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Ordonnancement d’une machine
sous contraintes de précédence avec retard

Résumé : Cet article traite un probleme d’ordonnancement sous contraintes de
précédences avec retard. Un ensemble de n taches doit étre ordonnancé dans une
machine de maniere a minimiser la durée totale d’exécution. Les exécutions de ces
taches sont contraintes par des relations de précédence temporisées, par exemple,
une tache ne peut commencer son exécution qu’apres la fin de 'exécution de chacun
de ses prédécesseurs plus un retard. Dans le cas ou les temps d’exécution de taches
sont unitaires et les durées de retards entieres, le probleme est NP-difficile dans le
sens fort. Dans le cas ou les temps d’exécution de taches sont entiers et les durées de
retards unitaires, le probleme est polynomial, et un algorithme de complexité O(n?)
est présenté. Les cas d’exécutions préemptives et non préemptives sont tous les deux
considérés.

Mots-clé : ordonnancement, durée d’ordonnancement, précédences avec retard,
complexité, algorithme optimal.



Single Machine Scheduling Subject to Precedence Delays 3

1 Introduction and Problem Description

Consider the following scheduling problem. There are a single machine and a set of
n tasks to be run on that machine. The executions of the tasks are constrained by
precedence constraints which are described by a directed acyclic graph G = (V, E),
referred to as task graph, where the set of vertices V' corresponds to the set of tasks
and the set of arcs £ to the precedence constraints. The task graph is a weighted
graph with vertices weighted by task processing times p;, ¢ € V, and arcs weighted
by lengths of delays [;;. For any pair of tasks ¢,5 € V, if (¢,7) € E, then task j
can start execution only /;; time units after the execution completion of task z, i.e.,
¢i + l;; < a;, where ¢; is the completion time of task ¢, a; is the starting time of task
J. Throughout the paper, processing times and precedence delays are assumed to
be nonnegative integers. The problem is to find a feasible schedule (which satisfies
the precedence delays) such that the makespan, i.e. the completion time of the last
executed task, is minimized. We analyze both the preemptive and the nonpreemptive

scheduling problems.

According to the three-field notation scheme introduced by Graham, Lawler,
Lenstra and Rinnooy Kan [11], our nonpreemptive (resp. preemptive) scheduling pro-
blem can be denoted as 1 | prec(l;;), pj | Cmax (resp. 1 | pmin, prec(li;), pj | Cmax),
where [;; denotes precedence delays. In case we have identical parallel machines, the

problems can be denoted by P | prec(l;;), pj | Cmax and P | pmtn, prec(li;), pj | Cmax-

The notion of precedence delays was first introduced in Balas, Lenstra and Vaza-
copoulos [3], where the term “delayed precedence constraints” was used. This notion
can be used to model the release date of the tasks. Indeed, by adding a fictive “ini-
tial” task of which all tasks are its successors, the precedence delay between the
“initial” task and any particular task can be considered as the release date of the
latter. In a similar way, the precedence delays can also be used to model the delivery
times (which are in certain sense equivalent to due dates). Indeed, by adding a fictive
“final” task of which all tasks are its predecessors, the precedence delay between a

task and the “final” task can be considered as the delivery time of the former.

Note however that the notion of precedence delays is different from that of com-
munication times in the scheduling literature (see e.g. [17]). The effective communi-
cation times between tasks depend on the task assignment. Communication times
between tasks which are assigned to the same machine are usually assumed to be

small, typically negligible (i.e. zero). However, precedence delays between tasks are
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4 L. Finta, Z. Liu

assumed to remain unchanged even when two tasks are assigned to the same ma-

chine.

Single-machine scheduling has been receiving much interest in the literature. In-
deed, as Baker [2] indicated, it is a building block in the development of a compre-
hensive understanding of complicated systems. The reader is referred to the survey
papers by Dileepan and Sen [7], Gupta and Kyparisis [12], and Lawler, Lenstra,
Rinnooy Kan and Shmoys [14] for research work in this field.

The scheduling problem analyzed in this paper is an extension of the model
with release and delivery times (or due dates). Moreover, it has direct applications
in manufacturing systems and computer systems. For example, in [8], a scheduling
problem of multiprocessor system is reduced to this single-machine model, where
the tasks represent communications on a bus and the precedence delays represent
execution times of threads in parallel processors. This model also arises in job-shop
scheduling. Dauziere-Peres and Lasserre [6] proposed a modification of the shifting
bottleneck procedure of Adams et al. [1]. Such a modification takes into account the
precedence delays associated with the precedence relations induced by scheduling a

bottleneck machine, and therefore yields better performances.

The general nonpreemptive scheduling problem for makespan minimization sub-
ject to release and delivery times (which corresponds to the problem with precedence
delays of zero length inbetween tasks except for those associated with the “initial”
and the “final” tasks) was shown to be NP-hard by Garey and Johnson [9]. Carlier
[4] proposed an efficient branch-and-bound algorithm for solving the problem. When
all the task processing times are equal, Simons [16] and Garey, Johnson, Simons and

Tarjan [10] proposed polynomial algorithms for the optimal solution.

