <¥" E, D <¥" (B,C) and (B,C) <" B,C:

(2
ONONOEENONO
9
) )

Let furthermore S1.= {A}, S2 = {B,C} and S3 = {A, B,C} be subsets of S,.
Then S, = {A}, S = {B,C,(B,C),E} and S5 = {4, B,C, (B, C), E}.

£ § = {A}, we write A instead of S. For finite sort sets §,S’, the notation S C S’ stands for
S QE' anig for its negation. If § C §"and §’ G S, we write § = §’. Furthermore, 5 24 t"*5' stands
or t:5 = ¢":5". When T and T are sets of decorated terms, then 7 =, 7"if {f |t € T} = {t' | t' € T'}.
Our general assumption 4.6 gives us the decidability of these relations.

=
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Proposition 5.9 Given finite sort sets §,5' C S, it is decidable if § C §'.

Proof: Let T be a subset of S (resp. Sy) and min(T) = {C | 3D € T : D <J" C} (resp.

min(T) = {C | 3D € T : D <" C}). Clearly, min(T) has to be unique, since assuming
w.lo.g. another set T with the same property leads to a C € min(T)\ T, s.t. there is a
C € T with C <@" C, which is in contradiction to C € min(T), knowing that T C T. This
minimization step is done in order to simplify the construction of sorts in Sy, needed for S and
S’
Now, we define v to be the operator that adds (min(T U T’)) to a sort set M for all incomparable
sorts (T), (T'y € M, if (min(TUT')) € S,. Clearly, the size of (min(T U T")) is limited by the
sum of the size of all sorts in M. Therefore, the limit v>°(M) is reached after a finite number
of steps, giving us the computability of U = v*(S) and U’ = v*°(S§’). U and U’ are unique
since min() is and v always adds sorts, but never erases them.

Consequently, § C §” iff for all C’ € min(U’) there is some C € min(U) with C <g" C'. O

Corollary 5.10 Let S, S’ be finite sort sets and t'5, 1S’ be decorated terms. Then the relations S z s,
S~ S and tS =2, t5 are decidable.

5.2 Subsumption for Decorated Terms

Let us extend the classical term subsumption on decorated terms.

Definition 5.11 Let (£,P) be a subsort unique specification with £ = (S, F) and 5 5" be valid
. . . .S .
decorated terms. Then t'*S' is subsumed modulo sort inheritance by ¢S, written t'5 <4 t"*%, if:

1. Oce(tS) C Oce(t'™S), -
2. Yw € NVOce(tS) : (t1%)(w) = (1) (w),

3. Yw € NVOce(tS) : Deco(t%),) ~ Deco(t"S"),) and
4. Yz € Var(tS) : 3, T= & VYw € Oce(tS) @ (£5), g 2’5z = (15|, 24 6T and S; C T2)).

The last condition guarantees that each variable is bound to a unique decorated term modulo sort
inheritance. Clearly, if t*5 <4 5" and ¢S’ <d 5, then t'S 2y 5" modulo variable renaming. Note
that <4 stands for $q without $q N 2a.

Example 5.12 Let Sy = {4, B,C} and <™ = 0.

Assuming all terms in the following be valid, we get
F(e(A), za) p(BWACY < (a4} g4} pi{BY)HCY

but neither f(IL‘:{A},g;:{A}, y={B}):{C} <4 f(a:{B},a’{"}, bz{B}):{C}
nor f(x:{A}’z:{A}’y:{B}):{C} Sd f(a:{A,B},a:{A},b:{B}):{C}
or f(zA zAa BIHCY < f(5:{4}, @A} p:{B}HC) holds.

5.3 Substitutions

Decorated substitutions are a subset of the classical well-defined order-sorted substitutions. As already
mentioned, we restrict the used membership theory to the information already existing in the term
nodes.
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Definition 5.13 A decorated substitution o is a function replacing decorated variables in X, by
decorated terms, such that if o(z'%) =4 t'T with tT # 2°5 and (z:: A) € P, then A€ S, A€ T and
tT is valid. o is represented by its graph Uiy {2z — T} with Dom(o) = {25 | i € [1..n]},
Im(o) = {t;5 | i €[1..n]}, Ran(o) = Vary(Im(a)). Decorated substitutions can be ertended to -
homomorphisms over decorated terms as follows:

o(zi%) =4 ¢T if (z5—tT)€o, £:: A, and A= 5,
o(y®) =4 y° if y € Xy and y &€ Dom(o)
o(f(t1,--stn)) =4 f(o(t1),...,0(t,)) otherwise.

Let T,Tx C T4(S¢,F,Xy). SUBST denotes the set of all decorated substitutions. The set of
all decorated substitutions of Tx into T, written SUBST|TX is the set ¥ C SUBST with Yo €
2 VtT e Ty : o(tT)eT.

The concatenation of two decorated substitutions o, T, written o o T, is the composition of the
corresponding functions (o o 7(t) = a(7(t)) for any term t).

-7

It is important to notice that we do not try to compute the lowest sort of the term in the image
of o, in order to test if this term belongs to a subsort of the variable. Instead, we simply decide this
using the sorts in the top decoration of the term modulo sort inheritance.

Lemma 5.14 If t is a valid decorated term and o a decorated substitution, then o(t) is a valid
decorated term.

Proof: This is an easy consequence of the application of the deduction rule MeSubstitutivity. m]
Corollary 5.15 The composition o o T of two decorated substitutions

o ={z;5% > t;T}icrand 7 = {zgs; — t‘li:TJl}jGJ,
is a decorated substitution, provided thatVj e J : Vie I : z;V ¢ Vard(t_’j:T;).=> U ¢S

Corollary 5.18 Let 0,7 be two decorated substitutions with Dom(o) N Ran(r) = @. Then the com-
_ position o o T is also a decorated substitution.

Equality and orderings over decorated substitutions are essentially the same as in the classical
order-sorted case.

Definition 5.17 Let o0 and 7 be two decorated substitutions, V a finite decorated variable set. o is
more general than 7 over V, written o <Y 7, if Vt € ValidTy(Sy, F, Xy) with Varg(t) CV : o(t) <a
7(t). Then we say that o is equal to 7 over V, written 0 =Y 7, if 0(2°) 24 7(2'5) for all 235 € V.

Of course, we get the classical equivalence of matching and term subsumption whose proof can be
found in [HKK93].

Proposition 5.18 Let t5,¢"*5' ¢ Valid714(Sy, F,Xy). Then Jo € SUBST : o(t) =4t is equivalent
tot<q t. ) . .

Proof: = : Take t,'7* = o(2') for all 25 € Vary(t'5).
< : Define ¢ as {5z tI‘T=}z;s,€va,d(,;3)- a

As expected, it is sufficient to find a complementary substitution in order to prove subsumption.
However, this is not a necessary condition.
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Proposition 5.19 Let (¥, P) be a specification, o, T be two decorated substitutions and V a finite set
of decorated variables. Then:
Ip: pooxYr=o0<yT.

Proof: Assume t € ValidTy(S,,F, Xy) with Vary(t) C V. We have po o(t) &4 7(t). Take t,' Tz =4
p(z!?) for any z € Var(o(t)). Then ¢ <Y 7 is an immediate consequence of definition 5.11. O

~

The other direction is not always true, as the following example shows:

Example 5.20 Let ¥ = ({Q},{f,q,b}), s.t. arity(f) = 1, arity(a) = arity() = 0 and V =
{z = Qy:Q}. Theno = {z — f(z°{9})=9,y — f(z‘{n}):n} subsumes T = {z — f(a:{n}):Q,y —
f(b:{n})iﬂ} over V, since there is no term containing  and y at the same time, but there is no p, s.t.

poa%‘}{r.

However, we get the following result adapted from [Hue76]:

Proposition 5.21 Let (T, P) be a specification containing some non-monadic function symbol defined

over the universe for each argument, o, 7 be two decorated substitutions and V a finite set of decorated

variables. Then: '
ag,})T@Hp : poo YT,

Proof: The fact that ¥ contains some non-monadic function symbol defined over the universe for
each argument guarantees the existence of a n-ary symbol f, n > 1, that allows us to construct
some term t containing all variables in V. By the assumption o <Y 7, we get a(t) <4 7(2), i.e.
there is a t,"T= with Yw € VOcc(o(t)) : o(t), = 5 = 7(t),, Za tzT=. Therefore we can take:

p= {x:Sz — 1,1 | 35" : 5 €V and Sz = U S}.
z:SeVarg(o(t))

Clearly, p and p o o are decorated substitutions and t,7= is a valid term, since all terms
in Im(r) are and t is. Therefore, by the construction of t and t; Tz, we get for all
25 € Ran(o) : p(x5) =4 7(z!?). Consequently, there is a p with p o o(t) 24 7(2) for all
t € ValidTy(S,, F, &) with Varg(t) C V. O

Anyway, given a valid term ¢, computing a substitution p with p o 7(t) =4 o(t) results in solving

a matching problem, if 7 5:‘"(‘) o. This is a consequence of 7(t) <q o(t) and Proposition 5.18.

6 Strict Decorated Matching and Unification

Algorithms for matching and unification on decorated terms are designed in this section. In the
following, we assume all terms in the input problems of the algorithms to be valid. Matching and
unification are called strict here because they require to take into account at each node both the
identity of function symbols and the equality of decorations modulo the sort inheritance closure.

Matching and unification procedure presented in this paper are described as set of transformation
rules working over terms representing the problem. A transformation rule is sound if the set of
solutions of the resulting problem is subsumed by the one of the initial problem. If the set of solutions
of the resulting problem subsumes the solutions of the initial problem, then the transformation rule
is complete. The transformation rules have the following form:

t = t' if condition
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MDelete MAt it = M
if t =gt/
MDecompose M A f(t1,. .. ta)S <5 f(thy .o 80)S = M ANy o (i S5 1)
if $~5'
MConflict MA fty, . )5 <G g(thy. . ) S'=F
' if fAgorS#5
MDMerge MA T < eS A xTe T g = M ATV S
' : if z€ X, and t:5 2t
MMergeClash M AzT <Az T <y = F
. if z€ X, and t 24 ¢
MVariableClash M A f(t1,...,t,)"° 5; zT = F
if z € &,
MATCH,4

Figure 4: Rules for strict, syntactic, decorated matching

where t and t’ are terms representing problems and condition is a boolean expression that controls
application of the rule, namely the rule is applicable to a problem s if and only if (iff for short) there is
a substitution o with o(t) = s and o(condition) is satisfied. Such a procedure tries to apply its rules
deterministically, i.e. without backtracking, to the current problem as long as possible, replacing the
current problem by o(t'). Consequently, the procedure terminates if no more rule is applicable and
in this case we call the procedure an algorithm.

6.1 A Restricted Version of Semantical Order-Sorted Matching

Let us first clarify the basic notions. If ¢t and t’ are decorated terms then a (decorated) matching
equation has the form t <% t'. A (decorated) matching problem M is either a finite conjunction of
matching equations, or a new symbol T denoting an empty conjunction (A;cp = T), or F, a new
symbol denoting an unsatisfiable problem. If M = A;c/(t; <} s;) is a matching problem, then
Conj(M) denotes the set U;c;{t: <] s;}. A matching problem M = A;c;(s; <} t;) is called variable
disjoint if the variables of the equation’s left-hand sides are different from those on the right-hand
side. M is said to be in solved form if it is of the form T, F or A;j(z; = A;i <) t:°5), such that
T # Zn € X, for m,n € I with m # n. Last but not least, let us define the notion of a solution of a
matching problem.

Definition 6.1 A substitution o is a strict solution (or just D-solution or D-match) of the matching
problem M, if for each (t <% t') € Conj(M), it satisfies o(t) X4 t'. The set of all D-matches of a
problem M is denoted Sol(M). :

A decorated substitution o € Sol(M) is called principal solution of M, if for all decorated substi-
tutions 7 € Sol(M): o s:ar(M) T.

"The rules in Figure 4 show how to compute a unique solved form for a decorated matching problem.
Their main characteristic is that the decorations in the two members of a match equation should be
compatible at each level (see in particular the rule MDecompose).

Proposition 6.2 [HK92] The rules in MATCHy are sound, complete and their application termi-

nates for any variable disjoint decorated matching problem M as input, yielding a unique solved form
of M. '
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Remains the problem of solution extraction from the found solved form:

Proposition 6.3 [HK92] Let M; be the solved form of a matching problem M found by normalizing
using the rules in MATCHgq. If My has the form N;e (i i A;)'S' <5 t:°T) such that the conditions
Vie I,A; € T; and S; C T; are satisfied, then the decorated substitution o = {z;5 — t: T }ier 15 a
principal D-solution of M, else there is no D-solution for M.

Corollary 6.4 Strict decorated matching is decidable.

One may wonder how the undecidability of typing in G-algebras is handled here. Clearly, the
additional condition on the decorations of a solution brings decidability. It allows using exactly those
sort memberships of a term that can be found in its decoration, not necessarily all that are true under
the current presentation, as the following example shows:

Example 6.5 Let P = {a: A,b: B,z :: A,y:: B,z : B, f(z): A, f(y): B,a = b}.

For M; = (f(z{AhH4} <7 (o {ABNYHAY) then ¢ = {214} s a{AB}} is the principal solution of
M computed by MATCHy.

Let My = (f(xi{Ahy {4} <% (g AABNHABY) | then Sol(Mj) = @, because there is no way to add the
sort B to the decoration of f(a::{"})’{A}.

6.2 Strict Decorated Unification in Sort Inheriting Presentations

Strict decorated unification uses a quite similar formalism. A (decorated) unification equation is
written ¢t 2} ¢, where ¢,t’ are decorated terms. A (decorated) unification problem U is either a fi-
nite conjunction of unification equations, or an empty conjunction T = A;cg, or F which denotes
the unsolvable unification problem. Any-unification problem may be preceded by existential quan-
tifiers 3zy,...,3z.. U = Ajes(ti ~? 5;) is 2 unification problem, then Conj(U/) denotes the se

Uier{ti = si}. ‘
The set of rules compute a special form of unification problems that facilitates the extraction of
solutions, the so-called solved form. We use here a sorted version of the dag solved forms of [JK91].

Definition 6.6 A unification problem U is in solved form, if it has the following form:

1. T orF, or else,

2. of the form 3z1,...2m Aigpi.m) 25 E’Z t;'T with z; € Xy, such that:

(a) V1<i<j<n: z;#z;,

(b) V1<i<j<n: z; € Var(t;),

(c)Vi<i<n: ift;€X,, thenz; & {z1,...,2m},
(d)Vi<k<m: 31<j<n: z € Var(ty),

(e) V1<i<n: § CT.

A solution of a strict unification problem is defined with respect to a subset 7 of valid terms, as
follows:

Definition 6.7 Let P be a presentation, U be a conjunction of unification equations, Ty = terms(U)
and T C T4(Sy,F,Xy). A decorated substitution o € SUBSTITu—oT is a strict decorated 7 -unifier

(w.r.t. P), if: ,
V(e =} ¢) € Conj(t), o(2) 24 o(t).

SUp(U),,, called strict T-unifier set of U, is the set of all strict decorated T -unifiers of U.
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UDelete 37 UAt=RY)

= 37: (U)
ifeeyt
UDecompose 37 UA f(t,.. .,tn):s E’:‘; f(4,. ARS
= 37 (U Aigpny(ti 23 1))
: : if S~ 5
UCoalesce 37 UAzS 2 yT)

— 35 (u{x:S — y:T} A z:S E; ,y:T)
if z € Var(U)and y <y =
UMerge 37: UAT 255 A 2T 2} ¢S
= 37 (u A m:TUT’ g; S A ¢S g; tl:S')
if z€ Xy and 5 ¢ X, and |¢5] < ||
UErase 37,2 : (UNA S 25T
= 37: (U)
if 2/ € Var(U) U Var(t'T)
C U (2 (TS 2] (y (T’})‘S') , , ' ,
= 37,2 : UA s g; 2{min(TUT")) A y:S g; 2/{(min(TUT"))
if (T) X" (T"),2' =2 (min(T U T")), 2’ ¢ VarU) U {2, y}

wi
®y

Ulntersect

Figure 5: transformation rules of UNIF4

In the case of T = ValidTy(S,,F,Xy), o may simply be called strict decorated unifier, D-unifier, or
D-solution of U and the suffix |7 may be omitted. If P is clear from the context, we write SU(U)
instead of SUp(U).

The notion of complete set of T-unifiers is also relative to the subset 7

Definition 8.8 Let U = A;;(si 25 t;) and T C Ty(S,, F, Xy) given in the specification ((S, F),P).
CSUp(U)|, is a T-complete set of unifiers of the unification problem U, if:

1. CSUp(U), C SUP(U), (soundness)
2. V¢ € SUp(U)|, : (30 € CSUp(U)}, : o 5:'"(“) ®), (T -completeness)
3. Yo e CSUp(U)|,y 000 =0. (idempotency)

The complete set is minimal, if any two different substitutions in CSUp(U);, are incomparable

Var(U)
<d

with respect to . If such a set is a singleton, this element is called most general unifier of .

As before, we may omit T in the case T = ValidTy(S,, F,Xy) or P if the current presentation is
non-ambiguous. )

The unification process is described in two parts: the first in Figure 6.2 gives the transformation
rules on non-degenerated problems, while the fail rules are given in Figure 6.2. Of course, the
unification equation symbol 22} is supposed to be commutative. An ordering <y on variables occurring
in the problems is required for termination of the algorithm and extraction of solutions. For all
T C ValidTy(Sy, F, Xy ), this set of rules is ValidTy(S,, F, Xy )-sound, T-complete and terminating,
as proved in [HK92], if the presentation is T-sort inheriting w.r.t. <g".

The essential difference between this approach and the classical one for regular unification with
flat term declarations as in [JK91], is the treatment of unification of a variable with a non-variable
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UConflict 37 (UAf(tl,--- )s—dgt .,t;,):T) — F
if fAgorS%#T

UCheck* 37: UAz 2 t(zalp A ATy E b)) = F
if p; # A for some i € [1..n]

UDecoClash 37 UAS 2 f(t,. .0 ta)T) = F
fSqgT

URemove 37 UA(z = (TS 2] (y = (T))S) = F

if A(min(T U T')) €S,

Figure 6: fail rules of UNIF4

term. In the classical case, such an equation z %‘3 t is solved by searching a substitution o for the
variables in ¢, such that the least sort of o(t) is lower than the sort of z, but still as general ‘as
possible (see the Abstract rule in [JK91]). This computation may be quite expensive. When flat
term declarations are replaced by general ones and regularity is not assumed, it is even possible to
prove the undecidability of the (z &7 t)-case (see [SS87]). However, special forms of term declarations,
e.g. the so called semi-linear declarations, are still decidable [Uri92]. We think that these structural
restrictions of term declarations are too rough, since there are surely many decidable theories that
do not fulfill them. Instead, we only take the sorts in the decorations of potential images of variables
into account (see UDecoClash). These decorations need to be constructed by a mechanism outside
of the unification algorithm. It is easy to see that we do not change them in UNIF4. Hence, we
pushed this source of undecidability outside of unification where more sophisticated mechanisms and
properties of membership theories can be used.

Another source of undecidability is the unification of two variables in presentations with term
declarations. The proof for the general unification can be found in [SS87] and for strict decorated
unification in [Hin92]. The problem becomes trivially decidable by restricting to sort inheritance w.r.t.
<J™. This property is also undecidable in general, but a sufficient condition is proposed in the sequel
of this paper.

Proposition 6.9 [HK92] The normal form obtained by applying the rules in UNIFq to any unifi-
cation problem is a solved form.

A complete set of unifiers is derived by computing the tree-solved forms (JK91] of the results.

Proposition 6.10 Let T C ValidTy(Sy,F,X,), (X,P) be a T-sort inheriting specification w.r.t.
<™. Then the rules in UNIFy are sound, T-complete and terminate for every input unification
problem U. Let Uy = Ny (2 A)S =% 15T be the solved form obtained by the application of
UNIFg on a unification problem U and let 0 = Uig(y..n) 0i with o; = {t:T — 25) if t; € X, and
25 <y 7T and o; = {25 — t;"5) otherwise. Then {ons} is @ CSUp(U)|, where ony is the
tree-solved form of o.

IfUsy = F, thenU has no strict decorated T - umﬁer and if Uy = T, then any decorated substitution

of terms(U) into T, is a strict decorated T -unifier of U.

Proof: The proof can be found in [HK92]. It is worth noticing that the syntactic subsort relation
is sufficient for the calculation of a 7-complete unifier of two variables, since (X, P) is 7-sort
inheriting and therefore there is no decoration of some subterm in 7 that contains incomparable
sorts without common subsort. This fact allows us to subsume any subterm in 7 that may be
an image of the two variables modulo sort inheritance. O
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Corollary 6.11 Let T C ValidTy(Sy, F,Xy) and (£,P) be a T-sort inheriting specification w.r.t.
<d™. Then, sound and T-complete strict decorated unification is decidable.

Finally, let us give two exainples for the application of UNIFy:
Example 6.12 Let P ={z:: A,y:: B,z : B,a: A} and:
| U= (.'z::{A} =4 a4 A {4} ~? y{B} A y (B} =3 ar{A,B}).
This is transformed by UCoalesce and UMerge into:
U = (a4} &) {4} p {4} ] y{BY A g{A} o gi{ABH

which clashes because of UConflict. Hence, U has no D-unifier, because o(z) should have the deco-
rations {A} and {A, B} at the same time.

Clearly, the required equality of the decorations of the potential images for x and y prohibited the
solvability of U, although P = a : B is trivial in G-algebras. Only if the sort B is already in the
decoration, we can unify them.

Example 6.13 Let P = {z:: A,y B,z : B,a: A} and:
U= (x:{A} g: a:{A,B} A x:{A} &’; y:{B} A y:{B} »\=.z; a:{A,B})-
This is transformed by UCoalesce, UMerge and Delete yielding:

U= (x:{A} 9—‘; a:{A,B} A x:{A} 3; y:{B})’
which is in solved form. Hence, U has the D-unifier:

o= {x:{A,B} — a:{A.B}’y:{A,B} —_ a:{A,B}}.

6.3 Subterm Conservative Solutions .

In order to solve typing problems, we need a notion describing that in solutions consisting of substi-
tution sets the images of the substitutions are subterms of the original problem. This gives us the
bottom-up typability of the terms in the image, if the terms in the initial problem were bottom-up
typable — a very useful property for doing some of the induction proofs needed in the sequel.

Definition 6.14 Let C be a class of problems Pb, whose minimal, complete set of solutions can be
described as a set of decorated substitutions M C Sol(Pb) in dag-solved form (see [JK91]).

C is called subterm conservative if for all problems Pb € C there is a subterm conservative
MCSol(Pb), i.e. for all 0 € MCSol(Pb) and for all terms t € Im(o) there erist a deco-
rated substitution T with Ran(r) = Im(r), s.t. V25 € Ran(r)withz = C : § ~ {C}, and a
t' € subterm_set(Pb) s.t. t 24 ().

C is called strictly subterm conservative if C is subterm conservative and Dom(7) = 0, i.e. 7 is
the identity substitution.

Therefore a problem class is subterm conservative, if there is a way to express a minimal complete
set of solutions by a set of dag-solved form substitutions constructed from subterms in the original
problem modulo variable renaming/specialization (a notion from [Wal92}), resp. strictly subterm
conservative if there is no variable renaming.

Proposition 6.15 Let (£,P) be a sort inheriting specification. Then strict decorated unification is
subterm conservative and strict decorated matching is strictly subterm conservative.
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Proof: The following proof is only a sketch.

For strict decorated matching, the claim is trivial since we can only change the variables of the
left-hand side of a matching equation. Therefore the introduction of a subterm that does not
belong to the original problem leads immediately to a contradiction with the definition of a
solution.

In the case of strict decorated unification, we can use the fact that UNIF4 yields a complete
solution set as singleton {o}. Therefore the minimal complete set of solutions is unique up to
variable renaming,.

No rule in the unification algorithm decomposes a term that is bound to a variable, neither
constructs a new term. The only new term parts introduced are variables. But this is done by
decreasing the sort w.r.t. the 'old’ variable which the new one is bound to. The decoration S
of such new variables z :: C clearly satisfy S = {C} by construction.

Together with the fact that variable decorations of new variables do never change, since there are
by definition no old occurrences of the same variable, this guarantees that for any substitution
o in the solution set, there must also be a decorated substitution 7 with Ran(7) = Im(r) and
a t' € subterm_set(Pb) s.t. t =4 r(t') for all terms in Im(o). O

This proposition would not necessarily hold if we were using term declarations during the unifi-
cation, like for unification in non-regular theories, or other mechanisms introducing new term parts,
like equational theories, etc. However, semantical arguments could help us finding the typability of
these newly introduced term parts.

7 Decorated Term Rewriting Systems

We introduce in this section the two kinds of rewrite rules that provide the basis of the deduction
process.

7.1 Decorated Equalities

Definition 7.1 A decorated equality is a pair of two decorated terms, denoted by (p'S = ¢5') where
P:Sa q:s € T4(So, F, Xp).

The next definition of replacement of equal be equal, as well as the definition of a rewriting step,
are given for a set of occurrences in order to later define a notion of parallel reduction.

Definition 7.2 A decorated term t5 is equal to t'*5', using the set of decorated equalities E, if there
exist a set of incomparable (w.r.t. <) occurrences O # 0 with S =4 5wV, 5 =2y t”s'[u’:Ul]o, a
decorated substitution o and a decorated equality ¢ = (p° = ¢%') in E, such that o is a solution of
(p5 <% uwlU A ¢S < wU'). This is denoted by t5 <——<>——~>g""¢ :5'. If O is a singleton {w}, we write
1S H)_)‘Z:,U.‘# S

7.2 Decorated Rewriting

A decorated rewrite rule is just a pair of decorated terms. It is applied on a decorated term by
D-matching the left-hand side to some subterm.

Definition 7.3 A decorated rewrite rule is a pair of decorated terms denoted by (I'St — r:5+), where

ISt 75 € Ty(Sy, F, Xy), such that S C Sr and Var('') D Var(riS). A decorated rewrite system
is a set of decorated rewrite rules.
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Definition 7.4 A decorated term t*5 rewrites to t'*5" using the decorated rewrite system R if there
exist an occurrence set O # 0 with t/5 =24 t5[uV]o, a decorated substitution o and a decorated rewrite
rule ¢ = ('St = ri57) in R such that:

1. o is a D-match from 'St to w'V,
2' t/:S' =4 t:S[a(T:Sr)]O.

This is denoted by.t’s Hg'a’d’ 5", If O is a singleton {w}, we also write t'5 H‘,‘i’a’d’ t":S'. The
symmetric closure of —g is written «—~—pg. '

Notice the accumulation of decorations at the redex occurrence, due to the condition §; C 8, for
decorated rewrite rules.

Example 7.5 Let a{4} — (4B} pe q decorated rewrite rule. Then f*®(a®) cannot be rewritten, but
f:@(a:{A}) — f:@(b:{A.B})'

The symmetric closure of the rewrite relation is written #*5 —o—%"® ¢""5". We can conclude, that
g is a conservative extension of »—p, i.e. any decorated rewriting step can be seen as application
of an equality.

7.3 Decoration Rewriting

Then we need to introduce decoration rewrite rules, whose purpose is to locally increment the set of
sorts associated to some node in a decorated term. In order to formalize this process as a reduction
process, a new set of variables is introduced. Let us denote the elements of V by s,s’,s”. A decoration
rewrite rule is then given by a decorated term, say [, a set-variable s € V that decorates the left-hand
side, a sort expression sU.S; where S is a set of sorts to decorate the right-hand side, and a condition
¢(s) depending on the variable s. Applying to tV a decoration rewrite rule (I — VSt if ¢(s))
amounts to D-match the decorated term IV to the decorated term tV, to check the condition ¢(s)
when s takes the value U/ and to enrich the decoration U with S; if ¢(U) is true.

Definition 7.6 A decoration rewrite rule is a conditional rewrite rule denoted by (I’ — I’°VSt if o4
s8) where ISt € Ti(So, F, Xy), such that all variables with multiple occurrences have unique decorations,
8 €'V and S; is a set of sorts. A decoration rewrite system is a set of decoration rewrite rules.

Definition 7.7 A decorated term t:5 rewrites to t*5' using the decoration rewrite system D if there
exist a set of occurrences O # O with t'5 =, t:S[u:U]o, e decorated substitution o and a decoration
rewrite rule ¢ = (I'* — I'*YStif §; @ s) such that:

1. 0 is a D-match from I'V to w',

2. 51 ¢qU,
3. t/:s’ =4 t:s[a(l:U):UUS']o.

