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HARRIS ERGODICITY OF A MULTICLASS QUEUEING NETWORK VIA ITS
ASSOCIATED FLUID LIMIT MODEL.

Vincent Dumas?

December 1993

Abstract.

The stochastic network under study consists of two queues and two types of customers who
move across the network along opposite routes. This model was first analyzed by Ryb%o
and Stolyar [14], and then by Botvitch and Zamyatin (3], in the case of Poisson arrivels
and exponential service times. Rybko and Stolyar proved that this multiclass network
Is stable under FIFO if the traffic intensities at each queue are less than 1 (which we
will call the “usual conditions”), but that for some discipline based on class priorities, the
network may be unstable even if the usual conditions are satisfied. Botvitch and Zamyatin
found the exact stability conditions for this discipline, and showed that, under these
conditions, a very large class of service disciplines (which we will denote as “admissible
disciplines”) are stable. Here we will extend these results of stability for FIFO and for
any admissible discipline (under the respective stability conditions) to the case where
arrivals form renewal processes and the services of each class form i.i.d. sequences ; for
this, we will study the associated fluid (and deterministic) model according to the type
of discipline considered; at last, we will use a result of Dai [6], which states that fluid
stability implies stochastic stability.
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ERGODICITE D’UN RESEAU A PLUSIEURS CLASSES DE CLIENTS A

TRAVERS SON MODELE FLUIDE ASSOCIE.

Vincent Dumas?

Décembre 1993

Résumé.

Nous allons étudier un réseau comportant deux files d’attente et deux types de clients
traversant le réseau en sens opposés. Ce modéle a été étudié par Rybko et Stolyar [14],
puis Botvitch et Zamyatin [3], dans le cas ou les arrivées de clients sont des Poisson et
ou les services sont exponentiels. Rybko et Stolyar ont prouvé que ce réseau a plusieurs
classes de clients était stable sous discipline FIFO si les intensités de trafic a chaque file
sont strictement inférieures a 1 (ce sont les “conditions usuelles”), mais qu’il existait, pour
une certaine discipline fondée sur un ordre de priorités entre les classes, des intensités de
trafic satisfaisant les conditions usuelles et rendant néanmoins le réseau instable. Botvitch
et Zamyatin ont trouvé les conditions de stabilité exactes pour cette discipline, et montré
que ces conditions assurent la stabilité d’une catégorie tres générale de disciplines (les
disciplines de cette catégorie seront désignées comme “admissibles”). Nous allons étendre
ces résultats de stabilité du réseau pour la discipline FIFO ou pour une discipline admis-
sible quelconque (sous leurs conditions de stabilité respectives) au cas ou les arrivées sont
des processus de renouvellement et les services sont simplement i.i.d.; pour cela, nous
étudierons le modele fluide (déterministe) associé au réseau selon le type de discipline
retenu; un résultat de Daj ([6]) nous permettra de passer de la stabilité du modéle fluide
a celle du modele stochastique.
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1 Introduction. 1

1 Introduction.

This paper deals with a stochastic network that consists of two queues and two types
of customers who move across the network along opposite routes. This model was first
analyzed by Rybko and Stolyar [14], and then by Botvitch and Zamyatin [3], in the case of
Poisson arrivals and exponential service times (which we will call “the exponential case”).
It originates in a deterministic example given by Kumar and Seidman [12]. Before this
example was known, it was generally believed that any network under a conservative
service discipline would be stable if the traffic intensities at each queue were less than
1 (which we will call the “usual conditions”). Rybko and Stolyar proved that, under a
special discipline based on class priorities and for some special values of the parameters
satisfying the usual conditions, their network was unstable. Then Botvitch and Zamyatin
identified the exact stability conditions for this discipline; under these conditions, a very
large class of conservative disciplines (the “admissible disciplines”) are stable.

Rybko and Stolyar also showed that the usual conditions make FIFO stable, and for
this they proved a kind of “Foster criterion” connecting convergence to 0 of scaled pro-
cesses and ergodicity. This approach was proven by Dai [6] to apply to general multiclass
networks with renewal arrivals and i.i.d. service times (the “i.i.d. case”); the state space
is no longer discrete, and ergodicity must then be understood in the sense of Harris (see
(1] for an introduction to Harris recurrence). In his paper, Dai introduced the notion of
fluid limit model, which is a limit of the scaled processes considered by Rybko and Stolyar
(here we will use this notion, that avoids the use of sequences of scaled processes that are
uneasy to handle). Roughly speaking, he proved that the state process is Harris ergodic
if every fluid limit model becomes empty after some time. Notice that there is no general
result for the converse problem: how to deduce the transience of the stochastic model
from the behaviour of the fluid limit model ? A partial answer was given in [3], where the
authors refer to Malyshev and Menshikov’s theory of vector fields (cf. [16]) in the case
of the discipline based on preemptive priorities; the dynamical system associated to the
vector fields can be shown to coincide with the fluid limit model.

