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Etude du mouvement plan lorsque la dérivée de la courbure
est bornée et construction de trajectoires sous-optimales

Résumé : Nous décrivons la construction de trajectoires sous-optimales pour un mouvement
plan, la dérivée de la courbure étant bornée. La sous-optimalité des trajectoires est démontrée.
'Sous-optimale’ signifie que la longueur de la trajectoire n’excéde pas le produit de la longueur
optimale par une constante qui dépend de la borne B sur la dérivée de la courbure. Des configu-
rations initiale et finale (position, orientation et courbure) sont données. Les angles tangents et
la courbure sont suposés continus sur la trajectoire. La borne B et la distance entre les positions
initiale et finale satisfont I'inégalité d > 1/v/B.

Mots-clé : robot mobile, chemin (sous)optimal, clothoide, principe du maximum de Pontryagin



The planar motion with bounded derivative of the curvature and its suboptimal paths 1

1 Introduction

We consider the problem of finding the shortest path connecting two given points of the Eu-
clidian plane which has given initial and final tangent angles and initial and final curvatures,
whose tangent angle and curvature vary continuously, the speed of changing the curvature being
bounded. We consider paths which contain no cusps.

The problem has a real background - this is the problem to find the shortest paths for a car
to go from one given point to another with the above mentioned initial and final conditions. One
can turn the wheels of a car with a bounded speed. Hence, the speed of changing the curvature
of the path of a real car is bounded.

This and similar problems have been the object of several efforts recently. Dubins in [5]
considers the problem of constructing the optimal trajectory between two given points with
given tangent angles and with bounded curvature (cusps are not allowed). He proves that there
exists a unique optimal trajectory which is a concatenation of at most three pieces; every piece is
either a straight line segment or an arc of a circle of fixed radius. The same model is considered by
Cockayne and Hall in [4] but from another point of view: they provide the classes of trajectories
by which a moving “orientated point” can reach a given point in a given direction and they
obtain the set of all the points reachable at a fixed time.

Reeds and Shepp in [10] solve a similar problem, when cusps are allowed. They obtain the
list of all possible optimal trajectories. This list containes forty eight types of trajectories. Each
of them is a finite concatenation of pieces each of which is either a straight line or an arc of a
circle.

Laumond and Souéres in [7] obtain a complete synthesis for the Reeds-Shepp model in the
case without obstacles.

All these authors use very particular methods in their proofs. It seems very difficult to
generalize them. That is why the same problem is solved by Sussman and Tang in [11] and by
Boissonnat, Cérézo and Leblond in {1] by means of simpler arguments based on the Maximum
Principle of Pontryagin. Using these arguments allows to treat more difficult models as the one
considered in this paper. Here we consider a similar problem but now with a bounded derivative
of the curvature (cusps are not allowed).

The same problem is considered in {2] by Boissonnat, Cérézo and Leblond. It seems to be
unknown whether the number of switching points in the optimal trajectory is finite or not
(i-e. whether the control functions have finitely many points of discontinuity). That is why we
concentrate the attention on the explicit description of suboptimal trajectories (i.e. not more
than a constant longer than the optimal one) and of their construction. Two students — P.Cohen
and A.Casta — wrote a programme in MAPLE which draws such suboptimal paths. In [6] we
consider the problem to construct suboptimal paths in the case when cusps are allowed.

In §2 we consider the theoretical aspect of the problem, using the Maximum Principle of
Pontryagin. We obtain that if the optimal trajectory is piecewise regular then it must be a
concatenation of arcs of clothoids and of straight line segments. Thus we construct the subop-
timal path from such pieces in §4. We prove the suboptimality of the constructed path in §5 by
means of some geometric properties of clothoids which are exposed in §3.

RR n° 2189



2 Viadimir Kostov FElena Degtiariova-Kostova

2 Statement of the problem, existence of an optimal solution
and application of the Maximum Principle of Pontryagin to
this problem :

We study the shortest C? and piecewise C3 path on the plane joining two given points with given
tangent angles and curvatures along which the derivative of the curvature remains bounded. The
tangent angle a(t) between the axis Oz and the tangent-vector to the path is a continuous and
piecewise C? function, the curvature u(t) is a continuous and piecewise C function.

We have the following system (from now on we denote "d/dt” by ”-”):

Z(t) = cos a(t)
IR E R »
W) =40 | <B

with initial and final conditions:
X(0)=(2%3%a%4%), X(T)=(z',¢',a,u') (2)

We control the derivative of the curvature by the control function u’. The control function
¥’ is a measurable, real-valued function and «' € U, where U = [— B, +B]. We want to find such
X (t) that the associated control function u’(t) should minimize the length of the path

JW)=T = /0 "t 3)

Here the variable t is the arc length but it will be called the time because the point moves
with a constant speed 1, that is why this "minimum length problem” is also a "minimum time
problem”.

The complete controllability of system (1) and the existence of an optimal solution for the
problem (1)-(3) is proved in [2].

To obtain necessary conditions for the control function «/(t) and for the trajectory (z(t),
y(t), a(t), u(t)) to be optimal we can apply Maximum Principle of Pontryagin (see the details
in [2]).

A measurable control function u’ and the associated trajectory of (1) satisfying all conditions
of the Maximum Principle of Pontryagin (see (3], th.5.1i, [9], Chapter 1, th.l and (2] subsec-
tion 3.1) will be called eztremal control and eztremal trajectory. A point X(t,) of an extremal
trajectory will be called a switching pointif at t = t, the control function v'() has a discontinuity.

After applying the Maximum Principle of Pontryagin we obtain the following result (see [2]):

Lemma 2.1 If the control function of the eztremal path has finitely many points of discontinuity
then the eztremal path of (1) is the closure of a union of open arcs of clothoids (v/'(t) = +B) on
open intervals of [0,T) and line segments in one and the same direction ¢ (u'(t) = 0) on open
intervals of [0, T).

A clothoid is a curve along which the curvature u(t) depends linearly on the arc length ¢ and
varies continuously from —oo to +o00. In our case we consider only clothoids which satisfy the
following equation (see Lemma 2.1):

u(t) = xBt, t¢€ (—00,400)

Inria



The planar motion with bounded derivative of the curvature and its suboptimal paths 3

We can also define the clothoid by its parametrized form (setting x(0) = y(0) = 0, o(0) = 0,
u(0) = 0)

{ z(t) = /2B [, cos (r2)dr
y(t)=+2/B fo sm(‘r2)dr

The two possible choices of the sign correspond to the two possible orientations of the
clothoid.

It is not clear whether the optimal path is regular or not and how to compute the optimal
path explicitly. That is why in the present paper we shall construct in §4 a suboptimal path
explicitly in the case when the distance between the initial and the final point is much greater
than 1/v/B (the exact definition is given in §4).

