N

N

When all the observers of a distributed computation do
agree
Eddy Fromentin, Michel Raynal

» To cite this version:

Eddy Fromentin, Michel Raynal. When all the observers of a distributed computation do agree.
[Research Report] RR-2194, INRIA. 1994. inria-00074478

HAL 1d: inria-00074478
https://inria.hal.science/inria-00074478
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074478
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

When all the observers
of a distributed computation do agree

Eddy Fromentin and Michel Raynal

N° 2194
Mars 1994

PROGRAMME 1
Architectures paralleles,
bases de données,

réseaux et systemes distribués

apport
derecherche

%I INRIA

RENNES

When all the observers
of a distributed computation do agree

Eddy Fromentin* and Michel Raynal *

Programme 1 — Architectures paralléles, bases de données, réseaux

et systemes distribués
Projet Adp

Rapport de recherche n 2194 — Mars 1994 — 23 pages

Abstract: A consistent observation of a distributed computation can be seen as
a sequence of states and events that might have been produced by executing this
computation on a monoprocessor. So a distributed execution generally accepts a
lot of consistent observations. This paper concentrates on what all these observa-
tions have in common. An abstraction called inevitable global state is defined. A
necessary and sufficient condition characterizing such states is given and a monitor-
based algorithm that detects them is also presented . Possible uses of such states
are sketched.

Key-words: distributed computation, relevant event, consistent global state,
causality, precedence, concurrency, inevitable global state, unstable property de-
tection, observation, observer-independent property

(Résumé : tsup)

This work has been supported in part by the Commission of European Communities under
ESPRIT Programme BRA 6360 (BROADCAST), by the French CNRS under the grant Parallel

Traces and by a French-Israeli grant on distributed computing.

*e-mail:{fromenti, raynal}@irisa.fr

Unité derecherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : (33) 9984 71 00 — Té écopie: (33) 99 38 38 32

Quand tous les observateurs d’une exécution répartie
sont d’accord

Résumé : On peut considérer qu’une observation cohérente d’une exécution répar-
tie se compose d’une séquence d’états et d’événements qui aurait pu étre produite en
déroulant cette exécution répartie sur un mono-processeur. Une telle exécution ré-
partie accepte donc généralement un grand nombre d’observations cohérentes. Nous
étudions ici une abstraction que nous appellerons €tat global inévitable qui est un
point commun a toutes les observations. Nous donnons une condition nécessaire et
suffisante qui caractérise cette propriété d’inévitabilité étant donné un état global,
présentons un algorithme reposant sur ’emploi d’un contréleur centralisé qui détecte
de tels états globaux et en résumons quelques utilisations possibles.

Mots-clé : exécution répartie, événements observables, état global cohérent, ordre
causal, précédence, concurrence, état global inévitable, calcul de propriétés instables,
observation, propriété indépendante de I’observateur

When all the observers of a distributed computation do agree 3

1 Introduction

Since Lamport’s seminal paper [12], execution of asynchronous distributed programs
is modelized by a partial order on the events produced. Due to the asynchronism
of the underlying support (no common physical clock, no common shared memory,
arbitrary transfer delays) any consistent observation of such a distributed execution
can only see a sequence of all these events that respects the partial order. Using this
sequence of events an observer can reconstruct, starting from the initial state of the
computation, a sequence of global states through which the computation may have
progressed [1, 17]. One important question is then: are there global states seen by
all observations of a distributed computation ?

The detection of such global states (called inevitable in the following) can be very
helpful to solve some problems, as an inevitable global state has necessarily been
“passed through” by the actual execution. In other words an inevitable global state is
independent of observers. According to the application program executed such states
can be used for example to define a checkpoint, or to detect properties that must be
true for all observations or to solve global state oriented problems whose solution
need to be observer-independent [2, 4]. This paper presents a characterization of
such global states and an algorithm to detect them.

The paper is structured in the following way. Section 2 introduces a formal
model for distributed computations. This model considers such a computation at
some observation level and uses notions such as relevant events, local states and
causality induced by messages. Moreover, precedence relations on local states of a
distributed computation are clearly identified. Section 3 presents a necessary and
sufficient condition for a global state to be inevitable. Moreover a generalization is
given by introducing the notion of inevitability with respect to a set of processes.
Section 4 presents an algorithm to detect all inevitable global states of a distributed
computation; its time complexity is O(n’k) (where n is the number of processes
and k = maz;(number of local states of P;)). Related works are briefly examined
in Section 5. The conclusion lists problems that can be solved by using inevitable
global states.