In this paper we will prove results of stability in the 1.i.d. case extending those
obtained in [14] and (3] in the exponential case; that is we will prove the Harris ergodicity
in the FIFO case (resp. in the case of a general class of “admissible” disciplines) under
the usual conditions (resp. under the conditions identified in [3]). In order to prove that
the fluid limit model becomes empty after some time, we will only use basic relations con-
necting the different processes involved in the description of the evolution of the network.
We will basically work on lower bounds on the long-run, average number of departures of
each class. More precisely, if D, denotes the number of departures of customers of some
arbitrary class up to time ¢, and if the number of corresponding, external arrivals up to
time t (including the initial customers) is vt + g, then we have: D; < vt + ¢, Vt, and we
will be interested in finding constants a € [0, 1] such that:

D, > avt + q. (1)
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We will show that the interaction between the flows of different classes of customers results
in relations between the respective lower bouds; this will allow us to build increasing
sequences of lower bounds (a*)v) for each class of customers; in fact, inequalities like (1)
with @ = a® are only valid after some time T¥), so that we will have to deal with
an auxiliary sequence of increasing times (T*)). We will show that the sequences (a{¥)
converge to 1 and that (T®) converges to some T < +oo; after that the proof will be
finished, since for ¢ > T the number of departures of each class equals the number of
corresponding, external arrivals. Notice that this method applies to both of the types of
service disciplines that we will consider.

Instead of the formalism proposed by Harrisson and Nguyen [9] (and adopted by
Dai) for general multiclass networks, we will use a formalism adapted from Kelly [10]
for multiclass networks with fixed customer routes, because all the non-trivial multiclass
networks studied by now (both stochastic and deterministic or fluid ones) belong to this
subclass and this formalism allows more explicit formulas. We will use the notations: [z]*
for max(z,0), and: a A b (resp. a V b) for min(a, b) (resp. max(a,bd)).

The paper is organized as follows. In section 2 we present the stochastic model, the
associated fluid limit model and the equations it satisfies, and we state the results proved
in this paper. In section 3, we prove these results, first in the FIFO case, then in the case
of general “admissible” disciplines. In the conclusion we will make some comments about
the applicability of our method to other networks and refer to different recent papers
about multiclass networks (especially Bramson’s paper about a FIFO network which is
unstable though the usual conditions are satisfied) and to future work.

2 Stochastic model. Associated fluid limit model.

2.1 Description of the stochastic model.

The network under study consists of two queues (denoted by an index k = 1 or 2) and
two types of customers (denoted by an index 7 = 1 or 2). At each queue there is a waiting
room of infinite capacity and a non-idling server working at unit-speed. To each type of
customers corresponds a fixed route of length 2 through the network : type 1 (resp. type
2) customers arrive at queue kj; = 1 (resp. ks = 2), go once served to queue kjp = 2
(resp. k22 = 1), and leave the network after their service at this queue. A customer of
type ¢ = 1 or 2 at stage s = 1 or 2 of his route is said to be a class (7, s)-customer (so
class (1, s)-customers belong to the queue k;,).

The external arrivals of type ¢ customers are supposed to form a renewal process
of rate v;, whereas the sequence of services required by class (2, s) customers is supposed
to be i.i.d. with mean 1/u;,. The different sequences or processes are independent. See
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Figure 1 to visualize this network.

The server is supposed to be serving at most one customer at any time. Preemption
is allowed, but not among customers of the same class (that is the service of a customer
must be completed before the service of another customer of the same class begins); this
is stochastically equivalent to assuming that the restriction of the discipline to each class
is FIFO. There will be a last restriction on the disciplines considered here; it will be given
after the definition of the state process.

We will denote by @Q.(k) the number of customers at queue k at time ¢ > 0. Cus-
tomers are supposed to be ordered in the queue according to their order of priority at
this time. Let us define Cy(k,!) (for 1 <1 < Q,(k)) to be the class of the I** customer in
queue k at time t. The state of the network at time ¢ is partially given by the variable :

Cg = (Ct(k, l))

Some information about next arrivals and residual service times will be needed to
get a markovian description of the state of the network. We will thus complete C; with :

e the forward recurrence times (Fi(¢))i1<ic2 of the external arrival processes (that is
the time until the next arrival) ;

e the residual service times (Y;(z,5)) 1<i<2 of customers at the head of their classes
<s
z’

<
s) = 0 if and only if the class (1, s) is empty

o N

1
at time t (with the convention : Y,
at time t).

Finally, we define the state process to be :

Xt = (Ch Fta }/t)a

with :
Ce=(Ce(k,1)) 1< g2
1212 Q)
Fy = (Fi(i))1<i<2
Y; = (Yi(t,8)) 1<
12522

Now we assume that the service discipline is such that (X;),>0 is a PDM (Piecewise
Deterministic Markov process ; cf. [7]). Those disciplines that meet all the conditions
edicted by now will be called admissible disciplines. It is easy to verify that FIFO, non
preemptive LIFO, and any discipline based on priorities (preemptive or not) between
classes and whose restriction to each class is FIFO, are admissible disciplines (see [6],
pages 5-7).

As usual, we identify the stability of our network with the positive Harris recurrence
of (X:):>0. We will extend the results of [14] and [3] that were given with exponential
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Figure 1 : Rybko and Stolyar’s network.

variables. It is convenient to use the notion of fluid limit model introduced by Dai [6)].
We derive the equations it satisfies in the next paragraph.