In the preemptive case, however, simple polynomial algorithms solve the problem
for makespan minimization subject to release and delivery times. Indeed, as observed
by Garey et al. [10], the presence of precedence constraints (with zero delay) is
essentially irrelevant in this case: One can first modify the release and delivery
times so that they become consistent with the precedence relations, and then apply

the Largest-Delivery-Time policy, see Horn [13].

It is easily seen from the above discussions that the NP-hardness of makespan
minimization subject to release and delivery times implies the NP-hardness of ma-

kespan minimization subject to integer precedence delays. Balas, Lenstra and Vaza-

Inria



Single Machine Scheduling Subject to Precedence Delays 5

copoulos [3] showed that when release and delivery times are all equal, the makespan

minimization subject to integer lengths of precedence delays remains NP-hard.

In this paper, we show that even if tasks have unit execution time (UET), the
problem of makespan minimization subject to integer lengths of precedence delays
is still NP-hard (in strong sense). However, in case of unit length of precedence
delay (UPD), even if the tasks have arbitrary integer execution times, the problem
becomes polynomial, and we provide an O(n?) algorithm. These results hold for

both preemptive and nonpreemptive scheduling.

The presentation of the paper is organized as follows. In Sections 2 and 3 below,
we consider nonpreemptive scheduling problems. We prove in Section 2 the NP-
hardness for the case of arbitrary integer precedence delays. In Section 3, we provide
the polynomial solution for the case of unit precedence delay. In Section 4, we extend
these results to preemptive scheduling problems. Finally, in Section 5, we provide

some concluding remarks.

2 NP-hardness

In this section, we prove the NP-hardness of the nonpreemptive scheduling problem
1| pree(l;;), pj =1 | Cmax- We consider the associated decision problem defined as

follows.

(P1): Single-machine scheduling with unit execution time and integer lengths of

precedence delays. Given a directed acyclic graph G = (V, £) with unit execution

time p; = 1 for all j € V, precedence delays [;; € IN, & {1,2,---}, and a time

limit T € INy, does there exist a function ¢ : V. — {0,1,---,7 — 1} such that
o(t)+ 1+ 1L; <o(y) for all (7,5) € F.

This problem will be shown to be NP-complete. In order to do that, we begin
by introducing a slightly more complex problem (P2) which can be polynomially
transformed to (P1). In (P2) there are some forbidden regions for the scheduling
function, i.e., the machine is not available in some periods of time. We then show
this new problem (P2) to be NP-complete so that (P1) is also NP-complete.

(P2): Single-machine scheduling with unit execution time, integer lengths of pre-
cedence delays and forbidden regions. Given a directed acyclic graph G = (V| E)

with unit execution time p; = 1 for all § € V, precedence delays [;; € IN,, a time li-

RR n " 2198



6 L. Finta, Z. Liu

mit 7" € IN,, and some positive integers 0 < by < e; < by <ey<---< b, <e, <T,
does there exist a function o : V — {0,1,---,7 — 1} such that

(i) for all (i,5) € E, o(i) + 1 4+ i; < o(j), and

(ii) forall e € V and all s € {1,2,---,r}, o(z) ¢ [bs, €5).
Lemma 1 (P2) polynomially transforms to (P1).

Proof. Let
Ve = U {bs,bs + 1,--+,es—2,€es — 1}.
1<s<r
Let V' = {i1, 09, -+, in} (vesp. V" = {j1,J2, -, ji}) be the odd (resp. even) numbers
in V°such that V° = V'UV" and 1y <1y < --- < 15,71 < J2 < -+ < Jg. We construct
two chains G4 = (Vi, F1) and Gy = (V4, E3) such that

Vi = {‘Uimviza"'fvih}v
k= {(vis’vis+1) | 3:172a"'7h_1}7
Va = {‘0117‘Uj2a"'7v‘7'k}7

E2 = {(‘Ujs7vjs+l) | § = 1725 e 7k - 1}
The lengths of precedence delays are defined as follows:

fep1 —is—1, s=1,2- h—1,

VigiVig g

[ = o1 —js—1, s=1,2- k—1.

Vis Vis41

Now, for any given instance of (P2) with task graph G and time limit 7', we
construct an instance of (P1) as follows. The task graph G’ in (P1) is defined as the
union of (&, (G; and (G5 connected by a initial task a; and a final task a; in such a

way that

o the precedence delays between a; and any tasks of G without predecessors are

1.

?
o the precedence delays between any tasks of G without successors and a, are
1.

)

e the precedence delay between a; and v;, (resp. vy, ) is i1 + 1 (resp. j1 + 1);

Inria



Single Machine Scheduling Subject to Precedence Delays 7

e the precedence delay between v;, (resp. v;, ) and ag is T'—ip+1 (resp. T'—jr+1).

The time limit in (P1) is T+4.

It is easy to see that there is a solution to (P2) if and only if there is a solution to
(P1). Indeed, according to the construction of G, the chains Gy and (3 are critical
paths in G’ so that task v,,, 1 <s < h, (resp. v;,, | <s < k) should be executed at
time i5 + 2 (resp. js5 + 2). |

We now transform the classical 3-satisfiability problem, denoted by 3SAT, to
(P2) by a polynomial transformation. Recall the definition of 3SAT:

3SAT: 3-satisfiability. Given a set X of binary variables z;, 1 < i < m, and a
collection C' of clauses ¢; over X, 1 < 5 < k,|¢;| = 3, is there a satisfying truth

assignment for C'?