This is denoted by 5 —7® 15" If O is a singleton {w}, this is also written 'S 7?15 The
symmetric closure of —p is written «—p. ‘

Example 7.8 Let (a*® — a*U{4} if.{A} @ 3) be a decoration rewrite rule. Then a'{B} —p a{4:B},

Let (z¢ — zsU{ABLYY if {A, B, C} @ s be another decoration rewrite rule. Therefore alAB} )
{A,B,C}
a .

Given a pair (D, R) of decorated rewrite rules and decoration rules, we define for two decorated
terms t'5 and t"*5', ¢:5 s pyp t'°S" if 5 g ¢S or 15 op 1135,

From now on, rhs(¢) and lhs($) denote as usual respectively the right-hand side and left-hand
side of a decorated/decoration rewrite rule ¢.
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7.4 Elementary Properties of Rewriting

Let us first introduce the notions of canonical validity and theorems associated to sets of decorated
and decoration rewrite rules and equalities.

Definition 7.9 For any sets of decoration rewrite rules D, decorated rewrite rules R and decorated
equalities E, we say that:

1. (I > I*9%0if S; g s) € D is valid in P, if I'S' is valid in P.
2. (I% - r5) € R is valid in P, if I'S', #'5 are valid in P and for all common T7(%,X)-
assignments o of 'S, 157 P b a((I'%)ng) = a((r*5 )na).

3. (p% = ¢%9) € E is valid in P if p ¢ are valid in P and for all common T(Z,X)-
assignments o of p:S”, q:sq, Pt a((pzs")nd) = a((qzs")nd)-

* Definition 7.10 To any sets of decoration rewrite rules D, of decorated equalities E and decorated
rewrite rules R, we associate canonically a set of formulas Th(PpgRr), that is the union of:

L {t=t1t,t' € T(E,X) and 3o € Tu(Sy,F,Xy), A € Sy, s.t.
t19 & pugur to AW 23— pupor t419),
2. {t:A|teT(X,X)and I’ € Ty(Sy,F,X,), A' € Sy with A’ Sg" (A), s.t.
’ 1:10 3 DUEGR t/:{A’}UU} and

3. {EXt|teT(S,X)and I € Ty(Sy, F, X,), A € Sp, s.t.

th H*HDUEUR tl:{A}UU}'

The following properties of rewriting are easy to check but quite useful in what follows.

Lemma 7.11 Let 'S be a valid term and ¢ a valid element of DUEUR inP. Ift:S ‘_"_"‘Bﬁguﬂ 1S’ _
then:

1. Va € .ASST(E,X)(i:s) n .ASST(E,X)(t':SI).’

(Pt a((t5)na) : A) iff (P F (15 )na) : A),
2. V{A,..)e 5'\S, 3 € .ASST(E,X)(t“SI).'

(PF a((£%)na) : A),

3 Yac .ASST(E,;()(t:S) M ASST(E,X)(t“S’):
(PF EX (¢ )na)) = (P F a((t5)na) = a((t"S)na)) and

4. 5" is also valid in P,

Proof: (1) If ¢ € D, then t/5 =4 t"*5" and therefore the property is trivial. Otherwise ¢ € EU R
and we can easily construct a proof using the axioms Symmetry, EqSubstitutivity and
MeReplacement, where the validity of the terms in Zm(o) is needed. The validity of these
terms is automatically provided if ¢ € R and the rule is applied left-to-right, since ¢*° is valid
and strict decorated matching is subterm conservative.

(2) This follows immediately from (4) and (1).

(3) With the help of Reflexivity, Symmetry, EqSubstitutivity and EqReplacement, we
can easily construct the needed proof. .
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(4) If $ € D, we can use the formula corresponding to ¢ and apply MeSubstitutivity to it,
when ¢ is applied left-to-right, else the validity of t*S" is subsumed by the one of 5.

Otherwise ¢ € E U R and we have to take the different cases for the occurrences v into con-
sideration, where we want to prove the validity of the decoration. If v < w, then validity of
(t“s')h is equivalent to the one of (t’s)|v. If v < w, then we can construct a proof as in (1).

If v > w, then the validity of (t“sl)|v follows from the validity of ¢ and those in Zm(o), using
axiom MeSubstitutivity. Remark that the validity of the terms in Zm(o) is subsumed by the
one of t'¥ if ¢ € R is applied left-to-right. O

Analyzing the proof of lemma 7.11 for the left-to-right application of ¢ leads to:

Corollary 7.12 Let t5 and ¢ be valid in P. If t'S H“D’SS t':S' then all terms in Im(o) are valid.
Furthermore:

1. (B € ASS7(s,x)(t5) : (P F a(t5)na) : A)) iff
(3o’ € ASS7x x)(t"™S ) : (P F ("5 )na) : A)),

2. V(A,.. e S'\S, I € .ASST(E,X)(t“S') :
(PF o' (5)nq) : A),

3. Ya € ASST(gv,y)(t:s) n .ASST(E,X)(t“SI) :
(PF EX o((t")na)) = (PF a((t¥)na) = a((" )na)) and

4. t"5" is also valid in P,

Therefore we don’t need to check the P-validity in rewriting proofs since clearly, this result extends
to multiple rewrite rule applications.

The following statement tells that a decoration can be inherited along replacement of equal by
equal using valid D, E and R.

Lemma 7.13 For all decorated terms t:5,t"5', where t'5 is valid and t'5 —3—pugur t"S,
V(A,..) € SUS' Va € ASS1(s2)(t°) NASS1(5,2)t"™%), (P F a((t%)na) : A).
Thus if t5 «3—puEur t°S, then t'SYS' is a valid decorated term.

Proof: If A belongs to S, it is obvious by the validity of t'S. Otherwise if A belongs to S\ S, let
us prove it by induction on the length of <3 p g g. If this length is zero the result is clear.
Otherwise

:S : :S!
'S = pupur 1’ —S—puEur 'S

and by the induction hypothesis, (4,...) € S’ implies that there is an extension o' of ¢, s.t.
PE (1175 )na) : A. Now (a((t'5)nq) : A) is a consequence of Lemma 7.11. O

This usefully extends to empty decorated terms:
Lemma 7.14 If t1% 500 ¢35, then:

1. Vo € ASS1(z.2)(t1%) N ASS1(2.2)(¢"):
(PE a(t1%)04) 1 A) iff (P F ("5 )a) : A),
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2. ' # 0 = VYa € ASS7(z (1% N ASS1(s, o(tS):
(PF a(t49)n) = ("5 )na)).

3. "5 is valid in P,

Proof: This can easily be shown by induction on the length of the rewriting proof. If the length is
‘zero, t'49 22, ¢*5" and therefore the lemma is trivial. Otherwise we cut off the last step:

BUBECN .S 8!
4% % pur to™® —pur 5.

The induction hypothesis gives us the validity of o> and the equivalence of membership for
1% 5 and (o' Jna- For the last step we now can apply corollary 7.12. O

In order to show that the validity-check is needed in the other direction, consider the following
example:

Example 7.15 Let D U R be:

f(x:{A}’ y:{B}):ﬁ — {4}
RN z:sU{A} if {A} % s
A y:a N y:aU{B} if {B} gs
a® — a:sU{A} if {A} g s

Then without checking the validity of the terms in the image of the used substitution we would
have a{4} ——p f(a:{A},b‘{B})’o, but f(a:{A},b‘{B})’o is not valid, because of b1B}, since b does not
belong to B in DU R.

Clearly, if we allowed non-valid terms in the range of substitutions, then we could prove arbitrary
membership formulas, provided we interpret all terms generated by «3— as valid.
Another consequence of Lemma 7.11 is the soundness of proofs.in 5= pDUEUR.

Lemma 7.16 Let D be a set of decoration rewrite rules, R a set of decorated rewrite rules and E a
set of decorated equations, s.t. all ¢ € DU E U R are valid.
Then Th(Ppgr) C Th(P)

Proof: Let ¢ be a formula in Th(PpgRr). Then Definition 7.10 says, that there must be a proof

10 i pupur to A o pupur 0 i o= (t=t),
#1495 pupuR to ATV if ¢=(t:A)and
1% 3~ puguR to (A if ¢= (1),

s.t. A <™ (A),if = (t: A). Let wlog. A'=(B,...) with B¢ A in this case.

Since «8—pyEur preserves membership and validity of terms (Lemma 7.13) and 19 is valid,
we are sure that for all a € ASS7(s,x)(t" AT Y) N ASS (5,2t )(NASS7(5,2)(1'140) if ¢ =
(t = t'), a((to{ATUV),.4) belongs to B in P, as well as a((¢'1%)nq4) (and o(¢1®)nq)). Hence,
MeSubstitutivity implies that they also belong to A, if ¢ = (¢ : A). Furthermore, the same
Lemma ensures P F a((t1%)ng) = a((tot4MV),) (and P + a((t19)n4) = o (oAU, )
if = (t = t'). Consequently, P F &, since t (and t’) are in 7(Z,Xx’). Therefore an o with
A pariy = td must exist in .ASST(E'X)(to:{AI}UU) N .ASST(E'X)(t:w)(ﬂ.ASST(S,X)(t':w) if ¢ =
(t = t')). Note that we are sure that all sorts are non-empty, thanks to assumption 4.6. O

Decorated and decoration rewriting are stable by context and substitution:
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Proposition 7.17 If t:5 —$0% 15"

1. for any decorated substitution o for t S a(15) =558 o(175"),

2. for any decorated term u and any position v in u, u[t'S), =R u[t"S],.

Proof: This comes from the fact that substitution and context act on both sides of the rewrite step in
an identical way, thus leaving the sort information in the same respective situation. Let us detail
this. Assume that ¢5 >—>“"S‘¢ 5" and ¢ : I'St — rSr respectively ¢ : I8 — *VTif T Zs.
Let furthermore 5 =4 t' (v o
In the case of decorated rewriting, o(15!) 2¢4 ¢*|,, and thus for the context C[] whose hole is at
occurrence v we have o(I:5) 24 C['5];, , which proves that C[t] rewrites to C[t].

In the case of decoration rewriting, o(/'¥) =4 (#),)V and thus for the context C|[] whose hole is
at occurrence v we have o(I'V) 24 C’[t:s]|w which proves that C[t] rewrites to C[t'].
The stability by substitution is a consequence of the definitions. O

As a consequence, the symmetric relation «—o— is also stable by context and substitution.
A last property allows us to work with representatives of =24-equivalence classes when proving
rewriting proof properties in the sequel.

Proposition 7.18 Lett,t',?, v e Ty(S,, F, Xo) s.t.t=4t'. Thent ’_’“13812 tandt' —p) 'd’ ' implies
=2

Proof: Let t|, =¢4 u¥V and 1), =4 u'U’" and ¢ € R be I'5t — ¢S (resp. ¢ € D and I'* — V51 if § Z
8). Clearly, t{o(I'S0)] gt 24t 24 t![o’(5)] (resp. tlo(FV)] 24t 24 t' 24 t'[0’(FY)]). Therefore
o 2:‘"“(') o' and consequently t[o(r*57)] =24 t'[0’(r*57)] (resp. t[o(IV)VYS) "’d t'[o'(IVyULVS),
o

7.5 Converting Presentations to Decorated TRSs

Given a presentation P, we describe in Figure 7 how to extract a set of decorated equalities Ep and
a set of decoration rules Dp. Remark that all variables in the constructed rules are supposed to have
their sort in their decoration — otherwise any rule ¢ containing a variable in ¢ = lhs(¢) would not
be applicable on t itself, since the needed substitution would not fulfill the conditions for decorated
substitutions. .

The first kind of rules allows using existential declarations, the second term declarations. It is
superfluous to introduce decoration rules corresponding to variable declarations (z :: A), thanks to
the matching modulo sort inheritance. The sort 2 and the first kind of rules are useful at a theoretical
level to deduce existence formulas. In the sequel, we most often omit Q on the decorations in order
to ease notations.

The application of the decoration rules corresponds with a partial typing process, adding all
syntactic sorts of a term to its decorations. ’

Example 7.19 Let us consider the following specification S; which set oj: sorts is {A, B} the set of
operators is {f, +, a, b} and satisfying the following formulas:
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1. (u:IO):s . (u:lﬁ):su{ﬂ} if {Q} %8
For each subterm u of a term v appearing in a formula in P,
For such a rule, u'!® € Ty(S,, F, X,), s € V.

2. (u:w):s N (u:w):su{A} if {A} % 3
For all (u: A) in P.
For such a rule, u'!® € Ty(S,, F,X,), s€ V, A€ S.

Dp: decoration rules associated to P

1. p:w —_ q:w
For each equality (p=¢)in P

Ep: decorated equalities associated to P

Figure 7: Extraction of decorated/decoration rewrite rules from the Presentation

r o A (1)
y = B (2)
z ' B (3) 'A
T B (4) b
s+b : A (5) FQ
flz) + A (6)
fly) + B (M)
y+z B (8)
a A 9)
b : B (10) ° ¢
FRAN
flz) = ¢ (11)
at+y = b (12)

Declarations ! and 4 correspond to specifying the subsort declaration A <J"B. From this specifi-

calion, the following set of decorated rewrite rules D, is generated:

% — gsu{Bl it {B} z 8 f(x:{A}):s NN f(xz{A}):sU{A} if {A} % s
a® — a:sU{A} if A ¢ 38 f(y:{B}):s — f(y:{B}):sU{B} if {B} % 8
bs — pu{B} if B ¢ 8 (z:{A} + b:@):a — (z:{A} + b:@):sU{A} if {A} % 3

(y:{B} + z:{B}):s - (y:{B}+ z:{B}):su{B} if B¢ s.

We have omitted the decoration rules involving the sort Q that might irritate by their number and
are not really useful in order to see the principles of decoration rule application, since they are treated
in the same way. The term a’® + b can be decorated, using D, in the following way:

a:@ + b:@ ] —p a:{A} + b:@ @ —p a:{A} +b:0 {A} —D a:{A} + b:{B} :{A}
1 1 1

Notice that 11 and 12 are not yet used nor yet transformed at this point.
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This rewrite based decoration process is a restricted application of the deduction rules of G-algebra
concerned only by membership formula deduction. The decoration process does not use the equational
part of the specification for deriving new sorts from equalities. It is thus in general incomplete in the
sense that it does not compute all the possible sorts of a term, even when this is computable,

7.6 Decorated Orderings

Finally, in order to find an extension of the classical reduction ordering over undecorated terms, we
compare the decorations of =,4-equal terms:

Definition 7.20 Let t*5 and t'*5' be decorated terms, such that t5 =,4 8" ¢S is said less deco-
rated than ¢S’ written £5 € 5 if Yuw € Dom(t), Deco(t),) Deco(t| ). The relation € is called
decoration subsumption ordering.

The classical notion of reduction ordering can now be extended on decorated terms in a straight-
forward way. Such an ordering is useful for termination proofs.

Definition 7.21 Let ((S,F),P) be a presentation with bounded membership. A quasi-ordering >4
over T4(Sy, F, Xy) is a decorated reduction ordering w.r.t. to a rule set R, if there is an (undecorated)
reduction ordering > on T(%,X), s.t.:

Lot >qt'iff (tng, t)(>, €)(14 1),
i.e. >q is the lezicographic ordering based on the undecorated ordering and the decoration sub-
sumption over pairs (ind,t),

2. >4 is compatible with R, i.e. V(I - r)€ R, I >4 7.

A last notion, necessary for later induction proofs, is the downward completeness of a set of
decorated terms w.r.t. a given ordering.

Definition 7.22 Let T C T4(S,,F) and >4 be a quasi-ordering over T4(S,, F). T is downward
complete iff for all t:5,1:5' the following holds:

tSeTand t5 >4t =2 ¢S € T.

8 A Birkhoff Theorem for G-Algebra

In order to get an executable version of deduction in G-algebra, we need to prove a Birkhoff-like
theorem stating that two terms can be proved to be equivalent using the deduction rules of G-algebra
iff they can be proved equivalent by replacement of equal by equal on decorated terms.

Given a set E of decorated equalities and a set D of decoration rewrite rules, extracted for
instance from a presentation P as in the previous section, «—pyg is +o—g U «—p and —3—pug
its reflexive, symmetric and transitive closure.

Theorem 8.1 Let t,t’ be two terms in T(X,X), P be a T-presentation. Let furthermore Dp and

Ep be resp. sets of decoration rewrite rules and equational azioms associated to P and R = 0. Then
Th(P) = Th(PppEsR)-

The proof is rather technical and long. It relies on the step by step description of the correépon-
dence between deductions and equational proofs on decorated terms and can be skipped in a first
reading of the paper. '

The first step consists in proving that the use of «v—pyg is sound with respect to G-deduction.
This is an obvious consequence of Lemma 7.16, since D and E are valid by construction.
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If3t, A" with A" <F" (A), s.t. t10 Bop g, ATV then PRt A
Corollary 8.2 If3t', A s.t. 1% 3mp_up, {4V then P+ EX t.
If 3o, A s.t. 48 3op_ g, oAU 3 p 110 then PHt=1¢.

Note that imposing that the set of decorations becomes non empty at the top is essential, as
shown by the following example. For the presentation P:

a:A, b:B, f:C—>C,a=b
using «=—p,uEp, We get
f(azﬂ):G —Dp f(a:{A}):0 ——E, f(b:{B}):O

but P f(a) = f(b) is not a valid deduction, since there is no way to deduce that f(a) exists in this
G-algebra.

The second step of the proof consists of showing that every G-deduction can be mapped to some
replacement of equal by equal on decorated terms, using decorated substitutions. We use an induction
on G-deduction trees of the considered formulas (i.e. either t = ¢/, t: A or EX t). Two deduction trees
are compared using the lexicographic combination of the number of branching as first component,
and the length of the derivation as second component. (If one prefers, the induction works also on
the number of nodes in the deduction tree). Note that all terms in the constructed proofs are valid
and the used substitutions are the same as in the proofs given by the induction hypothesis, i.e. they
fulfill the conditions of decorated substitutions. In the following, we will simply write E instead of
Ep and D instead of Dp, in order to be more concise.

We have three different cases for the formulas to prove. Therefore, we distinguish three cases:

CASE A: (’P Ft= t') = Jto, A s.t. 110 3 puE to:{A}UU ‘_‘.’_'DUE e
Case B: (PFt:A) = 3, A with A’ <" (4) s.t. #1035 pup tHATOV,
CAsE C: (PF EX t) = 3t s.t. t19 Spyp tH{AVY,

Remark that all terms #¥ in the constructed proof satisfy (¢:°)® ¢ T(E,X) (written (H,)) and
(#:5):18 .24, 5 38 (written (H,)), a very useful property.
CASE A: We reason by case on the possible production of t = t'.

1. Base case
If t = ¢ is an equality in P, then t1® o p {2} by the rule (% — ¢#9{®} if {Q} ¢ s). Therefore,
40 s p 0104} —p ¢:l® g ¢71® Note that all substitutions needed for the application of
the rules always satisfy the conditions of decorated substitutions since variables are supposed
to have their sort automatically in their decoration. Properties (H;) and (Hj) are obviously

satisfied.
Otherwise ¢ = t’ may be obtained from the application of one of the rule Reflexivity,
Symmetry, Transitivity, EqSubstitutivity or EqReplacement. Let us consider each

case.

2. Reflexivity EXt F t=1 _
Since the deduction tree for EX ¢ is smaller, we can apply the induction hypothesis and thus

PrEX t= 3t st 1 3 pp ¢ 1AWV
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Ut

exists and satisfies (H;)i=1,2, which proves that
t:w B DuE t/:{A}UV 5= DUE t:“’.
The properties (H;);=1,2 also hold for the constructed proof.

Symmetry u=v +F v=u
Since the deduction tree for u = v is smaller, we can apply the induction hypothesis and thus
get the result which is symmetric.

Transitivity v =v,v=w F u=w )
Since the deduction trees for ¥ = v and v = w are smaller, we can apply twice the induction
hypothesis and concatenate the equational proofs.

EqSubstitutivity r=7 F o(r) = o(r)
with ¢ = o(r) and t' = o(r') where = denotes syntactic identity.
In this case, by induction hypothesis

{AYUU 3 DUE TI:W'

Prr=r"= 3ryAs.t. rii® 3> puE To
Note that to any P-conform substitution in G-algebra that associates to (z; :: A;) a term ¢; for
which there exists a proof (¢; : A;), we have (¢; : A;) as an implicit subproof for the preconditions
of EqSubstitutivity. The fact that this subproof does not appear in the syntax of the calculus
does not mean that it is not required for the application of the rule.We apply the induction
hypothesis also on these membership proofs and have therefore:

Pkt;: A= Bti, A: S;in (A,').s.t. t,':w S puE t;z{A:}UUi

Remark that all substitutions in these proofs must be decorated substitutions, i.e. all terms in
their ranges are valid. Consequently,

Irg, A s.t. a(r[t;])’w ‘I_:’_’DUE a(r):lo[tgt{A(}UUi] —puE
a(r'):lo[tfz{Ai}UU‘] ‘_‘.’_’DUE O’(T'[t{]):lo-

The properties (H;)i=1,2 follow from the induction hypothesis for (r = r') and all (¢; : A;)
together with stability of decoration rewriting by substitutivity, respectively context. '

EqReplacement tlu]l=w,u=v F t]=w
Both formulas ¢[u] = w and u = v are smaller-than t[v] = w and by applying the induction
hypothesis we get:

I, A s.t. t[u]’w - puE 1oAY s pup wil?

and 3t;, B s.t. ul? 3~ DUE tlz{B}UU = puE vii®,
But since «3— pg is stable under context, we can write:

tlo[v],@] ‘_(‘)_)DUE t.lo[tl{B}UU]
—pup 10wl =4 t[u]!?
3~ puE to:{A}uU ‘

—pug wlt

The properties (H;)i=1,2 are once more guaranteed by the induction hypothesis on (t[u] = w)
and (u = v) together with stability of decoration rewriting by context.

38



Cast B: The proof goes on the same principle as for CASE A.

1. Base case
Ift: Ais a formula in P, then t1® —p {4}, Clearly, this guarantees properties (H;)i=12.
Otherwise ¢t : A may be obtained from the application of one of the rules Globality,
VariableMembership, MeReplacement or MeSubstitutivity.

2. Globality EXt F t:Q
By induction we get t1® «3—pyg t14YY Then 4 <5, () and we are done. This trivially
provides for properties (H;)i=12.

3. VariableMembership z:A F =z:A4
True because each variable is decorated by the sort given by its declaration. (H;);=; 2 are trivial.

4. MeReplacement t[u]:A,u=v + tv]: A4
In this case, we apply the induction hypothesis on the first premise and the result of CASE A
on the second one. Thus we have:
3t A <@ A st t[u]t? Sopyp AU
and
3t,, B s.1. u'l? ——= pUE tI:{B}UU = puE vil®,
But since «3—pyf is stable under context, we can write:
t:w[v:w] 35 pUE t:w[tl:{B}uU] S pUE t:w[u:w] =4 t[u]‘w 2 puE t/:{A'}uU,
which concludes this case.
For (H;)i=1,2 see CASE A, subcase EqReplacement.

5, MeSubstitutivity t: A F o(t): A4 .
Applying the induction hypothesis to t : A and all the ¢; : A; necessary for the proof
of P — conformity of o, we get the conclusion, using the same construction as in the
EqSubstitutivity - subcase of CASE A.

Caske C: This is the most complex case where we need to go upper back in the deduction tree. Let
us begin with the easy cases:

1. Base case
If EX tis a formula in P, then t:}® —p ¢1{%}, Clearly, these proofs have the properties (Hi)i=1,2-
Otherwise EX t may be obtained from the application of one ExMembership, ExEquality,
ExReplacement, ExSubstitutivity or ExSubterm.

2. ExMembership t: 4 + EX1t
Applying the result of CASE B on t': A, we get the result.

3. ExEquality t=t" F EXt
Applying the result of CASE A on t = t/, we extract the result.

4. ExReplacement EX t{ul,u=v + EX t[v] .
Both formulas EX ¢[u] and u = v have a complexity smaller than EX t[v] and by applying the
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induction hypothesis we get:
3t', A s.t. t[u]:“D > DpuUE AU

and

3t,,B s.t. vt <—puE ty

{B}uU 5> puE viie

But since <— pyE is stable under context, we can write:

t10[v49] o pyg 1149t 1BIVY] o pup 10 [ud?] =4 1] <= puE

tl.{A}UU

which concludes this case. )
For (H;)i=1,2, see once more CASE A, subcase EqReplacement.

ExSubstitutivity Xt + E o(t) .

Applying the induction hypothesis to EX t and all the t; : A; necessary for the proof
of P — conformity of o, we get the conclusion, using the same construction as in the
" EqSubstitutivity - subcase of CASE A.

ExSubterm EX t[u] F Eu

Here we need to consider more deeply the deduction tree.

(2)

(b)

(c)

First, if EX t[u] is a formula in P, since u is a subterm of ¢, there exists a rule in D
such that w!® »up w{®, Otherwise, EX t[u] is itself obtained from an application of
ExSubstitutivity, ExSubterm, ExEquality, ExReplacement, or ExXMembership,
respectively abbreviated by ExSubst, ExS, ExE, ExR and ExM.

Assume that the previous step in the deduction tree is an application of ExSubstitutivity.
The deduction

EX 1[v] FExsubst EX o(t)[o(v)] FExs EX o(v)

where u = o(v), can be transformed into

EX t[v] FExs EX v FExsubst £X o(v)..

We can apply the induction hypothesis on EX v in the second deduction tree since it is
smaller by definition, and get the result using stability of «5—p g under substitution.

If the previous step in the deduction tree is an application of ExSubterm, the deduction
EX t'[t[u]] FExs EX t[u] FExs EX v, |

can be replaced by the shorter following one: EX t'[t[u]] Fgxs EX u, on which the induc-
tion hypothesis can be applied directly on EX u.

Let us now consider the case where the deduction rule applied before ExSubterm is
ExEquality. We are in the following situation:

t[u] =t Fexg EX t[u] Fexs EX u.

If ¢{[u] = ¢’ is an equality of the presentation, then u can be decorated by the universe sort
Q and wt? —p wt.

Otherwise, we need to go one step further up in the deduction tree. This step may be an
application of one of Reflexivity, EqSubstitutivity or EqReplacement. The two last
names are abbreviated by EqS and EqR.

i. either :
EX t[u] FReflexivity t{u] =t FExE EX t{u] FExs EX u
where t' = t[u]. This can be transformed into
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EX t[u] FExs EX u
which is a shorter deduction and we get the result by induction.
ii. or
to[uo] = ty FEqs t[u] = t' FExE EX t[u] FExs EX u
where t[u] = o(to[ug]) and ¢ = o(t}). This can be transformed into
to[uo] =ty FExE EX to[uo] FExs EX o FExSubst EX . .
By induction hypothesis, there exists a proof for EX uo which is stable under ¢ and
provides a proof for u.
iii. or the applied rule is EqReplacement. Depending of the localization of the redex
we have the following two subcases:

A. either
t{u'[v]] = t',v = w FEqR t[u] = t' FExE EX t[u] FExs EX u
where u = u'[w]. This can be transformed into
tfu'[v]} = ¢’ FExp EX t[u'[v]] FExs EX w/[v],v = w bpxr EX u
We apply the induction hypothesis on the first two steps of the new proof and
continue then exactly in the same way as in the case of ExReplacement as last
step of the EX t proof.

B. or
rlw] =t',w = u'[u] Fpqr r[t/[u]] = ¢’ Fpxp EX r[u[u]] FExs EX u
where t[u] = r[u'[u]]. Consider instead the deductions:
w = u'[y] FSymmetry v[u] = w FExE EX ¢'(u] FExs EX u.
Here the G-deduction tree is smaller because the whole branch concerning the
deduction of #[w] = t’ has been dropped. The result holds by induction.

{(e) or the rule applied before ExSubterm is ExReplAcement. In this case, we have again
two subcases depending on the position of the redex:

i. either
EX t[u'[v]],v = w Fpxr EX t{u] Fpxs FEX u
where 4 = u/[w]. This is transformed into
EX t{u'[v]] FExs FEX v'[v]),v = wFgxr EX u.
We can apply the induction hypothesis on EX u'[v] and « = v and by combining them,
we get the conclusion.

ii. or
EX r[w],w = r'[u] Fexr EX r[r'[u]] FExs EX u
where t[u} = r[r[u]]. Consider instead the deductions
w = r'[u] }_Symmetry r'[u] = w FExE EX r'[u] FExs EX u.
The G-deduction tree is smaller because the whole branch concerning the deduction
of EX r[w] has been dropped. The result holds by induction.