2.2 The basic relations between the principal processes.
2.2.1 The stochastic model.

Let us introduce some notations. For a given initial state * and a given class (1, s),
1<i,8<2

o ()%(1,s) is the number of class (7, s) customers at time ¢ ;

o A¥(i,s) is the number of class (z,s) arrivals up to time ¢ ;

e D7 (i,s) is the number of class (7, s) departures up to time ¢ ;

o WZ(1,s) is the load (or the work time) constituted by class (¢, s) customers at time
t;

o 7(z,s) is the total load brought by class (z,s) customers up to time ¢ ;

e B{(i,s) is the time spent by server k;, to serve class (%,s) customers up to time t,

To all these processes in the form : H*(i,s) = (Hf(1,5)):50, we may associate the
processes :
H*(k):= Y H*(i,s), k=12
k

is=k

At last, we define S7(i,s) to be the number of class (¢,s) departures after the
server has spent ¢ units of times serving class (7,s) customers. More explicitly, let us
assume that the class (i,s) is initially non-empty, and let o,(i,s), n > 1, denote the
service time required by the n'* class (,s) customer after the first initial one; for any
admissible discipline, the first p class (7, s) customers will have been served after a time:
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T;(,8) = Y5(i,s) + Yh2l 0a(i,s), and then: S7(i,s) =.max{p/ T7(i,s) < t}; it is the
counting measure of a renewal process of rate u;, and initial delay Y (i, s),

All these processes are taken right continuous, For any class (i,s), we have the
following relations:

o Q*(i,s) = A¥(i,s)— Di(i,s), with the convention : A3(i,s) = Q3(i, s), Di(i, s) = 0;

A7(i,8) = Q§(3,s) + Di(i,s — 1), with the convention : D{(i,0) = NF(i), where
N{(i) denotes the number of type ¢ arrivals into the netwark up to time ¢;

WZ(i,8) = Qi(i, s) — Bf (4, 8);

. A¥(i,8)-1 . s
Qf(i,S) = n.‘—.l! U,,(l, 3) + o;(:.;-),

Dtx(i, S) = Sﬁ‘s("”)(i, S).

Besides, for any queue k we have:

BI(K) = inf (k) + £ =) At

Remark 2.1
The last equation is perhaps better known in the following, equivalent form:

We(k) = Qz(k) - BE(k)
= sup [(F(k) — O(K)) = (¢ ~ )] V [F(k) — 1]

= sup [(QF(k) — B (k) - (¢ - )}V WG (k) + Q7 (k) — Q5 (k) - 1]
which is an ertension in continuous time of a well-known relation linking the load at the

arrival of a customer to the load at the arrival of the previous customen. It is valid for
all conservative disciplines.

Notice that these equations do not specify any particular discipline. We will further
see which equations characterize FIFO or a discipline based on preemptive priorities
between classes,

Let us denote by * the operator:
N—DQ: t20~0; =°lsx}£‘(9.+t—s)/\t

It is easy to verify that this operator is continuous for the uniform canvergence on com-
pacts sets, which we will use later.
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2.2.2 The fluid limit model.

- Let || || be a norm on the vector space R* x R® x R*, and let z be a state of our network.

We define :
f(z) = ”(q(i»s))lsi.asg X (f(i))ngigz X (?/(ias))lgi,sSQHy

with obvious notations extending those previously defined.

For any sequence (z,) with f(z,) > 0,Vn, and any process H*~, we define the scaled
. FFn .
version H' of this process by :

Let us define the vector process :

B" = (B"(i,8))i<is<2s

and similarly @°, W", A", D", Q". It was shown in [6] that if f(z,) — +oo, there
is a subsequence of (Q ,A D", W" 0", B") that converges in distribution to a limit

(Q, A, D, W, Q, B) satisfying the folluwiug set of relatious: for any class (i, s):

Q4 8) = Auliys) = Du(i, s), with : Ao(i,s) = Qo(i,8) = qis, Doli,s) =0;  (2)
A, s) = 'Cjo(z s) + Dy(i,s — 1), with : D(i,0) = N,(i) = vt — 1]*; (3)
R R | ()
Du(s, ) pis|Bili, s) = yis]*s- (8)
W.(i,s) = (i, 8) — B, s), (6)

for some non-negative constants 7;, giy, ¥is satisfying :

l(gis) x () % (wia)ll € 1, | (7)

Moreover, as an easy consequence of the continuity of operator «, we have the fol-
lowing relation, which improves equation (4.23) of [6): for any queue k:

Bi(k) = [A(R));. (®)
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Remark 2.2
We will extensively use the relatwn (8) in our calculation in the following fqrm Jort > 2T:
Bi(k) = oérzgt[ﬁ,(k) +t—-s]At
= inf [( «(k )+T—s)+(t—T)]A[T+(t-T)]/\ mf [?i(k)+t—s]
[FT(k)+t—T]/\ mf m (k) +t—s]

Any particular limit will be called a “fluid limit model”. Notice that for all n, A,
D", 0" and B" are by definition non-decreasing processes, and then A, D, 1 and B are
also non-decreasing processes.

All these relations are valid in the general setting of networks with fixed customers
routes. We now come back to the original neiwork and formulate our results.

2.3 The stability results.
Let us define the essential characteristics of the network,

Definition 2.3
Let us denote : piy = vifpis, ¥(i,8) ; pis is the traffic mtcnsaty of class (i, 5) customers
at queue k = k;,. The traffic intensity at queue k is defined by :

PE = Z Pisy
kiy=k
that is :
P1=pu+t P2, pP2=pa+tpa.

It is well-known (and obvious) that a general necessary condition for the stability of this
kind of network is :
pr <1, Vk.