Lemma 2 3SAT polynomially transforms to (P2).

Proof. Given an instance of 3SAT as above, we construct the following instance
of (P2), such that there exists a scheduling function o if and only if 3SAT has a

solution.

The structure of our task graph G = (V, E) is similar to the one used by Ullman
[15] in the proof of NP-hardness of makespan minimization of UET tasks on identical
machines under precedence constraints. In words, task graph G is constructed as
follows: For each variable z; € X, 1 < ¢ < m, we have two paths z;0 — 2,7 —

- — Tim and T0 — Tip — -+ — Ty in G The arcs (x; j_1, 2, ;) and (&;;-1, % ;)
=] =2m+jforl <21 <m,1 <3 <m. For

each path there is one more vertex y; or y;, without outgoing arc, connected to the

have precedence delays Iy, ., o, = lz; ,_, =,
path by an arc (2;;_1,¥;) or (Z;—1,;) with precedence delays I, ;| . = lz,,_, 5 = m
for 1 <2 < m. For each clause ¢, € C, 1 < r < k, we have in G seven vertices
¢rsy 1 < s < 7. There is an arc from z;,, (or Z;,) to each clause ¢, s whenever it

contributes.

An example of the construction of the instance of (P2) is illustrated in Figure 1,
where the set of literals is X = {x1,x9, 3,24} and the clauses are C7 = x1 + x5 + T3
and Cy = &1 + x3 + T4, hence, k = 2, m = 4. The graph is top-bottom oriented and

all the arcs at the same level have the same length. Some vertices and vertex names,

RR n " 2198



8 L. Finta, Z. Liu

and some arcs connected to clause vertices ¢y ; are omitted for sake of simplicity,
1<y <7

Z10 Z30 Z30 Z40 Z10 Z20 Z30 Z 40
.\Q. o o o .\Q. o o [
9 % Y1 9
r11 @ .\4. ® ® ® .\4. ° T4 @
10 Y2 Y2 10
Ilz . . .\4. . . . .\4. ;'E42 .
11 Y3 Y3 11
$13 . . . .\4. . . . ;'E43 .\4.
12 Ya 12 U

[ J [ J [ J
C11 C12 C13 C14 Ci5 Ci6 C17 C21 C22 C23 C24 Ca5 Ca6 C2

-~

Figure 1: Task graph of the instance (P2) corresponding to the instance of 3SAT.

The formal definition of the graph is the following.

e The set of vertices V contains:

—zjyand 2y for 1 <e<m, 0 <53 <m,
— y; and y; for 1 <12 < 'm,

—gsforl <r<kand 1<s<T.

e The set of arcs £ and precedence delays are:

— (@i -1, ;) and (Z; j_1,%;;) with precedence delays leg iz, = lai 120, =
2m+gjfor 1 <e<m, 1 <3 <m,
— (%45-1,y:) and (Z;;_1,y;) with precedence delays o, ., = lz;,_, 5. = M

for 1 <i1<m.

— The arcs connecting x;, (resp. Tiy) and ¢5, 1 < ¢ < m, 1 < r <k,
1 < s <7, are defined as follows. Let ¢, consist of literals z,,, 2y, , Zus

where each z independently stands for  or z, in a fixed order, i.e. ¢, =

Inria



Single Machine Scheduling Subject to Precedence Delays 9

Zug F 2wy + 2w, | Sup < uy < uzg <m, 1 <r < k. Let ayazas be the
binary representation of s, 1 < s < 7. Then for 1 <p <3, if a, =1, we
have an arc (zy,m,¢s), else, if a, = 0, then we have an arc (Zy,m, crs),
where z stands for  or x, should z be x or z, respectively. Note that
since a clause should have at least one literal having truth assignment,
the case a1 = a3y = a3 = 0 cannot occur.

The precedence delays are defined by [ =1 =k+2m—1.

ZupmiCrs Eupwucrs

There are m+2 forbidden regions for the scheduling function o. For 1 < < m—1,
the i-th forbidden region F; = [b;, ¢;) is of length ¢. The last three forbidden regions
F;=1[b,e), m <1< m+2, are of lengths k, m — 1, m, respectively. The start and

the end of those regions are:

=
3
Il

S~
3
+
—

Il

m + 1+ (2m + 2)i + L1, e; = 2m+ 14 (2m+2)i+ 13,
5m22—|—5m’ e, = 5mz)?"%m—l—k,

5m22—|—7m_|_k7 Emt+1 = 5’rn2+9’rn_|_k_17
5m22+9m—|—2]€—1, Emi2 = 5m2¥—|—2k—1.

Thus, there are m + 3 active regions for the machine, the first one with length
4m + 3, the next m — 2 ones with length 2m + 2, the m-th with length m + 1, the
m + 1-st with length m, the m + 2-nd with length & and the m + 3-rd with length

6k.