The suboptimal path consists of a line segment and of four pieces of a clothoid, its curvature
and tangent angle are continuous, it has four switching points, see §4.

In order to prove the suboptimality of the path constructed in §4, i.e. that it is no more than
a fixed constant (depending only on B) longer than the optimal one we prove some geometric
properties of clothoids in §3. The suboptimality is proved in §5.

3 Geometric properties of the clothoid.

3.1 Properties of an individual clothoid.
Consider a half-clothoid

&(t) = cos(Bt?/2) z(0)=0 t>0
§(t) = sin(Bt%/2) y(0)=0 B>0 (4)

Call B "the parameter of the clothoid” and set B = 2 for simplicity. Thus we consider the

half-clothoid
it =cost? z(0)=0 t>0 s
y=sint? y(0)=0 (5)

Remark 3.1 A half-clothoid of the opposite orientation is defined by equations

i(t) = cos(—Bt?/2) z(0)=0 t>0
y(t) = sin(~Bt*/2) y(0)=0 B >0

Fix an angle a, > 0. Let P, P,,... denote the consecutive points on the half-clothoid where
the tangent line has direction a. (modw, not mod2x, ¢; < t; < ...). Set P, = (zi, %), 2; =
2(t:), % = y(t;) (see Figure 1).

Proposition 3.2 151792 is the longest among the arcs 13,7’;+1. Its length depends continuously
and monotonously on the choice of the angle a,.

Proof.

a.+m
Veos?t? +sin?#2dt = Va, + i1 — \Ja. + (i— Dr =

|P.~P,-+1| =
Vaet(i-1)r

w
T Vot w4+ e +(i- D

RR n°2189



4 Vladimir Kostov Elena Degttariova-Kostova

YA

Figure 1

Both statements follow directly from these equalities. o

Define as "the centre of the half-clothoid” the point O, with coordinates (zo,, yo.) defined
as follows:

z0. = J§° cos T2dr
Yo. = Jo sintidr

Consider the coordinate system with the centre at the centre O, of the half-clothoid and
with the axes O.z., O.y. parallel to the corresponding axes of the coordinate system Ozy (see
Figure 2). In the coordinate system O.z.y. the coordinates of the point (z.,y.) of the clothoid
(5) are defined by the formulas:

zc(t) = z(t) — zo, = — [ cosT2dT (6)
ve(t) = ¥(t) - yo. = — [ sinT?dr
Denote by g the radius-vector of a point of the half-clothoid in the coordinate system Oz .y..
Then

P2 = zc2 + yc2
and \
A(t) = ;(Icic + yede) =
1 [ o} o0
= —(—cos t2/ cos 72dr — sin t2/ sin 72dr) =
p t t
1 [ 2 .2 1 /’°° cos(n — t2)dn 1 [ cosvdv
= —= cos(7° —t%)dr = —— —_ = —_—
p/t ( ) pJe 21 pJo 2Vv +1t2
Thus | qeo d
cos 7dr
(1) = ~— 7
=5 [ E= ™)

Inria
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4
a ..
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Figure 2

Lemma 3.3 The length of the radius-vector 5(t) of the clothoid defined by system (5) is a
monolonously decreasing function of t:
p<0
Proof
Set
t? = q, = [(a)

0 \/T+a

The function cos 7 is periodic with period 27. So using the property of the symmetry of the

function cos 7 (cos(m — 7) = cos(x + 7) = — cos T, cos(27r — T) = cos 7) we can consider instead
of the integral /(a) the following integral:
/2
/ ¥ cosrdr
0
where

. >, 1 1 1 1
Y= - —
z:(\/a-i-r+2k1r vVr-1+4a+2kn \/7r+r+a+2k7r+\/27r—‘r+a+2k7r>

k=0

This series is convergent because

1 1
Ve+T+2kr Jr—rt+a+2kr

w - 27 1
= \ﬂz+‘r+2k7r\/1r—‘r+a+2k7r(\/a+1'+2k1r+\/7r—T+a+2k1r)=O(m)
and |
1 1
—ﬁ+r+a+2k1r+\/21r—-r+a+2k1r=

RR n°2189



6 Vladimir Kostov Elena Degtiariova- Kostova

-1 4+ 27 ( 1 )
=0 ——=
Vit+r+a+2knV2r—t+a+2kn(vVr+1+a+ 2kt + V2 — 7+ a+ 2kn) kvVE

Consider the first four terms of the series. The function f(£) = 1//% is convex and mono-
tonously decreasing, see Figure 3. For the middle lines KM and LM of the trapezoids EABF
and GC D H respectively we have LM C K M.

16) J
} IO =1//¢

; * B
Ei 6! M. H: Fi _
(o] 74+a w7—-74+a w*+a6 w+7r4+a 2r-7+a {
Figure 3
We have the followings formulas:
1 1
=2|K M|,
\/1'+a+\/27r—‘r+a | |
1 1
= 2|LM|,
\ﬁr—‘r+a+\/ﬂ'+1‘+a | |
|LM| < |KM|
Hence
1 1 1 50

1
\/T+a_\/1r—1'+a-\/1r+f+a+\/21r—‘r+a

Every following sum of four terms in the series can be considered analogously. This proves
that the sum of the series under consideration is positive. The function cos T, 7 € [0, x /2] is non-
negative. Hence, the integral I(a) is positive and the derivative of the length of the radius-vector
p(t) is negative.

The lemma is proved. D

Inria



The planar motion with bounded derivative of the curvature and its suboptimal paths 7

Lemma 3.4 The derivative of the length of the radius-vector p(t) of the clothoid defined by
system (5) is a monotonously increasing function of t, t.e..

p>0 (8)
The lemma is proved in subsection 3.2.

We give a geometric interpretation of the inequality g > 0. Denote by 7(t) the angle between
the radius-vector j(t) and the tangent vector 7(¢) of the point of the clothoid (5). We have

p = cosy (9)

The angle v is in the interval (r/2, 7)(mod2r) (because p < 0, see Lemma 3.3). Hence, the
function sin v is positive. We have

p= —ysiny (10)
and obtain, from (8), that

¥<0 (11)
So we obtain the geometric interpretation of Lemma 3.4:

Remark 3.5 The angle 7(t) between the radius-vector p(t) and the tangent vector 7(t) is a
monotonously decreasing function of t.

Corollary 3.8 If we have an "unwinding” half-clothoid (i.e. half-clothoid with decreasing abso-
lute value of the curvature) defined by the equations:

z(t) = fycos (T2 + uoT + ap)dr z(0) =20 uo <0
y(t) = fosin(r? + uor + eo)dr y(0) =30 120

then for such a clothoid we have the following conditions:

p>0

p>0

Corollary 3.7 If two half-clothoids clA and clB have the same centre O, the same orientation
and the same parameter B then either they coincide or they have no common point.