We will prove the following results :

Theorem 2.4

o Case number 1 ; if the discipline is FIFO at both queues and ;
' ' <l k=12,
then there ezists ;z time T > 0 such that for any fluid [imit model :
V(i,8): @Qyi,s)=0and: W,(i,s)=0 forte [T, +oof



2 Stochastic model. Associated fluid limit model. 8

o Case number 2 : for any admaissible discipline, if :
pe<l, k=12

and : v
p1z + p22 < 1,

then there exists a ttme T > 0 such that for any fluid limit model :
Y(i,s): Qui,s)=0and : W,(i,s)=0 forte [T,+oo|.

Corollary 2.5

o Cuse number 1 : if the discipline is FIFO at both queues and :

pk<17 k=1)2a

and external interarrival times of all types are unbouded, then the process (X:)io is
positive Harris recurrent.

o Case number 2 : for any admissible discipline, if :

pe<l, k=1,2,

and :
piz + p22 < 1,

and external interarrival times of all types are unbouded, then the process (X:)e»o is
positive Harris recurrent.

Remark 2.6

e This corollary is an immediate consequence of the above theorem in view of Theo-
rem 4.3 of [6], which is an extension of Theorems 2 and 3 of [14]. Notice that if we
wanted to obtain Harris ergodicity rather than positive Harris recurrence, it would
be sufficient to add the classical assumption that interarrival times are spread-out
(see [1], pages 140-158, for a definition and the relation with Harris ergodicity).

o Botvitch and Zamyatin proved that the condition : pi13 + p22 < 1 is necessary for
stability under the discipline giving preemptive priority to customers at the second
stage of their routes (this discipline will naturally appear in the proof of Theorem 2.4)
in the exponential case (and then a fortiori in the general case).

The second part of this paper is devoted to the proof of Theorem 2.4.
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3 ' Proof of Theorem 2.4.

3.1 Preamble.

From now on, we fix a particular fluid limit model. We will expose the strategy of our
proof (both for the cases number 1 and 2) at the end of this preamble, but we will first
show that after a time T(®, we have the following, intuitive relation between the size and
the load of any class (i,s):

W;(i,S) = Qt}(j:s).

Thus the formulas for t > T will take nicer forms; besides, if ¢t > T(©):
(@uli,s) = 0) & (Wii,s) =0),

and thus we won’t have to make separate proofs for Q(i, s) and W (3, s) to get the results
enounced in Theorem 2.4. Finally, T(® will be the first element of the increasing sequence
of times evoked in introduction.

3.1.1 Construction of T,

Suppose that for some T® > 0: ¥(i,s): Brw(i,s) 2> vi,. Then for t > T©), we have, in
view of the relations (4) and (5) :

M) =y + 208 d
' _p

Bi(i,s) = yis + ——

As an immediate consequence (relations (2) and (6)) :

Wi, s) = Q:(i s)

Thus, for T > T :
(Q,(i,s) =0forte|T, +oo[) & ( ¢(i,s) =0for t € (T, +00[) .

We will prove that there exists a T(® such that the following, stronger relation holds:
for t > T
V(i,s) : Ft(i’s) 2 no(ia s) Yis + 22‘
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To prove this, it is sufficient that for any class (2, s), there exists some to < T such that
W, (3,s) = 0, since then:

ET(O)(i, S) 2 Fto(i, S) = ﬁto(i,S) 2 ﬁo(i, S).

The following lemma states that, as in the original stochastic model, a server remains
busy as long as the load remains positive ; notice that the opposite is not true : the server
would not necessarily remain idle if the load remained 0 (take Q,(k) = pt, t > 0, with
p < 1 for example; then: By(k) = Q,(k) = pt, and thus W,(k) = 0, t > 0).

Lemma 3.1 .
If W,(k) > 0 (for some s > 0, k = 1 or 2), then : B,(k) — B,(k) = u — s for any
u € [s,s+W,(k)|. As a consequence, if W,(k) > 0 for s € [sy, 52, then: B,(k)-B,,(k) =

u — 8, on this interval.

Proof :
We have : B, (k) = [Q(k)]z, that is, for u > s :

Bu(k) = Bu(k) = (u—3) A inf (U(k) +u —t = B,(k)),

with :
Quk)+u—t—B,(k) = g_,_(k) —Q (k) +u—t+W,(k)
> W,(k)
>u—s ifu<s+ W,(k).
The second part of the lemma is an easy consequence of this result. u}

Now consider for example queue 1. If Wo(1) = 0 then set Tl(o) = 0. Otherwise, as
long as W,(1) > 0 (for t > 0), we have: :

=yn+ %‘%& + Y22 + —(—H:‘:Z —t
_<_ Y1 + .A_'(w + Y22 + 322+A2;!2!l! —1

B11 p
_ gt [t-n]t Q22+02|+V2|‘-"'2|+
=yn + o + Y22 + o L

with -2 4 -2 = p; < 1, so that we can choose Tl(o) (independently of all the constants in

view of the inequality (7)) such that W.(1) =0 for some t < T,‘o).

We can do the same work for queue 2 and choose a time Téo), so that TO®) =
rna.x(Tl(o), T{”) will have the desired properties.
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3.1.2 General strategy.

For each class (1, s), we have:
Vt: Dy, s) < Ai(iys) = Qo(iy $)+Di(i, s—1), with : Dy(i,0) = Ny(i) (relations (2) and (3)),
and thus:

ﬁg(i, 1) < i + U;[t - T.']+ . (9)
D(1,2) € qiz + g + vt — ]t

for 1 =1,2.