2 Distributed computations

2.1 Distributed programs

A distributed program is made of n sequential processes Py, ---, P, which commu-
nicate and synchronize by the only means of message passing.

RR n"2194

4 E. Fromentin and M. Raynal

The underlying system, that executes distributed programs is composed of n
processors (one per process) that can exchange messages. Each processor has a
local memory. Neither shared memory nor a global clock is available. Messages are
exchanged through reliable, non necessarily FIFO, channels. Transmission delays are
finite but unpredictable.

2.2 Distributed computations
2.2.1 Basic events and Lamport’s level

Execution of a process P; produces a sequence of basic events. A basic event may be
either internal (causing only a change to local variables) or it may involve communi-
cation (send and receive events) [12]. This sequence is usually called the history H;
of P: H;, = e?e} e? e? ---€e7 -+ - where €7 is the 2" basic event executed by P;; e? a
(fictitious) basic event that initializes local variables of P;. Events are instantaneous.

Let H be the set of all these events and let — be the classical binary relation
defined by Lamport on basic events [12] (called causal precedence):

t=jandz+ 1=y
or
ef 5 eg & ¥ is the sending of a message and €/ its reception
or
de? such that e = eZ and €7 = el
When considering basic events, a distributed execution can be represented by
a partially ordered set (poset) H= (H,=). This poset defines the computation at
Lamport’s level; this level is characterized by the fact it comprises all communication
events. Figure 1 displays, in the classical space-time diagram, a distributed execution
at Lamport’s level (events are denoted by black and white circles, messages by
arrows).

2.2.2 Relevant events and user’s level

According to the problem he has to solve (e.g. detection of a global property) only
a subset of basic events are meaningful to the user (e.g. changes of some variables).
These events are called relevant events (Such an abstraction of events of a distri-
buted computation has already been proposed by several authors, see [5, 14]). Let
R be the set of relevant events; these events define the user’s level (in the distri-
buted execution of Figure 1, relevant events are noted by black circles). The poset

INRIA

When all the observers of a distributed computation do agree 5

P

P

Py

Figure 1: A distributed execution at Lamport’s level

R = (R,>) defines the distributed computation at the user’s level. Interestingly,
thanks to transitivity of =, R inherits causal precedence induced by communication
events, even if communication events are not relevant.

2.3 Local and global states at the user’s level

Define R; as the history of P; at the user’slevel: R; = r0rlr? . .7 ... (where 'rf is the

11 K3
y'" relevant event of P;); for y > 1, ¥ provokes the local state change from s!~" to s

k3
(next(s?™") will be used as a synonymous of s¥). The initial relevant event 72 is €?:
it defines s?, the initial local state of P;. Contrary to events that are instantaneous,
due to synchronization and waiting local states have a duration; a local state of P;
lasts from a relevant event of P; till the next one (Figure 2 displays, at user’s level,
local states of the distributed execution of Figure 1 from which irrelevant events
having been eliminated).

If process P; terminates, s/ will denote its last local state; next(sl*s") = s a
local state identical to sl as far as local variables of P; are concerned; next(s$°)
is not defined and r{° is the fictitious event that produces s{°.

2.3.1 Strong precedence

The set of local states of a distributed computation is partially ordered by a relation
called strong precedence, denoted . Informally s; s; means that s; was no more

RR n"2194

6 E. Fromentin and M. Raynal

Py

P,

Ps

Figure 2: Local states of a distributed execution at user’s levels

existing when s; began to exist (Figure 3 is an enlargement of a part of Figure 2

S
where we can see s = sl).

Figure 3: An example of strong precedence

Formally, strong precedence is defined in the following way:

z+1 € Y Y

r 5 Y _ T
s; = s & T — 1l or si = nexl(s])

INRIA

When all the observers of a distributed computation do agree 7

Figure 4 shows the relation 2 (without transitivity edges) associated with the
computation of Figure 2. Two local states s; and s; are said to be concurrent,
denoted s; || s;, if and only if =(s; = s;) and —(s; = s;). A consistent global state

Y of a distributed execution is a n-uple of local states (sy,s2,---,s,) such that
Vi#j:s| s;.

0 ! 52 5

59 53 53 53

Figure 4: Strong precedence between local states of Figure 2 (arrows are from left
to right)

2.3.2 Weak precedence

The set of local states is also structured by a weak precedence relation, denoted —.
Informally s; — s; if s; began before s;. So it is possible that both of them may exist
simultaneously and consequently participate to the same consistent global state.
(Figure 5 is an enlargement of a part of Figure 2 where we can see s = si).