Consider the circle C with centre at the centre O, of clA and with radius equal to the distance
between the centre of clA and its point of zero curvature. Denote by OC the circumference with
centre at O, and with the same radius. Then C\ O, is the union of non-intersecting half-clothoids.
The mapping which maps each half-clothoid on its point of zero curvature (lying on 3C) is a
bijection from the set of half-clothotds onto 3C.

Proof If c/A and clB intersect, then at the intersection point they have equal radius-vectors,
hence, equal curvatures (see Lemma 3.3), hence, equal values of g (see Lemma 3.4), hence,
they must coincide, because they are obtained by integrating the equations # = cos(t — to)z,
¥ = sin (¢ — tg)? with equal initial data (zo, %o, to). o

RR n " 2189



8 Viadimir Kostov Elena Degtiariova-Kostova

3.2 Proof of L.emima 3.4.

An arbitrary point 4 of the clothoid (5) has a tangent vector 7(¢) with coordinates (cos 2, sin t2)
(see Figure 4). Consider a point D of the clothoid (5) with tangent vector 7, = (0,1). The point
A is mapped onto the point D by means of the rotation on angle 8 defined by the rotation

matrix
sint? —cost?
cos t2 sin 2

Jy

Oc
s n(0,1)

Figure 4

Hence, the radius-vector g = (— f>° cost2dr, — [ sin 72d7) (see (6)) is mapped into the
radius-vector

o o] o0
Pn = (— sin 12/ cos T2dr + cos 12/ sin 7%dr
t 1

2 [% 2 2 [* 2
—cost / cost°dr —sint / sin T dr) =
1 t

= (/too sin(r?2 —t%)dr , - /too cos(1% — t2)dr) =

©  gin vdv b cosudv)

—(/0 Wr+tt’ b WV + 12

We want to investigate the function dp/dt. Instead of it we can investigate the function
dvy/dt (see formula (9)). Denote by 3 the angle between the vector g, and the axis O.z.. At the
point D we have the following relations between the angles v, 3 and the coordinates z,,y, of
the vector py:

cot tan 8 Yn °° cos vdr / /°° sin vdv
= —ta = _——= —_—
7 Zn o Wt Wt P

Inria



The planar motion with bounded derivative of the curvature and its suboptimal paths 9

Compute the derivative d(tan 3)/dt:

d(tanf) _ ¢ /°° cos TdT /°° sintdr  [® sintdr [ cosTdr | _
dt 4zt llo (rrg)Ph VT2 S (Vree)h V] o

*© sin 7dT
[ VirE

t {_:f /°° sin rd7 sint
12,2 |26 (rvE) (FiB)

1 sin rdr sin 7

'{5/0 (Vria)y ViiP

®  gsin rdr
0 }/0 (VT'HQ)s] -

_ t 3 /°° sin 7dr ° sintdr ( /°° sin 7dT )
82,2 0 (\/T+t2)5 o Vr+412 (] (\/T+t§)3
(We use integration by parts.)
Denote the expression in the brackets as J(t2). Consider J(t2) with oo changed to 2rp

(p € N,p > 1). Consider the corresponding Riemann sums with step A = #/n instead of the
integrals:

2np

2P sinTdT sin T )
- A+ 0(A), m=7wk/n, i={1,3,5} (12)
/0 VT +2) =2 (VT + £)

The function sin 7 is periodic with period 27 and sin(w + 7) = —sin 7.
Denote the three Riemann sums (corresponding to the three integrals) by

d1+...+d“p, g1+ ...+ gnp h1+...+hnp

whereif j=s+wvn, s=1,...,n, v=0, ...,p—1,then
& = sin T, sin 7,
T st + 82 ¥ um+ w4+ 22
g; = sin 7, sin 7,
’ (\/1',+2wr+t§)3 (\/'r,-§-21/7r+1r-{—?2)3
b = sin 7 sin 7,
;=

Vnfr+ ) (Vniwrtrif)

Show that
I=3djhj~g220 (13)

Set 7, + 2vm = a. Then rewrite I as follows:

3( sin a _ sina )( sina _ sina ) ( sin @ sin a )2
(‘/a+t2)5 (\/&+‘H’+t2)5 \/a+t2 \/a+7r+{7 (/a+12)3 ( /a+7r+t2)3

RR n° 2189



10 ; Viadimir Kostov FElena Degtiariova-Kostova

Denote va + 12 by @, va+ 7 + t2 by 3. Then
1 1 1 1 1 1\?2
— win? RSN Y R N AL I B
I =sin a[3 (a5 ﬂ5) (a ﬂ) (a3 ﬂ3) ] =

(B5-a®)B-0a) (- a~")2]
ab38 abgs

=sin’a [3

= sina [3(;; - a)'(8* + B + B2 + fa’ + o) - (B - @)(8? + P + "2’2] -

o836

=sin’e [(ﬂ2 — a®)’[3(8* + P + B2a® + Bo® + at) — (B2 + fa + a?)']] _
aﬁﬂﬁ(ﬂ +a)2 =

=sinZa [1&'2(2,34 + 20 + ﬂaa + ﬂas)] >0
a8p8(B + a)? -

Thus we prove (13). Show that
K = 3(dihj + d;hi) - 2gig; 2 0 (14)
Set

Ts + 2um = aq;, Tw + 2T = aj,
va; + 1 = q, Ve +r+t2=4,
va;+t2 =17, Ve +m+t2 =4

Rewrite K as follows:

k=3 [(sina; _ sin ag) <sina,~ sinaj) + (sinaj sin aj) (sina,- sina,-)]
- a® B 2 8 7 8 a g

9 (sin a; sina,') (sin a; sin aj)
o3 B3 3 53

72 sin a; sin a; [3(ﬂ4 + Ba + f2a? + Ba® + of) + 3(6* + 639 + 6292 + 673 + 14)

T (Bt a)7 +6)apvs aigi 7454
2(8%6% + B8y + B%v% + 6%Ba + Baby + v*fa + a?6% + a*6y + o?7?)
- 232,252 (15)
a?f32426

Estimate the expression in the brackets (denote it by L).