Then, in order to prove the theorem 2.4, we just have to show that:

Dy(3,1) 2 g + vilt — 7]* .
{ Di(1,2) 2 g2 + qu + vt — 7]t fort € [T, oo  (fori=1lor2)
for some T > T'® independent of all the constants 7;, gis, ¥is. This will imply (relation (2))
that for any class (3, s): _
Q,(t,s) =0 for t € [T, +oof

and the same will be true for W,(3, s).

We will essentially work on the processes D(3,1), ¢ = 1 or 2; notice that this is quite
equivalent to working on the processes B(i,1), i = 1,2 (relation (5)), or the processes
A(1,2), i = 1,2 (relation (3)), or the processes (z,2), ¢ = 1,2 (relation (4)). We will
construct by induction increasing sequences (T(¥)) (with positive values) and (a,(k)), t =
1,2 (with values in [0,1]) such that for ¢ € [T, +o0][: [}

Di(i,1) > qu + vila®t — 1]t fori=1or2.

Such a lower bound at rank k on, say, D(1,1), implies a lower bound at rank k + 1 on
D(2,1) since D(1,1) governs the behavior of queue 2 (the other input to queue 2 is A(2,1)
and is well known, cf. relation (3)). Our work will then consist in estimating the worst
lower bounds at rank k + 1 allowed by those at rank &k and the upper bounds of (9). Qur
proof will be finished if we prove that (T*)) is converging to some T < 400 and that the
sequences (ask)), i = 1 or 2, converge to 1 (equivalent results on processes D(,2), i = 1
or 2 will then follow easily). Notice that (T(%)) has already been constructed and that the

above lower bounds are verified for ¢ € [T, +0o and a!” = o = 0.

We are now going to address separately the cases number 1 and number 2.

3.2 Case number 1.

In this case we work with FIFO discipline at each queue. Let us come back for a moment
to the original stochastic network. Suppose that the initial state is £ and consider queue
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k (k =1 or 2) and class (¢, s) such that k;; = k. The FIFO discipline can be characterized
by the following relation:
Vit 2 0: Df_*_w‘z(k)(z,s) = Af(i,s),
which tells us that the waiting time of a customer is the load he finds at his arrival. For
the scaled processes, it gives:
VneN, Vt>0: ﬁf+wy(k)(i,s) = A, (i, s).

It is easy to check that for the fluid limit model, the same relation holds:

Vt Z 0 . bt-f-Wg(k)(i’ S) = zg(i, s). (10)

Let us now set what will be our induction hypothesis at rank k > 1: we assume that
for some T*) > 0 and for t € [T¥), +00[, we have:

{ Dy(1,1) > qu + ul[ag’)t - nl*

De(2,1) 2 g + Vzlagk)t — 7],

and:
. t — 1t (k=1)y _ -1+
B.(1) > nlt-nlt+aqu P valay T2}t + qa1 + ¢22 + v
Hil H22

(2) > valt — o)t + qu +um + Vl[a(1k~l)t — )" 4+ g+ a2 + U1
_ K21 Hi2
(with 1 > a¥ > al" " and 1> a!¥ > a*™"). The lower bounds on B(1) and B(2) are
necessary to control the growth of the sequence (7®), and they will later allow us to
easily extend the results for the processes D(i,1) to equivalent results on the processes
D(3,2), i = 1 or 2, but they are not involved in the estimation of D(1,1) and D(2,1) at
rank k + 1, which is the crucial part of our calculation. The proof of the initial result for
k = 1, which is just slightly different from the work we are going to do now, is reported

to the end of this paragraph.

B,

Now consider for example queue 1: as we are interested in giving the lower bound at
rank k+1 for D(1,1), and since A(1,1) is known, we just have to give an upper bound for
W (1) in view of (10). For this, we will only be interested by the lower bounds of D(2, 1)
and B(1) in the induction hypothesis. According to relation (6):

thus we just have to give an upper bound on €,(1) and a lower bound on B;(1). The
relations (8), (4) and (3) give:
By(1) = Q)]
qu + unft —nl* g2 + Di(2,1)

(1) = Qu(1,1) + 2(2,2) =y + + y22 +
K1 H22
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Thus, in view of (9), a natural upper bound on ©,(1) for ¢ € R* is given by:

— + [t =]t + q21 + vyt — ]t /"
Q,(I) <y + 911 1[ 1] +y22+‘I22 q21 2[ 2]
M1l K22

Let us now estimate a lower bound for B,(1). The induction hypothesis implies that
for s € [T™), +ool:

—~ +us—-n]t + qun + vofalPs — )t
Q,(l) Zy“+<hn 1[0 1) + oy + q22 q?l 2[ 2 2] ’
1331 K22

so that for t € [T"), +ool:

Bi(1) = (Bpw() +t=TWYA inf (Q,(1) +t—s)

Tk <s<t
_ . ‘ vils—nlt+qu
> (Browo(l)+1—TH)YA  inf +
> ( ’I‘(k)( )+ ) TR <s<t H1 -
(k) . +
goo + iy 'S — T
22

b 3 nlt-nlt+ + G2 + 1p[at®t — 1)t
:(BT(k)(1)+t—T(“)/\( 1 1) Q11 +yu+<I21 922 2[a; 2) +ynl.