The time limit is 7' = W# + 8k — 1. Note that 7' = |V| + S 74%(e; — b;) so

that under any feasible scheduling solution the machine never idles.

The forbidden and active regions of the machine corresponding to the example

of Figure 1 is illustrated in Figure 2. The time limit is 7" = 77.

| 19 1] w0 [ 2] w0 | 3] s5[2] a]s]2]a] 12|

0 19 20 30 32 42 45 50 52 56 59 61 65 77 Time

forbidden

Figure 2: Forbidden and active regions of the machine of the instance (P2).

We claim that there is a solution to the instance of 3SAT if and only if there there
is a feasible schedule for the above instance of (P2). The intuitive idea behind the

proof is that z; (or z;) is true if and only if the execution of ;5 (or Z;0) begins in the

RR n " 2198
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10 L. Finta, Z. Liu

time interval [0, m — 1]. The problem instance of (P2) is constructed in such a way
that there is a solution to the instance of 3SAT if and only if there there is a feasible
nonidle schedule for the above instance of (P2). In order to have a nonidle solution,
we have to schedule in the first m time slots either task ;o or z;9, corresponding to
the true value associated to each literal x; being 1 or 0, respectively. The delays on
the precedence constraints are chosen such that once all z;¢’s and z; s are executed,
we cannot change the order of execution for their successors, i.e. z; ;’s and z; ;’s, for

any fixed j, 1 < j < m, without introducing at least one idle time in the schedule.

In the following, we denote by z}. (resp. y;) the first executed task among tasks
z;; and z; (resp. y; and y;) and by z7; (resp. y{’) the second one. In order to simplify
the proof (and the notation in the proof), we consider an additional forbidden region
of zero length Fy = [bg, e9) with by = €9 = 2m + 1. We have therefore m + 3 for-
bidden regions in total (including the above one with zero length): Fo, Fy, -+, Frya.
Similarly, we consider m +4 actives regions Ag, Ay, -+, A;13, where Ag is the active
region between time zero and time 2m + 1, and A; is the active region from time
2m 4+ 1 to time 4m + 3.

For all tasks v € V, we define L(v), the length of the longest path to vertex v,

as follows:
v)
(v)

where P(v) denotes the set of immediate predecessors of v in the task graph.

L(U) . { maXyeP(v) L(u) + Zuv + 17 ﬁ(

# 0,
=1 0. >

?

A task is said to be available at some time ¢ if each of its predecessors has finished
execution and the precedence delay from the predecessor and the task has elapsed

by time t.

Claim 1: Tasks with labels x;; or T;; which are successors of the first m exvecuted

tasks must be executed as soon as they become available in order to have a nonidle

schedule.
Proof of Claim 1:

Tasks z;,, or z;, are not available before time ¢,,_1 + 1 due to the fact that

Koy 2 3
L(zin) = L(zim) = w e 4L
Since the number of time units where the machine is active until time e,,_1 + 1 is

2m? + 2m, which is equal to the maximum number of possibly available tasks until

Inria



Single Machine Scheduling Subject to Precedence Delays 11

this time {@;;, Tij, Y41, Y41, 1 <2< m, 0 < j < m — 1}, all these tasks should be

executed by time e,,_1 in order to have a nonidle schedule.

Let z} o be the task executed at time 0. It is clear that only task z{ ,, is available

z!  are executed as

at time e,,_y + 1, provided all tasks on the path z} o, @, -, 2},

soon as they become available. Let ;0 (or Z;,0) be the task executed at time v,
I < v < m — 1. The same argument shows that only task x;,,, (or Z;,,) is avai-
lable at time e,,_1 + 1 4+ v, provided all tasks on the path 0,21, -, 2im (or

Ti,0,Tiy1, " Tiym) are executed as soon as they become available. O

Claim 2: In order to have a nonidle schedule, tasks are executed in active region

Ag in the order of

! ! n !

7 " "
Li0rTig0r """ s Ls,,00 Y100 205 """ s Tmoy Y1y

where {t1,- -+, 1, } is a permutation on {1,2,---,m}, and in active region A;, 1 <
7 <m — 1, tasks are executed in the order of

oo r " oo
YioTiygo Tiggs y Limis T15s T2js s Tmgs Y1

and in active region A,,, tasks are executed in the order of

! ! !

"
ym7$i1m7$i2m7 7'1;imm7

and in active region A,,11, tasks are executed in the order of

n

" "
TimrToms " s T+

Proof of Claim 2:

For 1 < <m, 1 <j <m, the length of the path to tasks z;; and z;; is:

G —=1)

L(xij) = L(zyj) = 2m +2)j + ==

=ej—1 + 1,
and the length of the path to tasks y; and y; is:

-2 -1

L{y;) = L(y;) = 2m +2)( — 1) + 5

+m+ 1.

RR n " 2198



12 L. Finta, Z. Liu

Therefore, the maximum number of possibly available tasks by time e;_; + 1 is
(2m + 2)j, 1 <7 < m. Since the number of time units where the machine is active
until time e;_; + 1 is also equal to (2m + 2)7, 1 < j < m, all the tasks should be

executed by time e;_; in order to have a nonidle schedule.