Inria
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11
L af‘ + 2(1’2ﬁ2 +'@4 N 74 + 2‘7262 + &4 2(ﬂ262 +a262 +ﬂ2’72+ﬂ262)
- oABs 4464 - a?[2y2§2 +
(R T T D T
2\a®8  af3 436 48 afyé
1 1 1 _ 2B%8y + 8%Ba + v26a + 0267)
+12 ﬂ4 + ~4 + 02324262

{;+l(_1_+_1_+L+L)+;} 6

+ o232 2\a38 T o T 436 " 463 7262 (16)

The expression in the first parentheses is positive. Really,

o' +2a282+ 5 YT+ 2% 4+80 /1 1\2 1 1\2
Py 154 atm) T\ 3te) >

59 1 1) /1 1,1 1) _ 28?4 6% + %1% + o’4?)
ﬂz 52 a?fB32y262

The expression within the second parentheses is also positive because we have the following
inequality:

1( 1 1 1 1 1 a1
a3ttt 80 0 \Bsad ) T
4 1o af 736 " vé a3fBa@3y36+6 afivé
Hence
1 { 1 + 1 + 1 + 1 } S 2
21lad8  aBfd " 35 483 afvé
Estimate the expression within the third parentheses. Denote by M the following fraction

2By + 6%Pa+ v Ba + alby) 2 ( 1 1 ) 2 ( 1 1
M= o5 (@t w) st e)

Using the inequalities

2 <Lyt
af B2
and
2 < 1 +
v6 42 62
we obtain

RR n° 2189



12 Viadimir Kostov FElena Degtiariova-Kostova

1 1 2 1 1 2 9 1 1 1 1
=Zv—4+—[37+aTﬁE+F+6_4+§2—62-< E;'*'ﬁ'*"y—,,-l—p
So the expression within the third parentheses is positive and L (see (16)) is positive. Hence
the expression K (see (15)) is non-negative because the points a;, a; belong to the interval (0, 7]

and, hence, the functions sin a;, sin ¢; are non-negative. So we prove (14).
From (13) and (14) when n — oo it follows that

3/27? sin 7dr_ (?"P sinrdr (/2”’ sin rdr ) >0
() (‘/1-_”2)5 o Vr+122 ) (\/T+t2)3

If 2rp — oo and n — oo we obtain that J(¢?) > 0 and, hence, d(tan 3)/dt < 0. Remember
that tan 8 = — coty and p = —7sin~y (see (10)). Hence,

d(c;’:” = —si:?-, >0, 4<0
and
p>0.
The lemma is proved. (]

3.3 Properties of two arcs of clothoids at their concatenation point.

v A

Q
sY

Figure 5

Consider two clothoids cll and ci2 (see Figure 5) which for t = 0 have the same initial
conditions (zq, Yo, @0, Uo), %o < 0, the absolute value of the curvature of ¢ll is decreasing with
t, the one of ¢l2 is increasing with t; ¢/l and cl2 are defined by equations:

. ft 2
ol { z(t) = fycos (T2 + uoT + ag)dT + 2 (17)

y(t) = f(; sin (72 + uoT + g )dT + Yo

Inria
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z(t) = f' cos (=72 + upT + ag)dT + Zo
2: 9 18
¢ { y(t) = fot sin (=72 + upT + ag)dT + Yo (18)

Figure 6

Consider clothoids ¢/1 and ¢/2 on a small interval ¢ € [0, s] (see Figure 6). On this figure the
point O is the centre of ¢l1, the point 4 is the initial point, the points B and C belong to the
clothoids ¢l1 and ¢l2 respectively and |AB| = |AC| = s. The angle between the tangent vector
to cl1 and c¢l2 at point A and the vector equal to (—g4) ( pa is the radius-vector at point A) is
denoted by 6. The angles between the tangent vectors to cll1 and ¢i2 at the points B and C and
the vector equal to (—g4) are denoted 6, and ; respectively. The angles between the tangent

vector at the point A and the vectors X_é and K_C" are denoted v, and 1, respectively. And the
angles between the radius-vector p4 and the radius-vectors gg and gc at the points B and C
are denoted ¢, and (3 respectively. Denote by 6; (i = 1,2) the angles between the tangent lines
at the points B and C and their radius-vectors (6; = 6; + ¢;, i = 1,2).

Lemma 3.8 For the clothoids cll and cl2 on a small interval t € [0, 8] the following equalities
hold:

4
P —pt = gPAsin 808 + O(s*) (19)
6y — 63 =257 + 2c—050233 + O(s%) (20)
3p4a

This lemma is proved in subsection 3.4.

Corollary 3.9 Denote by C. the point of the clothoid cll with the same curvature as the point
C belonging to clothoid cl2. Denote by C, the point of the clothoid cl1 with the same length of
the radius-vector pc as the point C of the clothoid cl2; and denote by C., the point of the clothoid
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14 Viadimir Kostov FElena Degtiariova-Kostova

cll with the same angle v between the radius-vector and the tangent vector as the point C of cl2.
Denote by Y4, 1B, Yc the angles v at the points A, B, C. Then the points C., A, C,, C,, B on
a small interval [0, s] are encountered in their order along cll.

This corollary is proved in subsection 3.4.

3.4 Proof of Lemma 3.8 and of Corollary 3.9.
Proof of Lemma 3.8.

Consider a coordinate system A7 (see Figure 7), the axis 7 coincides with the tangent vector
to cll and c¢i2 at the point A, the axis £ is a perpendicular to the axis 7. In this coordinate
system cl1 and c¢l2 are defined by the following equations:

il : { £(t) = Jo cos (72 + uot + 7/2)dr
"l () = fysin(7? + ot + 7/2)dr

19 £(t) = fy cos (—72 + ugr + 7/2)dr
@ 7(t) = J3sin (=72 + uor + 7/2)dr

Figure 7

So for the coordinates of the points B and C we have the following formulas:

€p(8) = — [: sin (72 4 upr)dr nB(s) = /; cos (72 + upT)dr

Ec(s) =~ /0’ sin (~72 4+ wor)dr  7c(s) = /08 cos (=72 + uor)dr

Then, using the Taylor series at 0 for the functions sin z, cosz we obtain:

1 2
&B(s) = —%32 - 533 +0(s*)  np(s)=s- -%933 +0(s")

Inria
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2
fo(s) = =25+ 384 O(sY)  no(s) = s~ 254 0(s")

But tan ¢, = £p(s)/nB(s) and tan, = Ec(s)/nc(s). Now we use Taylor series again and
obtain the following formulas for tan ¢, and tan ..