The relation = is formally defined in the following way:

Of course, s; — 8; = 8 = s;. From the definitions we have also s; 2, s; =
next(s;) — s;. Figure 6 shows the relation — (without transitivity edges) associated
with the computation of Figure 2.

RR n"2194

8 E. Fromentin and M. Raynal

Figure 5: An example of weak precedence

0 1 2 3
51 51 51 51
0 1 2
52 52 53
0 1 2 3
53 53 S3 S3

Figure 6: Weak precedence between local states of Figure 2 (arrows are from left to
right)

INRIA

When all the observers of a distributed computation do agree 9

2.3.3 Remark

In [11] Lamport introduced two temporal precedence relations on operation execu-
tions. If A and B are two operations A — B (read: A precedes B) means all actions
composing A are completed before any action of B is begun; A—— B (read: A can
affect B) means some action of A precedes some action of B.

There is a similarity first between local states at Lamport’s level and actions and
second between local states at user’s level and operations; with such a correspondence
relations on local states at user’s level = and — correspond to relations on operations
—— and ——. (Remark that in our context a message reception affecting the receiver
local state systematically entails a change to a new local state for the receiver process;
s0 in our context ——, i.e. —, is acyclic).

2.4 Using vector clocks to detect precedence
2.4.1 Vector clock

Introduced simultaneously by Fidge [6] and Mattern [15], vector clocks constitute
an operational tool to encode dependency and concurrency of events of a distributed
computation. As in [14, 5] we use here such vector clocks in the following way:

e v;[1---n]is the vector clock of process P;; it is initialized to 1I; (a zero vector
with 1 in the #** position); this initialization simulates event rY.

e Fach time P; enters a new local state (execution of a relevant event) v;[¢] is
incremented by a positive value (e.g. 1) and the new value of the vector clock
constitutes the timestamp of this local state.

o All messages carry the current value of the vector clock of their senders.

e When a message m, carrying v(m), is delivered to P;, v; is updated to

max(v;, v(m))t.

2.4.2 Formulas to detect local states precedence

Let v(s;) and v(s;) be the timestamps respectively associated with local states s; of
P; and s; of P;. From results of [6, 15] on the timestamping of events and results of
[1] on the timestamping of local states we can deduce the following relations about
the precedence of local states. (Other relations and formulas concerning local states
can be found in [7]).

Loy i= maz(vi,v(m)) & Yk € 1---n : v;[k] := maz(v;[k], v(m)[k]).

RR n°"2194

10 E. Fromentin and M. Raynal

Strong precedence s; = s; < v(s;)[i] < v(s;)[i]

Weak precedence s; — s; < v(s;)[i] < v(s;)][i]

3 Inevitable global states

3.1 The lattice of global states

The set S of all consistent global states associated with a distributed com-
putation R = (R,>) has a lattice structure whose minimal (respt. maxi-

mal) element is the initial (respt. final) global state X% = (s$... 9 ...)
(respt. Xlost = (glost ... glast ... glasty2 - There is an edge from a vertex
Y= (81,0, 80,000, 8,) to a vertex X' = (81, -, next(s;), -+, s,) if and only if there

is an event r; of P; that can be produced in global state X; r; constitutes the label of
this edge [15]. Figure 7 shows the lattice associated with the distributed computation
displayed in Figure 2.

Informally a sequential observation of a distributed computation R represents a
consistent view of R an external sequential observer could have [1, 17]. More formally
an observation O is a sequence: Y0r1N1p202 ... pi-lptyipitl o wlast of olohal states

and events such that:

e all events appear in an order consistent with R (i.e. the sequence of events in
O is a linear extension® of R);

e X' is the global state obtained from %'~! by executing r*.

An observation is a “path” in the lattice, in which global states correspond to
vertices and events to labels of edges. According to the problem we want to solve
only events or global states can be considered within an observation. As shown in [17]
all possible observations of a distributed computation correspond exactly to all the
paths of the lattice (the interested reader will find more details about observations
in [1, 17]).

2The final global state %'*%! exists only if all processes of the distributed computation terminate.
We suppose in the following such finite distributed computations but our results also apply to non-
terminating computations

®A linear extension R/ = (R, —e>’) of a partial order R= (R,—e>) is a total order such that

Ve,fER:e> f=>e = f.