At time b1 —1=(2m+2)(j —1)+2m+ (]‘_2)2&, 1 <35 < m, tasks x;; or Z;;
are not available, and task y! is available if:
o(xjo) + L(y;) < bj-1 — 1,
so that

Therefore, tasks {z},,1 < ¢ < m} should be executed in the first m time slots of the

schedule in order not to have idle.

Consider now the first time slot of active region A;, 1 < 5 < m, i.e. time slot

ej—1 = bj1+ 7 — 1. Task y is available only if
o(zj) + L(y) < ej1,
or equivalently,
O'(:L‘;-/O) <m+j-—1
An induction on j = 1,2,---,m yields that task z; is scheduled at m + 5 — 1.

Once the schedule of tasks z}, and 2/, 1 <@ < m, are fixed, a simple inductive
argument shows that all tasks z;; or z;;, 7 > 1, should be executed as soon as they

become available.

It then follows that, in active region Ag, tasks are executed in the order of

/ ! ! "o

" "
Li0rTig0r """ s L5,,00 Y100 205 """ s Loy Y1

where {i1,---,t,} is a permutation on {1,2,---,m}, in active region A;, 1 < j <

m — 1, tasks are executed in the order of

o ro " N
YioTiygo Tigjs y Lipis T15s T2js s g Y1

and in active region A,,, tasks are executed in the order of

" I 1 1
ym7‘ri1m7 tom? 7:Eimm7

Inria



Single Machine Scheduling Subject to Precedence Delays 13

and in active region A,, 1, tasks are executed in the order of

"

n n .
xlm? x?m? 7xmm'

Claim 3 In order to have a nonidle schedule, only tasks of type ¢, 1 < r < k,

1 <5 <7, are executed in the last two active regions.

Proof of Claim 3:
The length of the path to tasks of type ¢, is

5m? + Tm

L(c,s) = 5

k - bm+1.

Hence no task of this type is available before the end of the active region A,,1;.
Since the number of tasks to be executed in the last two active regions is equal to
the number of tasks of type ¢, only tasks c¢,s are to be executed in the last two

active regions in order to have a nonidle schedule. O

Claim 4 In order to have a nonidle schedule, tasks of type ¢,s, 1 < r < k, 1 <
s < 7, that are available for execution in the active region A, 4o should have their

predecessors executed in the active region A,,.
Proof of Claim 4:

The earliest time when some successor of the first executed task of type z/ . in

the active region A,, 41 becomes available is:

5m2 +9
€m + 1 + lz;’m,crs = w

—|— 2k - bm_|_2.

Thus, in order for some task c,; to be executed in the active region A,, .., all its
successors, 1.e. tasks of type z;,, or ,, should be executed in the active region A,,.
It then follows that the predecessors of tasks that are available for execution in the

. . 7
active region A, 4o are of type L, ]

Observe that for each pair ¢,s and ¢4, s # t, there is at least one j such that

either x;,, precedes ¢,s and z;,, precedes ¢, or Z;,, precedes ¢,; and x;,, precedes

RR n " 2198



14 L. Finta, Z. Liu

¢r¢. Thus, for any r, 1 < r < k, one and only one of the seven tasks ¢,5, 1 < s <7,

can be executed in the active region A,, .

Therefore, we have nonidling scheduling function o if and only if the first m

executed tasks correspond to a satisfying truth assignment. |

Theorem 1 Both (P1) and (P2) are NP-complete.

Proof. The assertion follows from Lemmas 1 and 2. |

Corollary 1 The problem 1 | prec(l;; > 1), p; =1 | Ciax ts NP-hard.

Corollary 2 The problem 1 | prec(l;;), pj =1 | Cmax ts NP-hard.

3 Polynomial Solution

In this section, we consider the nonpreemptive scheduling problem under the as-
sumption that precedence delays have unit length. However, the task processing
times can be arbitrary natural numbers. This problem, denoted by 1 | prec(l;; =
1), pj € INy | Cpax, will be shown to be polynomial, and we provide an optimal
O(n?) algorithm for the minimization of makespan. At the end of this section we
will extend the optimal solution to the case where some of the precedence delays
have length zero, and also to the case where release and delivery times are zero or

one unit.

The optimal schedule, referred to as Lexicographic Order Schedule (LOS) in this
paper, is a list schedule proposed by Coffman and Graham [5] for the makespan
minimization of an arbitrary task graph with UET tasks on two parallel processors.
LOS is based on a static list of tasks defined by the lexicographic order as follows.
Let there be f final tasks. Assign labels 1,---, f to these final tasks in an arbitrary
way. Suppose now that & > f tasks have already been labeled by 1,2, ... k. Consider
all the tasks whose successors are all labeled. Assign label k+1 to the task such that
the decreasing sequence of the labels of its immediate successors is lexicographically

minimal (tie is broken in an arbitrary way). LOS is then the list schedule which

Inria



Single Machine Scheduling Subject to Precedence Delays 15

assigns the available tasks to the machine according to the decreasing order of the

labels.

Theorem 2 Let G = (V, E) be an arbitrary task graph. If precedence delays have
unit length, then LOS minimizes the makespan of G within the class of nonpreemp-

tive schedules.