(f) Let us eventually consider the case where the deduction rule applied before ExSubterm
is ExMembership. We are in the following situation:
t{u] : A FexMm EX t[u] FExs EX u.
If t[u] : A is an axiom of P, there exists a rule in D such that wt? s p w{. Otherwise,
we need to go one step further up in the deduction tree. This step may be an application
of MeSubstitutivity or MeReplacement, respectively abbreviated by MeS and MeR.
It cannot be an application of VariableMembership, since t{u] cannot be a variable.

i. either
to(uo] : A FMes t[u] 1 A FExM EX t[u] FExs EX u
where t[u] = o(to[uo]). This can be transformed into
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to[uo] : A FExM EX to[uo] FExs EX uo FExsubst £X u.
By induction hypothesis, there exists a proof for EX uo which is stable under o and
provides a proof for u. '
ii. or the applied rule is MeReplacement, abbreviated MeR. Depending of the local-
ization of the redex we have the following two subcases:
A. either
tw'[v]] s A,v = wbpMer ' [w]) 1 A FExm EX tlu] FExs EX u
where u = u/[w]. This can be transformed into
tw'[v]]: A FExm EX t[u'[v]] FExs EX u'[v],v = wFExr EX u

We apply the induction hypothesis on the first two steps of the new proof and
continue then exactly as in the case of ExReplacement as last step in the EX ¢
proof.

B. or
rfw) s A,w = w[u] Fyer T(W[u)): A Fgen BX rlwu]] FExs BX u
where t[u] = r[u’[u]]. Consider instead the deductions:
w = u'(u} Fsymmetry u'[u] = w FExE EX v/[u] FExs EX u.
The G-deduction tree is smaller because the whole branch concerning the deduction
of r{w] : A has been dropped. The result holds by induction.

This concludes the proof of the theorem.

9 Confluence and Critical Pairs

We now consider the case where equalities can be ordered into rewrite rules. Qur concern is to
check under which conditions on the presentation, we can obtain a set of decoration and decorated
rewrite rules that operationally are powerful enough to prove equational, existential and membership
theorems. This is the case if any equational proof using DU R has a rewrite proof, i.e. a proof without
peaks. '

The first goal of this section is to characterize confluence on a set 7 of valid terms. Defining
notions on non-valid terms is obviously non-sense, since this would allow for incorrect interpretations
using Theorem 8.1.

This can be exemplified by the following example:

Example 9.1 Let Ppgr be the following (sort inheriting ) presentation associated to (D,0, R) with

. D = {a*— a4 if {4} g3, .

b¢ — b<UHBY if (B} s, '

f((z = AYAYye o f((a : AYIAN=UCYif (C) g s,
F((y = By BY)® — f((y :: B){BY)=0{Ch if {C} g 5}
{f((z :: AR (32 ) HA),

f((y :: By BY)BY  p:{Bly

R

Clearly, D U R ts confluent on all valid terms, but the non-valid term f(a’{A-B})’{C} rewrites to
a{4.B} respectively b:{B}, which are both irreducible,

9.1 7T-Confluence

Well-known notions are redefined in a partial manner, i.e. with respect to a term set 7, as this was
already done for unification.
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Definition 9.2 Let R be a set of decorated rewrite rules, D a set of decoration rules and T C
T4(So, F, Xy) a set of decorated terms.
D'U R is called locally confluent on T iff for all 7T, 4,7t T2 € T

T —pur tT —pur 127 implies T : 1T HpuR 10T Epup tr T2
D U R is called confluent on T iff for all tT ¢;/Tr ¢, T2 € T
ty T pur tT S pur t272 implies T+ 1,71 Hpur to' T pup T2

Newman’s lemma still has its equivalent in the decorated case, when 7 is downward complete
w.r.t. a reduction ordering, especially ~pyg.

Lemma 9.3 Let T C T4(Ss, F, Xy) be a downward complete set of decorated terms w.r.t. —pugr. If

—puR 18 terminating on T then the local confluence of —pyp on T implies that D U R is confluent
onT.

Proof: The proof follows the standard one (e.g. [Hue80]). Assume ¢ € 7 and
1™ <pur t'° S pur 2’

Let us show confluence by noetherian induction on «—pyr. If ;"' =4 % or "% =4 t'5, then
confluence is trivial. Else we can cut off the first rewriting steps in each direction:

. ! . N .
135" Zpur t'l'S‘ —pur t'° —pur t/2.52 2 pur t2752.

Since we have the local confluence on 7 and ¢ € T, we know that t;*51 s pg 16" “<pur t'{sﬁ
for some #;*% since 7 is downward complete. Together with the confluence on smaller terms
(t’I:S;,t’zzsé) by induction hypothesis we get ;5" “pyg t’l“sil &pur 10 and 1’5 S pur
1452 <<pyp t2°%2. Using once more the confluence on 2% gives us t{'57 pyg t*5° <pur
1457, Consequently,

:S :S* .S
11" »Spur t'Y “<pur t2’?,

i.e. DUR is also confluent on 7. O

A simple example for a —pyg-downward complete set is ValidTy(Sy, F, X, ), due to Lemma 7.14.

9.2 Definition and Properties of Critical Pairs

The rewrite rule version of the typing process has been designed for expressing the critical interac-
tions between membership declarations and equalities in a convenient way. Since the first are now
encoded into the decoration rewrite system D, this amounts to define adequate notions of critical
pairs. Although the superposition mechanism used to compute all critical pairs is uniform, we distin-
guish between decorated critical pairs, that are equalities obtained by superposition inside a decorated
rewrite rule of R, and decoration critical pairs, that are conditional equalities obtained by superpo-
sition inside a decoration rule of D. This last kind of conditional critical pair will give rise to a new
decoration rule.
The main difference with the classical definitions is once more partiality.
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Definition 9.4 Decorated critical pairs (obtained by superposition into decorated rules)

Let T C Ty(So, Fr Xy), g% — d'5¢ be a rewrite rule in R and I'S' — 157 (resp. I — I*950if §; ¢ 5)
be a rewrite rule in R (resp. D) with disjoint sets of variables. The two rules overlap if there ezists
a position w in the set of non-variable positions of g9, such that the decorated terms g159|w (with
Deco(g®,) = U, S QU) and I't (resp. I'V) have the T -complete, ValidTy(Ss, F, Xy)-sound, non-
empty set U of strict decorated unifiers. Then for any 1 € U, the overlapped decorated term 1(g'59)
produces the T-decorated critical pair (p5' = ¢'%2) where ¢52 =4 %(d*54) and P>t =4 ¥(g[r¥)., %)
(resp. Pt =4 Y(g"59)[H(IV)VY5, ).

In the particular case where w = A, we have U = 5, and so the critical pairs are:
p:31 =q ¢(,,.:S,) and q:32 =4 ¢(d:sd) (resp. p:S, =4 w(,):sgus, and q:52 =q ¢(d:sd))_
The set of such 7-decorated critical pairs is denoted by CP(R, R)|, (resp. CP(D, R),,).

Definition 9.5 ADecoratign critical pairs (obtained by superposition into decoration rules)

Let T C Ty(So, F, Xs), (9°° — g5 if Sy € 8) be a rewrite rule in D and I’ — r*5* be a rewrite
rule in R (resp. (I — I*YSif §; @ s) a rewrite rule in D) with disjoint sets of variables. The
two rules overlap if there ezists a position w in the set of non-variable positions of g®, such that
the decorated terms g’°|w (with Deco(g:°|w) =U, S QU) and I'' (resp. I'V) have the T -complete,
ValidTy(Sy, F,Xy)-sound, non-empty set ¥ of strict decorated unifiers. Then for any ¢ € ¥, the
overlapped decorated term 1(g)*® produces the T -decoration critical pair (p® = ¢*¥% if Sg € 8), where
q:sUS =4 ,‘/)(g):susg and p* =4 d)(g[r:S,]w):s (nesp. P =4 'll)(g[I:UUS']w)w).

The sets of such T-decoration critical pairs are denoted by CP(R, D),, (resp. CP(D,D);,). In
the previous definition, we can restrict our attention to superposition at occurrences w # A in the
set of non-variable positions of g, for the case of superposition of a rule of R into a rule of D, since
superpositions at the top occurrence are already handled in the definition of a decorated critical pair.

Example 9.6 Let us consider an example of critical pairs between rules of D. Assuming z :: ;4,
y i+ B, the rules:

f(b:{B}):a - f(bi{B})l‘U{c} if {C} z s
(=14 4 fy1BYyOye — (a1AY 4 f(y1BY)R)0t4) if {4} g s

overlap at position 2 of the second rule. This overlapping produces the critical pair:
(x:{A} +f(b:{B}):{C}):a - (I:{A} +f(b:{B}):0):aU{A} if {A} %8

Example 9.7 Let us consider an ezample of superposition of a rule of R into a rule of D. Assuming
z:: A, y: B, the rule:

f(y:{B}):{B} - a:{A,B}
in R overlaps the rule:
(z:{A} +f(b:{B}):{B}):a N (z:{A} +f(b:{B}):{B}):sU{A} if A gs
in D at position 2. This overlapping produces the critical pair:
(x:{A} +a:{A,B}):s - (z:{A}_*_ f(b:{B}):{B}):sU{A} if {A} %3'

Note that the right-hand side of this conditional critical pair is immediately reducible by the rule in
R. The simplified pair can be oriented into a new rule of D:

(z:{A} + a:{A,B}):s = (z:{A} + a:{A,B}):sU{A} if {A} gs.
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To conclude this section, we prove the completeness of UNIF4 for the unification problems in
the C Pr’s, assuming the completeness over the set strict_subterm_set(T) of all strict subterms of
elements in 7. This is possible, since we do not superpose into variables.

Lemma 9.8 Let T C T4(Sy,F,Xy) and let us assume that terms(D U R) C ValidTy(Sy, F, Xy).
If UNIFy is a strict_subterm _set(T )-complete algorithm, then it is also a T-complete unification
algorithm for all unification problems in C P(R,R),, CP(R, D), CP(D,D),, CP(D,R), and
CP(D,E),.

|77

Proof: Suppose that the unification problem has the form z*% %‘3 flty,...,t)T. If § C T, this is

already a problem in solved form. Otherwise the two terms are not unifiable. UNIF4 decides
accordingly and returns {o} with 0 = {z*° — f(t1,...,2,)T} in the first case, which is trivially
a complete solution, and @ in the second.
Since the definitions 9.5 and 9.4 do not allow variable overlaps, we must have in all other cases
an initial unification problem U of the form f(t,...,t,)7T = g(t),.. ., t;n):T'. Iff#g,m#n
or T % T, then there is no solution, else the solutions of &/ in 7 are the same as those of
Niepr.m) ti =? ¢! in strict_subterm_set(T), where UNIF is complete by assumption. O

9.3 Overlapping Computations

Let us now classify peaks of DU R. Let t'V,¢"*S' 1:5” be decorated terms such that:

18 wo,d Vv Be" S
t” «—pur ¥ —pur !

1)

with [ and g being respectively the left-hand sides of ¢’ and ¢”.

In the following it is useful to keep in mind that for any rule ! — r, Deco(l) C Deco(r) and therefore
Deco(o(1)) C Deco(o(r)) (sihce substitutivity is fulfilled by reduction orderings and Var(r) C Var(l))
for any decorated substitution ¢, as this is required by the definition of decorated rewrite rules and
by construction for the decoration rules. .

As usual for classifuing peaks, let us consider the classical relative positions of the redexes ¢, and

o
Disjoint case: v and w are incomparable positions.

Variable overlap case: we can assume without loss of generality that v is the top position A in t. Thus
t =24 5(g) and there exists a variable z in g whose position in t is prefix of w.

Critical overlap case: again we can assume without loss of generality that v = A. Then t 2,4 3(g) and
w is a non-variable position in g. :

Lemma 9.9 Variable overlap lemma

Let tV, 1”5 15" be decorated terms such that tV is valid and:

1S wad 2V ABS 5"
t” —pur ¥ —pur !

’

with | and g being respectively the lefi-hand sides of ¢ and ¢”, r being the right-hand side of ¢' and
w being below a variable position in g. Then, the peak is convergent: 15" | pyg t":5".

Proof: Let z :: A be the variable of g, at position v’ under which the rewrite step occurs. Then j3(z)
contains the redex «(l) at some position v”. So w = v'v".
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Let o be the decorated substitution defined by o(y) = B(y) if y # = and o(z) = B(z)[a(r)]yn.
The last term is valid by Corollary 7.12. Furthermore, Deco(r) C Deco(l) and hence o is also
a decorated substitution. Since a(l) =4 ¢,, the peak is convergent: ’

1S x o, A9 . o, r:S"
" Sporo(9) mpor o(d) <pirt"™ -

0

Lemma 9.10 7-critical pair lemma
Let tV, 15" 1"5" € T be decorated terms such that:

gl U
t/.S ‘—‘(Ba}% t'V —

AB.¢" t//:S"
U DUR

with w being a non-variable position in the left-hand side of ¢". Then, either there ezists a T -critical
pair:

(p:31 — q:Sz) if ¢/I € R, or (p:‘s' - q:sUS if S gs) if QS" e D,
of the rule ¢' on the rule ¢" at position w, or the peak converges trivially:

t/:S' >_‘)/\.ﬂ,Qﬁ"

.S, w,o, @' 1:8"
pur t07° “—puR ! .

Moreover, if the peak is not trivially convergent, there is a decorated substitution ¢ in a T-complete
~ set of decorated unifiers according to definitions 9.4, 9.5, such that fa ZSV ¢ with W = Var(g)UVar(l)
and there ezists a decorated substitution T, such that 'S’ =, r{p1) and t"'5" =, 7(¢"%) (resp.
5" =y r(pV) and t":5" 24 7(p'SUY) for some U  S).

Proof: The proof is almost similar to the usual one [Hue80, JK86).
We prove the existence of ¥ for all four cases. Let therefore ¢’ be of the form IS — S if
it is in R (resp. (1" — ;Y51 if §, g s)if it is in D), and ¢" of the form I;"5%2 — ry'572 if it is
in R (resp. (I5* — 1,"*YS2 if S, ¢ s) if it is in D).

e ¢ €R, ¢"€R: :
Since tV 2y B(lyS2) and ¢V, 24 B(I2"52,) 24 a(liiSh), by definition of decorated
matching, and since the substitutions & and 3 can be supposed to have disjoint domains,
af} is a decorated unifier of 1,52 | EZ ;%1 i.e. in any T-complete set of D-unifiers we
have a ¢ with Sa zy .

e €D, ¢ €R:
Let Deco(t:VLﬂ) = U. Therefore, tV 24 B(l52) and t‘V|w =y B(lySe L) =d a(lyV).
Consequently, af is a decorated unifier of IS w %’3 1’V and any T-complete D-unifer set
must contain a ¥ with Sa 2?’ 1. Furthermore U satisfies the conditions of ¢’ for s.

e ¢E€R, ¢"€D:
If w = A, then this case is already covered by the one with ¢’ € D and ¢ € R. Else we
have tV 2, ﬂ(lgzv) and t:V|w =~ ﬂ(12:V|w) >~y a(ll’s‘l ).. The existence of ¢ can be obtained
as before. Remark also, that V satisfies the conditions of ¢" for s.

e ¢ €D, ¢"eD:
If w = A then the peak converges trivially. Else let Deco(t:vlw) = U. We have tV 2, [3(12:")
and t:vlw >y ﬂ(lg:vlw >4 a(l;'V). Therefore af is a T-decorated unifier of I,V EZ [2:V|w.
Since w # A, af3 must also be a decorated T-unifier of [V ’—:—‘Z 12‘°|w. The existence of ¥

follows now as before. .Remark once more, that the conditions of ¢’ resp. ¢” are fulfilled
by U resp. V.
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The critical pairs can be constructed applying the definitions 9.4 and 9.5. Since ¥ <9 B,
definitions 5.17, 6.8 and proposmon 5.19 give us the existence of a substitution 7 with r(p’ s’) >
5" and r(q'%) 24 5" resp. r(p¥) % 5 and r(gVS) 2 5", O

Definition 9.11 A decorated critical pair (p"S' = ¢°5?) is solved if both decorated terms can be rewrit-
ten using —pyupr into the same decorated term. This is denoted (p‘s1 lpur q:S?).

Definition 9.12 A decomtzon critical pair (p = ¢V if § Z 8) is solved if for any set of sorts U
such that S QU (pV | pur ¢VV9).

Theorem 9.13 Assume that P is a presentation given by a decorated rewrite system R and a set of
decoration rules D, such that —pyp is well-founded and T C Ty(S,y,F) is downward complete w.r.t.
—DuUR-

If all T -critical pairs of DU R are solved, then for any proof on decorated terms t'*S' «3—p g t":S"
containing only terms in T, there exists a rewrite proof:

.Qn
5" por wU Epur 7S

Proof: Consider the proof P:

t' =1 «~—pup ts...tke1 “o—pUR tk **—DUR tk41 ... ——puR ln = t".
. . . ‘. 3 .
Then either P is a rewrite proof or it contains a peak:

o ! v, ,é"
thor —PE th - POR thar.

Assume there is a peak. We prove by noetherian induction, using the rewrite relation as reduc-
tion ordering, that there is a rewrite proof without peak. We are in one of the following cases,
according to the relative positions of the redexes ty|, and ty,.

Disjoint case: Then the two reductions commute:

thor Yo u et 1,
since the sort information that are used are independent. If tx_; or tx4; is at the top of
a new peak, we can use the induction hypothesis, since both terms are smaller than tg,
implying that they are by definition also in 7.

Variable overlap case: Using Lemma 9.9, the peak is convergent: tx—1 |pur tk+1. If tg—1 or
tk4+1 are then at the top of a new peak, we can use once more the induction hypothesis, as
in the first case. Remark that, as before, fx_1,tk4; arein 7.

Critical overlap case: If it is a decorated critical pair, since all decorated 7 -critical pairs are
solved and by stability of the rewrite relation by substitution and context proved in Propo-
sition 7.17, we have t;_1 »Spur % “~puRr tk+1. Since tg_q,tis1, 8 1,tk+1 are all smaller
than tx, we have by induction hypothesis a rewrite proof, thanks to downward completeness
of 7.

Assume now that this peak corresponds to a decoration critical pair (p** = q’sus° if So g s).
Since all decoration 7 -critical pairs are solved, this implies again that tk—1 *@ DUR U “<DUR
tk+1, giving us as before the existence of a rewrite proof.
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Let us now consider how to solve critical pairs in order to eliminate some easy cases.

Proposition 9.14 Any decoration critical pair between decoration rules in D at an occurrence w # A
is solved by adding an enriched version of the upper decoration rule. Decoration critical pairs at A are
always solved.

Proof: Consider the decoration critical pair

(W(glrV%)® = $lg)*Wo if S, ¢ s),
produced by overlapping the rule
¢ 2 (B > 1S S ¢ )
of D into the rule
4 $1 2 (¢° = g*UFif S5 L 9)
in D. Then ¢"*YS contains at position w the subterm '/’(Q:OL,) =4 t/)(g:0|w)’U and 1/)(g:°|w Yy

P(I'Y), since ¢ is a D-unifier of these two decorated terms. Thus the rule ¢, of D applies on
¢**Y5 and yields ¥(g[I'VV51],)*YSs. Assume now that the decoration rule

¢+ P(glVVSL)* — w(gltVVS, )" S if S, & s
is added in D. Then for any set of sorts U’ such that 5, ¢ U’,

w(g[l:UuS‘]w):U' H%UR w(g[l:UuS,]w):U’usg.
The critical pair is thus solved.

Superposition at A of two rules of D gives p® = ¥(g)”® and ¢*“S = (g)*¥Ss, which is solved in
an obvious way using once more ¢;. O

Proposition 9.15 Any decorated critical pair in CP(D, R) obtained by overlapping a decoration rule
into a decorated rewrite rule is solved by adding an enriched version of the decorated rewrite rule and
a new decoration rule.

Proof: The critical pair obtained by overlapping (I — IS if §; ¢ s) into (g°5¢ — d'54) using a
strict decorated unifier 9 is solved in the case of w # A by adding

H(g S HEVYVUS,) - (dSe)

where U = Deco(g:sm) and in the case of w = A by adding

w(gzsg)w(l:sg):sgus,h) N w(dzsd):s‘,usgus,
and

$(d)* = d)(d):aUSgUSl\Sd if S,US\S4gs.
Remark that g € X, if w = A, since we do not calculate critical pairs on variable positions. O

Note that §; C Sy by the definition of decorated rewrite rules. Therefore, the new rule also -
represents a well-formed decorated rewrite rule in the case of w # A. In practice we take the critical
pair as equality and normalize it first, of course, before we orient it into a rule. This may let disappear
the decoration subsumption property and so it becomes necessary to add a new decoration rule when
the subsumption property isn’t fulfilled (see section 10.2 for details), using the same construction
as above. The problem of solving decoration critical pairs may seem complex at a first glance, but
becomes quite obvious by looking more closely at their form (see Examples 9.6 and 9.7).
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Proposition 9.16 Any decoration critical pair from R into D can be solved by adding a decoration
rule.

Proof: Consider the decoration critical pair

('Qb(g['l‘:s']w):‘ — ,‘/)(g):ausg if Sg % 3)’
produced by overlapping the rule
¢l . I:S, N T:s"
of R in the rule
bg (g:s - g:aUSg if Sg gs) ‘

in D. Then ¢(g)*“Ss contains at position w # A the subterm 1/)(g10|w) =4 1/1(g’°|u):u and
w(g:olw):u = 1/;(1‘51), since ¢ is a D-unifier of these two decorated terms. Thus the rule ¢; of R
applies on ¥(g)*“5s and yields 4(g[r*5], )*“Ss. Now for any set of sorts U’ such that §, ¢ U’,

1p(g[r:.S'r]w):U" H%UR w(g[r:s']w)’(.ﬂus“‘
using the rule: .
¢+ (B(elrlw)* — $lglrTl) % if 5,  9).

The critical pair is thus solved by adding to D this rule obtained by a straightforward orientation
of the reduced critical pairs. O

Notation: CP(R, D) and CP(D, D) stand for the sets of decoration rules used to solve these critical
pairs. CP(¢, D) stands for the set of decoration rules generated by some rule ¢ € DU R.

10 Decorated Completion in Sort Inheriting presentations

10.1 General Purpose of a Completion Process

Our purpose is now to design’a completion process that provides, whenever it does not fail, from an
initial sort inheriting presentation Py, a saturated presentation P, such that Th(P) = Th(Py,) and
any formula ¢ € Th(Py) has a rewrite proof. Our notations are consistent with [Bac91].

To Py is associated the initial triple (Do, Eqg, Ro) where Eq is usually the set of decorated equalities
Ep,, D the set of decoration rules Dp, associated to Py as defined in section 7.5 and Rg is empty.
Notation: We write t:5 »»p "% instead of t'5 (—gyp) t"5'.

The completion process is defined as a transformation rule system OSC that transforms decorated
presentations: Po Fosc ...Fosc Pk .+

The resulting decorated presentation, given by (Deoo, Foo, Roo) Where E, = 0, satisfies the follow-
ing properties, if the completion does not fail: .

o The Church-Rosser property of Po,: any equational theorem (¢ = t') has a rewrite proof using
Pw, i.e. there exists a term t” decorated by at least one sort A, such that:

tl@ ):"Poo t//"{A}US” ':('Poo t/.lo,
where §” is a decoration.

e The type completeness property of Poo: any membership theorem (¢ : A), where A € S, has a
rewrite proof using Poo, i-e. there exists ¢’ and A’ € S, with A’ <F" (A), such that:

t:w pr t/:{Al}us/,

where 5§’ is a decoration.
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o The existential completeness property of Poo: any existential theorem (EX t) has a rewrite proof
using P, i.e. there exist t' and A € Sy such that:

£10 2, gr{a)us’

where S’ is an arbitrary decoration.

Since Eo, = 0, »5p_, is actually rewriting with decoration rules in Do, and decorated rules in R.

The dual aspect of completion is the proof reduction process. Let us make this notion more
precise. Using the completeness Theorem 8.1, proofs of interest in a decorated presentation P given
by (D, E, R) are of the form 10 3 puE oAV S pug 1% The set of completion rules
is mirrored by a a set of proof reduction rules which normalizes such a proof into a rewrite proof
4:10 p., r:{Ayus” LI 118,

10.2 Transformation Rules for Order-Sorted Completion

Equalities are ordered according to a given decorated reduction ordering >4 on decorated terms (see
Definition 7.21). Rewrite rules from R and from D are compared by the following ordering, derived
from [DJ90]: -

Definition 10.1 The ordering on rewrite rules > is defined by:
S S s giSs _, giSa
if after first replacing sort variables by the empty set of sorts then:
o 'St p g5 (a subterm of I'' is an instance of g°>9 modulo sort inheritance and not conversely),

o or else I'St and g'5v are subsumption equivalent (I’ 5; g% and g5 53 I'5) and rSr >4 d'S4
in the given reduction ordering.

The completion procedure is expressed with the set OSC of transformation rules given in Figure 8.
First of all, note that OSC only generates valid decorated terms, rules and equalities in each
(Dky E/n Rk)

Lemma 10.2 Let (Dq, Eg, Ro) V- (Dy, Er, R1) F ... be a derivation starting with Do = Dp, Ey = Ep
and Ry =0. ,
Then for all k > 0, all terms, all decorated rules and equalities in (Dy, Ey, Ry) are valid in P.

Proof: The proof is an induction on k. For k = 0, obviously all terms tS in Dp U Ep satisfy
(t:5)18 =; 'S and are therefore trivially valid. The equations are in one-to-one connection with
‘those in P and therefore also valid.

For k > 0, we get the validity of the terms in (Dg, Eg, Rj) by the fact that they either can be
reached from terms in (Dg_1, Ex—1, Rk-1) by «<~—p,_, E._,,Ri_, O result from the application
of a unifier for two valid terms and —p,_, E,_,.R,._,, Of have a new sort in its top decoration, that
was at the top of a term reachable by —p, , g, _, Rr._, in the last presentation. Consequently,
these terms are also valid, because of Lemma 7.11, used together with the induction hypothesis,
and the fact that decorated unification is subterm conservative.

The validity of the decorated rewrite rules and equalities in ( Dy, Ex, Rg) is now a consequence
of EqReplacement, Symmetry and EqSubstitutivity. Validity of decoration rewrite rules
follows immediately from the validity of all terms. O

50



10.

11.

. Deduce_dec% ER

. Orient_SD

D,EU{p* = ¢ },R
D,E,RU {p° = ¢%)

Orient_NSD

p:S >4 q:S’
and § C §’

if

D,EU {p:S — q:S'}’R
DU {(q:s N q:sUS\S' if S\SI %8)},E,RU {p:S - q:SUS’}
if p§ >4 ¢S5 and § ¢ §' ]
and if ¢ € X, with g:: A then {A} = SUY’

. Deduce

D,E.R
D,Eu{(p®=¢%)},R

if (p5 = ¢'') € CP(R, R)UCP(D, R)

DU = S i S o ER @ =P S @s) € CP(R, D) CH(D, D)

Simplify
D,Eu{(p® =¢°)},R
D,Eu{(»"* =¢°)},R

if p:S ’_‘gﬁR p//:S"

Delete s .

] b

if p:S =¥ q:S'

Compose
D, E, RU{(I'* - r5")}
D,E,RU{(¥ — r">)}

if pSr H(I,)'(SR p!iSp

. Compose_D_deco

Du{(p* = p*Sif S¢s)},E,R
Du{(p™ — p"VS if §' ¢ 5)},E,R

Compose_R _deco ,
DU {(p* - p*if S ¢ 5)},E,R
DU {(p/:s N p/:sUS if § % 8)},E,R

if 5 %7 95 and w # A

Subsume_deco 0 Aod .S .
DU {(p:s N p:sUS if C(S))},E,R if y HD' v with § g s/
D.E R and (p* — p*US if o(s)) # ¢

Collapse
D, E, RU{(I® — ')}

.0 1:5 a9 :Sp .S .S,
T L L

Figure 8: OSC The completion rules for decorated terms.




Correctness of completion amounts to prove that any formula provable in a decorated presentation
P obtained during the completion is equivalently provable in Py, the initial presentation.

Proposition 10.3 The transformation rules in OSC are sound w.r.t. deduction in G-algebra. In
other words, zf the completion starts with Po = (Dp, Ep,0) and Po Fosc - .. Fosc Pk, then Th(Pp) =
Th(Px).

Proof: We show the following property H for all P, k > 0, by induction on k: for any terms t,t',t",
1 (t10 Bp, ¢Sy 5 U0V iff £ = ' € Th(Py),
2. (JA' <P (A) 610 3p, 1SVAYY Hf (22 A) € Th(Po),
3. (10 Bp, t"S'VIAN I (EX t) € Th(Py).

The base case is a consequence of Theorem 8.1, since Py = Py. The induction step from Pj to
Pi41 assumes the equivalence for P and shows then the same equivalence for Py

We denote Py simply P = (D, E, R) and Piyy simply P’ = (D', E', R').