Hii H22

Here we used the simple fact that al) € [0, 1], which implies that

Yy l/gagk)
—+ <pp <l
K11 H22
For the same reason, there exists a time Tl(k“) > T such that for t € [Tl(k+l)’ +ool:
B nlt—nj* + + quz + va[alPt — )+
Brw(l) +t—T® > 1 #1] qu1 +un + 921 T g22 ui 2 2) + Y2
11

Now we use the lower bound on By (1) included in the induction hypothesis in order to
control Tl(k“). We have:

— wn[THE — 11t + Y a(k—l)T(k) — ]t + +
Brw(l) > ! p " +an +yu+ 2(e2 ; 2t + g + qa2 + v,
© M 22

so that it is sufficient to choose Tl(k“) such that:

mlT® = n]* ™R - 1)t e g 5 a1 = n* el T — o
M1 M22 ! - 133 B2 .
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Since agk) > agk'])

is satisfied if

Tl(kH) ~T® 2 Pn[Tl(k“) - T(k)] + Pzzlagk)Tl(Hl) - agk_l)T(k)]y and Tl(k+l) >T®,

and for any u > v, we have [u]* — [v]* < u — v, the previous inequality

Thus we will take:

k—
T(k-H) _ 1—pu-— Pzzag I)T(k)
1 - 1 (k) :
— P11 — P28,

Let us summarize the results obtained by now. For t € [Tl(k“), +o00[, we have:

k
vt — ]t + qu +yn + V2[0£ )t — )t + qa1 + qa2 + vz,
Hil K22

B.(1) >

and then, since:

= < nit-nlt+qu

vt —n]t +
(1) +yn + ol o3 (121+ng

H11 K22

+ Y22,

we deduce that:

Wg(l) S l/l([t - T2]+ b [agk)t bt T2]+) S ng(l - a(zk))t fO!‘ 4 € [Tl’c+l),+00[
H22

Now it is time we invoked the FIFO discipline to conclude our work. We have:
—Et-*W:(l)(la 1) = Zt(la 1) =qu+ Vl[t - 1'1]+-

T(k+l)

Hence, we conclude that for t € [T}~ ', +ool:

g“))](la 1) 2 q11 + Ul[t - T1]+

Dt[1+922(1—°

Using the symmetry of the network, we see that we will obtain similar results at
queue 2, that is for ¢ € [T{*", +o0o[:

15 [aﬁk)t - 7)Y +qu + @2

= > lt — ]t + g

By(2) 2 +ya + + Y12,
H#21 J23¥;
and:
D‘[l+m:(1—“(|k))](2’ 1) 2 gu + u2[t - 72]+’
with: _
k 1— pg1 — praal™
T+ = L—-T®

1 = p21 — pr12a;

Thus we can set:

TH+Y) = max((1 4 pa2(1 — agk)))Tl(k“), (1 4+ p12(1 — a{k)))Ték“)],
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and for t € [T*+Y), +00[ we have:

{ Di(1,1) 2 gu +v 1[W—n]+
+
Di(2,1) 2 gu +v 2[m 7t
or.:
— k+1) + a(k+l) 1
{ L) 2 aut Ul[a(l k+1 )t g with: :k“) 1+p2(1-a))
— N . 1
D(2,1) 2 gu + v2fa; 7] ) = iy
and: "
yel nit—nlt+ vlas 't — 1)t + g +
By alt=nltan,  wlatonl tmtem
Hu Ha22
_ I/t"'T++ l/a(k)t—-‘r ++
B.(2) > olt = " + g +yn + 1fa; Y+t g + v

B2 Hi12

This is the induction hypothesis at rank & + 1.

The reader will easily check that T(!), a ) and a ) can be calculated in the same
way from T(® (already estimated) and a(o) ) = 0. The only difference is that we have

no lower bound but 0 for B,(1) or B,(2) on [T(°’, +00], so the estimation of 7" and T
is less precise and involves the constants (7;), (gis) and (yi,); but condition (7) enables us
to find uniform upper bounds of these times.

Now the last step of this proof consists in showing that the sequence (T*)) converges
to a finite limit and that the sequences (aj (k )) and (agk)) converge to 1. This is the purpose
of the following lemma.

Lemma 3.2

o The sequences (a(lk)) and (agk)) defined by:

a® = o =0

S+ 1 gk+1) 1
1
1+ paa(1 = i)’ 1+ pia(1 = o)

are increasing, upper bounded by 1, and hence converging sequences. Furthermore
they both converge to 1 at geometric speed, that is:

Ja > 0/ (1 —agk)) = O((l_'*'l;)_k) , fori=1,2.
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e Let us denote:

{ u =Ltpn(l-al), W =1+4pu(1-a), k21,
k
”{k) =1-pn —Pna(l ), vg V=1 — AP —P22“g )’ k2 0.

The sequence (T*)) defined by:
TM >0

1) (k-1)

(k-
v Nnv
T+ = max (u( ) 2(k) ,ug ) l(k) ) T(k), k>1
vy

is an increasing, converging sequence.

Proof :

o It is easy to check that the sequences (afk)), 1 = 1,2, are increasing and bounded
above by 1. Let us denote: b(a) = (1 + a)*.(1—a®), fori =1,2,a >0, k € N.
We have:

( )
1-
4 (a) = (1 4 et L0202 )
1+ paa(l —ay”)
B (a) < pra(1 + a)b(a)

< p2(l+ a)bgk)(a), and similarly;

Then for k > 2 : bfk)(a) < przp22(l + a)zbfk-z)(a), for t =1 or 2. As piapse <
p1pz < 1, we can find a > 0 such that: p12paa(1 + @)? < 1, and then : b{¥(a) — 0,
that is:

1

(k)y
(l —a ) 0((1 +a)k

), fori=1,2: the first part of the proof is finished.

e For k > 1, we have:
(k+1) L wOTH)
T < ST

so we get:

Jj=1

ko G=1) (-1
v v y
T+ < (ll tu) S S”) W
V2 Y1

(0), (0)

YU Y2 (), () 1)
MONC) (H“ ) )T(

(1 = pu)(1 = pa1) (H uldy m) ™.