1 1
tany; = B PR +0(s*) tan iy = Lo, + =82 + 0(s%)

2 3 2 3
Since we consider the clothoids ¢/1 and ¢/2 on a small interval {0, s], we can use for the angles
¥ and 93 the following formulas:
M Lo o W, 1
P = 5873 + O(s%) Py = 2s+3
Compute the values of p% and pZ. For this purpose we use the cosine theorem, the Taylor

series and formulas (21):

st 4+ 0(s%) (21)

p2B = pi + 8> —2pascos (o — Y1) =

0

=p4 + 52— 2045 [cos 8o cos (—%s - %sz + 0(33)) + sin f sin (-—%—s - %sz + 0(33))] =

1 U 1 2 . Ug 1
=2 4 42 S s It - —s+ =82}l =
=pa+s 2pAs[c0500<1 2(2s+3s)) sm0o(2s+3s)]

z 2
= pi — 2p4cos 808 + (1 + pauosin fp)s® + (pA%g cosfp + 3P4 sin 00) s+ O(s*);

pe = p% + % — 2pascos (8o — P2) =

1
=p4 + 8% — 2pas [cos 6o cos (—%s + 532 + 0(83)> + sin g sin (—3‘23\9 + %s"’ + 0(33))] =

1/ w 1 ,\2 ) ( u 1
= p? 2 _ - -{-= —g? - g2l =
=pyts 2pAs[cos¢90<1 2( 2s+3s))+sm00 2s+3s )}

2
= p% — 2pacosbps + (1 + paugsin 8)s? + (pA—Z—O cos b — gpA sin 00) s + 0(s*);

Thus we obtain formula (19):

4
p% — pk = FPASID 8os® + O(s*)
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Figure 8

Compute the values of the angles §; and ;. From formulas (17) and (18) for the angles 6,
and # we obtain:

— 2
{01—00+u08+s (22)

02 = 8o + uos — s?

To compute the angles ; and ¢, make the additional construction (see Figure 8): the
segments BK, and C K, are perpendicular to the line OA. We have

| K1 B| = |AB|sin(6o — %1) = |O K| tan ¢y

|K2C| = |AC|sin(fo - 1) = [0 K| tan ¢,

Hence
_ |AB| . -
tan ¢, IOK]I SlD.(Oo ‘l/)l)
AC
tan; = ||0K2|] sin(fo — ¥2)
But

|AB| = s + O(s?), |AC| = s+ O(s?)
|OK;| = |OA| — |AK1| = pa — |AB| cos(6y — ¥1) = pa — scos(fp — ¥1)

|OK2| = |OA| — |AK2| = pa — |AC| cos(6p — 2) = pa — s cos(Gp — 2)

Inria
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Thus we have that

SSin(Bo - 1/)1) . 3Sin(00 - ¢2)

tan ¢y = 4 tan =
1= oA —scos(fg — Y1) LAy cos(bo — ¥2)

Now using formulas (22) and Taylor series for the functions cos z, sin z and f(z) = 1/(1 4 z)
at 0 we obtain the following expressions:

sin(fy — 1) = sin f cos Yy — cos By sin Py =

2
= sin g (1 — %(%s + %.92) ) + cos by (9228-{- %32) =

2
cosbo  ug sin 90) s 4 O(s%);

. u
=sm00+—50c05008+( 3 3

cos(bp — 1) = cos 8 cos 3y + sin G sin 3, =

- 1 (% 12)" : (29 12)_
—coso()(l 2(23+3s sin 8y 23-{-33 =

: 2
= cos 0 — 1122 sin s — (su;()o + -';—0 cos 00) s2 4+ 0(s®);
38 Sin(oo - 1,/)1) 1

tan ¢ =

a1 2 cos(do—%1)

2

s ) 8
= —sin(fy ~ 14+ — cos(fp — + == cos?(p —
oA (6o 11’1)( oA (8o — 1) a2 (6o 11)1))
Hence after this series of transformations we obtain the formula for tan ¢;:

sin 8 sin26y  ugcos 00) 2
tan = s+ S+
s ( 20 204

cosfy ulsinfy upcos20p sin20pcosfy\ , 4
- + s+ 0(s 23
(?m 2 T 20 2 ) (23)

After analogous transformations we obtain the formula for tan ,:

in @ in 26 é,
tan @y = SI:AOS + (sm o + Ug COS o) 24

2p% 2pa

cosfp ulsinfp upcos20p sin20pcosfp) 4 4
- - + + s+ 0(s 24
( 3p4 8p4 207 205 (+) (24)
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In a small neighbourhood of the initial point A tang; = ¢; + O(¢?) (i = 1,2). Hence, from
the definitions of the angles é; and 6, and from formulas (23)-(24) we obtain equality (20):

8y~ 8, =282 + 2ﬁs—ogss + 0(sY)
3p4

The lemma is proved. O
Proof of Corollary 3.9.

It follows from (18) that the absolute value of the curvature at the point C is greater than
the one at the point A. That is why the point C, is located before the point A.

Note that the angles v; and §; are connected by the following equations: v; = v —§; (i = 1,2).
Hence from formulas (22) and (23) we obtain that

: 3 sin 0 sin26p upcosfp) , 3
Y4 -8B =6 90—('“0'*' o4 )8+(1+ 2P,24 + 204 s+ 0(s%)

From Remark 3.5. we obtain that the angle 7 is a monotonously decreasing function, hence

1B <74
From (20) we have

Yo-1B=6-68=25+ 205t s +0(s)
3pa

So, 78 < ¢ and v < Y4. But the difference between 75 and 4,4 is of order s, and the
difference between 7p and v¢ is of order s2. Hence, we obtain the following inequalities

YA > YC > B

and the point C, is located between the points A and B.

The difference between p% and p? is of order s® (see (19)). The difference between yc and
vp is of order s2. Hence, the point C, is located between the points C., and B.

The corollary is proved. O

3.5 A property of a concatenation of several arcs of clothoids.

Consider two paths with the same initial conditions (Zo, yo, a0, %o) and whose graphs of the
curvature as a function of the path length are shown on Figure 9. The path ¢l is a piece of
a half-clothoid whose curvature is defined by the equation u = —2s 4+ ug (up > 0). The path
pel consists of several pieces of clothoids whose curvatures are defined by equations of the kind
u=-2s+u@oru=28+ 1:40 (@° > 0 and t:to > 0), the sum of their lengths is equal to ug/2.
Denote by O, the centre of c¢l, by gy(t) the radius-vector of a point of ¢l in the coordinate
system with centre at O. Denote by gyq(t) the radius-vector of a point of the path pel in this
coordinate system. For ¢ = 0 we have §u(0) = ppa(0).

Lemma 3.10 For any path pcl (defined as above) and for the path cl (both paths are defined on
the interval s € [0,uo/2]) we have the following inequality:

pa(8) > ppai(8), for every s € (0, uo/2] (25)
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b

o u/2
Figure 9

Proof

a) Consider the path ¢/. We parametrise it by the natural parameter s, setting s = 0 for
the point (o, Yo, @o, o). Hence, the graph of the curvature u as a function of the path length s
looks like the one shown on Figure 9 (for s < 0 it is given by the dotted line). In the proof we
consider the path ¢/ only on [—ug/2,uo/2].

Denote by O the point of the path ¢l with zero curvature (i.e. s = ug/2), by A - the point
with curvature 2up (i.e. s = —ug/2), by § - the point with curvature uo (i.e. s = 0) and
by P - an arbitrary point corresponding to some value of the parameter s € (—up/2,uo/2)
(up(s) € (0,2up)), see Figure 10.