Proof. If the machine does not idle under LOS, then LOS is trivially optimal.
Assume in the following that the machine does idle under LOS. Let M be the
makespan of GG under LOS. Let the label of task v € GG assigned by LOS be A(v).
Denote by v : V — {0,1,2,---, M — 1} the scheduling function of LOS. Denote by
P*(v) the set of all predecessors of v in G.

Consider first the case where all the tasks are UET. For sake of simplicity of
notation, we assume, by convention, that whenever the machine is idle before time
M, it is executing a fictitious task, denoted by 0, with A(0) = 0. Note that unless
all the tasks have completed execution, the machine never idles two or more units
of time contiguously due to the fact that the precedence delays have unit length.
Denote by v~ : {0,1,2,---, M — 1} — V U {0} the inverse of v, i.e., y~!(¢) denotes
the task which is executing on the machine during the time slot [¢,¢+4 1) under LOS.

Let sp be the earliest time for which the machine is nonidle under LOS during
the time interval [sg, M):

so=min{s |0<s< M -1, Vte{s,s+1,--- .M —1}: ~(t)#0}.

Denote by Vi the set of tasks assigned to the machine during the time interval

[0, M):

Vo= U ).

t:SO

Note that the task executed at time sg — 2 is a predecessor of all the tasks in
Vo (otherwise, as precedence delays have unit length, at least one task in V5 which
is not a successor of y7'(sg — 2) should be executed at time sq — 1.) Let s; be the
earliest time for which the machine is continuously executing predecessors of all the
tasks in Vp:

sp=min{t [0<t<so—2, YoeVo: {77 1),y (t+1),-,7 (50— 2)} € P*(v)}.
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Denote by Vi the set of tasks assigned to the machine during the time interval

[$1,80 — 1):
50—2

i= Ul

t:sl

Let uy be the task executed at time s; — 1. Since task u; is not a predecessor of all
the tasks of Vg, u; has a smaller label than tasks in Vi: AM(u1) < mingey, A(v). Thus,
the task executed at time s; — 2 is a predecessor of all the tasks in V; (otherwise,
according to the definition of LOS, at least one task in V; which is not a successor
of v7*(s; — 2) should be executed at time s; — 1 due to again the assumption
that precedence delays have unit length.). Let s, be the earliest time for which the

machine is continuously executing the predecessors of all the tasks in V;:
sp=min{t [0<t<s1—2, YoeVi: {77 1),y (t+ 1), 7 (51— 2)} € P(v)}.

Denote by V, the set of tasks assigned to the machine during the time interval

[$2,81 — 1):
81—2

V= UG

t:SQ

Let us be the task executed at time sy — 1. Due to the facts that task u; has a
smaller label than the tasks in V;, that task uy is not a predecessor of all the tasks of
Vi1, and that every task in V5 is predecessor of all the tasks of V; and all the tasks of
Vo by transitivity, task ug has a smaller label than tasks in Va: A(uz) < mingey, A(v).
Thus, the task executed at time s; — 2 is a predecessor of all the tasks in V5, so that
we can define s3 as the earliest time for which the machine is continuously executing

the predecessors of all the tasks in V5.

Continue this procedure until the beginning of the schedule, and we obtain the
time epochs 0 = s, < 8,1 < -+ < 83 < 81 < 89 < M, such that for all 1 <7 < m,

every task of V; is predecessor of all the tasks of V;_;, where
Si_1—2
Vi= U {1}
i=s;

Let u; be the (possibly fictitious) task executed at time s; — 1, 0 < ¢ < m.

Due to the precedence relations between tasks of V; and V;_;, 1 < ¢ < m, it is
clear that any feasible schedule of task graph G has at least length m + >, |Vi|,
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Single Machine Scheduling Subject to Precedence Delays 17

where |V;| denotes the cardinality of V;. Since M = m + > |Vi|, LOS is thus an

optimal schedule.

Consider now the general case where task processing times are arbitrary natural
numbers. We define the sets of tasks in a similar way, viz., V is the set of tasks
executed after the last machine idling, and tasks of V;, 1 < < m, are consecutively
executed, and each task of V; is predecessor of all the tasks of V;_;. Since precedence
delays have unit length, there is only one (possibly fictitious) task, denoted by w;_1,
inbetween tasks of V; and those of V;_; in the LOS schedule. Let

m m

UE v Jvi=J{w} - {0}.
1=0 1=1
Then,
M = Z(l{u#o}pui + 1{uz‘=0}) + Z Z po=W+m— |U|7 (1)
=1 i=0 veV;

where W = 3 cy po is the total processing times of G, and 1y} is the indicator

function.