= (1= p1 —p22)(1 = p21 — p12)
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Then we just have to prove that {29 In u(k) < 400, ¢ = 1,2; but this is a conse-
quence of the previous result about the sequences (al¥), i = 1,2.

The conclusion is now easy. Set: T = T(®). We proved that for t € [T, 4o0[:

Di(1,1) = gu + wft = m]*
Dt(2, 1) =qn + l/g[t - T2]+

and:

= t—n)t + t— 7o)t +qn+

py=2lznli o pltonl Yt
#1 K22

— t — 1]t nlt —nlt +

B,(2) = A )t + g +ym + W W+ a4 qi2 +un2
H21 H12

Because of the relation (5), these two sets of equalities imply that:

21(1,2) =qu+q2tunft-nlt
Dy(2,2) = g21 + qz2 + 12t — ] *

and the proof of the FIFO case is now complete.

3.3 Case number 2.

Now the service discipline is not specified any more, but we will see that a kind of extremal
discipline will naturally appear in our calculations. Remember that we are primarily
interested in obtaining lower bounds on D(¢,1), ¢ = 1,2, and this is equivalent to obtaining
lower bounds on B(i, 1), i = 1,2 (relation (5)).

Let us define: P(2,2) := [¥(2,2)]", and P(1,2) := [Q(1,2)]". 1t is easy to check that
Pi(2,2) (vesp. Py(1,2)) is the time up to ¢t devoted by the server of queue 1 (resp. queue
2) to the class (2,2) (resp. to the class (1,2)) when this class has preemptive priority at
this queue, and then for any admissible discipline:

) (2,2) < [Q(2,2));, and:
ve20: {B( 2) < (L2

Of course this remark should first be made about the stochastic model and then extended
to the fluid limit model, but this is straightforward. Hence we get that:

- Bi(2,2) 2 By(1) — P,(2,2), and:
-B >

(1,2) 2B

.| By
wzo: {3 B(2) - Pi(1,2)
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Thus the discipline which gives preemptive priority to class (2,2) (resp. class (1,2))
customers at queue 1 (resp. 2) emerges naturally as an extremal discipline. Moreover, as

we have:
e B(1) = (L) + 02,2 Pu22) = [(2,2);, and:
Bi(2) = [Q(2,1) + Q(1,2)); P:(1,2) = [Q(1,2)];,

and since (1,1) (resp. §(2,1)) is known, we get a lower bound on B(l, ,1) (resp. on
B(2,1)) in terms of 0(2,2) (resp. of Q(1,2)), or equivalently in terms of D(2 1) (resp.
D(1,1)), cf. relations (4) and (3).

Let us now set the induction hypothesis at rank k > 1: there exists some T(*) >
such that for ¢t € [T®), +-00[:

{ Di(1,1) > gu + Vx[agk)t -7t
-D-‘(2v 1) > ¢ + V2[agk)t -]t

and:
Bi(1) 2 mlt = nl" + au +yn+ vala; 7]t + g1 + o, +um
at K22
- vaft — 1)t + g w[aﬁ"“)t -7t +qu+ qne
Bi(2) 2 +ya + + Y12
Az (3%
and:

Vz[agk—l)t ~ 7]t + a1 + g2z
H22

P.(2,2) > + y22

Vx[a(lk-l)t -n]t + g1+ @2 +

H12

(with 1 > a® > o Yand1>al" > agk"”). As in the FIFO case, the bounds on B(1),
P(2,2), B(2) and P(1,2) are necessary only to control the sequence (T*)). The proof for
k =1 will be mentioned at the end of this paragraph.

P.(1,2) >

Now consider queue 1 once again; we will only use the lower bounds on D(2,1),
B(1) and P(2,2). In view of our previous remarks, we have for ¢t > T'¥):

R(l,l)zR(l)—"ﬁ,(z,z)= (Brw (1) +t = TM) Ainfre ¢, (T(1, 1) + 0u(2,2) + £ - 5)

T(k)
—(Prn(2,2) +t — T(k)) A lnfT(k)<_,<,(Q (2,2) +t~s).

(el Let u(s )ﬁrst gt(at )r)id of (Br (1) +t — T%¥)) and (Prw(2,2) +t — T)). On one hand
relations (4) and (3)):
Q,(1,1) = yn + qu + nfs = nJ*

Vs Z 0: Kn _ +
53(2’ 2) < s + g21 + 22 + 11a[s T2]

H22
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On the other hand (induction hypothesis), for ¢ > T®):

4

n[T® — )" +qu Vz[agk_l)T(k) ~ 7o)t + qu + g
+yu+ - e
M1 H22

Brow()) +t-TW >

+ ¥22
+t — T,

Vz[agk—l)T(k) — 72|t + q21 + g2z

PT(") (2,2) +t— Tk > +yntt— T®),
\

H22
Then we get:
{ Brw(1)+t—-TH > . i)rlf< ((1,1) +9,(2,2) +t —s), and:
k) <a<t
P — T¥) Tin -
Prx(2,2) +t=-TW > T(g)r;fgg(ﬁ,(?,?) +t—3)

for t > Tl(k“) > Tk if Tl(k“) satisfies the following relations:
{ pgg[agk_l)T(k) - 7'2]+ + Tl(k+l) - T(k) 2 pgg[Tl(k+l) - T2]+, and:
pralal VTH — ]t 4 oy [T® — 7]+ 4 T — TR > pp[T{HD — ]t 4 oy [T — 1y,