Figure 10

Consider a small é-half-neighbourhood (3, s+ §) of the point P and consider a path beginning
at the point P which is piecewise clothoid (z = —2s + @ or u = 25 + 1:40, a° > 0, @ > 0), of
length § and with the same values of z,y, a, ¢ at the point P as the ones of the point P of cl.
Denote the final point of this path by N, the final point of the corresponding piece of the clothoid
cl by M (the lengths of the arcs PM and PN are equal to 6, the curvature of ¢! is decreasing
from P to M). Denote by N, the point of the clothoid ¢l with the same curvature as the point
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N, by N, - the point of the clothoid ¢l with the same length of the radius-vector g{t) as the
point N, by N, - the point of the clothoid ¢! with the same angle () between the radius-vector
p(t) and the tangent vector 7(t) as the point N. Then for every point P there exists a small
6-half-neighbourhood where the points N, P, N.,, N,, M are encountered in this order along cl
(see Corollary 3.9). Denote this disposition of the points N., P, N, N,, M by disposition™. The
number é can be chosen the same for all values of s € [—ug/2, up/2]; assume that § is fixed.

b) Consider some path P of the class A of all paths beginning at the point P, piecewise
clothoid (v = —2s + @® or u = 2s + {lo, a° > 0, i > 0), of length < v(s) = up/2 — |s| and
consisting of n pieces (n > 1/§, each piece being of length 1/n except the first one which is of
length < 1/n).

We prove the lemma for paths P € A first, by induction on n. For paths pel defined at the
beginning of 3.5 the lemma will be proved in c).

For the first piece of the path P we have disposition* (because the length of this piece is
< 6 and for the 4-half-neighbourhood of the point P we have this disposition). Suppose that
disposition® doesn’t hold at some moment s’. If s’ is the very first moment when it happens,
then 3 cases can occur:

1) If at the moment s’ the point N., coincides with the point N,. Then at the next moment
we shall have disposition®. Really, using the Taylor series, as in Lemma 3.8, we shall obtain the
result of Corollary 3.9, because at the moment s’ both paths ¢/ and P have the same value of
the radius-vector p(t) and the same angle v(t) between the radius-vector p(t) and the tangent
vector 7(t), and the curvature at the point N, of the path P is greater than the curvature at
the point N, of the path ¢l.

2) If at some moment s’ the points N, N, and N, coincide. Then this means that we move
along a half-clothoid ¢! but with a delay; hence, we either continue like that and come with a
delay, or at some moment we have again disposition®.

3) If at some moment s' the point N, coincides with the point N. and the point N, ts
situated after them (see Figure 11). Then it doesn’t happen in the first piece of the path P (see
the definition of §). Hence, if it happens in the k-th piece of the path P then for the (k — 1)-st
piece of the path P disposition™ holds. Prove that in this case

Pei(8) — pei(8’) Z pp(s) — pp(s’) forsz s

Figure 11

We denote by M the point belonging to the path ¢l and corresponding to the moment s,
by N - the point belonging to the path P and corresponding to the moment s’ (see Figure 11).
Note that the notation is the same as the one of Figure 10. Denote by ML an arc of the path
el corresponding to the interval [¢, s’ 4 s*] for some $* > 0 and by N K - an arc of the path P
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corresponding to the same interval [s’,s’ + s*]. Denote by spc (spc < §’) the moment to which
the point N, = N. corresponds and denote by 1\7:Q an arc of the path ¢l corresponding to
the interval [spc, spc + s*]. Translate the arc NK so that the point N should coincide with the
point V., then rotate the image so that the tangent vector to the image at the point N., should
coincide with the tangent vector to the arc IV,TQ at the point N.,. Denote the obtained arc by
N,R.
For the lengths of the radius-vectors §(s) at the points N., N, and M we have the following
inequalities:

PN, < PN, < PM

This follows from Corollary 3.6 (4(s) > 0).
Rotate the arcs N,Q, N,R and NK around O on different angles so that the points M,
N, and N should be on the line Oy M, see Figure 12 a).

L
8* »N
v K’
a
s N,y
R T
Rl
Q Yy
A N b
R ¥
Od Ocl
a) b)
Figure 12
Denote

App =|0aK | ~|OaN |  App, =|0aR|-|O0aN, |

Apcipr =] 0aQ | — | OalN, | Apa=|0al|—|0uM |

We know that for the (k — 1)-st piece of the path P disposition* holds. Hence,

App,, < Apcipr (26)

(by the inductive assumption, as k < n).
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Using Corollary 3.6 (p > 0) we obtain

APclpr < APcI ‘ (27)
Prove that

App < Doy, (28)

The tangent angles at the points N and N, are the same, the curvatures - too. Hence (see
Figure 12 b)),

KK'|= |RE|=y;  |NK'|=|N,R|=2
Denote
OaN|=1a;  |OaN,|=b.
We have the following equalities:
App =\/(axz)+y?—a App, =/(b+z)24+y2-b
Inequality (28) is equivalent to

Vexa)2+y?—a<\/(bxz)2+y2-b

or to

\/(a:i:z)2+y2-ﬁ:tx)2+y2<a—b;

(62) -6t < (a-0) (Vlaz 2P + o2+ o227 +92);

(a+bt22)< (\/(a:ta:)2+y2+\/(b:§:z)2+y2).

Thus we have

a+btr2z=(atz)+(btz)<|atz|+]pLz|< (\/(a:i:x)2+y2+\/(b;{:z)2+y2)

This chain of inequalities is correct, hence, inequality (28) is also correct. Thus, from inequa-
lities (26)—(28) we obtain the desired inequality:

App < Apa

i.e. pa(s) — pci(s’) > pp(s) — pp(s') for s > ', :

Thus we proved that if at some moment s’ disposition™ doesn’t hold then for the moments
s > &' the length of the radius-vector gy(s) for the point belonging to ¢l is greater than the
length of the radius-vector gp(s) for the point belonging to P. This holds for any path of the
class A for any point P corresponding to some value of the parameter s € (~ug/2, uo/2).

c) Assume that the point P coincides with the point S (see Figure 10). The curvature of
the path pel and the curvature of any path of the class A are continuous functions. Hence, if
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n — 00, then we can uniformly approximate the path pel by a sequence of paths of the class A.
Hence, for s € [0, up/2] the length of the radius-vector gg(s) is greater than the length of the
radius-vector gpq(s), i.e. inequality (25) is proved.