The first direction of the equivalence (=) results from Lemma 10.2 that guarantees the validity

of all decorated rewrite rules, equalities and decoration rewrite rules. Hence, we can apply
Lemma 7.16 in order to get Th(P’') C Th(Po).

The second direction of the equivalence (<) is proved by transforming any proof of H in P
into a proof of the same formula in P’. Thus Th(P) C Th(P’) and by induction hypothesis
Th(P) = Th(Po), which implies Th(Py) C Th(P').

This is shown using a proof reduction relation ==, that is also used in Section 10.3. We give to
the proof reduction rules the same name as the completion rules except that they are underlined.
In the sequel of the proof, we write 0, 1 over the — in order to represent one or none application
of rewriting. For any of the following proof reduction rules, we assume of course the conditions
of the corresponding completion rules to be fulfilled.

1 Orient_(N)SD:
If ¢ € X,, we can be sure that for all B € SU S, if (¢ :: A) € P, then A<F" B, since
{A}~ SU S’ ie. §\ S’ ¢ sis unsatisfiable and the newly added decoration rule can be
ignored.
Suppose that the equality p'S = ¢°5' is applicable at some term ¢ at occurrence w using o,
yielding . Then t|, =4 o(p’ $) and t’ &, 9(¢'S') by Definitions 6.1 and 7.2, thus the proof
reduction is defined by

(to(p®)] Za t oG F=q'¢ '”dt[a(q N) = (t =% S_.gsus’ 1 2dod 41y

where - ¢ is ¢'* — q'“s\s if S\8 ¢s,

- 1" =24 t[a(¢"5')Y] (by Proposition 7.18) and

~ U = Deco(a(g®))U S\ §".
Remark that the equality symbol is commutative and therefore the inverse application of
a rule can be transformed analogously.

2. Deduce: '
(' RﬁD $ ,¢ //) = (¢ ‘_"_"2”’ S=¢'S t”)
where 7 is defined by o 0 0'(t) =4 7 0 ¥(t) for some unifier ¥ of
the left hand sides of ¢ and ¢’ according to the definitions
of CP(R, R) and CP(D, R).
Remark that 0 0 0’ and 7 are decorated substitutions by Corollary 5.16 respectively Defi-
nitions 5.17 and 6.8. In the case of CP(D, E), no transformation is necessary.
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3. Deduce_deco:

(f =il t =5 1) = (¢ =P TSR g g o),
where 7 is defined similarly as before by CP(R,D) resp.
CP(D, D).
4. Simplify:

First of all ¢ € D’ U R’ since DUR = D'U R'. Since p° = ¢'5 is applicable to ¢, we
know that o' (see below) is a decorated substitution for ¢ and the application of ¢ to p*°
guarantees us the same for o. Furthermore the applicability of p5 = ¢*5' to ¢ implies
the condition over the decorations of the variables in Ran(o) needed for Proposition 5.15,
which now says that o’ oo is a decorated substitution. Let ¢ : ¢'59 — d'5 be in R. Then:

(o' (PSlola )] 4 o (pS)] Hat om0 ¢ 2 4o/ ))
o .

] —nt
(t Ht}rl,oa,cb " (-—()—)%,'p =9 t') .

. where - p"5" = p'[g(d*54)] and
- t" 24 t[o’(p'S[0(d54)])] by Proposition 7.18.
Now let ¢ : (I"* — [#YUSiif § g 8) € D. We define therefore:

(U (PN 2atlo' (05 2t o™ =0 ¢ 2 1[0 (g)])
—2

' . ' ws!_ .s!
(t >—)6D,‘w'¢ t" HHgloa,p =9 t/)

where — t" 2, t[o'(p%)], [0’ 0 o(IV)V'VS),, (by Proposition 7.18),
- U' = Deco(o'(a(1V))) and
_ pl/:S =4 p:S[o(l:U):U US‘].
5. Delete:

:S_:S
(t (—o—)% =q t) =
where ® denotes the empty proof.

6. Compose:
As in the case of Simplify we know that ¢,0’ and ¢’ o o are decorated substitutions.
Furthermore, ¢ is in D’ U R/, since no rule can be composed with itself ( since this would
be in contradiction to the termination of the rules in D U R, which is implied by the
orientation with a decorated reduction ordering). Let ¢ : g'5¢ — d*%¢ be in R. Then:

(Lo (1)) 24 t R "= ¢ 2 o (157)) 2 Ho (S [0 (g5
=
N 1S '
(t )_)‘}72,'] Sl-—;r r t” H;[00,¢ tl)
where — 735 2, ri5[o(d*54)] and
- t" 24 t[o’(rS*[0(d*54)])] (by Proposition 7.18).
If¢ : (9°— g°Y%if S, ¢ s) € D, we get:

(to"(15)] Za £ o7 =T ¢ 2y 1o (157)] 24 4]0’ (1S [0 (¢ V)))])
-

(t )_)’r,l’sl—or

58y
R 1

a’o0,
HD/ a.‘b t/)
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where - t" &, [0 ( r[0(gV):U'¥Ss))] by Proposition 7.18,
-U' = Deco(a'(a(g U))) and
— p!:Sp =g 7 [a U)Uusg].
. Compose_D_deco:
Let ¢ : (l:a — [18YSf S % 8)’ & (p:s - p:sus if S % s) and ¢ : (p/:s - p/:sus’ if 57 %
8). As in the Simplify case we can conclude that o,0’,0’ 0 o (for the implicit definition
of o' see below) are decorated substitutions.

Case w # A, i.e. §=5"and p"S' =4 pS[o(IV)VYS,:

(o’ PV [o(PV)|)], =g t =5 1 24 8]’ (P [0 (FV2)L)V1V5),)
—
(t )__)27)"00,4’ e ,?5 " — a oa P tl)

where - " 24 tfo’(pV)] [0 0 GV VIS, ,,
8 >~ t[ l(p Uy ):U1US]V[0" ) g([:Uz):UéUSl]UM by PrOposition 718,
- Uh is Deco(a’(a(I'U?))) and
~-tisdg’oo.
Casew = A,ie. §'=S5US; and p® =4 p'®:

(o (U] 2 tlo' ()] 24t =5 ¢ 20 de (P (100 V)
—
(t O’Dld’ " HB&[# t/)

where — " 24 t[o’(pU[o(1V)]4 )V 'USVUS] (by Proposition 7.18),
- U' = Deco(o’'(pY[a(I'V)]a)) and
-Tisd'oo.

. Compose_R_deco:

Like with Simplify, we can argue that 0,0’ and o o 6’ are decorated substitutions. Let
é: 1S r:S,’ é: (p:s - p:sus if Q, 3) and ¢" : (pl:a — p/:suS if § g s), then:

(o' (¥ [o(1)])] 2 1o’ (p7)] 24 t ~ 5% ¢ 24 1o (pV o (15))V))
=
(o ¢}72 I°¢n4> NN I,¢" G (_(}7%' 00,9 tl)
where - t/ 2, t[o’(pV[o(r57)])] and
=" 2, t{o’(pV[o(r57)])VYS] (by Proposmon 7.18).
. Subsume_deco:
As in the Simplify case we may conclude that ¢’ o o and 7 in the following are decorated
substitutions. Thus:

(1o (PVIo(FV)a)] 2a to'(pV)] 2a t =5 1 24 1o’ (pV[o(IV)]2) VV5))
= .
(t Hg?a,¢ " ‘0_,1(3? t/)

where — ¢ is ['® — VSt if §, g s,
-¢ispt o pSif §¢s,
-t 2y t[a’(p Ula(I)a) UUS’] (by Proposition 7. 18) and
-risg’oo.
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10. Collapse:
As in the Simplify case we may conclude that ¢’ 0 o is a decorated substitution. Further-
more the condition of Collapse prevents us from collapsing a rule with itself and therefore
we have ¢ € D' U R'.
Let ¢ : ¢'5¢ — d'54 be in R. We get:

(o' ([ (g %0)])] Za tlo' ()] 2t — 3" 7T 2y 4o (rS7)))
=
(

' 1Sy i Sy
o'oo " o' P =pior
t HR, 7¢ t /l

t')
where — ISt 22 ['S1[g(dS4)] and

- 1" 24 1[0’ (I*5[o(d*54)])] (by Proposition 7.18).
Else ¢ : (g°* — ¢g**¥S9 if S, ¢ s) € D and we have:

’ — S'- ~ .
(o (5] 2g 1 7T 4 2y 46! (r57)])
>
(2 000 g o G0l =rST 4y

where - ¢/ 2, t[ (5[ (g?V )V "VY5))] (by Proposition 7.18),
~U'= Deco(a'(a(g'U))) and
_ II:S,/ Nd le[o(g U) U USg]

0

10.3 Proof Reduction and Reflection

Let us now extend the set of proof reduction rules = introduced in the last section. The last case
to consider are peaks which are implicitly reducible in any decorated presentation, i.e. peaks without
critical pairs. Theorem 9.13 allows reducing such peaks by proof reduction rules of the form:

tl:S' (__(4"

:S
DUR e o— ’

¢! t//:S" ¢ N ¢” * ¢ t//:S"
DuR DUR

Rtosol-—(

called Peak without overlap and Peak with variable overlap according to the current peak type. Note
that ¢,t',t” denote any decorated terms in this rule. The next step is to prove that = is well-founded.

Lemma 10.4 The proof reduction relation = s well-founded.

Proof: Define the complexity measure of an elementary proof steps by:

(t5 mp %) = ({t9},6,6%),
(B —mf ) = ({t9,0%),9,-),
c(t‘S‘ »—)% t/:Sg) — ({tzsl},(ﬁ, t/:Sz).

By convention, the complexity of the empty proof ® is ¢(®) = 0. Complexities of elementary
proof steps are compared using the lexicographic combination denoted >.. of the multiset
extension of >4 on decorated terms, > on formulas and again >4 on decorated terms. Since
>4 and > are well-founded, so is >.c. :

The complexity of a non-elementary proof is the multiset of the complexities of its proof steps.
Complexities of non-elementary proofs are compared using the multiset extension >. of >,
which is also well-founded. Remark that ¢t &y u, ¢/ =3 v’ and t <4 t' implies u <4 ', by
definition 7.21 of decorated reduction orderings. Therefore, we can work with a representative
of the equivalence class modulo 224 of a term occurring in a proof.

85



e Orient_(N)SD:
Let t 24 tfo(pS)] and ¢/ t[’a(q's’)l

et —om 3P =T )= {({tehp -)} >

c(tlo(p) —37 " dolg sy9) 9«“,3?’ to(¢*))) =

{{t}h,p® — q5us tfo(q® )U])} UH,

where H is @ or {({t'}, ¢,t[0(g"° )U])} and ¢ is ¢** — quS\S if S\ S8 ¢ s,
since {,t'} >T4t {1}, {t'}.

e Deduce: ),
ot —gipt —7* ") = {({th ¢,1), ({th ¢',")} >
C(t' HHxéfp S=¢'F t") - {({t/’tn},p:s = q:S” _)}
just by comparing the first components, since t >4t and t >4 t".

° Deduce_deco
ot =pipt =5’ 1) = {({t},#,1), ({1}, 6,")} >
c(tl 11’)36 t' 0, la ,¢RI t") - {({t/} d’l 1 )} UH,
where H is (D or {({t"} #,t5)} and ¢ is (p* — p*US if S ¢ s)
just by comparing the first components, since t >4t and t >4 t".
¢ Simplify:
case ¢ € R: ’
Ce(t g 1) = ({1, 0),95 = ¢, -)) >
et — ¢ o= ) = {({1), 9,8, ({1, 0}, 5" = ¢, ),
Wherei—d o' (pS[o(g°%))], ¥ 2 t[o’(¢)] and ¢ =4 t{o’(p5[o(d" s")])]
since {t,t'} >T¥* {t} and {t,1'} >t {¢”,t'}.

case ¢ € D:
c(t HH‘E’pZS:q: t,) = {({t v}, Ps = q —)} >

C(t Ha 'o0,¢ " — E o' st =¢'S t/) . {({t} ¢, t”) ({t, t"} p,, .S _ q _)},

where ¢ 2, o (p3 o (V)]s ¥ 24 tlo(qS)], and ¢ 2, 1o (55)], 0" 0 IV V),
Clearly, {t,t'} >7%¢ {t} and {¢,t'} >T%'* {t',t"} gives the reduction of the complex1ty
measure.

o Delete:

C(t ‘—.<>;9§S=p:s t) = {({t)t}J’ =D _)} >e c((p) =0
since {t,t} >Tu!t Q.

¢ Compose:
case ¢ € R:
C(t )_)a’ ISt —p:Sr t,) _ {({t} IS, T.s' t,)} >,
et it T 070 1) = ({1, 15 = 1S, 7, ({1}, 6, 1),
where t =4 t[o’(I')], t’ =, t[o’(r5[0(g"%9)))] and t” =4 t[a'(r Se(a(d54))],
since 757 >4 r*5 — this implies ('St — r*5r) > ('St = ¢"Se') —and t >4 t'.

case ¢ € D:
t S, :Sr
c(t H;,I l—r t’) = {({t}’l:s, - r‘s',t')} >,
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'

Si_piiSy
et — ;21 = t Hg’/oo',d; t,) = {({t}’lzs‘ - T’:S"I’t”)a ({t'}, ¢, t”)}’
where t 2y t[o’(I')], t' 24 t{o’(r*5r[0(g°Y)])] and t” =4 t[o’(r57[0(gV )V YSs])],
since 757 >4 #*Sr — this implies once more (I'St — 735} > (ISt — #/:5¢) —and t >4 ¢/,

Compose_D_deco:

case w 76 A

o(t=p® ) = {({t}, ¢, 1)} >c

c(t H}')°0¢ " T(]t " — <7 °<7¢ tl) = {({t} b, tll) ({i”} ¢// t///) ({t'} ¢’ t”')},
where t =4 t[o’(p™ [o (1" U’)]w)]u, t' =4 1o’ (P [0 (192)),, )1 5),,

" = t[al(p Uy )] [(7 ° 0(1 Ug) UJ uS,] - and t" ) t[a’(p Ul) UluS] [0./ o U(I:UQ):Uz’us,]u.w’
since [*S« ) p®, where Deco(p’°|u) = S, therefore ¢’ > ¢, and trivially t >4 t' resp.
t>qt".

case W = A :

e(t =5 ) = {({th, 8,10} >e et =p® 1 =52 ¥) = {({t}h, 6", "), ({t'}, 6, ")},
where t =g tlo’(pVlo(F U)]A)] t 2y t[o'(p U[a(l )]A) U'us)

and ¢" =y t[d'(PU[U(l U)ayvesosiy,

since either ! ) pPorSc §' = §U S, therefore ¢’ > ¢", and trivially ¢ >4 t'.

Compose_R _deco:

e(t—p® 1) = {({t},¢,1)} >

e(t )_,0 °0.¢ ' D.¢" i H;’fmd’ t) = {({t}, &, t"), ({£"}, ¢", ), ({t'}, 6, ")},

where

t 24 t{o’(pV[o (), ' =4 to'(pV[0(15)])VV5), ¢ 24 to’ (pV[o(r57)])]

and t" =y t[a'(p:U[o(r:S' )]):UUS]’

because of ¢’ 3> ¢ (since w # A and therefore ' must be strictly embedded in p°), and
finally ¢t >4 t", 1.

Subsume_deco:

ot =5 1) = {({1), ¢ 1)) >e clt =" ¢ 3 1) = {({1),6,), ({1}, 6,")}
where t 2 tT'(pYlo(F U)]A)], =y T[a'(pu[a(l DAYV and " =y
t:T[al(p:U[a(l:U)]A):UUS;]’

because of ¢' > ¢ (since ¢’ # ¢ we have either pze as strict instance of p”” - then we are
done - or the two terms are equal modulo variable renaming implying S§ C S’ and therefore
PS5 >4 p'*%"). Finally, t >4 t', since U € .

Collapse:

case p€E R :

ot =g T ) = {({8), 15— 1S 1)) >

et — R ¢ o NI 1) = (1,6, ), ({1, 1), 1S = S, <))
where t =4 t[a'(l S(a(g*%))], t' =q t[o’(r5)] and t” Zy t{o’ (I [G(d 1))
since (I'5t - r57) > ¢ and t >4 ¢',1".

case p € D : '

et~ T #) = {({8h, 15 - 1) >

ot e 7 ool ) = (({1), 0 £, ({2, V), 15 = S, ),
where t =4 to'(I'%)], t' 24 t[o’(r*57)] and t” =, t[o'(I} Sifa(g?V) U U59])]
because of similar reasons as in the case of ¢ € R.

Peak without overlap:

ot —Sont —urt”) = {({t}, 6,),({t}, ¢, ")} >
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e(t' ~bur 1 ~purt") = {({'} ¢ 1), ({t"} ¢ 1)}
just by comparing the first components: t >4t and t >4 t".

e Peak with variable overlap:

! - »*
e(t! ‘_‘%uR t >_’%u}% t") >c c(t’ *purti “<pur t”) o
again just by comparing the first components of each elementary step appearing in these
proofs.

O

The exact correspondence between the proof reduction = and the derivation Fpsc is stated by
the following results.

These proof reduction rules must reflect the rules of OSC in the following sense: at each step
Fosc, a given proof either does not change or is transformed into another one by =.

Definition 10.5 [Bac91] The proof reduction = reflects Fosc if whenever (D;, E;, R;) Fosc
(Dit1, Eit1, Riy1) and P is a proof in (D;, E;, R;), then there is a proof P’ in (Dity, Eity, Rit1)
such that P = P'. ’

Because the =>-rules have been built from the rules of OSC, it is easy to verify that:

Proposition 10.86 = reflects Fosc.

10.4 Fairness

The fairness hypothesis states that any proof reducible by =—> will eventually be reduced. In other
words, no reducible proof is forgotten. Fairness specifies under which conditions a control for applying
rules of OSC is correct. Fairness is again defined relatively to a subset 7 of valid terms.

Definition 10.7 Let T C Ty(S,, F,X,). A derivation (Do, Eo, Ro) & (D4, Ey, Ry) & ... is T-fair if
whenever ¥ is a proof in (D;, E;, R;), that uses only terms in T and is reducible by =>, then there
is a proof V' in (D;, E;, R;) at some step j > i such that ¥ = v,

When 7 = ValidTy(S,, F, Xy), we drop the T prefix, since the notion is then obviously equivalent
to classical fairness. Let us define:
D. = U‘ZO D, ' E‘ = U'ZO E" and R* = U‘ZO R,
Dy = Uizo MNy>i Dj Eoo = Uizo ﬂ,» E; and R = Uizo N> 15

A sufficient condition to satisfy the fairness hypothesis can be given:

Proposition 10.8 Let T C 74(Sy, F,Xy) and UNIFy a strict_subterm_set(T)-complete unification
algorithm. A derivation (Do, Eo, Ro) & (D1, E1, Ry) F .... using UNIFy for the calculation of critical
pairs is T -fair if Eo, is empty and all critical pairs of Do, U Ry, are in D, U E,.

Proof: We have to prove that if ¥ is a proof in (D;, E;, R;) that uses only terms in 7 and is reducible
by =, then there is ¥’ in (D;, E;, R;) at some step j > i such that ¥ =% ¥,

If one of the transformation rules Orient_.SD/NSD, Simplify, Delete, Compose,
Compose_D.deco / -R.deco, Subsume_deco, or Collapse applies to ¥, then (D;, E;, R;) #
(Dooy Ecoy Roo). So one of the rules of OSC applies.

If the transformation rule Deduce or Deduce.deco applies with a non-persisting rule then for
some j > 1, (D;, E;, R;) & ...+ (Dj, E;, R;) where (D;, E;, R;) does not contain this rule any
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D,Eu {pSU B} = (¢ :: AYS') R
Extend 1,1, 1
if z € X, and z:: A € P and not A<F"B

Figure 9: Test for Equivalence of <J™ and <¥™.

more. If the transformation rule Deduce or Deduce.deco applies with persisting rules, then by
hypothesis there exists k£ > ¢ such that the computed critical pair is in Dy U Ej, since all terms
in ¥ arein 7 and UNIFgq is complete for the unification problems in CP(R, R),, CP(R, D)|,,
CP(D, D), and CP(D, R), . as a consequence of Lemma 9.8. Remark, that since Eo, = @ by
hypothesis, then for some j > k > ¢, (D;, E;, Ri) ...+ (Dj, E;, Rj) where E; does not contain
the critical pair any more.

For all these cases, since = reflects +, P =% P,
If either Peak without overlap, or Peak with variable overlap applies, then by Theorem 9.13, P

contains a peak that can be replaced by a rewrite proof ¢’ = u << ¢”. Then j = i and P =% P'.
a
|

For a fair derivation, the resulting decorated presentation satisfies the property that any equational
proof has a normal form which is a rewrite proof.
We then get the main result of this section:

Theorem 10.9 Let Py be sort inheriting and (Dy, Eq, Ro) Fosc (D1, E1,R1) Fosc ... be a fair
derivation. Then Py is terminating, Church-Rosser, type complete and ezistentially complete on
ValidTy(Sy, F, Xy). Moreover Th(Pg) = Th(Py,).

Proof: The termination property of Do, U Ry, is obvious since the test is incrementally processed
for each rule added in D, U R,, thus in Dy U R.

Then the derivation is ValidTy(S,, F,X,)-fair and any proof t® «$—p uE,ur, 1S has a
rewrite proof in P,.

This guarantees the Church-Rosser property, as well as type and existential completeness. Fi-
nally Th(Py) = Th(P) is a consequence of Proposition 10.3. O

It should be noticed that the presented rules for completion do not include rules for simplifying at
the top occurrence decoration rules with decorated rewrite rules. This is solved by decoration critical
pairs that add the simplified versions of the decoration rules without deleting their old versions.
So a lot of decoration rules may be generated during a fair derivation. However, including more
simplification for decoration rules is yet an unsolved point.

10.5 Changing the Subsort Relation

The unification algorithm needed for the completion process assumes, of course, the subsort relation
to stay static, but this may not be the case (see example 4.3). The test for equality of <g™ and <F™
can be done using the Extend rule shown in figure 9, which can be added to OSC.

The rule Extend is semi-complete when it is used in OSC together with a fair strategy.

Proposition 10.10 Let <™ be a syntactic sort ordering used for the completion of P, a sort inher-
iting presentation w.r.t. <&". Let furthermore (Dp, Ep,0) = (Do, Eq, Ro) F (D1, E1,R1)F ... be a
derivation using OSC with a fair strategy if Po, # (L,L,1).

Extend applies iff <F" #<¥™.
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Proof: First of all, if Extend is applicable, then clearly <g" #<¥™. Now, suppose <g™ #<F™

and Extend does not apply. Hence, there are sorts A B,s.t. A <¥™ B, but not A<sy"ll3
Therefore Lemma 8.1 implies the existence of a correspondmg proof ‘Il Dz {4} —5—p tSU{B}
with B’<J" B for a variable z with (z :: A) € P.

From fairness and termination of => (see proposition 10.4), it follows now that there exists a
rewrite proof form ¥, of ¥ after a finite number of steps k, since any peak must be reduced

after a finite number of steps yielding a strictly smaller proof. Let ¢" :5' be the normal form of
210 =, {4} iy V.

Assume t' ¢ X,. Clearly, some A’<J™ A must be in S, since decoration and decorated rewriting
can only increase the top decoratlon Therefore, o0 = {:c {4} s 5"} is a decorated substitution.
If z € Var(t"S'), then o(z{4}) is a strict subterm of o(¢*5'). Otherwise, if z ¢ Var(t"S'), then
o(z{4}) =4 o(¢*"). In both cases, we get a contradiction to the well-foundedness of <4, since
o(z{A}) rewrites to another term ¢"*5' that contains o(z{4}). Hence, t' ¢ X, is impossible, not
even for intermediate terms in ¥y.

Moreover, t' = z must hold, because of Var(r) C Var(l) for any decorated rewrite rule I — r
by definition. So, we can be sure that ¥y : z*19 R, zTU{B"} and any (¢ : ;'S — 1‘;‘3-()'6 Ry
used in ¥y must satisfy (I;)ng = (ri)na = = and S; C S;. Remark that decoration rewrite rules
cannot be used in ¥, because variable decoration rules are inapplicable due to an unsatisfiable
condition.

Consequently, one of the S/ must contain B’. But this is in contradiction to the conditions for
orientation rules in OSC, i.e. the equation from which ¢’ stems cannot have been oriented and
¥, cannot exist. So, Extend must be applicable.

]

In the case where Extend applies, we just proved that <¢" C<¥™ and the syntactical orderin
P g

on sorts should be exterded before a new attempt of completlon But several situations may then
occur, as in the following examples, where different kinds of extensions to the syntactical ordering are
illustrated.

Example 10.11 Let S = {A, B,C, D}, <; be the initial syntactic subsort relation and <, be the one
where the new extensions are added. We can add in <, a relation between :

11

¢ incomparable sorts without common subsorts If <1= 0 and <2= {(A B)}, then any solution

of a unification problem of the form (z :: A &} y :: B) was incomplete. So we have to restart
the critical pair computation.

.

comparable sorts : If <;= {(A,B)} and <2= {(A,B),(B,A)}, then we added a cycle. To
satisfy Assumption {.6 again, we have to replace A or B in the last preséntation by a unique
representative sort, in order to continue the computations. This possibly makes some decorated
rewrite rules trivial. We may need to re-orient some rules. If some condition of a decoration
rewrite rule becomes unsatisfiable and this rule can of course be deleted.

incomparable sorts with a common subsort : If <= {(C,A),(C,B),(D,A)} and <;=
{(C,A),(D,A),(C,B),(D,B)}, then we get D <™ (A, B). Consequently, the subsort rela-
tion has to be completed as in the first case and the whole completion has to be reset, too.

Checking Sort Inheritance

We are now left with the problem of checking the sort inheritance property of a decorated presentation.
The idea is to characterize non sort inheritance on a set of decorated terms 7 by a property of the
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DU {(p* — p:sU{A}US if c(s)),(p':’ N pl:aU{B}US’ if ¢(s))}, E, R

Detect , L,
if I : ¥(p®) = ¥(p"®) and 3C < A, B

Figure 10: Sort Inheritance Test Rule.

decoration rule set: D must contain two rules whose left-hand sides are unifiable and that produce the
adjunction of sorts A and B respectively without common subsort C < A, B. This characterization
is possible if D is confluent on 7 and any term of 7 is reachable by D only. A corresponding test
can be realized by a rule Detect shown in Figure 10.

Given a confluent and terminating set of decoration rules D, a typing proof of a term 7 (with
T # 0) is of the form t{® <8~ p ¢t T and terms with a typing proof are simply called typable. Proofs
over typable terms only are therefore called typable, too.

The first step is to prove that our test on decoration rules is sufficient to ensure sort inheritance on
reachp(Ty(Se, F, X, )!?), i.e. all typable terms, if D is confluent and terminating. The second step
is the observation that the proofs constructed by Theorem 8.1 are typable.

This motivates the search of a proof reduction maintaining this property and thus called typing
conservative. So the third step is to exhibit a proof transformation that preserves typability of terms.
Using this transformation we then prove that any irreducible proof is also typable. We thus get sort
inheritance on the set of valid decorated terms ValidTy(S,, F, X,): for such a term t*5, there exists
a proof t1® «3—p_ 15 with an irreducible form of the form t:!® - 5" < t"*S for some rewrite
relation —», with § C S”, and t”*5" is reachable from t”:}? using a confluent system D. Then if the
test if sort inheritance succeeds on the set S, then it succeeds also on S”.

The real difficulty is to find a typing conservative proof transformation. Unfortunately, when deal-
ing with non-linear decoration rules, the proof transformation = is too general for this propagation,
since the simplification of terms can be done at arbitrary occurrences. This means that the reduction
by ~ g could destroy the typability of a term, i.e. its reachability by —p.

Let us give a simple example of the problem that occurs with non-linearity.

Example 11.1 Let P = (D, 0, R) be the following decorated presentation:

D = {a*—a*V{4tif {4} g5,

be — boViAY if {A} @ s,

f((z 2 A8, giiAdye o f(g:4) z{f*})“{c} if {C} g s},
R = {a:{A}—vb{ }}

Then we have the following reductions:

F(a®,at)? >_*>D F(a{A} gAYy >_>D F(a{4}, a{aby{€)
AV .

R
f(b:", a:ﬂ):O >—*> f(b{A} , a:{A}):O >+
D % D
R v
f(b:O, b:O):O >_*—;>D f(b:{A} , b:{A})‘O >——>D f(b:{A} , b:{A}):{C}

This shows tﬁat a reduction by R may destroy the reducibility by D.
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11.1 Testing Sort Inheritance On D-Closed Sets

The main goal of this section is the construction of a test for sort inheritance on the set of decorated
terms 7 reachable from Ta(Sy, F, Xy)'L® with decoration rules only.
The notion of D-closure of a set of terms is needed to define this set.