Consider an arbitrary schedule = for G with makespan M’. Let s (resp. t!) be
the time epoch when the first (resp. last) task of V; starts execution under schedule
7w, 0 < ¢ < m. Since every task of V;, 1 <1 < m, is predecessor of all the tasks of
Vi_1, we obtain that ¢t/ — 2 < s! ;. Let V! be the set of tasks which start execution
under 7 during time interval [s, 4], 0 < ¢ < m. Clearly, V; C V!, 0 <7 < m. Denote
by U!_; the set of (nonfictitious) tasks which start execution under = during time

interval (¢;,s._;), 1 <@ <m. It is simple that

v Jui=v-Jvicv-vi=u (2)
1=0 1=0

=1

Therefore,

v

M= (1{U;¢@}( > pa)+ 1{U;=w}) +2. 2P

=1 uEUi’ 1=0 UEV/

= Wam=> lumn
=1

v

Wt m — U], (3)
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where the first inequality is due to the facts that during time intervals (¢}, s!_;),
1 <1 < m, schedule # may have idling periods of length more than or equal to 2

and that during time intervals [s}, %], 0 < ¢ < m, schedule 7 may have idling periods.
Inequality (3) together with relations (1) and (2) immediately imply that
M >W4+m—U|>W+m-—|U|=M.

Therefore, LOS has a minimum makespan. |

In case of UET tasks, the optimality of LOS remains true even when lengths
of precedence delays are allowed to be zero inbetween tasks of a subchain of the
task graph, i.e., [;; = 0 only if |S(¢)| = |P(j)| = 1, where S(¢) denotes the set of
immediate successors of ¢. In this case, tasks ¢ and j are given the same lexicographic-

order label.

More specifically, we define a Modified Lexicographic Order Schedule (MLOS),
based on the following modified lexicographic-order labeling: Let there be f final
tasks. Assign labels 1,---, f to these final tasks in an arbitrary way. Suppose now
that k& > f tasks have already been labeled by 1,2,...k. Consider all the tasks
whose successors are all labeled. If the task whose decreasing sequence of the labels
of immediate successors is lexicographically minimal has a unique successor, and if
the precedence delay between this task and its successor has length zero, then the

task is assigned the same label as its successor. Otherwise, this task is assigned label

kE+1.

Theorem 3 Let G = (V, E) be an arbitrary task graph with UET tasks. Assume that
for all (u,v) € E, l,, € {0,1}, and that |S(u)| = |P(v)| = 1 whenever l,, = 0. Then

MLOS minimizes the makespan of G within the class of nonpreemptive schedules.

Proof. The proof is analogous to the first part (for the case of UET tasks) of the
proof of Theorem 2. We can define time epochs 0 = s, < 8,1 < -+ < 83 < 81 <

S0 < M, in such a way that for all 1 <1 < m, every task of V; is predecessor of all
the tasks of V;_;, where

S;—1 —2

Vi= U HTm

i=s;

Itl, =0 and v € V, for some 0 < 2 < m, then, according to the assumption,

|S(u)| = |P(v)| =1, so that u € V,. Thus, for any (u,v) € E, ifu € V;_y and v € V],
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then [,, > 1. Therefore, the arguments of the optimality of LOS provided in the
proof of Theorem 2 are still valid. |

Remark: It is easily seen from the above proof that the optimality of MLOS
extends to the case where the processing times of u and v are arbitrary natural

numbers whenever {,,, = 0.

Remark: As mentioned previously, precedence delays can be used to model release
and delivery times. Thus, the above result of polynomial solution holds for the case
where release and delivery times are unit length. In fact, the polynomial solution
can be extended to the case where release and delivery times are zero or unit length.
In this case, lexicographic-order labeling starts with the final tasks which have zero
delivery times. The proof of the optimality of such an LOS can be carried out by
adding a fictive task as the successor of all the final tasks which have unit delivery

times. The rest of the proof is analogous to that of Theorem 2.

In LOS and MLOS, the lexicographic-order labeling requires O(|E|) operations,
and the on-line scheduling requires O(n logn) operations. Since |E| < n?, the time
complexity of LOS is therefore O(n?).

4 Preemptive Scheduling

In this section, we consider the preemptive case 1 | pmitn, prec(li;), p; | Cmax. It

will be shown in Lemma 3 below that preemptive solutions are not dominant when

tasks have UET.

Lemma 3 Let G = (V, F) be an arbitrary task graph with UET tasks and positive
integer precedence delays. Then for any preemptive schedule S of G, there is a non-
preemptive schedule S’ of G obtained from a polynomial transformation of S, such

that the makespan under S’ is the same as the makespan under S.

Proof. Let M be the makespan of G under schedule S. Assume without loss of
generality that under S, the tasks of V = {1,2,---,n} complete execution in the

order of 1,2, -+, n.

Denote by ki < ky < --- < k. the tasks executed during the time slot [0,1)
under S. Let r(k}), 1 < i < [j, be the execution time of these tasks in [0,1).
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Construct schedule S* as follows. In the time slot [0,1), S* executes exclusively task
ki. Starting from time epoch 1, S* assigns the same tasks to the machine as S does
except for task ki . Whenever S assigns task k; to the machine, S assigns firstly task
kj, secondly task k3, etc., and finally task &; , such that among the total amount of
1 —r(ki) execution time of task k{, task k] occupies the machine for a total amount
r(k}!) of time, 2 < ¢ < [;. Tt is easy to see that S' is a feasible schedule, and that
all tasks (in particular, task kj) complete execution earlier (i.e. no later) under S*
than under S.