INRIA

When all the observers of a distributed computation do agree 11

2 .2 .3 3 2 o3
57,5553 51985553

2 2 2 3 2 .2
51,85, 55 |'—| 57,55, 55

2 1 .0
57,83, 83

/

1 .0 .1
$15,89,53

0 0 0|_| 1,0 (0
51052553 51752753|

Figure 7: Lattice associated with the distributed computation of Figure 2

RR n"2194

12 E. Fromentin and M. Raynal

3.2 Inevitable global states
3.2.1 Definition

A global state is inewvitable if it belongs to all the observations of the distributed
computation?. In Figure 7, 3 = (s%, 51, s2) is an inevitable global state.

Relevant events and inevitable global states are the right abstractions to solve
problems involving global states seen by all observers. These states characterize the
greatest set of global states shared by all possible observations. In addition to their
conceptual interest, they present a practical interest as their detection can be done
at low cost (see Section 4.4) without building the lattice of global states which can
be exponential with respect to the number of processes.

As an example of use consider the detection of predicates such as DEF &, intro-
duced by Cooper and Marzullo [4]. A distributed computation v satisfies predicate
DEF ¢ (v |E DEF ®), where ¢ is a predicate on a global state, if and only if each
observation O, of ¥ includes a global state X, such that ¥, = ®.

As ® can be any predicate on a global state, algorithms to detect DEF ® are
naturally based on a traversal of the entire lattice of global states [1, 2, 4]. Inevitable
global states can be seen as a cheap heuristic alternative® to limit the search space
as we have:

(3 X inevitable : ¥ |= ®) = (v = DEF ®)

If additionally @ is such that it can only be true in an inevitable global state,
the “greedy” detection gives always the right answer as in this case:

(3 X inevitable : ¥ |= @) & (v = DEF @)

Results of [8, 20] are expressed at Lamport’s level. They concern the detection
of DEF ® where ® = A\, LP; (each LP; being a predicate local to a P;%). Let
Y =(s1,---,8,) a consistent global state, ¥ = ® if and only if A;(s; | LP;). With
our level of abstraction (user’s level) each P;, in the distributed computation v, enters
a new local state s; each time LP; changes its value”; Those are the only relevant

*With the initial and the final global states all articulation points of the lattice are inevitable
global states.

®A detection algorithm visiting only inevitable global states, can be compared to a “greedy”
algorithm that, in combinatorial problems, can sometimes miss the solution.

Si.e. LP;is only on local variables of P;.

"So we have s; = LP; & —(next(s;) = LP;).

INRIA

When all the observers of a distributed computation do agree 13

events. Expressed with the inevitable global state abstraction, results of [8, 20] can
be reformulated as:

(v |E DEF ®) < (3 X inevitable : X = ®)

This formulation expresses clearly the exact meaning of (v = DEF(A; LP;))
with respect to the lattice of global state. To our knowledge this is the first time
such an abstract formulation is given.

3.2.2 A necessary and sufficient condition

Let ¥ = (s1,--,5;,-+,5,) be a global state (distinct from X° and X/?%). We have:

(IGS) X =(s1,--",8i,-"+,5,) is an inevitable global state if and only if
Vi, j:s; — next(s;)

Proof:

Let r; be P;’s event that produced s;, 7'; be P;’s event that produced
nexl(s;) (sj # s5°);

Consider ¥/ = (---, next(s;),---). Any observation comprises ¥ (by hy-
pothesis) and such a ¥’ (because each observation includes all events and
so r}) and ¥ appears before ¥’ (as s; is produced before next(s;)); conse-
quently r; appears before 7‘; within this observation. Moreover this is true
for any couple (7, 7).

As Y is inevitable the previous remark is true for all observations. It

follows that for all observations: V1, j: r; appears before r;

From Szpilrajn’s theorem [18] (which states that the intersection of all
linear extensions —here the set of all observations— of a partial order —here
R= (R,) is precisely this partial order) it follows that Vi, j : r; = T
that is to say in terms of local states (Section 2.3.2) Vi, j : s; — next(s;).

RR n°"2194

14

E. Fromentin and M. Raynal

Let a global state ¥ = (s, 82, -+, ,) be such that Vi,j : s; = next(s;).
First let us show that X is a consistent global state. Suppose that X is
not consistent. Then 3i,75 : s; > s; (See Section 2.3.1 for the definition of
a consistent global state); from which we can conclude (see Section 2.3.2)
Ji, 5 : next(s;) = s; which is a contradiction.

Now consider an observation O that comprises two global states
Y={(--,8,) and X" = (---,next(s;), - -). We have to show that ¥’
precedes Y.

Let 7 be P;’s event that produced s;, rY be P;’s event that produced
next(s;) and r7 be P;’s event that produced next(s;). As O includes all
events it includes r}, /" and r7; then such %' and %" exists.