Definition 11.2 Let (D, E, R) be a decorated presentation. A set T C T4(So,F,Xy) ts D-closed if
forallte T:

1.t eT,
2. t <Sop t' impliest’' € T and,

3. t € T implies Vw € Occ(t): ¢, €T.

The D-closure reachD(T:w) of a set T® of terms with empty decorations is therefore the set:
{t]3teT®: ¢ —3-pt”and Iw € Oce(t”) : t=4 t}-

Note that strict_subterm_set(reachp(T:4?)) C reachp(strict_subterm set(7°}?)) is an immediate
consequence of the conditions 1 and 3.

Proposition 11.3 Let P = (D, E, R) be a strict_subterm_set(T)-sort inheriting decorated presen-
tation, such that D is confluent on T = reachp(7T''®). Then P is T-sort inheriting w.r.t. <&" iff
forallt € T : t4% 55 ¢T implies that for any two sorts A,B € T, there is a third sort C with
C<JI"A,B.

Proof: =>: This is obvious because of 7 = reachD('T’w).
<=: Since P is already strict_subterm_set(T )-sort inheriting, we only have to check top deco-
rations. Let tT € 7. Then t*® <3 p t7'. Since D is confluent, t? has a unique D-normal

form modulo sort inheritance t7 and furthermore t:7" »p t7. Since T" C T, there is for any
A,B € T a third sort C, s.t. C<JI"A,B. O

In order to build a more syntactical test, a saturation process on decoration rules is designed. Let
Deduce_DD stand for the rule Deduce_deco applied to decoration rules only and Deduce_-DD be
the corresponding proof reduction rules in =, including the rules for peaks.

Let furthermore Ded be the set of rules consisting of Deduce_ DD, Compose D _deco,
Subsume_deco. Ded is the corresponding set of proof transformation rules of =.

Proposition 11.4 Let P = (D, E,R) be a decorated presentation and T C T4(Sy,F,X,) be D-
closed. If P = (D,E,R) bpeqd P’ = (D', E,R), then T is also D'-closed and there ezists a proof
¥: tSopt' with terms(¥) C T iff there is a proof ¥’ : t «3—ps ' with terms(¥')C 7.

Proof: This follows immediately from = and ~ used in the proof of Proposition 10.3. O

Analogously to Definition 10.7, we can define T -fairness for decoration rules, where the set of
completion rules is restricted to Ded and = consequently to the rules in Ded. Clearly, the proof
part of Proposition .10.8 dealing with the rules in Ded proves that 7-fairness for decoration rules is
implied by the condition that all critical pairs of Dy, are in D.. Since we did not change the rules
themselves, the property of reflection of Fp.q4 by Ded is still valid.
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Proposition 11.5 Let T C T3(S,,F,Xy) be a D-closed set of decorated terms and (D,E,R) =
(D, Ex, Ri) be a decorated presentation obtained by applying rules from Ded, that is T-fair for
decoration rules. Then D is T-confluent.

Proof: Remark that the 7-fairness implies that Deduce_ DD is no more applicable. It
follows immediately from the proof reduction rules Deduce.deco, peak without overlap,
peak with variable overlap that D is confluent. O

Specific proofs with decoration rules, namely bottom-up decoration proofs, play a fundamental
role in the test of sort inheritance.

Definition 11.6 Let (D, E, R) be a decorated presentation. Then:
U: to—p t1... =ty
is a bottom-up decoration proof iff for all ¢,j € [1..n], we have i < j = w; £ w;.

Proposition 11.7 Let 7 = reachp(7T}?) and D be T-confluent. Then there ezists for any decoration
proof:

Tty -0 5. — £, S
where 1,5 € T for all i € [0..n] and t,"5 is irreducible in D, a bottom-up decoration rewrite proof
for 15350 22 p 1,550,

Proof: First, we need a partial proof ordering respecting the occurrence of rule application, such
that bottom-up right-to-left decoration enrichment is less complex than any other strategy.

o I . .

Let ¥ = (¢ H“L’)‘-“" zi+l=5-'+1)i€[1._n], ¥ o= (S >—»“D’"¢' t:~+1'5-’+1),~e[1'_m] be two decoration

rewriting proofs. Then:

¥ <, ¥iff 3k € [1...min(m,n)]: Vi€ [1.k—1]: W Zjer wi and wj <(ez Wk-

W.l.o.g. we can consider a minimal proof of ¢y ~p t, w.r.t. the proof ordering <,. If the proof
consists of a single rule application, we are trivially done.

Otherwise, let us assume that we have:

é tm S ["m(umzum)]w;n [Om+1(Ums1 V™ )]uns
g om tm 5™ (O (U U ) UmTm)], [0 g1 (g U )

“mi 'd)ml mt tm:sm [om(um:Um):U'I"UTm)]u/m {0m+1 (um+l Um+1 ):U'I"“ VTt Iwm+1

with wy, < Wpy1, 1.6 Wpe1 = wn.v. We can assume that these two rule applications follow
each other, since any rewrite step at an incomparable occurrence in between could be swapped
with one of the two, resulting in a smaller proof.

Obviously, we can apply ¢my1 to t,5m [om(um:U"‘)]w'm[O'mH(umH’U'"“)]me. The resulting
proof is strictly smaller w.r.t. <, and the T-confluence of D guarantees that ¢, is still reached.
Thus, there must be an equivalent bottom-up decoration proof. O

Proposition 11.8 Let T = reachp(T*!%), P = (D,E,R) a strict_subterm_set(T)-sort inherit-
ing decorated presentation, such that D is T-confluent. Then, the Detect-rule succeeds on D iff
P is not T-sort inheriting.
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Proof: <: Proposition 11.3 implies, that there exists a t'!? € 7 with #:19 % p tUV{AB} st there
is no third sort C with C<Z" A, B. Let w.lo.g. A, B be minimal w.r.t. <" in U U {A, B}.

Hence there must be two decorated substitutions o, 7 and two decoration rules (¢ : p** —
p:suT if T Z s) with A € T, a(p) =nd 1% and (¢/ D optt o pl:sl:JT if T g 3) with B € T,
7(p') =na t19, 5.t

t:l@ ’L’D tk:Sk A),g‘a tk:SkUT ):'D tI:S[ A,>¢_"a' t[:S;UT' *,“_’D t:SU{A,B}.

Note that p,p’ & X,, since the only way to introduce new variable decoration rule is
Orient _NSD. Remark that decoration critical pairs are defined for w # A only. Orient _NSD
guarantees that the condition of the variable decoration rule is unsatisfiable. Consequently,
variable decoration rules are never applied and ¢t cannot be a variable, too.

Proposition 11.7 says, that there is a proof with all rule applications at A at the end. Since
this is the case concerning ¢ and ¢, we can assume their application to be in this final proof
sequence. Let ‘

:Sm A.¢>12‘0m tm+l:sm+1 A1¢mmam+l . Ayﬁ‘an tn+l:s"+l =4 t:SU{A,B}

tm:e =dtm
be this sequence. Note that no application of the rules at A changes any decoration of strict
subterms. Therefore we have #;® 24 t;,1® for i € [m..n)}, giving us a 7T -unifier of p® and p'®.
Remark that ¢;® must be in 7 by the D-closure of 7. From Lemma 9.8 now follows that
UNIF4 must succeed, since it is assumed to be strict_subterm_set(T)-complete and p® = p':®
is a unification problem in CP(D, D),,, because of p,p’ & X,

Last but not least, there cannot exist a subsort C of A and B in T or T’, since decoration rewrit-
ing always increases the decorations, i.e. C would therefore also be in 59, a clear contradiction
to our minimality assumption.

Consequently, we must have a proof of ¢/ |p=4 t:59{4:B} with a final sequence containing two
rule applications on top adding A and B, such that the left hand sides of the rules are unifiable
using UNIFy, i.e. the conditions for the application of Detect are fulfilled.

=: If Detect is applicable, then take (p™?)Sv5'0{4.B} 35 counter example for sort inheritance.
]

Finally, we show how to achieve the reachp(Ty(Se,F, X ):!?)-fairness for decoration rules with
the Deduce_DD rule. ‘

Corollary 11.9 Let (D, E,R) = (D, Ex, Rr) be a decorated presentation obtained by a derivation
using rules in Ded, s.t. all critical pairs in Dy have been solved. If Detect cannot be applied, then

1. (D, E,R) is reachp(Ty(S, F, X )'}?)-sort inheriting w.r.t. <,
2. the derivation is reachp(Ta(Sy, F, Xs)"+?)-fair for decoration rules and

3. D is reachp(Ty(Sy, F, Xo)}?)-confluent.

Proof: Let us define 7" = reachp({t!®||t|<n}) for » > 0, which implies
reachp(74(S,, F, Xo)10) = Unso 77
The proof is by induction over n. In the case n = 0, we have 770-fairness, since

strict_subterm_set(7°) is empty and UNIFy is therefore trivially strict_subterm_set(7°)-
complete. Propositions 11.5 and 11.8 now give the 7°-confluence of D and the 7%sort in-
heritance respectively.
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For n > 0 we have strict_subterm_set(T™) C T™"1, since strict_subterm_set(reachp(T™1%)) C
reachp(strict_subterm_set(T"*®)) = reachp(T™ ':1?),and therefore the induction hypoth-
esis gives us with the 7" l.sort inheritance w.r.t. <g" also the strict_subterm_set(7™)-
completeness of UNIFq4 (by Proposition 6.10), implying as before 7"-confluence of D resp.

T™-sort inheritance w.r.t. <J".

Consequently, (D, E, R) is reachp(Ty(S,,F,Xy)?)-sort inheriting w.r.t. <&™ and therefore
and it follows once more that UNIFy is reachp(T3(S,, F, X,)*?)-complete, the derivation is
reachp(7Ta(Ss, F, Xp)19)-fair for decoration rules and D is reachp(T3(S,, F, X, )1?)-confluent.
a
Since we now have a sufficient test for reachp(Ta(Se, F, Xy)1?)-sort inheritance w.r.t. <&", the
next step is to prove that the test is also sufficient test for Valid74(S,, F, Xy)-sort inheriting. In
order to do that, the saturation process must incorporate equalities and rewrite rules.

11.2 Sort Inheritance on Valid Decorated Terms

The general problem in the following will be the test of sort inheritance over all valid terms. Clearly,
the validity of a term depends on the provable equalities in the current presentation P, which are
decidable when we have a confluent decorated term rewriting system. This can only be achieved
with a complete unification algorithm. But testing the completeness for all valid terms is exactly the
problem we want to solve.

In order to break this interdependence, we try to achieve confluence with additional restrictions.
Several possibilities are considered. The first and easiest one is the restriction of the allowed term
declarations. However, we loose a lot of expressiveness in G-algebra when this part of the language
is weakened. Another possibility is the design of another proof transformation, that normalizes
proofs but keeps the typability property of terms. This leads to sophisticated completion strategies.
Therefore, the expressiveness of term declarations can be expensive in practice and a compromise
between complexity of completion and unrestricted term declarations is necessary.

The underlying plan for achieving confluence and testing sort inheritance will be the construction
of a proof transformation that preserves the typability of all decorated terms in a proof, i.e. if for all
decorated terms t*5 in the proof to be transformed, t:1® —%p t5 holds, then this is also true for
all terms in the transformed proof. A closer look at the proof of Theorem 8.1 reveals the following
Lemma.

Lemma 11.10 Let ¥ : ty!? ——DoUE, t;:51 ¢~ DoUE, - - -tn'>" be the result of the proof transfor-
mation described in the proof of theorem 8.1. Then '

Vie[l.n] : ;18 Do 1.
Proof: This corresponds with property Hy shown in the proof of Theorem 8.1. O

Using this observation, we can therefore test sort inheritance on all terms in the current proofs
(using the results of subsection 11.1) leading to the completeness of UNIFq for critical pairs calcu-
lation. ’

We present and discuss three alternatives in the following, after proving typing proof conservation
of our matching and unification algorithms. The first proposition is the standard decorated rewriting
and completion using flat and linear term declarations, also called function declarations. Dropping
the linearity condition forces us to reduce terms in parallel, s.t. all identical subterms at the same
depth are reduced simultaneously. This layer rewriting extends the set of critical pairs considerably,
but does not lead to further restrictions on the completion strategy. Last but not least, we investigate
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term declarations without any structural conditions. Then the proof of typability of terms in proofs
is possible thanks to maximally subterm sharing rewriting, where all identical redexes have to be
reduced at the same time. The principal drawback of this generality is a strong strategy for the
completion procedure. However, the needed critical pairs are simpler than for layer rewriting.

Finally, the three approaches are briefly compared and conservative extensions of the initial pre-
sentation P are given for the case when Detect applies.

11.3 Subterm Conservation and Typing Proofs

We show here a preliminary property of typability of terms in a match or a unifier of typable terms.
Remember that o,y denotes the tree-solved form corresponding to a solution o in dag-solved form.
The notation C[o(T)] is used to denote the proof obtained from the proof T by instantiating it with
the substitution o and putting the result into a term context C. Concatenation of proofs is denoted
by +. For any bottom-up proof T, T, is obtained by considering subterms at position w for all terms
in T and restricting to rule applications on these subterms. These algebraic notations are consistent
with [Bac91].

Lemma 11.11 Let 0 = {z;zs‘ — u;‘U"};GI be a decorated substitution in dag-solved form, s.t. ¥i €
It upU (H(uiY)) (resp. uit® «<3—p u;Vi). Then, for all z € Dom(a):

Ong(2)® B 0ns(2))  (H(2))

(resp. ong(2)1? Bop ous(2))  (H'(2)))-

Proof: The proof is by induction over the occur check ordering of the variables in Dom(s). Let
therefore oc(z) be the minimal & > 1, s.t. 0%(2) =4 0*+1(z). Note that oc(z) = 0 is obvious,
since this implies that z =4 0(2) =4 ony(2).

Else let oc(z) = k > 1, 0(2) = u,U», Var(o(2)) = V = {2; | j € J} and O; denote the set of
occurrences of z; in o(2) for all j € J. We can suppose H(z;) to be given for all j € J by the
induction hypothesis. Let us denote by Y’ the corresponding typing proof of o, s(2;). Then

ons (Y010, 5es : ons(2)1® b 0ns (2% 0ns(25))0, 5e0-
Now, using H(u,"U») and substitutivity of decoration rewriting gives us

T" : (0nf)ly (9ng(2)'?) =a ons(2)!%lons (20, s D ons(2)-
Concatenating ons(2)'!%[Y7]o, jes with T™ now results in H(z). The case H'(2) is similar. O

Proposition 11.12 Let M be a matching problem, s.t. for all t € terms(M), t1® «3-p ¢ and
o = {z;5 — u;U}ier the D-matcher calculated by MATCHy in dag-solved form. Then:
Viel : ons(2i%)1 Bop onp(2i5)

Proof: Clearly, the strict subterm conservation implies that the u;?¥* are subterms of some t €
terms(M). Now 11.11 guarantees that 5 has the desired property. O

Proposition 11.13 Let U be a unification problem, s.t. for all t € terms(U), t''® «3—p t (resp.
1855 t) and 0 = {25 — u;Ui}ier the D-unifier calculated by UNIF in dag-solved form. Then
for allt € terms(U) :

ons(t)'? Fop oag(t))  (H(1))
(resp. ons(t)1® Bp ans(1)))  (H'(1)).
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Proof: We know that decorated unification is subterm conservative. Let 7 be the variable renaming
for some u; Y% with i € I, i.e, for all 25 ¢ Dom(7), we have 7(25) =4 z° for some z € X,
and sort(z) ~ §. Clearly, z4® =4 2{C} ,%p 25 since 21{C} &, 25,
Hence,
Viel : (wiV)!® s-p ui¥,

by substitutivity of decoration rewriting, since u;/¥" =4 7(t),) for some t € terms(U), which
makes 11.11 applicable, giving us H(t) for all ¢t € terms(U) once more by substitutivity. The
proof of H'(t) is similar. O

11.4 Flat and Linear Term Declarations

Rest'ricting to flat and linear term declarations, it is possible to prove that typability of terms is _
preserved by standard rewriting, as defined in section 7.

Lemma 11.14 Let D be a set of decoration rewrite rules, that contains flat and linear decoration
rules only and R be a set of decorated rewrite rules, s.t. all terms p° in R satisfy p'® «35—p p'S. Let
furthermore t1% «5—p t7T and tT g 7.

Then t':1® 35— p ¢#T".

Proof: We can construct the new typing proof by the strict subterm conservation of decorated
matching(see proposition 11.12), the substitutivity of the typing proof for the right hand side
of the rule used for simplification and at any occurrence incomparable or above the reduction,
we can use the old proof unchanged. Formally, if ¥ : t4® «%—p tT is a typing proof for the
term to be reduced, ¥’ : r'!® «2—p 75 and tT[a(r5)], is the reduced term, then:

O, o Jovocetry + £100 (¥ = (1T lo(P)L) 1P Fop (7)o ()L,
where we can append all steps of ¥ that apply strictly above w. O
Actually, the property of being flat and linear is only required for D,.

Lemma 11.15 Let (Dp, Ep,0) = (Do, Eo, Ro) + (Dq, E1, Ry) F ... be a derivation using OSC.
Then for all k > 0, all terms that are typable in Dy are also typable in D, if Dy, only contains flat,
linear decoration rewrite rules.

Proof: Suppose that ¥y : t1? «5op, t° is the typing proof in Di. Then we can first prove for
each decoration rewrite rule (¢ : [’ — [*YSi if § ¢ s) used in Wy, that it is either in Dy, or
subsumed by some ¢’ € D, in the sense of Subsume_deco.

The proof is an induction on the size of I*' w.r.t. the strict part <4 U Sd of <qU Zq. Remark
that this ordering is well-founded, since <4 and $4 commute [BD86], i.e. s <4t $a o(1)
implies s <4 o(s) <4 o(t). Therefore, any infinite sequence of <4 U 4 can be separated into
a starting sequence using $q only followed by a pure <4 sequence, in contradiction to their
well-foundedness.

If ISt is irreducible by U,>x Dn U Ry, then it must either be subsumed by some (¢" : I"** —
1895w if S ¢ s) € Dy, m > k, or it is still in Do. In the first case we can apply the induction
hypothesis on ¢” and get the replacement of ¢’ € Dy, of ¢”, that must also subsume ¢, due to
transitivity of subsumption. Remark that if S, < Sy, then 1S <4 )51 since IS < g "5
and 1:Si sd 1St

Otherwise, if §; = S, and "5 <4 "5 Sd IS,
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If ISt is reduced at step n with R, then the top symbol remains the same and therefore using
the induction hypothesis on the reduced term gives a ¢’ that is flat and linear. Hence, ¢’ is also
subsuming ¢. The same argument can be applied in the case of I'' reduced with D,. Note that
in both cases IS <4 I'St,

Now, let ¥, be the proof t:}? ~3op,, t'5, where every step »—»%k in ¥y is replaced by ng

o 9‘—1<g°°, i.e. any rule is replaced by the corresponding one in Dy,. -0
We get the following results, where CTf pr denotes the set of all decorated terms in Dy U ExU Ry
of a decorated presentation (Dy, Ex, Rx) during completion, where sort set variables s in decoration
rules are replaced by 0. '

Lemma 11.16 Let (Dp,Ep,®) = (Do, Eo,Ro) t (D1, E1,Ry1) F ... be a derivation using OSC.
Then for allk > 0, all terms in CTBER are typable in Dy, if Do, only contains flat, linear decoration
rewrite rules.

Proof: The proof is an induction over the number of completion steps k. If £ = 0, then all t*5 €
CTS i r are equal to 49 resp. (t'49):5 for terms in decoration rewrite rules and therefore trivially
typable.

For k¥ > 0, we can construct a typing proof of a newly added term in any case. Remark that
completion rules adding new terms to CTfgg do not change or extend the set of decoration
rules. If the new term is obtained by decoration rewriting from an old one, the claim is trivial.

If it is obtained by decorated rewriting, we can use Lemma 11.14 in order to construct the new

typing proof. If the new term is obtained by orientation of an equation, then it can be typed
with the proof of the old term in the equation plus, eventually, the new decoration rule applied

on top in the end.

Finally, the new term can be the result of a critical pair computation. This can be seen as the

unification of two terms ¢:5,¢*5' in C’TI’;ER. The resulting unifier 3 applied to one of the terms

in C Tg}}l, gives again a typable term, because of proposition 11.13 and stability of decoration

rewriting under substitutivity used for the typing proof of the initial term. The second step is

the reduction of ¥(#'S) with the lower rule, where Lemma 11.14 can be used.

Finally, there are completion rules manipulating decoration rules. In this case, Lemma 11.14
gives us a corresponding typing proof in Dy, that does not change. O

Theorem 11.17 Let Py, # (L1, L1, 1) be the presentation obtained from (Dp, Ep,D) using OSC, s.t.
all terms in Do, are flat and linear. Let furthermore Eo, = @ and all critical pairs of Dy, U Ry, be in
D, U R.. Then the initial presentation Py is sort inheriting on ValidTy(Sy, F,X,) and Do, U Ro is
Church-Rosser, type and ezistentially complete.

Proof: The fact that all decoration rewrite rules in D, are flat and linear implies that D, is confluent
and therefore Py, # (L, L, L) gives us sort inheritance on all typable terms. Furthermore, any
term generated by the proof reduction = is typable in D, because of Lemmas 11.16, 11.14
and 11.15. Remark that any new term in a proof generated by = at completion step k is
reachable from an old one by ~>p, . uR,,-

Hence, sort inheritance on the set reachp, (74(Sy,F,Xy)) gives us completeness of UNIFy
needed for peak reduction. Furthermore, the condition that all critical pairs of D, U Ry be in
D, U R. and E,, = 0 prove the fairness of the derivation (see proposition 10.8) and therefore
Do U R, has to be Church-Rosser.
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Consequently, all terms in normal forms of proofs constructed by theorem 8.1 are typable and
do not contain any peaks. Therefore, all minimal sorts to which a term belongs can be found in
the top decoration of its normal form: Suppose this is not the case for 7:!?. Then let S be its
Dy, U Ry -normal form, that must be typable, ¥ : 7:ie D URe 5" a proof implying ¢ : A
with 3B € §: B<J™ A, i.e. wlog. A€ 5. Consequently, we have a normal form ¥,; of ¥,
s.t.

“I’nj :Z:w ’:’DOOUROO t//:S" ‘L‘DooURoo t/:S’
t//:S"

9
where 5" is irreducible. Now, t'5 &p_yr,, 4% ™D uR,, is a proof with typable terms
only, that is reduced by => into a rewrite proof, i.e. 5 2 t":5” since both terms are supposed

to be irreducible. Therefore, § =~ 5”, in contradiction to A € §' and 3B € S : B<F" A.

The type and existential completeness follow now from the fact that decoration and decorated
rewriting never decrease the top decoration. The typability of the normal form allows us to
extend the result of the sort inheritance test to the whole set of valid terms ValidTy(S,, F, X,),
i.e. Py is sort inheriting on ValidTy(S,,F,Xs), because of proposition 10.3 and the fact that
we have equal sorts for equal terms. O

11.5 Flat Term Declarations

In order to relax the restriction of linearity on term declarations, the idea is to replace rewriting by
layer rewriting. At the price of trickier proofs and more critical pair computations, we can prove an
extension (Theorem 11.29) of Theorem 11.17.

11.5.1 Definition and Simple Propel:ties

Definition 11.18 Let t5,t"5' € Ty(S,,F,X,), ¢ € R and k be a natural number.
Then t:S s‘:t%"'k S8 if ¢S Hfi"o 5, s.t. Yw € 0, |w| = k and O is mazimal. Given ¢,0 and
k, O(:s ¢.0,) stands for such an O.

Instead of t[uo 40, We simply write t[ulo, ,,,.Layer rewriting has the advantage that it
preserves typability of terms by flat (not necessarily linear) term declarations, which correspond with
the so-called semi-linear membership theories. It has the disadvantage of the maximality condition,
which destroys stability by context and substitution.

Lemma 11.19 Let D be a set of decorated rewrite rules with flat terms only and R a set of decoration
rewrite rules. Let furthermore t'S t:tfz"”k "5 and (¢ : I'S' = 15) € R, s.t. there are typing proofs
U (rS )0 Sap v and O ($5) 10 —op 5,

Then there is a proof T : (15')1® 23— p 5",

Proof: First, notice that we can assume ¥, ¥’ to be bottom-up w.l.o.g., since there are no decoration
critical pairs. Clearly, ¢S’ 24 t:S[a(r:S’)]oMa,k). Furthermore, Lemma 11.12 guarantees us the
typability of the terms in Zm(o) and therefore we get by substitutivity and context stability of
decoration rewriting:

(t:s):lﬂ[a(rzsr):w[q,i s‘)]VOcc(risr)+o(‘p)]0(¢,,,k) :(t/;s'):lo “3p (t:S):W[o,(r:Sr)]Ow,o'k)

O(¢,a’k).vocdl:

Now we can append also all decoration rule applications at occurrences incomparable to O 4 5.x)
in ¥, since their substitutions do not change. For all rule applications above some w € O(4 %),
we only have to adapt the substitutions, since the rules are flat and O(4 4 .) is maximal. Con-
sequently, T exists.

a
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Figure 11: Bottom-up Layer Rewriting
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Another property is needed in order to get unique reduced forms.

Lemma 11.20 Let t*5 t:tfi”’k "', Then
¢S &t}b{.o 8" 3*:%0 t/:S',
where the two rewrite sequences are bottom-up for all layers strictly deeper than k" for some k" < k.

Proof: This follows immediately from the fact that a layer rewrite step at layer k only introduces
redexes for the same pair (¢, o) that are situated on a layer [ with ! < k in the reduced term.
Consequently, the subterms at the mounting layers &’ are identical in the two rewrite sequences,
as long as k' < k. At k, the left rewrite sequence reduces the redexes that were also reduced
in the step t*° ;:t%’”k ¢ plus those generated by the steps in deeper layers [, i.e. | > k,
whereas the right rewrite sequence reduces only the latter. Remark that there are no additional
redexes for (¢, o) resulting from t:° 3:3%””‘ t":S' | since these have to be on a layer [ with [ < k.
Therefore, the left and the right rewrite sequence are identical for all layers &' < & up to k”.
This is illustrated in figure 11, where we assume ¢ to be 1’5l — r'S-. O

In the following definition, we need the notion of ascending narrowing (in R) beginning with some
occurrence w. This denotes the ’classical’ narrowing steps along the occurrences of the narrowed
term strictly above w up to A, s.t. every step is done strictly above all preceding ones. This extends
canonically to occurrence sets O.

These narrowing steps will be necessary in order to adjust substitution images in the Critical Pair
Lemma 11.24, since decorated rewriting rules are not necessarily flat or linear. Therefore, reducing all
redexes for some ¢ € R in a term ¢ in a layer below a redex for some ¢’ € R might change the image of
a variable z in the domain of o, the matcher needed to apply ¢'. Hence, there may be no o’ that could
be used to apply ¢’ on the changed term t'. So we need to equalize the subterms that were equal in ¢
but are no more equal in t’, in order to find such a o’. But these may be situated on different layers.
In order to get a unique reduced form, we use a bottom-up strategy for the equalization together with
Lemma 11.20.

In some cases, it will be necessary to mount up to the left hand side { of ¢’, since some non-variable
parts of [ may be situated on deeper layers as the variable z. Consequently, critical pairs have to
take care of such bottom-up reductions, s.t. mounting layer reductions correspond with mounting
narrowing steps.

Furthermore, we need to combine unifiers {o;};e;. This is done by retransforming each unifier
o; = {z;;59 — t‘.j:S.{, }jes; to be combined into a unification problem (0;)= = Ajey, i 2] t;j:S£:
(in solved form). Then the result of the combination is the D-solution % for the problem A;¢;(0:)=.

Definition 11.21 Layer critical pairs (obtained by layered superposition into decorated rules)
Let T C Ty(Sy, F,Xy), g5 — d54 and I'St — 15 be rewrite rules in R with disjoint sets of variables.

The two rules overlap if there exists a position w in the set of non-variable positions of g%, such
that the decorated terms g:sgb and I't have the T-complete, ValidTy(Sy, F, X, )-sound, non-empty
set ¥ of strict decorated unifiers.

Let O = {wi}iepn..n) be the set of such positions and W; the corresponding unifiers. Let further-
more O' = {w;}jen..m) be the set of all non-variable overlap positions of 'St into d'54 and U’ the
corresponding unifiers.