The lemma is proved. a

Denote by D the class of the paths with initial conditions (zo, ¥o, @0, %0), of length uy/2 and
whose graphs of the curvature u as a function of the path length s belong to the class Lip(2).
Denote by g(t) the radius-vector of the point of some path L from the class D in the coordinate
system with centre at Oy. Then we have

Corollary 3.11 For any path L from the class D and for the path cl from Lemma 3.10 (both
paths are defined on the interval s € [0, up/2]) we have the following inequality:

pc(s) > pr(s), forevery s € (0,uo/2]

Really, the class of paths L belongs to the closure of the class of all paths pel defined at the
beginning of 3.5.

4 Construction of the suboptimal path.

We construct the suboptimal path in the case when dist((z°,3°),(z%,%')) > 1/VB (i.e. there
exist constants @ > 1, ¢ > 0 such that dist((z?,¢°), (z},%')) > a/VB + ¢).

We show that one can construct a path from the initial point X° with coordinates (z°, °) to
the final point X! with coordinates (z!,y') with four switching points which is a concatenation
of four arcs of clothoids and a line segment (along the path the tangent angle and the curvature
are continuous, their initial and final values being respectively a?, a! and u?,u!).

Construct the path from X° to X! by means of the graph of the curvature u as a function
of the path length s (i.e. the natural parameter). Construct at first a part of the path which
is a concatenation of two arcs of clothoids only, from the point X° to some point X},. For this
purpose consider the graph of the curvature u as a function of the path length s, which is a
piecewise linear and continuous function (the absolute values of the angular coefficients of these
pieces are the same, i.e. every piece is of the kind u = +23 + u..).

This graph is shown on Figure 13. It is linear on [0,£’] and on [£/, 7' + 2€7], zero at the point
(7' + 2¢’). Here € and 1/ are the path lengths, the number 7 is defined by u® (7 = 0.54°), &’
can be considered as a parameter.

Construct the path corresponding to this graph of u from X° to some point X}, (the point
X of the path corresponds to the point D of the graph u).

We can increase the absolute value of the angle o’ at the point X[, by increasing &', because
the curvature doesn’t change sign on [0,7 + 2€'] and the angle o/ — a° is the integral of the
curvature on this interval:

nl+2£l
o —a® = / u(t)dt
0

Hence, there exist d’ and d} (0 < d < d') such that when £’ varies in [d}, d'] the tangent angle
o' to the path at the point X[, assumes continuously all values from [7/2,—7/2] (mod27) or
[-7/2,7/2) (mod2r7) (we choose the interval depending on the sign of u®).

In conformity with Proposition 3.2 we can take for d’ the maximal length of an arc of half-
clothoid on which the tangent angle makes a full turn (i.e.2%).

Estimate the area where the point X[, can be if ' € [d}, d’].
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“A

EI

Figure 13

Proposition 4.1 If ¢ € [d},d'] the point X}, will be within some disc E'. For 2°, o fized the
coordinates of its centre (which we assume to be the point X, for £ = 0) depend only on u%; its
radius doesn’t depend on any of the constants z°, o, u° and when B is not fized then the radius
and the coordinates of the centre depend only on the parameter B.

Proof

Consider the circle with centre at the centre of the half-clothoid whose curvature is defined by
the part AF of the graph of u as a function of s (see Figure 13). Denote this clothoid by cl;,,. We
take the radius of this circle to be equal to the distance between the centre of the half-clothoid
and its point with zero curvature (denote it by rg). Denote the point of ¢/, corresponding to
the point F of the graph shown on Figure 13 by X}. If we change ¢’ € [d!, d'], then the point
X% will remain within this circle. The point X7, will be within the circle with centre at the
point Xz and with radius rg. Thus, the point X7, will be within the circle E’ with centre at
the centre of cl;,, and with radius 2rpg.

The proposition is proved. m]

We can use the same method for constructing the path from X' to some point X7, (from
the right to the left). For this path we have a parameter £”, the interval [d!, d"”] and the disc E”
respectively.

Remind that we consider the case when dist((z°,4°),(z!,%')) > 1/V/B. That is why E'n
E" = 0.

In order to construct the path from X° to X! vary £ and £” so that the tangent lines at
the points X1, and Xp) should be parallel (i.e. £ is a function of {’). For o' = 7/2, a” = —7 /2
and for o’ = —7/2, a” = 7 /2 the angles between the tangent vector to the path at Xy, and the

vector X Xp) have different signs. Hence, if we vary & and £” in the intervals [d}, d'], [d, d"]
respectively, for some values £, £” this angle equal to 0. We obtain the desired path from X° to
X1, The thus constructed path satisfies all the initial requirements.
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Remark 4.2 We obtain the following inequalities between the radius rg and the parameters €,
{ll:
€ <2Vrg
¢ < 2v2rp

Really, from formulas (4) we obtain (see Figure 2)

rg=|00.|= \/z?,c + v,

where

2o, = J3° cos(Br?[2)dr = \/2]B [5° cosvidv = \/2[Bv2r /4 = \/T/(2VB) (29)
Yo, = J& sin (Br2/2)dr = /2/B [ sinv¥dv = /2] BV27 /4 = \/T/(2VB)

Hence

_ [T
"B=V2B
Remember that £ € [d},d’] where & is the maximal length of an arc of a half-clothoid on

which the tangent angle to the half-clothoid makes a full turn, d; > 0 (see §4). To compute d’
let the point P; coincide with the point O and let a, be equal to zero (see Figure 1). Then

- V4r/B Bt? Bt? 4 T
= = 2 in? {25 Var = /2T — 9,/
d_Png—A cos(2>+s1n(2)dt B 2 B

£ < 2\/% =2v2rp

Hence

Similarly, £ < 2v/2rp.

Remark 4.3 The initial and final values of the curvature may be positive or negative. That is
why the path constructed from X° to X may be of one of the forms shown on Figures 14a)-d).
Figure 14a) corresponds to u® > 0, u! < 0; Figure 14b) - to «® > 0, v} > 0; Figure 1{c) - to
u? < 0, u! > 0 and Figure 14d) - to v® < 0, u! < 0. The points X};, X[, are the points of zero
curvature.

It is practically impossible to feel the presence of a switching point between two clothoids on
the path (Figures 14a)-d)), because the first and the second derivatives are continuous there.
On Figure 15 we show such a switching point - the path MK L contains an arc (M K) of the
clothoid C; and an arc (K L) of the clothoid C,.

Remark 4.4 Consider a path beginning at X° whose graph of the curvature as a function of
the path length has the form shown on Figure 16 (( > 0 is a parameter). Such a path will be
longer than the path with ( = 0 (if the tangent angles at X, are equal for both paths, the initial
angles and curvatures — too).
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YA
uw >0 ///—a ul <o
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x
Xp
W >0 ul >0
0 O 0O > b
v T
X5 XD
u°<0 Xb ul>0
fo) 46\ PN > <)
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X3
w0 <0 x4 X4 u! <0
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Figure 14
M
K
G
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Figure 15
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Really, the surfaces under both graphs of the curvature must be equal (because the tangent
angle is the integral of the curvature). Hence, £ is minimal when u, is maximal, i.e. { = 0. This
observation makes us choose { = 0 for the construction of the suboptimal path.