Y appears in O after r; and before r{; X appears after r. Moreover

ri = ! (because s; — nexl(s;)); it follows that X' precedes ¥ in O,

",

/ .
k3 J?

As by hypothesis Vi,j:s; — next(s;) we have Vi,j: !
quently any observation O is such that:

[
— T conse-

O = 20...T§ Nl Y oopl P NI e Nz ! Nn L L Y last
1 iz n J1 Jz In

with n-uples (é1,---,%,) and (j1,- -, jn) being permutations of (1,---,n).
It follows that the global state W is the global state 3.

3.3 The case of X° and X/st

3.3.1

Conditions to satisfy

Let it be the two following properties:

0 — v os. 0w 1
H” = Vij:s; —s;
last _— s Jast W oo

H = Vi, 58" =)

%0 is not declared inevitable by condition IGS if H is not verified. For a given

computation, this happens if some P; has not been informed about initialization of

INRIA

When all the observers of a distributed computation do agree 15

some P; before entering s! (because messages have not been sent or are travelling
too “slowly” to it).

Similarly X/t is not declared inevitable if H!*** is not verified. For H'*** to be
true each P;, when in state si?*') must send a message to each other P; (and only
after reception of all these messages P; execute r{° i.e. it terminates).

HP (respt. H'**") formally expresses in a distributed system context the informal

notion “all process started (respt. finished) simultaneously”.

3.3.2 Making X° and Y/*** always inevitable

So if one wants the initial global state X0 (or the final one %'**) of a distributed
computation be always recognized as inevitable, conditions H° (or H'***) must sys-
tematically be satisfied. In that case H® (or H'***) is added to the weak precedence
relation®.

At the operational level this is ensured by adding the following rules:

For H° When it enters s!, process P, (Vi) does the following updates:
Vj 1 v;[j] := maz(v;[j],1); this ensure Vi, j:s? % s! (see relation in Sec-

‘ J
tion 2.4.2);

For H!*s: During local state s!*!, process P; (Vi) broadcasts to all P; a control
message carrying only a timestamp. When it has received such a message

w . .
last 2, 857 (see relation in

from each other P; executes r{°; this ensures Vi,j : s;

Section 2.4.2).

3.3.3 Meaning of inevitability for ¥° and X/**

HY states that for any couple (P;, P;), P; was launched (it did its initializations)
before P; executed its first event r]1 In other words if HY is verified by the compu-
tation itself (i.e. without the addition of rules of Section 3.3.2), then all initial local
states s? co-existed at some physical time (i.e. a process P; was not in state s? while
another one had not yet begun). The same remark applies to %/***, Consequently,
when additional rules of Section 3.3.2 are not used, if condition IGS applied to X°
(respt. X.!%5%) evaluates to true, we can conclude, as H® (respt. H'?*!) was satisfied
by the computation itself, that X° (or El‘m) really existed during the computation.

#The addition of H° (or Hl‘”t) to the weak precedence relation, eliminates the possibility to
execute a distributed program made of n independent processes, one after the other.

RR n°"2194

16 E. Fromentin and M. Raynal

3.4 Generalization

In some cases one can be interested only in consistent partial global states seen by
all observers. A global state is partial if it includes local states from only a subset
Q = {t1,- -, it} of processes: X[Q] = (54, 84y, S+ 581,) With iz € Q.

If @ is the set of all the processes, %[@] is a full global state, whereas if @ com-
prises only one process, X[Q] reduces to a local state of this process. A consistent
partial global state X[Q] is inevitable if and only if Vi,j € Q : s; = next(s;). Let
k = card(Q). For the case k = 1, remember all local states of any process are seen
by all observers (obviously s; — next(s;)). When k > 2 the previous relation charac-
terizes all consistent k-uples of local states from processes of () that are seen by all
observers. For example in Figure 7, (s}, sl) is inevitable with respect to @ = {1, 2}.
This relation can be used when we concentrate on the detection of properties that
do not involve all processes (see for example [19]).

4 A detection algorithm

Thanks to the formulas introduced in Section 2.4.2, it is easy to design an algorithm
that detects inevitable global states. A FIFO channel is added between each process
and a monitor M. Each time a new local state begins, P; sends to M a control
message composed of the local state and its timestamp. The monitor is equipped
with n queues (); which store incoming messages from each process P;. M uses IGS
to detect inevitable global states.