Then for any i € [1..n], any combination ¢ of some unifiers {o | 3i € [l.n] : 0 € ¥; or exists] €
{1.m] : o € ¥} corresponding with the overlap positions O C O and 0'CO,st. ONO #0 and
all occurrences in O U O' are incomparable, the overlap produces the T -layer critical pair (T-LCP)
(P = ¢%2) where ¢ =4 Y(drS|57) and P =g P(g'%[r'5]5).

A narrowed T-LCP is a decorated equation p'*51 = ¢'*52, s.t. there is a T-LCP (p'>* = q:s2) and

/ 52 can be obtained from p'>' resp. ¢° via ascending narrowing.

p'*Si resp. g
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Let LCP(R, R);, denote the set of such layer critical pairs. Clearly, these sets of critical pairs are
finite, since the set of positions of a term is finite.

Example 11.22 Let (¢ : g(f(z4), aXA)jA), f(f(y: (), gAY {A), yr Ay (A)AB) (i), i (A):(B))

and

(@' : f(z2D), a{AN{A) , 2(4)) be decorated rewrite rules.

Clearly, ¢' overlaps into ¢ at occurrences 1, 2 and 2.1 with unifiers oy = {z‘(A) — .’E:(A)},Og =
{z’(A) — f(y:(A),a’(A))’(A),y':(A) — a4}, respectively 03, = {z:("‘) — y’(A)}. Then the narrowed
LCPs are:

overlap at 1: g(a: f(f( {(A) ,@ (A) )(A :(A)):(A)):{B} = g(z:(A)’y:(A)):(B))’
Narrowing at 2 with ¢’ gives :

9@, f(y D, W) (W)HB) = o), y (4B,

Narrowing at 2.1 gives :

y(z:(A)’f(y:(A)’yI:(A)):(A)):{B} - g(z:(A)’y:(A)):(B))’

Now, we canr narrow once more at 2:
g(z{A) oy (AN{B} o g(z:(A), y=(A)):(B)),

overlap at 2: g(f(x‘(A),a’(A))‘(A), f(y:(A),a:(A)):(A)):{B} = g(z:(A),y:(A)):(B))

overlap at 2.1:
g(f(z(A) a'(A))'(A) f(z(A) y'(A)) A)):{B} = g(x:(A) z:(A)):(B)),

Now, we can narrow at 2, giving:
g(f( A)) {A) z(A)){B} —g(x {4) z A)) (B))

Combining 1 and 2:
gUf (), aXAYHA), Sy A AN AVFBY = g f(y(A), gilAN(A), (AN (BY)
Therefore, we can narrow at 1 and 2 at the same time, since the same substitution can be used.

Furthermore, the same redex can be found at 1 at the right hand side. We get:
g(y(A) g ANHBY = g(yy:(4) 4:(4)):(B))

Combining 1 and 2.1:
g(x:(A)’f(z:(A), yI:(A)):(A)):{B} — g(I:(A),.T:(A)):(B)v),

Narrowed at 2: g(z"4), z:(A)){B} = g(£:(4) 2:(A)(B)),

The redezes 2 and 2.1 cannot be combined, since they are comparable.

11.5.2 Peak Reduction

Lar U oo
Lemma 11.23 Let t'*S YJ%'O K4S 33% ook t”'sl, s.t. O(t:S'¢I,UI,kI) ~ O(t:s,:b",o'”,k”)'
Then 'S’ &3}2 o .éiR g:S"

Proof: Let ¢/ : ISt — 1, ¢ : g% — ¢ and ¢ %4 t5(' (1o, , ., [0"(6 o,

ot K1y

W.l.o.g. we can assume k' < k".

There may be redexes for ¢, o’ that are created by reductions with ¢”,0"”. Therefore, we have
to assume o'(I'1) 24 o/(I'5))[0"(d*54)]on with |w”| = k” for all " € 0", 0" is maximal and
5 2y 5[0/ ()]0 1y [0 (F9)[0"(9°59) 00 0r0" (9°59) 5w, :
s.t. O” U] DT = O(t:s ", kM)

:S' nv  4:S[1(, Sk 1 1SN ttf iS5, Ctong S
Consequently, /> 2, £:5[0'(r 05,41 01 [0 ()0 (97%9) 0] [0"(9°59) 5 and
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Figure 12: No Overlap Case
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155" 24 5[0 ()], o [0"(FS) 0" (@)oo [0 (d54) g

Furthermore, the replacement constructed by ¢’ may generate a redex for ¢”,0”, i.e.:

t:S[al(r:Sr )]O(‘:Sw,o/,k,) [U/(I:S,)[a//(gzsg )]0”]0,[01/(9:59 )]_07
& t:S[UI(T:Sr )[a//(gzsg )]0]0(,:5',,:,,/,,‘:) [a'(lzsx)[o,/r(gzsg )]O“]OI[U//(g:SQ )]W

Now, we are sure that O ¥ 0" W 0" = O .50 g u oy a0d O (5 41,9141y W O = O s 41 41 4oy-
The following peak reduction is illustrated in figure 12:

t5[0"(r5)[0"(g59)1010,,:5. g1 91,0, [0 (0" (97 00)or [0 (9°%9)
o S G G ) N (b L L P PR C G o
= e lolo [0 (5ol (454 5
B S10/(m )o@ lolo [o/(r5%)[0"(g"5" ololo" (45w
(ﬁ%l,a”,k” t:s[a,(r:sr)[U”(dzsd)]O]O(t;s’d,,,a,,k,)[UI("':Sr)[U”(d:sd)]O]O'[U’I(dzsd)]ﬁl’
B S/ (190) 0" (g95)]0J0 4,1 075095 0ol (454 o
ﬁg'al'kl t:S[al(I:S, )]O(s=5,¢',a',k') [(7/(1:8’)[a”(dzsd)]OH]OI[U”(d:Sd)]'OT.

(t:s,¢',o',k')

(t:S,¢Ilallkl)

The (optional) 0, 1-steps are due to the cases where either no new redex for the radical ¢',0’ is
generated using ¢”,0" or k' = k", i.e. possibly o”(d*5¢) =2, o'(I'S). O

Lemma 11.24 Layer Critical Pair Lemma
Let T C Ty(Sq, F,Xy) be downward complete w.r.t. =g and S 418" prS" e T
Let furthermore ¢’ : I:5t — p35r ¢! : g*So — d:Sa4 gnd 'S’ 125%’” K ps !22% o St
s.t. K S k”; O(t:$,¢l,alvkl)Nvocc(lzsl) N O(t‘s,¢",a",k”) # @.
Q ® * QN
Then t'*S BRo «—rcp(eeém) © ER 18",

Proof: Let w.lo.g. t5 =, t:5[o'(I' )]ow,'a,,k,)[0"(9:59)]0(4,,,,,,,,,‘,:),

£ %t (1550l s g [0 (5 o
s.t. O(,zsw,al'k,).O wo' = UiZk’ O(i"s',é”,a”,i) and

t"‘S" =y t:S[a/(l:S’)[U"(d:Sd)]O"]_O(ezs,y,ol,u) [a"(d:S“)]or:/[a"(g:S9)]O:\om,
where O(y:s 4,51 41)-0" W O" = O(y:5 4 g . Hence, O stands for the redexes of ¢” with o”
‘outside of’ o’(IS1). '

Then we can bottdm-up reduce up to k':
= S O TR S N L o ™
The same is possible for 5"

1S B8 S (1o (Y onos o v [0"(d5)0mla (@54 onom
G i) I CAL (0 ) N e C ) Y

Since we may have variable overlaps with [’ we need to continue with the bottom-up reduction
until ¥’. Remark that in both branches, we have o”(d'54) at the occurences 0, i.e. we can
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! (r STy (dSd)) e

-----------------------------------------

ol(‘:SI )[all(dzsd)] ________

. PYL . H¢Il'all’k

R (bottom-up for k > k') R (bottom-up for k > k')

--------------------- o (r S o (d5d)] e m e

o (dSdy -eommmeeions
ol(‘:Sl )[al/(dzsd)] ........

T

MSsCP(¢", ¢')

Figure 13: Critical Overlap Case
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omit these details in the following. Moreover, the terms o’(I*%)[0"(d"54))on and o'(r57)[d*%4]0
correspond with some layer critical pair ¥(I'5[d*54)gu) = (57 [d54]0).

Therefore, there exists a narrowed 7-LCP p/*51 = ¢’*52 that can be applied to the result of the
bottom-up reduction until &’ of the left and the right reduction sequence.

The narrowed critical pair is actually applicable, since all parts of the unifier ¢ used to compute
the overlap correspond with strict subterms? of the redex o”(g'59), since we only compute non-
variable overlaps. Consequently, we do not need to overlap recursively into the substitution
part of ¥(I*>t), which might lead to infinite sets of critical pairs.

]

Only now we are able to prove the variable overlap case, since we may need layer critical pairs in
order to solve them.

Lemma 11.25 Let T C Ty(Sy, F, X,) be downward complete w.r.t. =g and 5,15 175" ¢ T,
Let furthermore ¢ : ISt — riSr ¢/ . g:So — 54 gnd ¢S ,:id"ﬂ' LTI ¢" "R gt
where k, > k O(t s ¢I ' kl)NVOCC(I s‘)ﬂO(, s et k”) = 0 and thene isaw e O(t s B! kl) VOCC(I S‘)
s.t. there ezists a w' with w.w' € Oy:s g gn k)

Then ezther tl S’ mR o] (—()—)ch(d,/'d,u) ° ‘jR t”:s or tl:S HR o 3:2}2 t”:s .

Proof: Let w.lo.g. t:5 2y t’S[a’(l‘S‘)]owlv,,k,)[a’(l‘sl)[a"(g‘sﬂ)]Q]k:[a”(g‘sii)]ow,,a,,lk,,),
¢S oy B[ (1Yo (g Nolo,s 0 [ (ES)0 (g0l (4°5) o,
s.t. O(::$,¢',a',k')-0 WO = UiZ"' O(t,:g/,é,,'a,,‘i) and
115" 2 £S[0 ()0 (d5)orlo s o [0S )Qlielo(59)]Gm [0 (g*50)onom,
where O(ss 41,51 £).0" U O™ = O s g gu ). Hence, O' stands for the redexes of ¢ using o”
outside of o’/(I'%).

First, we can bottom-up reduce the terms ¢":5" and ¢":5" up to k' with (¢”,¢"). Let t*5" and
#:5" be the result of this reduction in the left resp. right sequence. If there is a reduction at
an occurrence w € Oys 41 51 5y NV Oee(l' 5t) in the right reduction sequence, then there is also
a corresponding layer critical pair, giving us the convergence like in Lemma 11.24.

Otherwise, we are sure that there exists a substitution o', such that O(W o 7Tk subsumes
O(u5,41,01 4y and o' (I5)[0"(d54)]q 24 o(I%1)

This case is illustrated in figure 14. Therefore,

T A LG CA G PILL ) P P A
CE oy Ny
because of O T e man Y Ows¢ o'y = O g (57 1 3T k) and Lemma 11.20.
a

11.5.3 Orientation and Simplification

Lemma 11.268 Let ¢S <—<>—;’l’$s=":s 00 48" (¢:p5 — ¢Sy € Rand (¢ : ¢* — ¢*US\S' if s o4
S\S')e D, s.t. sort(q) = SU S’ if g € &y.
Then t'5 3*:»‘% 0 1':5‘;’2 0 J«% s,

2Remark that the used substitution for ¢” is always o !

76
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oS! R R 8"
----------------------- ol(,isr)
........................... o"(d;sd) weveccccascans
....... a'(1=51)[,"(4=sd)]

. ¢". 0”, k. » ¢Il' 0”, k
: R (bottom-up for k > k') — R (bottom-up for k > k')
NG S

Figure 14: Variable Overlap Case, Simple Part
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Proof: Let K = {k| 3w € O : |w| =k} and ky,...k, be the elements of K sortéd , s.t. k; > kiyy.
Then t° i:i%”‘k‘ 0...0 C&%’a‘k" gr:S” 1:2%""" 0...0 ﬁ%a'k‘ st 94%"0’0 5" where
¢S = t:s[d(q:sl)]o, s = t:S[U(q:SUS’)]a and 17" ~, t:S[U(q:S’):SUS’]O s.t. forall w e
O(¢:5,6,0,k:)» ¢ € [1..n], there is a &' € O with w’ < w. Remark that this works since bottom-up
layer rewriting always yields a unique term (see Lemma 11.20).

o

The same technique of bottom-up layer rewriting is possible for the proof reduction for simplifi-
cation rules using decorated rewrite rules. However, care has to be taken of the parallelism in layer
rewriting, i.e. you can only simplify in layer k with (¢, o) if there is no possibility to overlap the -
simplifying rule into the left or right hand side of the rule to be simplified (using unification instead
of matching), except when the corresponding subterms are all identical and in the same layer k. Fur-
thermore, the simplified term must not contain a new redex for (¢, 0), s.t. the corresponding matcher
can be unified with o.

Another possibility would be to generate several simplified decorated equations/rules for the dif-
ferent combinations of possible overlaps. Then, the final narrowing steps as defined for layer critical
pairs are also necessary for simplification. However, this can be seen as an optimization, since we only
want to prove sort inheritance and do not plan to use the resulting set of decorated and decoration
rewrite rules as operational version of the G-algebra P.

Simplification with decoration rewrite rules does not change w.r.t. standard rewriting, since their
application strategy did not change. The simplification of decoration rewrite rules with decorated
rewrite rules has to be restricted to layer rewriting. '

11.5.4 Confluence °

Let = be the proof reduction for layer rewriting and SLC be completion rules that can be easily
obtained as special case of OSC by using layer rewriting for R instead of standard rewriting. This
is justified by Lemmas 11.23, 11.25, 11.26 and 11.24, together with the remarks of the last section
concerning the simplification rules. Remark that the reduction rules dealing with decoration rewrite
rules can be taken from OSC without any changes and that all newly introduced terms at step &£ must
be reachable from old ones using »>p,uR,, as this is the case for the proof reductions in the last two
sections. The proof of well-foundedness for =2, at least for the part without simplification rules, is
straightforward using the complexity measure ¢ of lemma 10.4.

In order to achieve confluence for layer rewriting, we first have to prove the conservation of the
typability property for all proofs stemming from one constructed by Theorem 8.1. This is done in
two steps. First, we prove the typability of all terms in decorated rewrite rules and equations. Then,
we prove the typability of all terms in proofs stemming from typable proofs.

Lemma 11.27 Let (Dp, Ep,0) = (Do, Eo, Ro) & (D1, E1, Ry) & ... be a derivation using SLC. Then
for all k > 0, all terms that are typable in Dy are also typable in Dy, if Dy only contains flat
decoration rewrite rules.

Proof: The proof of Lemma 11.15 also works for flat decoration rewrite rules, provided they are
simplified by decorated rewrite rules via layer rewriting, as supposed for S£C. O

Lemma 11.28 Let (Dp, Ep,B) = (Do, Eo, Ro) V- (D1, E1, R1) b ... be a derivation using SLC. Then
for all k > 0, all terms in CThgp are typable in Do, if Dy only contains flat decoration rewrite
rules.

Proof: The proof is identical with the one of Lemma 11.16. Only the reference to Lemma 11.14 has
to be replaced by one to 11.19. O
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Theorem 11.29 Let P # (L, L, L) be the presentation obtained from (Dp, Ep,0) using SLC, s.t.
all terms in Do, are flat. Let furthermore Eo = 0 and all critical pairs of Do, U R be in D, U R..
Then the initial presentation Py is sort inheriting on ValidTy(Sy, F,Xy) and Do, U Roo is Church-
Rosser, type and ezistentially complete.

Proof: The proof is once more identical to the one of section 11.4, where the references to Lemmas

11.16, 11.14 and 11.15 have to replaced by those to Lemmas 11.28, 11.19 and 11.27, respectively.
E] -

11.6 General Term Declarations

Let us first define some needed notions and assumptions, in order to shorten Lemmas and proofs in
the following. The subsumption of sets of decoration rewrite rules is a property that can be seen
as combination of set subsumption combined with the rule Subsume_deco, i.e. D subsumes D',
written D' Gp D, if forall ¢’ in D', there is a ¢ in D that subsumes ¢ in the sense of Subsume_deco
with § ~ §'. Let ¢' : I'5t — 75 and ¢".: ¢S — d54 he decorated rewrite rules in R in the sequel.

11.6.1 Definition and Simple Properties

Working without restrictions on term declarations compels us to define a new proof reduction. Ty-
pability of terms in the transformed proof is obtained by proving that each new term comes from an
old typable one by decorated rewriting in a maximally subterm sharing way.

Definition 11.30 A term t*S rewrites in a maximally subterm sharing way into t'*5' using a decorated
rewrite rule ¢ : 'St - 15 and a decorated substitution o if:

1. t:S )_)}OQ,U"b t/:S'

2. and O = {w € Oce(t) | t:sl.., &, o (IS,

This is written t5 »»%% 15", The set O of redex occurrences is written O£ ,0,4)-
Instead of #[u]o,, 4. We may simply write t[“]0(¢,a)- The pair (¢, o) will also be called a radical.

Clearly, the maximality condition destroys once more stability by context and substitution.

Definition 11.31 MSS decorated critical pairs
(obtained by MSS superposition into decorated rules)
Let T C Ty(So, F,Xy), 5% — d'5¢ and I'S' — 15+ be rewrite rules in R with disjoint sets of variables.

The two rules overlap if there ezists a position w in the set of non-variable positions of g5, such
that the decorated terms g'5s |, and 'St have the T -complete, ValidTy(Sy, F, Xy)-sound, non-empty set
¥ of strict decorated unifiers. Let O = {w;}ig(1..n] be the set of such positions and ¥; the corresponding
unifiers,

Then for any combination ¥ of some unifiers {o | 3 € [l.n] : ¢ € ¥;} corresponding with
the overlap positions O C O, s.t. O # O and all occurrences in O are incomparable, the overlap
produces the T-MSS decorated critical pair (T-MSSCP(R,R)) (p>' = ¢'%2) where ¢ =4 (d'5) and

5t =g P(g% [ ]g). :

Note that the computation of O can be restricted to the maximal set of redex positions in ¥(g*59)
for the radical (I't s 75 ¢), denoted by O \(4(g°59),1:S1 ur:5r )~ In this case, the term pS' of the

MSS decorated critical pair is obtained by mammal subterm sharing rewriting from ¥(g*>?) with the
radical (I'St — 5 ).

~
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Definition 11.32 MSS decoration critical pairs

(obtained by MSS superposition into decoration rules)

Let T C Ta(Sy, F,Xo), g°° — g% if Sy € s and 5t — 5 be in D resp. R with disjoint sets of
variables.

The two rules overlap if there exists a position w # A in the set of non-variable positions of g%,
such that the decorated terms g:°|w and I'S' have the T-complete, ValidTySy, F,Xs)-sound, non-
empty set ¥ of strict decorated unifiers. Let O = {w;}ic[1..n] be the set of such positions and ¥; the
corresponding unifiers.

Then for any combination v of some unifiers {o | 3i € [1.n] : ¢ € ¥;} corresponding with the
overlap positions O C O, s.t. O # O and all occurrences in O are incomparable, the overlap produces
the T-MSS decoration critical pair (T-MSSCP(R,D)) (p® = ¢*“S if S; € s) where ¢ HUS = (giSo)

and p:s =4 d)(g['l‘:s"]a):s.

Let MSSCP(R,R)|, resp. MSSCP(R,D)|, denote the set of such MSS critical pairs. But in
order to keep the property of typability, we also need additional decoration rules for all subterms of
a MSS decoration critical pair: the set MSSCP(R, D) is defined as

{(p,,** — plw:aus‘u ifS,gs)| (p*= ¢S if S, g s) € MSSCP(R, D)
and w € NVOcc(p'S) and S, = Deco(pS|,)}

Let us give two examples for MSSCP computations:

(¢ :g(f(z:(A)’a:(A)):(A)):a —_ g(f(z:(A)’a:(A)):(A)):sU{(B)}) eD,

(%' : f(a), g Ay — (A € R,

Then there is a MSS decoration critical pair (p* = ¢*°% if {(A)} € 3) of ¢’ and ¥, s.t.
P =4 (@A) and ¢S =, g(f(zA), A yastian,

Consequently, MSSCP(R, D) results in:

(g(a{Ay® — g(aiAly= ol if {(A)} %8),
(@® — a :su{(A)} if {(A)} 2 3)-

Example 11.33 Let

The second example handles the same rules as example 11.22.

Example 11.34 Let us define two decorated rewrite rules:
(.(/) . ( (:E :(A) a(A))(A) f(f( (A),a:(A)):(A)’yl:(A)):(A)):{B} - g(z:(A)’y:(A)):(B)) and (wl
f(z (A) a(A))(A) — gilA ))

Clearly, ¢’ overlaps into ¥ at occurrences 1, 2 and 2.1 with unifiers 01 = {24 s (4} 0y =
{240 > fyN, @MY yrA) s gAY} respectively a9 = {24) s yA)}. Then the MSSCPs
are:

1. overlap at 1: g(z*A), f(f(yA), a:(A)):(4) 4r:<(4))<A)):{B} = g(x=(A),y=(A)):(B)j’
2. overlap at 2: g(f(z', YA, f(y ), GAY W) = gz A) yia)B))

3. overlap at 2.1:
g(f(z{A) gi{AhyA) , (A y'=(A)):(A))={B} = g(z=(A),z=(A)):(B)),

4. Combining 1 and 2:
g(f(y(A) a{ANHA) | f(yHA) g:{4))(4)){B} = g(f (A, @{A))(4) 4y:(4)):(B))

5. Combining 1 and 2.1:
g(z:(A)’f(l.:(A),yl:(A)):(A)):{B} - g(x:(A)’x:(A)):(B))’
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The redezes 2 and 2.1 cannot be combined, since they are comparable.

In contrast to the standard case, we need to assure the typability of the term in the resulting
rule by adding explicitly decoration rewrite rules. This is a consequence of the fact that p'S is not
obtained by rewriting in »»g. We need this more general class of critical pairs for the reduction of
peaks. Remark furthermore that M SSC P(R, R) critical pairs are identical with the layer critical
pairs. However, we don’t need any narrowing steps in the end, since we reduce maximally in parallel.

In the following, we assume (D, E,R) to be a decorated presentation, s.t. D is confluent,
MSSCP(R,D)|T Cp D for T = reachp(7T4(Sy,F, Xo):w) and t*5 be a bottom-up typable deco-
rated term, as well as all terms in CTppp. We call a term bottom-up typable if there is a typing
proof in »>p, that is bottom-up.

Lemma 11.35 Let t:S H%"’ 15" Then t"*5' is also bottom-up typable.

Proof: For the terms in Im(c), we can use the corresponding parts of the typing proof of t:5,
since decorated matching is subterm conservative(see Lemma 11.12). The same is true for all
occurrences being incomparable with ‘the redex positions. For the right-hand side of ¢, we can
take the instantiation of the old proof by o. Remain the occurrences w above the redexes. There,
we can use the critical pairs from ¢ into ¢’ € D in case of O(;:s 4 ,) N W NVOcc(lhs(¢')) # 0
(critical overlap), that are assumed to be included in D, and the decoration rewrite rules for ¢*°
in case of Oy:s 4 o) Nw.VOcc(lhs(¢')).w' # O for some w’ (variable overlap). In the last case, the
used substitution can obviously be adapted for #'*5', since we reduced all identical subterms at
the same time.

More formally, if ¥; is the bottom-up typing proof of o(z;5), where Dom(o) = {z;5 | i €
(1..n]}, and ¥ is the bottom-up typing proof of 757, then there exists a t"*5", s.t.

t:w[a,(r:sr):l0[(‘1!;);6[1‘_,1]]‘;.0“(,.:3,) + 0(‘1’)]0(‘:5.4,,6) .10 D g8

and ¢":5" émh t"S' where T = reachp(ValidTy(Sy,F,X,)'?) Now, every

= = pUCEE.D) Step can be replaced by some step in D, since MSSCP(R,D),_ Cp D for T =

reachp(ValidTy(Sy, F,X,)1?) and t:5, lhs(¢), rhs(@) are in reachp(ValidTy(S,y, F, X,)1?). O

The next lemma is needed in order to prove the applicability of decoration rewrite rules or deco-
rated equalities resulting from MSS critical pairs computation in our peak reductions.

Lemma 11.36 Let t:S,l:S‘ be valid, typable decorated terms and o be a decorated substitution, s.t.
Jw € Oce(tS) : 115, =24 o (I'S).

Ift .S ¢/I,all OIIU{ww} t/ .S wzth Lu' G Nvocc(l Sl)’ then

1. W e SU(g'sgw ! 15, 3r 7o p(85) 24 0"(t'5), tb computed by UNIF4 and.

2. " € Occ(p(I*)) \ Oce(lS) : t:SLN” =, 0"(g"%).

Proof: The schema of ¢ is shown in Figure 15.

Let wlo.g. Var(g%),Var(I's),Var(t5) be disjoint. Hence, Dom(a), Dom(c"),Im(c) and
Im(o") are disjoint, too. '

Assume that there is some z occurring at v in IS‘ s.t. 3 1 0"(g) 2y a(z’”’)u and w” = v/

is in Oce(P(I5)) \ Oce(I'Sh).

Then, there must be some y € Var(l*5') U Var(g"%s) occurring at w’.v, for some v # A with
v € Oce(gSs), in o(I'S) with o”o(y!®) =4 o(2'!?), since decorated unification is subterm
conservative. Consequently, a"(g:59)|u = 0"(¢'59) in contradiction to v # A. O
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Figure 15: Term schema for applicability of MSS critical pairs

Using the same arguments as in the proof of 9.10 we get:

Corollary 11.37 Let t‘V,t"s',t_”’s" € T be decorated terms such that:

tl:S' (_(t;;,a,d)' t:V )_’}\),ﬂ,é“ t/I:S”

 with w being a non-variable position in the left-hand side of ¢". Then, either there exists a T-MSS
decoration critical pair: .
(p:a = qzsus if § z 8)

of the rule ¢' on the rule ¢" at position w, or the peak converges trivially:

1S ABG" Sy | w,a,d S
&7 —porR T —pur U -

Moreover, if the peak is not trivially convergent, there is a decorated substitution ¥ in a T-complete
set of decorated unifiers according to definitions 9.4, 9.5, such that fa Z;V ¢ with W = Var(g)UVar(l)
and there ezists a decorated substitution T, such that t''S' 24 r(pV) and t":5" =4 7(pSUV) for some

Ugs.

Furthermore, we can extend the result of Lemma 11.35 in the following way:
Lemma 11.38 Let t'S be bottom-up typable and t5 »—»f{"’l s H}‘;"""’a "5 st

1. the right-hand sides r*5* and d'5¢ of ¢’ and ¢" are bottom-up typable,

2. 0" = Os 9,00),

8. 0" = O(ys g ony,

4 0 = Os g oy \{w" | 0" < O s 41,51y NVOee(r57)} and

5. 0" = 0" or ;7”(9139) is a subterm of o’(I'S').

Then t':5" and t"*5" are also bottom-up typable.
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case (d) : overlap of ¢' and ¢’ into ¢§

Figure 168: The Four Proof Cases for Extended Type Propagation
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Proof: The bottom-up typability of t'*5' follows immediately from Lemma 11.35. For ¢ :5" we have
to construct such a proof from the one of t*5. Remark that the case o'(I'*t) 2,4 o"(g 59) is
excluded, since this implies that O is the empty set.

Let ¥ be the assumed bottom-up typing proof for t:°. Remember that the bottom-up typing

proof ¥ of t'*5' was constructed by concatenation of v, 0! ? Wlo, Dot Sh)’ the bottom-up typing
w . ce(l

proof of r5* and W/, which is the result of decoration critical pairs computation using overlaps
of ¢ into all decoration rewrite rules that are applied above O’ in ¥.

" Now, the bottom-up decoration proof ¥ for ¢”:5" can be constructed in almost the same way,

as concatenation of \I'i _, lIJi g, the bottom-up typing proof of d*%¢ and W7, which
@’ 1Gvoedg 5oy’
is defined in the following. Note that the only remaining decorations are those above the

occurrences where ¢” was applied.

1. 4184 $1.01.wy .57 8505wy $ni0nwh 41 :S. v S ’
Let@ .to 70 HD tl 1 HD ...HD ntn ”—dt be TI,.,*B’

Therefore we prove for all ¢ € [1..n] the existence of ¢!, o/ and @/ corresponding with ¢!,

(R
"1 " i

" 1 / 1"
0'{, s.t. Q(l . tg:sl’)' )__)%1 10y Wy tlll:S{' )_’%2'02 it ] . 4’. 0w t" Sy provxdes Deco((tllzs.f’)lwl) ~
i
’ 18! 1:St ¢"0"0 S! . .
Deco((t -)|w£), ;% —p t7s for all j € [0..4].