The condition dist((z°, 3°),(z*,¥')) > 1/vB implies that the line segment between the
points X}, and X}, is almost horizontal. Hence, if we change ¢ the change of the length A; of
this segment is approximately equal to the change of the length of its projection A;, on Oz.
Denote by A, the change of the total length of the four arcs of clothoid. Denote by A,_ the
change of the total length of their projections on Oz. Then we have

Ay 2 Ay, = =4, = A

Therefore one expects to have, in general, shorter paths for smaller values of (, because, in
general, the left inequality should be strict.

5 Proof of the suboptimality of the path constructed in §4.

Theorem 5.1 The optimal path for problem (1)-(8) is shorter than the suboptimal path construc-
ted in §4 by no more than (10v/2 + 12)rp (here rp denotes the distance between the centre of
the half-clothoid (4) and its point of zero curvature).

Proof.

19, Consider the suboptimal path as consisting of five pieces: the first piece is from the initial
point X° to the point X} corresponding to the point C on the graph of the curvature u as a
function of s (see Figure 13); the second piece is from the point X to the point X}, (remember
that the point X7, of the path corresponds to the point D on the graph of the curvature u); the
third piece is a line segment between the points X7, and X}; the forth and the fifth pieces are
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defined in the same way as the second and the first pieces respectively (the point X corresponds
to the point X().

Consider the initial point X° with the initial values of the tangent angle and the curvature
a® and u° as belonging to the unwinding half-clothoid with fixed value of the parameter B = 2.
Then we can correctly define the centre of this half-clothoid, denoted by Oxo. For the final
point X! with a!, u! we can define the unwinding half-clothoid with centre at the point O x:
respectively.

Then we can consider the optimal path as consisting of three pieces: the first piece is the
piece within the circle Dxo with centre at the point Oxo and with radius rg (more precisely,
the piece ends with the first point P which is out of the circle Dyo; if the optimal path leaves
Do and then enters it again, its part after the point P belongs to the second piece). The third
piece is the piece within the circle Dy: with centre at the point Oy, and with radius rg (more
precisely, from the last point belonging to Dy: to the point X!). The second piece is what is
left between the first and the third one.

20, Remember that we use the folowing notations: we denoted by X F the point of the
suboptimal path corresponding to the point F on the graph u as a function of s (see Figure 13),
by X¢{ - the point corresponding to the point C, by X, ~ the point corresponding to the point
D and by X7, X[, X]) we denoted the points belonging to the corresponding part of the path
from the final point.

The point X with &, ug belongs to the unwinding half-clothoid whose centre is correctly
defined. Denote it by Ox: . Denote by Dx: the circle with centre at the point O x:, and with
radius rp.

For the point X[ we define similarly the point O x2 and the circle Dy

30, Plan of the proof of the suboptimality of the path constructed in §4 (the
suboptimal path).

We compare the length of the optimal path and the one constructed in §4. We can estimate
the maximal possible difference of their lengths (denote it by o). For this purpose we prove that
the second (the forth) piece of the suboptimal path is no longer than the first (the third) piece
of the optimal one (see 490).

Then we estimate the maximal possible length of the pieces Xf’}é‘ and Xﬁg of the subop-
timal path (see 5%). Their lengths are, respectively, 2£’ and 2¢".

In 60 we estimate the maximal possible difference between the distance between the circles
defining the second and the forth pieces of the suboptimal one and the distance between the
circles defining the first and the third pieces of the optimal one.

And then in 7° we estimate the difference between the shortest and the longest possible
length of the line segment of the suboptimal path.

We summarise these results and obtain o in 80,

40, The first and the third pieces of the optimal path belong to the class D (see the definition
in 3.5). Hence, we obtain from Corollary 3.11 that the second (the forth) piece of the suboptimal
path is no longer than the first (the third) piece of the optimal one.

50, We obtain from Remark 4.2 that £ < 2v/2rp and € < 24/2rg. Hence, adding the pieces
XX, and X1X/ we add no more than 2¢’ + 26" < 84275 to the length of the suboptimal
path.

6°. The maximal possible distance between the points X° and X ¢ is equal to 4rp, because
the arcs X°X} and X%X/ are contained in circles of radius rg. Similarly for the point X!
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and X /. Hence, the maximal possible distance between the points Oxo and Oyx: is equal to
4rg + rg + g = 61 (see Figure 17). In the same way the maximal possible distance between
the points Ox: and Oxg is equal to 67g.

OxlC é, Xo Oxo
—
B 4rp B

Figure 17

Thus the distance between the circles defining the second and the forth pieces of the subop-
timal path is no greater than the distance between the circles defining the first and the third
pieces of the optimal one by no more than 6rg + 67 = 1275.

70. Estimate the difference between the shortest and the longest possible length of the line
segment of the suboptimal path. Denote by RQ the line segment of the shortest possible length
and by EW the one of the longest possible length (see Figure 18). Denote by G the point
belonging to the border of the circle DX:C and the segment Oxch is perpendicular to the line
OX&. OXg. For the circle Dxlé we have the point V respectively.

G

Figure 18

Compute the angle OXéEA’. It is equal to the angle between the vectors OBC and T (see

Figure 2). The vector 0_5C is the radius-vector of the centre O, of the half-clothoid (5), the
vector 7 is the tangent vector to this half-clothoid at the point O. The line { is perpendicular to

the vector OO, and the angle 3 is the angle between the line { and the tangent vector 7. From
formulas (29) we obtain that zo, = yo., hence, the angle between the axis Oz and the vector

(Toc is equal to m/4 and the angle 3 is equal to 7 /4, too. Thus the angle OXéEK is equal to
3

Z7l'.
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Hence
|KE| < |KG|

But [GR| = v/2rp (because Ox.G| = |Ox R| =7p and Ox. G L Ox: R). Hence,

|KE| < |KG| < |GR| + |RK| = V2rg + |RK|
Analogously for the segment | K W/| we have the following inequality:
[KW| < V2rg + [ KQ|
Thus
|EW| < |RQ| + 2V2rp

i.e.we obtain that the least possible length of the line segment of the suboptimal path is shorter
than the greatest possible length by no more than 2v/2rg.

80. Summarising the results obtained in 40 —~ 7%, we can estimate the maximal possible
difference of the lengths of the suboptimal and the optimal paths:

o =8V2rpg + 12rp + 2v2rg = (10v2 + 12)r3

The theorem is proved. O
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