The protocol executed by the monitor is an adaptation of an algorithm defined
by Garg [9] to detect a largest anti-chain (here a n-uple of local states satisfying
condition IGS) in a partially ordered set given its decomposition into its chains
(here the sequences of control messages received from each P; and stored in queues
Q). The protocol is described in Sections 4.1 to 4.3 (It can be decentralized using
the technique described in [8]). Let k; be the number of local states (including s?
and next(sl?%")) of process P; and k = maz;(k;). It is shown in Section 4.4 that the
number of comparisons of integers of the algorithm is upper-bounded by O(n3k) to
detect all inevitable global states®.

4.1 Underlying principles

In order to detect inevitable global states, Garg’s algorithm [9] is adapted in the
following way. @); is the sequence of timestamped local states received in order from

90(n2k) is the time complexity if we search only the first inevitable global state.

INRIA

When all the observers of a distributed computation do agree 17

P;; head(Q;) denotes the first local state of Q;; tail(Q;) denotes the sequence @;
without its first element; next*(s;) denotes any successor of s; including s; itself.

Tests to decide whether two local states are related by a precedence relation are
done on their timestamps, thanks to formulas introduced in Section 2.4.2. To make
the algorithm easier to understand we suppose the queues ¢); have been filled up
by processes. This version can easily be adapted to work on the fly, with processes
filling their queues as they progress (see [9]).

In Garg’s algorithm heads of the queues are checked to see if they form a global
state (a largest antichain). Its adaptation to detect inevitable global states is based
on the two following observations:

1. Let ¥ =(---,s;,---,5;,---) be the global state under consideration can-
didate to inevitability. if —(s; — nexi(s;)) we can conclude any global
state X' = (---,next*(s;),---,s;j,---) is not inevitable. So in that case
s; is no longer considered and the algorithm considers the global state
¥ =(--,8, --,next(s;),---) as a candidate for inevitability. This observa-
tion allows to redefine appropriately the head of the queues (with the auxiliary
variable changed in the algorithm).

2. After an inevitable global state X = (s1,$2,---,s,) has been found, the
next candidate Y’ for inevitability is defined in the following way (in or-
der not to miss inevitable global states): ¥’ is a consistent global state
(sh,8h,-++,s) that is an immediate successor of X in the lattice, i.e.:

dk (Vi # ksl = s; and s), = next(sg)).

4.2 The algorithm

For any queue @Q;, s; (respt. mezit(s;)) is a synonymous of head(Q;) (respt.
head(tail(Q;))). Moreover to simplify the description of the algorithm we suppose

next(s;®) = s5°

RR n"2194

18 E. Fromentin and M. Raynal

changed:={1,2,---,n};
while Ji : s; # s{° do

newchanged:=0;

% evaluation of IGS on X = (s1,---,8i, - *,5j, ", 5n)
Vi € changed,j € {1,2,---,n} do
(1) if =(s; — next(s;)) then newchanged:=newchanged U {5} fi;
(2) if =(s; = next(s;)) then newchanged:=newchanged U {i} fi;
od;
if newchanged =) then
(3) Y =(s1,"-,8, 8, -, 5n) Is inevitable;
(4) let k such that ¥/ = (s|,---,s}, -+, s}) is a consistent global state
with Vi # k : s; = s} and s}, = next(sy),
(5) newchanged:={k};
ﬁ.

changed:=newchanged;

Vi € changed : Q;:=tail(Q;);
od;

4.3 Safety and liveness

The safety property indicates consistency of the detection: if the algorithm claims
Y inevitable then it is. This property follows directly from conditions tested at lines
1 and 2: if in line 3, a global state 3 is declared inevitable it satisfied necessarily
condition IGS.

The liveness property states that if a global state is inevitable then the algorithm
will detect it. The proof of this property is done in two steps.

1. First consider a global state X that has been declared inevitable. The search
is continued from Y’ which is an immediate successor of X; consequently no
possibly inevitable global state X" lying in the lattice between ¥ and X’ can
be missed.

2. Second consider the algorithm is in its initial state or just after a glo-
bal state has been declared inevitable. Suppose an inevitable global state
Y= (s}, --,s)) exists, and it is the first, in the lattice, of the next inevitable
global states. Suppose also the algorithm is checking at lines 1 and 2 a global
state X" = (s, -+, s”) such that ¥” is a (not necessarily immediate) successor

of X/ in the lattice (such a ¥’ does exist, at worst it is (s7°,5°,--+,s>°)). And

INRIA

When all the observers of a distributed computation do agree 19

lastly suppose that ¥’ has not been found by the algorithm. We show there is
a contradiction.