Therefore, we distinguish three principle cases for w! and (¢ : I;"* — 1;*¥S if S; € s). The
term t;'5 is illustrated in figure 16.

1. wiNVOcc(l®) N0 = 0 and w; NVOec(l;*) N O’ = @ (no overlap):

We take ¢ = ¢; and, assuming that O, ;s,) is the set of occurrences of 0"(¢'%9) in

ol(z*5) in I,

1o 1Sz o o ff Sz d:Sd .
oy (z7°°) =4 0i(27*)[o( )]00,,(’;5,)

Note that the variables of I;® applied at w! in ¢S above O’ are disjoint from those above
0, since otherwxse O’ were not maximal, in contradiction to its deﬁmtlon Therefore, ¢! is
applicable with o/

2. wi. NVOcc(l;% n U = 0 and w; NVOcc(I;%) N O’ # 0 (¢’ overlaps into ¢}):
Then, ¢ results from a decoration critical pair between ¢’ and some decoration rule in the
typing proof of t/5. We can use the same construction as before. However, we have to be
careful with the variables of I;®, that were instantiated by the unifier used for the critical
pairs computation. .
Assume, there were a variable z of I;® at w/ in t*5 above some w” € O and parallelly
at W in t*° above some w™ € 0"\ O, i.e. there is some wy, s.t. w" = wiw?w, and
w"” = wlwy.wg. If this variable existed, then ¢! wouldn’t be applicable anymore, since
there were no matcher for z. :
Fortunately, = cannot exist, since ¢! entirely contains #*5* at the overlap positions and
therefore all redexes for the radical (¢”,¢”) at such an w"” below z have to be below
O’ NVOce(r5) in t"5', i.e. théy are in 0. If " is not below an overlap of ¢’ into
then it must be inside or above some o’(r*5), that is strictly below w! N VOcc(l;?). Since
O’ was maximal, we can be sure that the variables at w/”’ and w/ are different, i.e. the two
occurrences cannot exist at the same time.

3. Wi NVOee(l;*)N 0" = 0 and w; NVOec(1;%) N0 # @ (¢” and ¢! overlap):
Then, ¢! is a rule that was already present in the typing proof of t:5.
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Furthermore, we assumed that /(1) is no subterm of 0”(g*59). Consequently, all variables
of 1;® that overlap into ¢”/(¢*%¢) are disjoint from those above o '(I:Y), if there is a variable
overlap of ¢’ into #. Furthermore, the MSS decoration critical pair corresponding with the
overlap of ¢” into ¢} does not instantiate the variables above o’(!**'), nor introduce new
occurrences for them via the image of the unifier /. Hence, Lemma 11.36 guarantees the
applicability of the decoration rewrite rule ¢! corresponding with the critical pair, using
o}, defined as below. Let O,.s, be the set of occurrences of 25 in 9(/;®) and T be a
substitution s.t. 7o ¢(t_,"S-1) 2, gl o o"(th_,Si-1).

7(z:5%) if 25 € Dom(y) .
ol(z52) = { ol(z*?) if 252 ¢ Dom(s) and 5., - o"(g%9)
ol (z5%)[0"(g")o  if w!.0y5:.0 CO n

where O has to be maximal. Remark that all variables in Dom/(7) have strict subterms of
0"(g"5s) as image in o} or o”, i.e. they cannot contain 0"(g'%s) as a whole in its image.
Note furthermore that the last case implicitly contains the condition z'5* ¢ Dom(2).

Assume once more, there were a variable z in ;" at Wy above some w” € 0 and parallelly at

wj’ above some w™ € 0”\ 0, i.e. there is some wy, s.t. w" = wiwlwy and W" = Whw!! w,.

Here we need the information that ¢/ stems from the typing proof of t*5. The redex "/(g?)
at w™ in ¢'*5' has to be above or below an occurrence of ¢/(r:5*) stemming from a maximally
subterm sharing decorated rewriting step. As already mentioned, ¢; was already used in
the typing proof for t*5 and therefore all variables in ;" above some o’(*5t) have to be .
disjoint from those above some occurrence in O” incomparable to all occurrences in O’ -
otherwise O’ were not maximal. Consequently, w” and w” cannot exist at the same time.

4. W NVOcc(li*) N 0" # 0 and w; NVOcc(l;*) N0 # 0 (¢' and ¢” overlap into ¢.):
Then, there is a MSS decoration critical pair corresponding with the overlap of ¢” into ¢;.
Let 1 be used the unifier. Then the decoration rule ;' resulting from the decoration critical
pair can be applied using the decorated substitution o/ defined as in the last case, where
7 defined by 7 o %(ti_,*5-1) 24 o} 0 0”(ti_,*5-1), using Lemma 11.36. The consistency of
the variable images also follows from the arguments used in the last two cases.

m]

11.6.2 Peak Reduction

The reduction of peaks between two decoration rule applications and between a decoration rewrite
rule and a decorated rewrite rule are as usual. Note that the peaks corresponding with critical pairs
in MSSCP(R, D) differ slightly, due to the multiple occurrences decorated rewriting relation, but
the application of a decoration rewrite,rule strictly above a decorated rewrite rule ¢ using o cannot
introduce a new redex for the radical (¢,0). Therefore, the proof reduction remains essentially the
same. However, the peaks between two decorated rewrite rules applications are reduced in a different
way.

As in the last section, we assume (D, E, R) to be a decorated presentation, s.t. D is confluent,
MSSCP(R, D). Cp D for T = reachp(Ta(Sy, F, Xs)*?) and ¢S be a bottom-up typable decorated
term, as well as all terms in CTpgp.

The first case is where there are disjoint sets of redexes for the radicals (¢’,0") and (¢”, 0").

. 10! 0! . u‘ " on o
Lemma 11.39 Let t"5' }‘;" 5 %7 t”S ) st O(e:5,¢,07) =% O(:5,40,gmy-
Then there ezzsts Ut 2dpo g o —~po &g t"S" st all new terms are typable.
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Figure 17: No Overlap Case
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Proof: Let t":5" t/:5" he decorated terms, s.t. ¢S’ «—«%’”l 5 Hfz”"’” :S"  Therefore, 5’ 9_'1»‘}’;""’0'
1:5" and t"S" Eg 0" PrST where 0' U D! = Os 40 and O"U 0" = O(s,¢mom)- The
resulting peak is illustrated in figure 17.

Let furthermore &5 2, t5(o’(I' s‘)]o(¢, " [0"(g5e )]O(¢” o))
! :S :Sy :S,
l €. tl S d t [(7,(7‘ )]O(t S,¢' 0 [0 g)]o(‘ S o o'ty
and A e =4q S[U,(l S )]O(: S.¢, ,)[U”(d Sd)]o(t S ¢t at)?
since 0(g*5¢) cannot contain ¢’(I'5t) and vice versa.

First of all, remark that ¢":5" and 5" are bottom-up typable by Lemma 11.35. Now, we can
reach convergence of the peak:

t,:S/ HZ ,0’";0((15@”,0”) t/”:sm (_(f;,o",o(':s"#l‘al) ———t”:s“

The typability of "5 can be obtained by Lemma 11.38. O
In the second case, there are only variable overlaps and no non-variable overlaps.

Lemma 11.40 Let tl:S' Hg’al'O’ i:s Hg"a”'ou t”:s”, where O(tzs,w’a:)./V'VOCC(I:S‘)nO(¢:S'¢II’all) = (0
and there is a w € O(,;s@,va/).\)(?cc(l’s'), s.t. there ezists a w' with w.w' € O(y:s 4o 4u).
Then t'S' 23p 0 g 0 «~p o &p t":5" | where all new terms are typable.

Proof: Let 5, t":5” be defined as in the proof of Lemma 11.39. The resulting peak is illustrated
in figure 18. The typability of #:5" and #":5” follows from Lemma 11.35. Hence, we can assume
w.l.o.g.

t'S 24 5[0/ (19)[0"(9°%9)]oloy. .y [0"(4°%)]5,
7S 24 £5[0/(r50) 0" () ov[o" (g5 om0 s oy [0 (4515
O 24 5[ (o (@) oloy s o ()]
~ where Os,¢1,0n0 W 0 = O(p:5 4 gy, O™ stands for the redexes introduced by the radical

(¢',0'), which overlap into non-variable positions of ¢/(r*5v), and O for those under variable
positions.

Note that all redexes at O s 4 1.0V in ¢S correspond with some redex at O,s 4/ ;.0 in t'5,
(t°,¢"0")" (t #e’)
since Var(I*5t) D Var(ri5). The peak converges with:
¢S’ )_)g 4 O(‘ S ¢!,a') :0°u0 tl/l:S"' Hﬁ’a”o(t:s.tﬁ’.a') t//:S”’

:S.

where o’ is defined as follows, provided O sg) is the set of occurrences of o”(g'%) in z*

o'(g

a/(x:S) - al(x:S)[all(d:Sd)]Oo,,(gzsg)
The bottom-up typability of /5", 1":5” follows from the one of ¢:5 together with Lemma 11.35.

For the typability of ¢S we can still use Lemma 11.38. O

The last case covers peaks where there is at least one non-variable overlap (and possibly other
variable overlaps).

Lemma 11.41 MSS Critical Pair Lemma
Let 8" 80" 18,8100 418" 5.4 015, 40,01 NVOee(I5) 0 O s g gy # 0.

Then t'S' 23p 0 23p o O MSSCP($ "), © &g 175" where T = reachp(Ty(Sy, F, Xo)?) and
all new terms are bottom-up typable.
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Figure 18: Variable Overlap Case
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Figure 19: Critical Overlap Case
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Proof: Let once more t':5',1”:5" be defined as igjle proof of Lemma 11.39.The resulting peak is
illustrated in Figure 19. The typability of ¢:5' and ¢":5" follows from Lemma 11.35. We can
assume w.l.o.g.

5 2 1[0/ (1) (0" (40101, [ (5"
15" 24 t5[0"(r57)[0"(g7%9)]ov[0"(9°%)]om]o
1157 2 55" (I'51)[0"(d54)] 0o

(£:5,¢',0) [a”(g:sg)]5 a'nd

(‘:s"‘,‘al)[dﬂ(d:s")]5, s.t.

1. OV = {w | I/ 0" w = " with
(a) w, € O(t‘s,¢',0')"
(b) w” € VOce(rSr) and
(C) w'.w € O(tis,¢”,a“)}’.
2. Onu = 0(0'(f’s')_y4’"v0") \(Ov UU),
3. O(z:s,¢l,al).0 U O = O(t:$'¢u,an).

Remark that 0V U O # O(z'? o0y’

0(,:s'¢,,,;).v0cc(r’s'), i.e. possibly O™ # 0. Consequently, we can let the peak converge as
follows: ' :

75 0,19'0"0(5 41,51y -0"U0 . g 705 ¢ a1y 11:5"

t * HR t HHMSSCP(OS"QSH)JT [}

since there might be redexes for the radical (¢”,0") above

where 7/ is defined via the unifier ¥ used for the critical pairs computation. Let 7 be defined
by 7 o (%) 24 0’ 0 0”(t*5). Then 7' is defined as follows, provided that O,n(g:59y is the set of
occurrences of o”(g*%) in z°5:

P(@5) = 1@ (@) s, -
The first reduction with ¢’ is superfluous in the case o’/(I't) 2y 6”(¢'9). Lemma 11.36 guar-

antees that the critical pair is actually applicable. The typing proof of 5" can be obtained
from Lemma 11.38. O

11.6.3 Orientation and Simplification

Lemma 11.42 Let t'S <—<>—>2;s=q:s 00 yniS! (¢:p5 = ¢9)Y e Rand (¢ : ¢° — ¢*5\F' if 5 o4
S\ S') e D, s.t. sort(q) = SUS ifqge X,.
Then t'S »—-»fi”‘o o 9’—1<%'”’O el

Proof: The proof reduction is identical with the one for =. 0O

Concerning the simplification rules for decorated rewrite rules and equalities using ¢ € R, it is
easy to find proof reduction rules if restrictions similar to the case of layer rewriting are applied. We
only need to assure, that the simplifying rule does not overlap at any other position in the left or
right-hand side of the term to be reduced, except when all unifiers are identical with the matcher
used for simplification. As for layer rewriting, it is possible to define simplification rules treating
the different possible combinations of substitutions, yielding several decorated equalities and rewrite
rules as replacement of the simplified object, but we won’t go into details here. Anyhow, a type
conservative proof reduction for these simplification rules may be found in the case of Compose R
and Collapse R. For Simplify _R, this seems to be impossible, since there is no way to propagate
typing information by an equation, if we don’t want to define critical overlaps of E into D, what is
definitely not the case for us.
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11.6.4 Confluence

Let MSSC be the set of completion rules shown in Figure 20 plus Delete, Orient_SD, Orient_NSD
of OSC and the failure rules Detect, Extend, that do not change. = To guarantee bottom-up
typability of terms, additional strategy assumptions on the completion process are needed. We call
first-level (completion) rules those completion rules that are dealing with decorated equalities and
rewrite rules only.

General Assumption 11.43 We suppose for the strategy of MSSC the following points:

1. Sort inheritance on typable terms is tested whenever no more critical pairs in C P(D, D) can be
computed.

Critical pairs in MSSC P(R, D) are only computed when D is confluent.
First-level completion rules are only used if no other rules apply.
Decoration rules are not composed.

Subsumption of decoration rules is tested in a strict way (i.e. S ~ S’ in Subsume_deco).

S ;o

If a decoration rewrite rule for a critical pair in MSSCP(R, D) is added, then all the corre-
sponding subterm decoration rewrite rules are added simultaneously.

The requirements of assumption 11.43 can be fulfilled by the strategy shown in figure 21, using
the syntax of ELAN [KKV93|.

We clarify our syntax before starting with the propositions. The first level completion rules in
MSESC are limited to Deduce_MSS for MSSCP(R, R). The simplification rules will be followed by
_D, since ¢ € R is not allowed. Furthermore, Deduce MSS_RR stands for the case MSSCP(R, R)
and Deduce_MSS_DR consequently for CP(D, R). Analogously, Deduce_deco_MSS with suffix
_DD stands for the case CP(D, D) and with suffix _RD for the case MSSCP(R, D).

Lemma 11.44 Let (Dp, Ep,0) = (Do, Eo, Ro) & (Dy, E1,Ry) F ... be a derivation using MSSC,
satisfying assumption 11.43. Then for all k > 0, all terms in CTgER are typable in Dy.

Proof: The proof is an induction over the number of completion steps k. If k = 0, then all t° ¢
CTY g are equal to t:1? resp. (¢'1%)S for terms in decoration rewrite rules and therefore trivially
typable.

If £ > 0, then we distinguish different cases for the last applied completion rule:

1. Deduce_deco_MSS:
In the case of C P(D, D), the typing proofs are transformed and the new term is typable by
Lemma 11.13, since it is only the instantiation of a term in CTBEIR’ that has a decoration
enriched via »—p, ;.
In the case of CP(R, D), the new terms added are trivially typable, since assumption 11.43
guarantees the presence of all needed decoration rewrite rules.

2. Subsume_deco_MSS:
CTISER = CTB};R and the typing proofs are only transformed.

3. Simplify_MSS_D, Compose_MSS_D, Collapse_MSS_D:
Every pS € CThgp\ CTEEY: stems from a p'S' in CTER! via —57, i.e. the typing proof

of p'S is the one of p*S' followed by the decoration rewriting step —5”".
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1. Ded ﬁce_dec?).l\g,Si

Du{(p* - p*if S ¢s)},E\R

if (p:s _ p:suS s QL 8) €
MSSCP(R,D)u CP(D, D)

2. Subsume_deco_MSS

: H B ' @ A,0,¢ :S
Du{(p® — p*if (W} E, R pY—p P
D, E'R if and (p** — p*YS if ¢(s)) # ¢

3. Ded uceﬁ\/ls SR

D,Eu {(p:S = q:S,)}v R

if (95 = ¢5') € MSSCP(R,R)U CP(D,R)

4. Simplify MSS D
D) Eu {(p:S = ‘I:S')}, R if :S o, _n:S"
D,EU {(p/l:S" — q:S’)},R np~»—=p p

5. Compose MSS_D
D,E,Ru{(}S — r'®)}

if p:Sr 9$ 1S
D,E,RU {(I:Sx — rI:S,./)} ir =—p T

6. Collapse_ MSS
D,E,RU{(I'S' = rS")}
D,EU{(l™ =)}, R

if I:S, H<B¢ II:S,: & 1:5( - r:S.- > ¢

Figure 20: MSSC : Completion Rules for Maximally Subterm Sharing Rewriting.

4, Delete, Orient_SD:
CThgr C CThgR

5. Orient_NSD:
Like Simplify _D.

6. Deduce_ MSS_DR, Deduce_MSS_RR:
In both cases, the new terms are either an instantiation of a term in CTE;EIR or a reduced
instantiation. In either case, the typability of the instantiation follows from Lemma 11.13
and the fact that the unifiers are calculated with UNIFq. If the instantiation is reduced
via s p, then the typability follows immediately from the one of the instantiation.
If it is reduced via »—»pg,  then its typability is a consequence of Lemma
11.35. Remark that Dy_; must be confluent on all typable terms, since
Deduce_deco_MSS is no more applicable, due.to assumption 11.43, implying also
MSSCP(Rg-1, Dg-1), e, Cp Dg_1. Furthermore, the term to be re-

reucth_l(Td(So,f‘,Xo)‘
duced must be bottom-up typable in D_;, since Dg_; is confluent and we do not compose
or simplify decoration rewrite rules.

O

Now, we can define a typing proof preserving proof reduction = according to the peak reduction
Lemmas. The set of reduction rules can be found in appendix A.2.

Lemma 11.45 The proof reduction = is well-founded.
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strategy Deco Norm
repeat dont know choose(Deduce MSS_DD; Subsume_deco_MSS)
endrepeat
dont know choose(Detect; Extend)

end of strategy

strategy Weakening
repeat _
repeat dont know choose(Simplify MSS D; Compose MSSD; Collapse MSSD)
endrepeat,

try(Deduce MSS_DR),
repeat try(Delete) endrepeat,
endrepeat

end of strategy

strategy Propagate
repeat
Deco Norm, Weakening,
try(Deduce MSS_RD),
endrepeat

strategy DecoratedRewrite
dont know choose(Deduce MSS_RR; Orient NSD; Orient_SD),
try(Extend, Detect)

end of strategy

strategy MSSC
repeat dont know choose(Deco Norm; (Deco Norm, Weakening);
Propagate; (Propagate, DecoratedRewrite})
endrepeat
end of strategy

Figure 21: A Sample MSSC Strategy

Proof: This can be verified with the complexity measure ¢ of lemma 10.4. O

Theorem 11.46 Let Py # (L, L1, 1) be the presentation obtained from (Dp,Ep,0) using MSSC,
s.t. assumption 11.43 is fulfilled. Let furthermore Eo, = 0 and all critical pairs of Do, U Ry be in
D, U R.. Then the initial presentation Py is sort inheriting on ValidTy(Se, F,Xs) and Dy U Ry s
Church-Rosser, type and ezistentially complete.

Proof: All peak reductions have the property, that they only introduce typable new terms, provided
MSSCP(R,D)Cp D and the term at the top of the peak is bottom-up typable if it is a peak
between two decorated rewrite rules. Bottom-up typability results from typability at each step
k, when Dy is confluent on all typable terms, since all terms in the proof to be transformed
are typable by induction hypothesis and we do not simplify nor compose decoration rewrite
rules (see Lemma 11.7). Hence, peaks between decorated rewrite rules with variable overlap
or without overlap can be reduced at any such k if additionally MSSCP(R,D) Cp D holds,
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i.e. especially in Do,. Peaks with critical overlap between decorated rewrite rules are reduced
when the corresponding decorated critical pairs MSSCP(R, R) are calculated. Here we can
be sure, due to assumption 11.43, that all decoration critical pairs are calculated and that
MSSCP(R,D)Cp D, giving us the needed confluence of Dj.

If we orient a rule, the only new term can be reached via decoration rewriting from an old one,
i.e. all terms in the new proof are trivially typable. Deleting an equation leads to a proof with
less terms and preserves therefore also typability. All other proof reductions have the property,
that any new term can be reached from an old one by decoration rewrite steps. Consequently,
typability of these terms follows as in the orientation case.

Now that we know the typability of all terms in proofs in P, we can reach sort inheritance, the
~ Church-Rosser property, type and existential completeness as in the proof of Theorem 11.17.
O ;

11.7 Comparison

Each of the three cases treated in the last sections offer several advantages and drawbacks:

1. The standard rewriting technique gives us the compatibility with classical order-sorted com-
pletion procedures as described in {GKK90]. Furthermore, the sort inheritance test can be
postponed until the end of completion. )

2. The layer rewriting technique gives us a similar property, but simplification and critical pairs
computation got quite complicated.

3. The maximally subterm sharing rewriting teéhnique has pure proof purposes and does not
support simplification for decorated rewrite rules for the moment.

4. Anyway, if the proof of sort inheritance succeeds with one of these techniques, the resulting
decorated presentation may be used in order to continue with OSC, since all deductions were
correct as a consequence of the fact that any layer rewriting or maximally subterm sharing step
can be simulated by standard decorated rewriting.

5. We conjecture that the three techniques can be combined into one strategy, where standard
rewriting is used as long as all terms in décoration rewrite rules are flat and linear, layer
rewriting for the flat case and parallel rewriting on occurrence sets as long as there are non-flat
decoration rules. However, Sort inheriting on typable terms must be tested each time when
non-flat decoration rules are introduced. ' ' ‘

This seems to be correct, since all terms in rules and equations stay typable as well as all terms
in the transformed proofs. Furthermore, each step in a rewriting strategy can be simulated by
standard rewriting sequences or one parallel rewriting step at multiple occurrences. A standard
rewriting or parallel rewriting step can be replaced by two converging bottom-up layer rewriting
sequences, due to Lemma 11.20. Remark also, that we can mix the proof transformations, since
their termination is provable with the same complexity measure.

Further extensions of these techniques might be the definition of simplification rules for maximally

subterm sharing rewriting and an extension of the results on layer rewriting to non-flat, semi-linear
terms in decoration rules, where non-linear variables may only occur in identical subterms.
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11.8 Changing the Membership Relation

The application of the Detect rule indicates the detection of a counter-example for the sort inheri-
tance w.r.t. <J",i.e. there exists a term belonging to two incomparable sorts A, B without a common
_subsort. Therefore the intersection of A and B, which must be computed for the unification of two
variables of sorts A and B respectively, cannot be described as a sort.

Assume that the valid decorated term t'5 with A, B as before, is a detected counter-example
for the sort inheritance of P w.r.t. <&". Then the definition of models in G-algebra forces the
interpretation of this term to be in both denotations of A and B. Hence, we can add, in a model
theoretically conservative way(i.e. each model of the initial presentation can be extended to one of
the new presentation and each one of the new can be reduced to one of the initial presentation), a
new sort C ¢ S and the membership formula (t': C), s.t. t' = a(t*),q4 for some T(Z, X)-assignment
a. As in the case of adding a new subsort, we have to restart the completion.

Results analogous to Proposition 10.10 for the detection of differences between <J™ and <¥™ are
Theorems 11.17, 11.29 and 11.46. Remark that there is no condition like <&F" =<¥™ and therefore
we can be sure that Py, = (L, L, L) if <J™ #<¥™ and P is not sort 1nhentmg at the same time.

.

12 Related Work .

We first come back in this section on the relation between sort inheritance and regularity, then we
compare our own completion approach with several others. First of all, we prove that the comple-
tion presented here subsumes the completion described in [GKK90] for OBJ-3 specifications. Next
we compare with the tree automata approach of [Com92]. Furthermore we discuss the relation
with the signature extension approach [CH91], the T-contact method [Wer93] and the approaches of
L. With [Wit92], then of P. Watson and J. Dick [WD89].

12.1 Sort Inheritance vs. Regularity

Sort inheriting can be interpreted as an extension of regularity, which means that each valid term has
a unique least sort. The reason why we need something like regularity is hidden in the unification
used for critical pair calculation.

When we try to resolve a peak in a proof based on rewriting steps, we need to unify two rules left-
hand sides and introduce a new equality based on the right-hand sides of the two rules instantiated
by the unifier, which should solve the peak, as in the classical case. The problem arises here when we
unify two variables with incomparable sorts having a common subsort. This yields a new variable in
the substitution image, as the following example illustrates :

Example 12.1 Let ¢, : f(z14)y® o g(z{4N® and ¢y : f(y{BHY® - y1B} be two decorated
rewrite rules in R. Then U = (f(z{A)® &? 1 {B}):) has the following principal solution o =
{4}  ZUAB) (B} , ;{(AB)}} assumzng AXI" B, IC € § : C<F" A, B in the current
. presentation P. .
Therefore the equality
& g(z:{(A,B)}):O — z:{(A,B)}

should allow the peak g(t {4 B}) 0 b1 f(t'{A B}) 92 {AB} 15 converge, i.e. it should make the
left and the right terms equal. But without inherited sorts, neither {z{(4.B)} 1y ¢4, ‘B}} nor anything
equivalent can be ezxpressed.

Furthermore, adding inherited sorts also implies that decorated unification with UNIF4 becomes
unitary. However, the sort inheritance notion is more general than syntactical regularity discussed
in [SS87], ([SNGM89] or [Walg9]:
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1. Sort inheriting takes equalities into account and so may be called a “semantical” property. Thus,
we have undecidability in general.

2. There are non-regular, but sort inheriting specifications like
((§={A,B,C},F={a}),P={2:C,2:A,z: B,a: A,a: B})
with arity(e) = 0, where a is a counter-example for regularity.

3. The construction of S, is very close to the transformation of non-regular signatures into regular
ones (see [SS87]). However, due to the fact that sort inheritance is semantical, the transforma-
tion cannot be completely performed a priori.

At the semantic level, sort inheritance and inherited sorts can be seen as a restriction of models
of the current specification.
Hence, we refine the notion of algebras :

Definition 12.2 A I,-algebra is a pair (|A|,.4) of a domain |A| and an interpretation function A.
A itself is composed of interpretations for each symbol in S and F, such that :

1. YA € S, the interpretation of A, A% is a non-empty set, s.t. Q4 = |A|
2. Vf € F, the interpretation of fifAisa partial function fA :|A]emt() o |4

The interpretation of sorts in S, follows from the one of S in the following way : VS € Sy : §4 =
Naes A%

The definition of models does not change. Remark that non-emptiness of sorts in & implies also
_ the non-emptiness of sorts in Sy, since for every sort § € Sy, we know that there is a A € §, s.t.
(4) <8 S.

A T4-homomorphism is a G-algebra £-homomorphism h : A — B satisfying VS € S, : h(54) =
Naes h(A%).

It can easily be shown that there exists a free construction for all G-algebras to £4-algebras with
inherited sorts and therefore initial as well as free models are preserved. Adding these inherited sorts
is rather easy. Proving the emptiness of all other possible sort intersections is the duty of the Detect
rule in our completion process. Since we deal with semantical sorts, we cannot expect a decidable
test.

12.2 Retracts are Superfluous

As a consequence of working with semantical sorts, the retracts defined in [GD92, JKKM92] in order
to handle syntactically ill-formed terms are superfluous. Clearly, our results guarantee that the needed
sort will appear eventually in the decoration of the syntactically ill-formed term, if and only if it is
semantically well-formed. The following example issued from [GD92] illustrates this:

Example 12.3 Let P = {z :: Nat, y :: NeStack, z : Stack, y : Stack, empty(z) :
Stack, push(z,z) : NeStack, top(y) : Nat, pop(y) : Stack, top(push(z,z)) = z, pop(push(z,z)) =
2} which will be translated into:

ye - y:sU{Stack} if {Stack} z 8
empty(z:{smck}):a N empty(z:{smck}):aU{Stack} if {Stack} g s
push(z:{Nat}’ z:{Stack}):a - push(z:{Nat}’ z:{Stack}):aU{NeStack} if {NeStack} g 8
top(y:{NeStack}):a N top(y:{NeStack})':aU{Nat} if {Nat} z s
pop(y:{NeStack}):s N pop(y:{NeStack}):sU{Stack} if {Stack} SZ 8
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top(push(x:{l\v’at}’z:{Stack}):O):O = g{Nat}
pop(push(xz{Nat},z:{Stack}):O):O = g{Stack}

Composing the decoration rules, simplifying the equalities with decoration rules and finally orienting
them yields: :

:{Nat}, z:{Slack}):s N push(x:{Nat}’ z:{Stack}):sU{NeStack,Stack}

if {NeStack, Stack} ¢ s
top(push(x:{Nat}’ z:{Stack}):{NeStack}):{Nat} — gpi{Nat)
pop(push(a::{»N“‘}, z:{Stack}):{Stack}):{Stuck} —  z{Stack}

push(z

The completion process stops at this point and, e.g. the term
top(pop(push(2”®, push(1?, empty?)?)®)9)®

cannot be typed statically on top. The normalization with decoration rules only gives
top(pop(push(T{Nat},push(l:{Na‘},empty:{St“k}):{NeStad‘} ):{NeStack}):{Stack}):O. But after two reduc-
tion steps we get 1:15t3¢k} yhich has a top decoration and is therefore meaningful in any G-algebra
satisfying P. ‘

However, when using retracts, the term top(pop(push(1®, empty®)®)®)? is statically typable with
relracts but non-sense in the quotient algebra of P. Normalizing it yields top(empty’{s‘“"}):”, proving
that there is an algebra, in which the term does not make sense, since the top decoration is empty.