Consider now schedule S*. Denote by kf < kj < --- < ki the tasks executed
during the time slot [1,2) under S*. Let r(k?), 1 < ¢ < I3, be the execution time
of these tasks in [1,2). Construct schedule S? in the same way as we do for S*.
In the time slot [1,2), S* executes exclusively task k7. During time intervals [0, 1)
and [2, M), S* assigns the same tasks to the machine as S does except for task
ki. Whenever S! assigns task k? to the machine, S? assigns firstly task k2, secondly
task k2, etc., and finally task ki, such that among the total amount 1 — r(k}) of
execution time of task k?, task k7 occupies the machine for a total amount r(k?) of
time, 2 <7 < [,. Again, it is easily seen that S? is a feasible schedule, and that all

tasks (in particular, task ki) complete execution earlier under S* than under S*.

In general, for 2 < m < M, we define schedule S™ based on schedule ™1,
Denote by k" < kJ* < --- < k" the tasks executed during the time slot [m — 1, m)
under S™7 . Let r(k*), 1 < i < I, be the execution time of these tasks in [m—1,m).
Construct schedule S™ as follows. In the time slot [m—1,m), S™ executes exclusively
task k7. During time intervals [0,m — 1) and [m, M), S™ assigns the same tasks
to the machine as S™ ! does except for task k7*. Whenever S™ assigns task k7" to
the machine, S™ assigns firstly task £3*, secondly task k3*, etc., and finally task " ,
such that among the total amount 1 — r(k]") of execution time of task k", task
k™ occupies the machine for a total amount r(k7) of time, 2 < i < [,,. One easily
sees that all tasks (in particular, task k") complete execution earlier under S™ than

under S™1.

We now prove the feasibility of S™ by induction on m. As we mentioned pre-
viously, the feasibility of S! is trivial. Assume S™~! is a feasible schedule. In order to
prove the feasibility of S, it suffices to analyze task k7" which is the only task that
might start execution strictly earlier in S™ than in S™~!. Note that the following

facts hold

Inria



Single Machine Scheduling Subject to Precedence Delays 21

e all the precedence delays are integers;

e in schedules S~ and S™, all the predecessors of task kJ" finish execution at

integer time epochs no later than time m — 1;
e schedule S™7! is feasible;

e task k]* is assigned to the machine during the time slot [m — 1, m).

Therefore, in schedules S™! and S™, all precedence delays between task k7" and
its predecessors have elapsed by time m — 1. Indeed, if a predecessor of k", denoted
by v, is finished at time ¢ < m — 1 in the feasible schedule S™~!, then lypm <5 —1,
where s < m is the starting time of £7* in S™'. As l, g and t are integers, we have

necessarily lu,k}ﬂ <m —1—t. Thus task k]* is executable at time m — 1 in schedule

S

Consider the final schedule S™ under which all tasks finish execution earlier than
under S. Since SM is a nonpreemptive schedule by definition, we can take S™ as

S’, and the proof is thus completed. |

As a consequence of Lemma 3 and Corollaries 1 and 2, we obtain
Corollary 3 The problem 1 | pmtn, prec(l;; > 1), pj =1 | Cpax is NP-hard.
Corollary 4 The problem 1 | pmin, prec(l;;), pj =1 | Cuax ts NP-hard.

In view of Lemma 3, in case of preemptive scheduling, one only need to split tasks
to UET tasks. Let PLOS denote the Preemptive Lexicographic Order Schedule which
splits, if necessary, tasks to UET tasks. In other words, at each integer time epoch,
PLOS assigns an executable task to the machine for one unit of time according to
the lexicographic-order labeling of the tasks. Applying Lemma 3 and Theorem 3

implies

Theorem 4 Let G = (V, E) be an arbitrary task graph. If precedence delays have
unit length, then PLOS minimizes the makespan of G within the class of preemptive

schedules.
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Proof. Let G’ be the task graph obtained from replacing each task ¢ of G by a chain
of p; UET tasks. The precedence delays on these chains have length zero. Thus, an
application of Lemma 3 and Theorem 3 implies that MLOS minimizes the makespan
of G' within the class of preemptive schedules. The assertion of the theorem now
follows from the facts that MLOS for G’ coincides with PLOS for G, and that the

optimal preemptive schedules of G and G’ have the same makespan. [

5 Conclusions

In this paper, we have considered a single-machine scheduling problem with prece-
dence delays for the minimization of makespan. We have analyzed both preemptive
and nonpreemptive cases. We have shown that the problem is NP-hard when tasks
have unit execution times and precedence delays have integer lengths. We have pro-
vided an O(n?) optimal algorithm when tasks have arbitrary integer execution times

and precedence delays have unit length.

Note that the polynomial solution LOS is not optimal for two machines. A coun-
terexample is illustrated in Figure 3, where all the processing times and precedence
delays have unit length. The Gantt charts in Figure 3 indicates that an optimal
solution has no idle and yields a strictly smaller makespan than that of LOS.

10 11 12 Ovtimal Pl| 12 | 11 7 8 4 2
p ma P2 9 10
m ply 12 |10 8 6 4 2

Figure 3: A counterexample of LOS in two machines.
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