All elements of any queue are examined by the algorithm. So at some time
ty we have s} = head(Q;) and s} is removed @); without declaring ¥’ inevi-
table. Consequently it exists a head of some queue @, let it be 7; = head(Q;),

such that =(7; = nexl(s;)). We can conclude that 7; # s/

w S . w
st — next(s})) and s — 7; (if not we would have r; — s’ —as these two local

states are from the same P;— and s} = nexl(s;) —as ¥ is inevitable- and by

(as X' is inevitable,

transitivity we would have 7; = next(s})).

As head(Q;) = 7; the algorithm has already eliminated s; from @; at some
time ¢y ({2 < ¢1). Consider now the algorithm at #;: at that time it existed
7, = head(Q}) that provoked the elimination de s’ from @; (same reasoning
as before). By induction on the number of queues it follows that at ¢,
(th—1 < tp—2 < --- < ty) we had:

T head(Qy) = 7. with s}, > 7,
head(Q;) = s; with s; > st v s; = st (for i # k)

so s, has been eliminated from its queue Qj at ¢, ({, < {,—1) at lines
!
J
tn:m(s; = next(s}))). This is impossible as ¥/ is inevitable (as we cannot have

1 and 2 by a local state s; such that s; > st Vsj=s: (i.e. we had at

(s; = 5 Vs; = sh) A=(s; = next(sy))). This proves the contradiction. It fol-
lows ¥’ has not been missed.

4.4 Time complexity

Let k; be the number of local states (including s? and s!%*!) of process P; and
k = max;(k;).
If we eliminate the statement if newchanged = §) then --- fi we obtain an algo-

rithm whose structure is the same as Garg’s one. Garg showed, in [9], that the time
complexity of this algorithm is O(n%k) comparisons. Each comparison is here on 2
integers.

Consider now the algorithm without the loop including lines 1 and 2. To advance
the appropriate queue Q) the algorithm has to find a consistent global state ¥’ im-
mediate successor of ¥. Obtaining such a global state ¥’ = (s1,- -+, next(sg), -, sp)

RR n"2194

20 E. Fromentin and M. Raynal

requires at most O(n?) comparisons of integers (2(n — 1) comparisons to test
next(sy) || s; for ¢ # k and, at worst, n such sets of comparisons to find the ap-
propriate k). Such tests are done each time an inevitable global state is found.
k14 ko + ---+ ky, constitutes an upper bound on the number of inevitable global
states (all elements of queues are examined without never backtracking). So the
second part of the algorithm is upper bounded by 0(n?Xk;).

Consequently 0(n®k) constitutes an upper bound on the number of comparisons
of integers needed by the algorithm.

5 Related Works

In [13] Lee and Davidson solve the generalized rendez-vous problem in a real-time
context. Such a rendez-vous involves all the n processes and each of them specifies a
deadline for its involvement in the rendez-vous. So for a generalized rendez-vous each
process provides a real-time interval (which begins at the time he want to participate
in the rendez-vous and ends at its deadline). The generalized rendez-vous is possible
if the intersection of all these real-time intervals is not empty. Relation IGS expresses
a similar notion on logical time.

In [8] Garg and Waldecker use notion of interval of local states (a sequence of
consecutive local states of a process) to detect a particular class of properties. These
properties are expressed by a conjunction of local predicates. As before the intersec-
tion of appropriate intervals must be not empty for the property to be detected by
all observers. In [20] Venkatesan and Dathan use a similar notion called spectrum to
solve global properties detection problems during the replay of a distributed com-
putation. Both these works consider a distributed computation at Lamport’s level.
Consequently their definitions and algorithms have to cope with all events (internal,
sendings and receptions of messages) whether they are relevant or not for the stu-
died property. Our approach is similar to their but at a more abstract level which
allowed us to explicitly introduce the notion of inevitable global state.

6 Conclusion

The abstraction of inevitable global state (full or partial) has been introduced. Such
a state has the following characterization: it has been seen by all the observers of
the distributed computation. A necessary and sufficient condition to detect these
global states has been given and a monitor-based algorithm that detects them has

INRIA

When all the observers of a distributed computation do agree 21

been presented. Additionally relations on local states of processes of a distributed
computation have been clearly identified.

Such global states are interesting for problems whose solutions must be observer
independent. Among them there is detection of global predicate with the DEF mo-
dality [4] in the context of distributed testing and debugging, and determination of
a “which really occurred” checkpoint in the context of fault recovery in distributed
systems. Additionally, the number of inevitable global states can be easily computed
and used to define an appropriate concurrency measure of a distributed computation
[3, 16] (inevitable global states can be bottlenecks from potential parallelism point
of view).