12.3 Subsumption of Sort-Decreasing Rules Approach

We now show that our decorated completion is a conservative extension of the procedure in [GKK90].
In this framework, S is finite and function declarations translate to flat, linear decoration rules.
Syntactic regularity of the signature is assumed and implies that every term has a least sort computed
by an algorithm using the static signature. This algorithm is imitated in our approach by a bottom-up
normalization process with decoration rules only.

Furthermore, the procedure in [GKK90] only orients rules if they are sort decreasing, which means
that for every instance of a rule, the least sort of the right-hand side is smaller than the least sort of
the left-hand side. Therefore, semantical and syntactical regularity coincide.

Proposition 12.4 Let P be a syntactically regular, subsort unique presentation using only flat, linear
term declarations, in a signature L with a finite set of sorts S.

Any finite completion derivation of P, using the order-sorted eztension of the classical Knuth-
Bendiz algorithm ([GKK90]) with sort-decreasing rules, can be transformed into a finite decorated
derivation without failure.

Proof: The sort decreasingness hypothesis implies that there are no decoration critical pairs at
all. Furthermore, simplifying eagerly with decoration rewrite rules allows for orientation with
Orient_SD only, i.e. Orient_NSD gets superfluous. Consequently, there are no new decoration
rules added during the whole decorated completion.

The critical pairs in CP(D, R) are used to compute explicitely weakenings (restricted forms
of decorated rewrite rules obtained by specialization of its variables), in order to compute the
same critical pairs between rules in R. Since the number of decoration rewrite rules is finite,
there can only be a finite number of such weakenings for each rule. As for simplification with
decoration rules, we have to assume the computation of weakenings to be performed eagerly.
Remark that a weakening can be simplified if and only if the decorated rewrite rule it stems
from can be simplified, since variables are not specialized during undecorated matching.
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Furthermore, no new CP(R, R) critical pairs are generated by this process, since all unifiers of
instantiations are covered by unifiers of the originals. In fact, the existence of a new CP(R, R)
critical pair would imply that we forgot one in the original deduction. This is due to the fact
that'any well-sorted substitution of the initial derivation implies the existence of a corresponding
decorated substitution, because of the eager computation of weakenings. This eager application
is also the reason why there are no additional collapses due to decoration rules.

Hence, we can imitate such a completion procedure in linear time with a factor limited by m*,
where m is the maximal number of leaves occurring in a left-hand side of an equation during
the unsorted completion and & is the maximum of overloads of operators. This factor maybe
minimized, if rules and specializations are treated as classes: undecorated terms in [GKK90]
are in fact representatives of their class of specializations.

Finally, remark that sort-decreasingness implies both sort inheritance and the fact that
<§" =<¥™: Po = (L,1,1) would be in contradiction with Theorem 11.17 and Proposi-
tion 10.10.

(m]

Therefore we can say that OSC with the results of Section 11.4 corresponds with sort-decreasing
completion with flat, linear term declarations. Analogously, SLC in Section 11.5.1 can be interpreted
as a method for completion with flat term declarations. However, both allow for temporary presence
of non-flat, non-linear term declarations, handled in Section 11.6.1, and are only seen as proof method
for sort inheritance. Both can and should be followed by an application of OSC, where syntactically
untypable terms in rules and equalities can temporarily exist - a problem that complicates order-sorted
completion with semi-linear term declarations and syntactic sorts.

12.4 The Tree Automata Approach

Concurrently with the development of this work, H. Comon designed the completion of rewrite systems
with membership constraints [Com92]. Also motivated by the failure of the critical pair lemma, his
approach of the problem is to provide new deduction rules and to compute critical pairs in a fragment
of second-order logic. In order to argue that our approach is not subsumed by the completion with
membership constraints of [Com92], we exhibit an example that does terminate in our approach but
not in the other one. Actually, this is the example already used by [CH91].

Example 12.5 Given the rewrite system R

yes = flgy)—b
h(z) — l(z)

where S = {h'(a)}, the completion procedure in [Com92] generates the infinite set of rules
{Xehi()rze S : flg(X(B(z)))) - b}
(see [CHY1])
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Using our decorated approach, we transform the system into

a - asU{A}if {4} Zs .
bs — bVBYif (B} g

(z:: A)® - (z:: A)#YBlif {B) Zs

h(z:{A}):s = h(x:{A}):su{A} if {A} zs

MytEhe o w(y BB it {B) ¢ s

9(y 1By - g(yB)Bif (B} g s

fBys — fyByBlif (B} g s

I(y:{B}):s N l(y:{B}):sU{B} if {B} Zs

f(g(z:{A}):ﬁ):O = p

h(y:{B}):O — I(y:{B}):O

Remark that A<Z"B and h > I, f,g > b in the precedence of the used decorated recursive path
ordering (see Definition 7.21 on how to get the decorated version) >4. After some applications of
Simplify using decoration rules and final orientations, the last two equalities become decorated rewrite

rules : :
f(g(x:{A}):{B}):{B} — piB}

h(y{B}){B} — Iy {B}){B}

The computation of C P(D, R) yields now the new decorated equation h(z:{4}){4.B} = |(5:{4}):{B}
that can be oriented as before giving an additional decoration rule:

h(I:{A}):{A,B} N l(zz{A}):{A.B}
I(_,L.:{A}):s — l(zz{A}):su{A} if {A} % 8

This results in a confluent decorated term rewriting system.
The following peak:

b — f(9(h(h(a)))) — f(g(l({(a)))).

given in [CHY1] is therefore confluent. This is because f(g(I(1(a)))) is normalized using the decoration
rules into ' '

 gU(u(a Ay By By BB

that can be rewritten into

f(g(l(l(a:{A}):{A,B}):{A,B}):{B}):{B}
using l(z{Abys . (2{A})sH{ABYif {A B} @ s twice and finally into b{B} using
f(g(z{ANHBYABY _, p{B} yhich is now applicable.

Nevertheless, a strictly more powerful language — due to the second order monadic logic fragment
- is used in [Com92]. This power is needed for the specification of equality schemata, which is indeed
not possible in our first-order approach. Let us consider the map function as an example:

Example 12.6 Let L be an independent constant, Fy be the set of unary functions in the signature
and F; be the corresponding disjunction of contezts of the form f|.]1 for all f € F\, then using
H. Comon’s syntar yields:

XeFR : map(X(L),cons(z,l)) = cons(X(z), map(X,!))
map( X, nil) = nil .
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This is indeed not expressible in our language since it is first order. A more order-sorted specific
example could not be found yet, but it is possible that due to the integrated term schematization
facilities, H. Comon can transform signatures in a more sophisticated way than we could. However,
we did not find such an example yet, as well as we could not show that starting from a specification
using first-order terms only, we could transform such a derivation into one of our approach. The latter
might be possible, since all schematizations are also expressible as flat, non-linear term declarations
using new sorts.

Using the syntax of H. Comon, we can express our C P(R, D) critical pairs as:

TEQAG :lor ¢ i g—d ifq|p=gA¢A1/):*¢IAU
zEqdAd 17 A and ¢’ = g[o(d)],

Deduce 2’

This can be seen as replacement for the rule Deduce2 in [Com92]. As this rule does not introduce
new second order variables, there is no more need for Deduce3, if we start with a first order equality
set. This is the reason why we can stay in a first-order framework while treating the same kind of
problems.

However, using Deduce2’ can obviously result in non-linear (resp. non-semi-linear) regular tree
expressions, i.e. we can no more decide the intersection of two sorts. But this is necessary for
constraint simplification and therefore for the decidability of unification. Consequently, we can in-
terpret our decoration critical pairs as a semi-decision procedure for the intersection of membership
constraints.

In general, one can state that due to the undecidability of intersection in non-(semi-)linear member-
ship constraints, H. Comon has to push all C P(R, D)-critical pairs into new rewrite rules, calculated
by Deduce2 and Deduce3, instead of creating new membership constraints, which corresponds with
our decoration rewrite rules. Since the variable overlaps used in [Com92] seem to cause lots of rules,
we also conjecture that our approach converges more frequently. Indeed, it is less the way that critical
pairs are calculated than how constraints are solved, what makes this comparison so difficult.

To conclude, the approach in [Com92] is very interesting for the term schematization facilities
that it incorporates. Indeed we may wonder if seeing sorts as term schemata is the best way to cope
with non-sort-decreasing rules, although it clearly allows getting rid of regularity. Nevertheless, we
feel that combining the decorated rewriting approach with term schematizations can still increase
expressiveness and is worth being considered.

Finally, we treat an example due to H. Comon, that comes from [Com92].
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Example 12.7 Let us first give the specification:

Sorts : A

Subsorts : A<D

B<D
C<D
Operators: a: —A
f: A—A
f: B-C
f: C—-C
[ D-D
g: A-B
g: D—-D
h: D,D-D
Rules : f(z:C)—>a

The decoration rules:

8 e @

a

f(w)
f(v)
f(z)
f(y)
9(u)
9(y)
h{y, z):

SR ERERESESCISES

The decorated rules:

g(y: D)—h(y,y)

a.s
f(u:{A}):s
f(v:{B}):a
f(z:{c}):a
f(yiPly=
g(u:{A}):a
:{D}):s

— ¥

— U

i 4

— a

-~ f

translated

translated :

translated

translated

:su{D}
su{D}
:su{D}
1sU{A}
(u:{A} ):sU{A}

N f(v:{B}):su{C}

— f(zH{CYyeu() '

= f(y{D} ):aU{D}

- g(

—

u:{A} ):sU{B}
y:{D}):sU{D}

N oe e
SESESN-TES

u:D
v:D
:D

f(u)
f(v)
f(z)
f(y)
9(u)
9(y) :
h(y, 2):

f(z)—a
9(y)—h(y,y)

SAVE-ESRONO NSNS

if {D} s
if {D} Zs
if {D} gs
if {A} Zs
if {A} Zs
if{C} Zs
if {C} s
if {D} s
if {B} gs
if {D} Zs

My@hf@hw_§mywhfw5ﬂmnﬁ{D}zs

f(z)—a give

9(y) —h(y,y)

f(x:{C}):ﬂ_,a:o

(12)

g(y:{D}):O‘_,h(y:{D}’ y:{D}):O (13)

They become after some Collapse, Simplify and finally Orient-steps:

f(zACHACY, ¢{AC)
9y PNAPI h(y AP, yHPHYDY (1)

together with the decoration rule

(14)

@ — a*VACif {A,CY gs (16)
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Now Detect can be applied and shows that a is in the intersection of A and C, although there is no
common subsort. Therefore the specification was shown to be non-sort inheriting. But introducing a
new sort E with a new variable u' :: E, the term declarationsa: E, v’ : A, u' : C (giving E<Z™A,C)
and the (never applicable) decoration rules

u'tt — ul:sU{A} if {A} zs (17)
u'® — u#{CYif {C} gs (18) .
results in a new S containing additionally (;4,0) as sort with another new variable u" and the
- declarations v” : A, v’ : C and u' : (A,C).
Hence, we have to restart the critical pairs computation. Applying Deduce at (5) and (14) gives

the following critical pair:
f(u/l:{(A,C)}):{A,C} — a{A.C}(lg)

This can be oriented into:
f(ullz{(A,C)}):{A,C} _)_a:{A,C}(20)

Applying once more Deduce at (9) and (15) ytelds:

g(u:{A}):{B,D} - h(u:{A}’u:{A}):{D}

This equation can be oriented into:
| g(wANBY _y p(yilA}, (A} )i(B)
h(u:{A}’u:{A}):s N h(u:{A},u:{A}):aU{B} if {B} zs

This finishes the completion. Remark that the last steps were independent from the introduced sorts.’
Consider now the peak from [Com92]:

f(f(h(a,a))) — f(f(9(a))) - a

This corresponds with
f(f(h(a:{A,C}’a:{A,C}):{B}):{C}):{C} — f(f(g(a:{A,C}):{B}):{C}):{C} — a:{A,C}

Using our approach, we get a confluent rewrite system using “only” first-order unification. The peak
becomes confluent, since we can apply rule 14 in the saturated system: :

f(f(h(a:{A,C}, a:{A,C}):{B}):{C}):{C} — a;{A,C}.

Remark that the sort (A,C) only appears in the decoration of u”, a variable of this sort. Indeed, sorts
in So \ {(A) | A € 8} cannot be added to any decorations. They only serve for evaluating conditions
during matching, unification and evaluation of the condition of decoration rewrite rules.

12.5 The Signature Extension Approach

In [CH91], H. Chen and J. Hsiang present an order-sorted rewriting approach that allows for ill-
sorted terms obtained from well-sorted ones by application of rewrite rules using syntactically well-
sorted substitutions. Together with a condition called sort-convergence, a critical pair lemma can be
obtained. ' T

Their completion procedure constructs a sort convergent specification via sort enrichment, i.e.
adding new sorts and function symbols when needed. The following small example from [GKK90]
illustrates this:

102



Example 12.8 Let P ={a: Ab: B,c:C,y:: B,z:C,y: A,z: A,a=b,a=c}.

Then orienting the equalities into R = {a — b,a — c} results in the critical pair b = ¢, which is
irreducible and cannot be oriented. The completion algorithm in [CHY1] now adds a new constant d
together with the rules :

b—d, c—d,

s.t. the final rule set is
{a = d,b—d,c— d}.

The obtained system allows for equational proofs on the initial signature, but the normal form a term,
for instance d, may have no meaning from a computing point of view. Of course, there ezists an
interpretation for d which validates the equalities provable in the new presentation, but the models
must be extended.

In our approach, we get the following set of initial rules, after simplification of the equations with
decoration rules and final orientation:

a:s

— a4 if {A} Zs
b - yiBl i (B} g
c® - e if (¢} Zs
y* - gl if (A} g
z® — oAl if (A} Zs
a4l o piB}
a{4l o ¢
The obvious critical pair is ¢1€} = b{B}, that may be oriented using a decorated recursive path

ordering based on the precedence a > b > ¢, yielding:

b:{B} - c:{B,C}
o't = c:sU{B} if {B} z 8

We can now apply Detect on the two decoration rewrite rules for c. Therefore, we have to add a new
sort D to S with a variable u :: D and term declarations u : B, u: C, ¢ : D. Then we add also (B,C)
to Sy, with a variable v’ : (B,C) and the declarations u : (B,C), v’ : B, ' : C. Since there was no
variable unification necessary for the whole completion up to this point, we can simply continue with
the new sorts and variables, after a translation of the new term declarations into decoration rewrite
rules, giving:

u? - yeuiB} if {B} gs
' = (G if {C} Zs
v — uwlBO) if ((B,C)} ¢
we o yfsv{B} if {B} SZ S
wE o ysu{C} if {C} Zs
¢ — ¢V} if {D}gs

Finally, the last decoration rewrite rule subsumes the two other decoration rewrite rules for c,
finishing therefore the completion without new function symbol.

Due to this adjunction of function symbols, the approach looks more appropriate for proving the
truth of equivalences than for functional computation.

The following example gives a base for the comparison on a bigger specification, that can be solved
in both approaches, with the difference that we don’t need any new function symbols.
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Example 12.9 Let P = {
a: A,z A,z Ajzg it A,
b:B,y: B,y:A,
c:C,z:C,z: A,
d:D,y D,y :B,y:C
e:E, 2 E,2:C,2:B
f(z1,22) : A, g(21,22) ¢ A h(z1,22) 1 A,

g9(z,2): D,h(z,2):C,

9(y,z): B, h(y,z): E,

9(y',2'): D, My, 2') : E,

f(z1,22) = g(21, 22), f(21,%2) = h(z1,72)

be the initial presentation. In S,, we have to add a new sort (B,C). Furthermore, we have to add a
variable u and the term declarationsu: B,u:C,y' : (B,C),2' : (B,C).
After some initial applications of Simplify_D and Orient, the decorated presentation has the

following structure:

f f =

.8 ’
8
8
8
'8

!

<«

zl:l

f(xlz{A}’ zz:{A}):a
g(xl:{A}, x2:{A}):a
h(zl:{A}’ $2:{A}):8
g(x:{A}’ z:{C}):a
h(x:{A}’ z:{C}):a
g(y:{B}’x:{A}):s
h(y:{B},z:{A}):’
g(yl:{D}’ zl:{E}):a
h(yl:{D}, zr:{E}):s
f(xl:{A}’x2:{A}):{A}
f(ml:{A}y$2:{A}):{A}

L A A A A AN

:sU{A} if {A} z s
z:aU{A} if {A} z s
u:aU{B} if {B} g 8
49{C) if {C}-¢s
yI:aU{(B,C)} if {(B$C)} z s
z/:sU{(B,C)} if {(Bv C)} z S
e, Ay i (4)'g
g(zy {4}, Al ysAl i (A} s
By 47 2y )8 it (4) 7
gz 4}, {CYyau(D} if {D} Zs
h(z{4}, #(Chyu{(C}  if {C} @ s
g(y 1B}, z:{A})suiB} if {B} Zs
h(y (B}, z:{ANysUHE}  if (B} @ s
g(y"{D},Z,:{E})wU{D} if {D} s
h(y D}, yH{EYyeU{E}  if (E} @
glayila), g4 ylA)
h(zy{A}, o5 {AYyHA)

Remark that there are neither critical pairs in CP(D, D), nor CP(R, D) (since all rules in D are
flat) or CP(D, R) and all rules are interreduced. The only completion rule applicable is Deduce_ RR
for superposing the two decorated rewrite rules, yielding after orientation and simplification with
decoration rewrite rules:

g(xI:{A}’x2:{A}):{A} — h(zI:{A},xQ:{A}):{A}

The application of Deduce_ DR followed by Simplify D, Deco.Norm and final orientation
gives:

g(x:{A}’ z:{C}):{A,C,D} N h(z:{A}’ z:{C}):{A,C,D}
h(z:{A}’z:{C}):a - h(x:{A}’ z:{C}):sU{D} if {D} g 8
g(y:{B}, z:{A}):{B} N h(y={8}, x:{A}):{B,E}
g(yI:{D}’ zl:{E}):{D} N h(yI:{D}’ zl:{E}):{D.E} )
h(y“{D}, z“{E})“" N h(yI:{D}’ z/:{E}):aU{D} if {D}¢Z s
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Now, Detect gets applicable to the two decoration rules for h(y',2’), since D and E do not have
a common subsort, but h(y',z') is provable to be in the intersection. Hence, a new sort G has to
be introduced, s.t. G<F"D,E and h(y',2') : G, resulting also in a new sort (D,E) in S,, with
G<F™(D,EY<$" D, E. However, the recalculation of all critical pairs doesn’t change anything, since
no vartable of sort D was unified with one of sort E.

12.6 The T-contact Method

Another approach for the case of flat linear function declarations is described by A. Werner [Wer93].
Using the concept of semantical sorts, A. Werner proves a critical pair lemma, that allows for syntac-
tically ill-sorted terms. This leads to a decision procedure for order-sorted equalities over extended
terms, i.e. not necessarily well-formed terms, if the rewriting system is weakly sort-decreasing. The
latter is the extension of sort decreasingness to multiple rewrite steps. Formally, for all semanti-
cally well-formed terms ¢,¢, ¢ : A (syntactically) and t —pg ¢’ implies that there exists some t” with
t' »5p t"” and ¢ : A (syntactically). Clearly, this property solves the problem of retracts. However, if
weak sort-decreasingness does not hold, the decidability cannot be obtained for all true equalities in
the initial model of the specification, even with the confluence of the corresponding rewriting system.
This is due to the fact, that in this case the rewrite relation becomes undecidable, since it is restricted
to semantically well-formed terms and semantical sorts are proven undecidable in general, even in
confluent rewrite systems. This is not in contradiction with our results, as example 12.10 shows.

Furthermore, the completion procedure given in [Wer93], transforms weakly sort-decreasing
rewrite systems into sort-decreasing ones. Let us discuss this completion in full detail. Before the
start of the completion procedure, any specification has to transformed into a range unique one, where
any function symbol can only be declared to belong to exactly one range sort, but may have several
different domains.

Similarly to [CH91), the rewriting relation is also defined for terms derived from syntactically
typable terms under the rewrite relation, which uses so-called T-substitutions, which test only the
coarity of the top symbols of images, instead of the classical order-sorted substitutions of [GKK90,
SS87, SNGM89].

The main difference is due to the range-uniqueness of the used signature: any image of a variable
z :: A must be either a variable of a subsort of A or a semantically well-sorted term with a top symbol
with a coarity which is a subsort of A. This allows for a critical pair lemma using also T-contacts
of two rule’s left hand sides at variable positions, but not strictly under them as in [Com92], if the
replacement at the variable position is not a T-substitution.

As there are usually many variable positions in rule’s left hand sides, this approach may lead to
much inefficiency or even divergence. The example given in the introduction of {Wer93], reminded
and extended below, seems to us a better reason for term declarations than for variable overlaps.

Example 12.10 Given P = {o: Nat,z :: Nat,z : Int,s{(z): Nat,y :: Int,z = Int,sq(y) : Nat,|y| :

Nat,y* z : Int,sqrt(z) : Nat,opp(y) : Int,|z| = z,3q(y) = y * y,opp(y) * opp(y) = y * y}, where the
equalities get oriented into

|z} — =, sq(y) = y*y, opp(y) * opp(y) = y*y

we can calculate a T-overlap
(sq(y), ly* 41),

which is oriented into sq(z) — |z*z|. There are no more critical pairs or T-overlaps and consequently
the four rewrite rules are confluent. Hence, the peaks

s™(sq(y)) — Is™(sq(v))| = [s"(y* y)| *
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can be solved, yielding s™(y *y).

However, the rule sq(y) — y * y is not sort decreasing and the term sq(y) is a counter ezample
for weak sort decreasingness, i.e. there are equalities like sqrt(y * y) = sqrt(opp(y) * opp(y)) with a
common, unique normal form sqrt(y x y) for both sides, but none of the three terms is syntactically
typable. Clearly, the equality holds in the initial model of P, since sqrt(sq(y)) = sqrt(y+y) and the first
term is syntactically typable. Unfortunately, the eristence of such a term is in general undecidable.

Remark that y* y : Nat is a semi-linear function declaration, that is derived automatically using
our approach, when the equality sq(y) = y*y is oriented after typing the two members using Simplify
with decoration rules. In fact, we can complete P in our approach and obtain therefore the decidability
of the theory of P. '

In our approach, the initial decoration rules are:

. 8 —y peu{lnt} if {Int} zs
0% — O:sU{Nat} if {Nat} zs
s(x:{Nal}):s' - s(z:{Nat}):s’U{Nat} if {Nat} %8'
opp(y:{lnt}):s’ N opp(y:{lnt}):s'u{lnz} if {Nat} s
Sq(y:{lnt}v):s - Sq(y:{lnt}):sU{Nal} if {Nat} gs
sqrt(z:{Nat}):a - sqrt(z:{Nat}):sU{Nat} if {Na,t} zs
{Int} e _, |yitInt}sU{Nat) if {Nat} Zs

(y:{Int} " z:{Int}):a - (y:{Int} * z:{Int}):sU{Int} if {Int} g 8
The initial decorated equalities:

Ix:{Nat}l:@ — x:{Not}
sq(y:{lnt}):ﬂ — (y:{Int} " y:{Int}):G’
(opp(y:{lnt}):{lnt} * Opp(y:{lnt}):{l'nt} ):{Int} = (y:{Int} * y:{lnt}):{lnt}

After Simplify D, we get:

Ix:{Nat}I:{Nat} = g{Nat}
sq(y:{lnt}):{Nat} —_ (y:{l'nt} * y:{Int}):{Int}

Now, decorating and orienting the equalities yields:

[x:{Nat}l:{Nat} _)x:{Nat}
sq(y:{lnt} {Nat} _, (y:{Int} * y:{lnt}):{Nat,Int}
(y:{lnt} * y:{Int}):s - (y:{Int} * y:{Int}):sU{Nat} if {Nat} g s
(opp(y:{lnt}):{lnt} " opp(y:{lnt}):{Int}):{lnt} - (y:{lnt} " y:{lnt}):{Nat,Int}

This is already the final presentation, since no more completion rule is applicable. Remark that top
superposition decoration critical pairs are always solved.

The equality sqri(y * y) = sqrt(opp(y) * opp(y)) can be proven, since sqrt(sq(y))*® |pur=4
sqrt(sq(opp(¥)))*? Ipur=a sqri((y it} x y:lInt}y{NatInt}):{Nat}  The set of all true equalities in
the initial model of P is decidable by Theorem 11.29.

12.7 Other Semantic Sort Approaches

An approach really similar to ours is developed in [Wit92]. L. With gives a lemma of decidability of
order-sorted unification with term declarations, based on the assumption that all £-critical overlaps
between term declarations are solved, i.e. covered by already existing term declarations.

The used unification algorithm of [SS87] is only complete for regular signatures, which the au-
thor obtains via a signature transformation based on a minimal complete set of unifiers. But this
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kind of sets is undecidable in general (in the presence of term declarations). Hence the signature
transformation is not computable and testing if all E-critical overlaps between term declarations of
an arbitrary signature ¥ are solved becomes undecidable. However, if the signature is known to be
regular, an extended version of the unification algorithm of [SS87], working with a marking process
that guarantees termination, is sufficient to decide if all E-critical overlaps between term declarations
are solved.

Remark that our approach does not give a computable transformation, too, because the completion
used to check sort inheritance might not terminate. Nevertheless, if the procedure terminates, maybe
after some conservative extensions of the signature (as described in Section 10.5), the signature is
known to be semantically regular and the unification is therefore complete.

A last considered approach is worked out by P. Watson and J. Dick [WD89]. In order to ap-
proximate semantical sorts during completion, P. Watson and J. Dick rely on instances of equalities
already generated by the completion procedure to propagate sorts. The data structures for the re-
alization of approximated least semantical sorts, the unification algorithm and the handling of all
corresponding undecidability problems are left open but we feel that they can be solved as in our
approach, since the propagation of sort information can be compared to our C P(R, D)-critical pair
computation. Furthermore, P. Watson and J. Dick propose adding intersection sorts if equal terms
happen to belong to incomparable sorts, but do not give a practical algorithm for doing this.

13 Conclusion

The first contribution of this work is to give an operational semantics for G-algebra and equational
deduction in an order-sorted framework. The need for retracts and sort-decreasingness disappears in
our approach, which is more powerful than previous approaches such as [GKK90, Wal92], in the sense
that every completion process that terminates in these frameworks also terminates with ours.

The second interest of our approach is to formalize the notion of decorations. Decorated terms
appear to be quite adequate to deal with membership declarations coming either from variable decla-
rations, or term declarations. In fact decorations are exactly what is needed at run time for recording
sort updates. The operations of matching and unification proposed in this paper are limited as much
as possible to a local use of this decoration information. As a consequence, this gives a theoretical
model for the implementation of dynamic types in a quite efficient way via for example the use of
jungle [HP88] rewriting to implement decorated terms.

The third contribution is to provide a relation with the notion of deduction with con-
straints [KKR90, NR92]. In the same vein, H. Comon designed the completion of rewrite systems
with membership constraints [Com92]. We feel that the notion of decorated terms should provide
another attractive alternative, while keeping the interesting notion of sorts as constraints.

A promising direction for further research is to extend the computations on decorated terms to a
more powerful language on decorations, as in [MSS90], where operations on sorts can be specified.

Acknowledgements: We sincerely thank Uwe Waldmann and Andrea Werner for their comments
on earlier versions of this work.
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A Proof Transformations

For the definition of the decorated terms ¢, ¢/, t", ¢ and rules ¢, ¢, ¢", see Proposition 10.3 and section

11.6, respectively.

A.1 Completeness of Completion

~

Orient_(N)SD :
Deduce :
Deduce_deco :
Simplify R :
Simplify D :
Delete :
Compose R :
Compose_t) :
Compose_D_deco :
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A2

Maximally Subterm Sharing Rewriting

Orient_(N)SD :

Delete :
Deduce_MSS :

Simplify_MSS D :

Compose MSS_D :

Collapse_ MSS_D :
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