This work is part of our current effort in designing and implementing a debugging
facility for distributed systems [2, 10].

Acknowledgements

We are grateful to 0. Babaoglu and Cl. Jard for interesting discussions about notions
of relevant events and observations. We acknowledge F.Schneider whose comments
helped to improve the presentation of the paper. This work has been supported in
part by the Commission of European Communities under ESPRIT Programme BRA
6360 (BROADCAST), by the French CNRS under the grant Parallel Traces and by
a French-Israeli grant on distributed computing.

References

[1] 0. Babaoglu and K. Marzullo. Consistent global states of distribuled systems:
fundamental concepts and mechanisms, in Distributed Systems, chapter 4. ACM
Press, Frontier Series, (S.J. Mullender Ed.), 1993.

[2] 0. Babaoglu and M. Raynal. Specification and detection of behavioral patterns
in distributed computations. In Proc. of jth IFIP WG 10.4 Int. Conference
on Dependable Computing for Critical Applications, Springer Verlag Series in
Dependable Computing, San Diego, January 1994.

[3] B. Charron-Bost. Coupling coefficients of a distributed execution. Theoretical
Computer Science, (110):341-376, 1993.

RR n"2194

22

E. Fromentin and M. Raynal

[4]

[10]

[11]

[12]

R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc.
ACM/ONR Workshop on Parallel and Distributed Debugging, pages 167-174,
Santa Cruz, California, May 1991.

C. Diehl, C. Jard, and J. X. Rampon. Reachability analysis on distributed
executions. In Theory and Practice of Software Development, pages 629-643,
TAPSOFT, Springer Verlag, LNCS 668 (Gaudel and Jouannaud editors), April
1993.

J. Fidge. Timestamps in message passing systems that preserve the partial
ordering. In Proc. 11th Australian Computer Science Conference, pages 55-66,
February 1988.

E. Fromentin and M. Raynal. Local states in distributed computations: a few
relations and formulas. ACM Operating Systems Review, 28(2):65-72, April
1994.

V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed
programs. In Twelfth International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 253—-264, Springer Verlag,
LNCS 625, New Delhi, India, December 1992.

V.K. Garg. Some optimal algorithms for decomposed partially ordered sets.
Information Processing Letters, 44:39—43, 1992.

M. Hurfin, N. Plouzeau, and M. Raynal. A debugging tool for distributed Estelle
programs. Journal of Computer Communications, 16(5):328-333, May 1993.

L Lamport. On interprocess communication. part 1: basic formalism. Distribu-
ted Computing, 1,2:77-85, 1986.

L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

I. Lee and S. B. Davidson. Adding time to synchronous process communication.
IEEFE Trans. on Computers, C36(8):941-948, 1987.

K. Marzullo and L. Sabel. Using Consistent Subcuts for Detecting Stable Pro-
perties. Technical Report 91-1205, Dpt. of Computer Science, Cornell Univerity,
Ithaca, New York, May 1991. 11 pages.

INRIA

When all the observers of a distributed computation do agree 23

[15] F. Mattern. Virtual time and global states of distributed systems. In Cosnard,
Quinton, Raynal, and Robert, editors, Parallel and Distributed Algorithms,
pages 215-226, North-Holland, October 1988.

[16] M. Raynal, M. Mizuno, and M.L. Neilsen. Synchronization and concurrency
measure for distributed computations. In Proc. of the 12th IEFE Internatio-
nal Conference on Distributed Computing Systems, pages 700-707, Yokohama,
Japan, June 1992.

[17] R. Schwarz and F. Mattern. Detecting Causal Relationships in Distributed Com-
putations : In Search of the Holy Grail. To appear in Distributed Computing
7(4), 1994,

[18] E. Szpilrajn. Sur I’extension de l'ordre partiel. Fund. Math., 16:386-389, 1930.

[19] A.I. Tomlinson and V.K. Garg. Detecting relational global predicates in distri-
buted systems. In Proc. of the ACM/ONR Workshop on Parallel and Distri-
buted Debugging, pages 21-31, San Diego, California, May 1993.

[20] S. Venkatesan and B. Dathan. Testing and debugging distributed programs
using global predicates. In Proc. of the Thirtieth Annual Allerton Conference
on Communication, Control and Computing, pages 137-146, Urbana, Illinois
(USA), October 1992.

RR n"2194

JINRIA

Unité derecherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derecherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derechercheINRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