Tl(k+l)

It is easy to check that the following value for is convenient:

(k-1)
T1(k+l) — 1 — pi — pa2ay T*)
1 = p1u1 = p22

Hence we get that for ¢ > T1(k+l):
{ By(1) = infrug,<(Qa(1,1) + 0u(2,2) + t — 5)

Fg(Q, 2) = infT(k)S,5¢(Q,(2, 2) + t— S)

and:
- > . o oy — _ . '~ .
B.(1,1) > T(kl)nsf;st(ﬂ,(l, 1) + 9,(2,2) +t — s) T(kl)tg;gz(Q’(Q’ 2)+t-s), (11)
With: +
M(1,1) =y + qu +unift —_71]
b #ll M
and:
M(2,2) <y + LTI nlt — ]t
) —_— #22 (k) )
_ — )t
0,(2,2) > yp + T It alos t = 7o) B
» K22 '
(the last inequality being true for ¢ > T® in view of the induction hypothesis on Dy(2,1)).

This immediately implies that for ¢ € [Tl(k“), +oo:

21 + Qa2 + valalt — )t

H22

- +uyt-n]t (K _ ]t
Bi(1) > yu + Q11 1 1) + oy + 921 + 922 +'V2[a2 T?]

K1 M22

ﬁz(2,2) 2 Y2 +
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We can similarly set:
k—
T+ 1 — py1 — prac} l)T(k)’
1 = pa1 = pr2

and for t € [T(k“),+oo[:

g+ q2+ 1 [ng)t -njt

Hi12

= + vt — ) + g2 + ot — ot
32(2)2y21+¢121 , 2[ 2] 4y + Q11 T+ q12 Vl[al 7’1]

H21 23}

Pi(1,2) > y1a +

So we got a part of the induction hypothesis at rank & + 1.

Let us now deal with B(1,1). For notational simplicity, set:

£(t) = 0(2,2) = ypp — 12
H22

For t > T**V, the inequality (11) can be rewritten as:

B au — ]t -
Be(1,1) > yu + " + T("l)rif< (prfs=m]t + f(s)+t—=3s)— (kl)nf (f(s) +t~s),

with:
Vs 2 T® : pplals — n]* < f(s) < paals — ma)*.
Let us fix t > Tl(k“) and set: m = infrm ¢,<.(f(s) +t — s). Notice that

< inf — 1)t +t —5) = paft — 1]t
m_T(kl)r;sSt(Pzz[s Tt +t —5) = paft — 7))

Now, by definition we have:

Vs e [T® ¢]:  f(s) > max (m +5 —t, pasfals ~ "2]+) '

and then:
ol (puls— ]t + f(s) +t-s) -
> T(kl)x;f’y (pu[s —7)% + max (m +s— t,pn[agk)s - T2]+) 4t — s) -m
= T(j)r;fsg (pu[s —-nl*t+ [Pzz[ag.k)s - 7’2]+ +t—s5— m]+) .

Finally, in view of the upper bound previously obtained on m, we have, for s € [T?, t};

+ +
[pgg[agk)s -t +t—s— m] > [pgg[a s—T)t +t—5— pyft - 12]+]
Z[ 22(02 s—t)-{-t—s]*’.
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Hence we conclude that for ¢t € [Tl(k“), +ool:

B an : + (k) +
> s - - -
B,(1,1) 2yu+ i + T(“l)r;f;St (pu[s 1] ++[p22(a2 s—t)+t—4] )
1—
=y11+g£+P11 [—*#-t—ﬁ] .
H11 1 —a; ' p2
, (*)
The last equality is valid for ¢ > %T(’" (in this case, we have to minimize a function
that is first decreasing and then non-decreasing on the interval [T*),¢]), which is true

_a®
since t > T{**!) > 12 s 2R TR,

In view of relation (4), this result is equivalent to :

— 1— +
Dg(l, 1) Z an + 1 [ﬁ-t b Tl] for t € [Tl(k.H), +OO[.

— a3 P22
Similarly and symmetrically, we have at queue 2:
—_ 1—- +
Dy(2,1) 2 qn + 12 [%t - Tz] fort € [T2(k+l), +o00|.

%
- a(x )Pl2

If we set: T*+) = max(T**), T{+Y), we thus have for ¢ € [T*+), oo[:

SEHD) 1 —pg
Di(1,1) > qu + m[alVt — 7]+ with:d 1=
{ Dy(2,1) > qu + Vz[agk“)t —n]* o alftt) = _1—_”"__
? 1- agk)plz

In view of the previous results about B(1) (resp. B(2)) and P(2,2) (resp. P(1,2)),
we thus proved the (k + 1)** step of the induction. The same remarks as in the case
number 1 can now be made.

It is easy to check that T, a(ll) and agl) can be calculated by the same method

from T(® (already estimated) and al” = ago) = 0. The only difference is that we have

no lower bound but 0 for B,(1) (resp. B,(2)) and P;(2,2) (resp. P((1,2)) on [T, +o0],
so the estimation of Tl(” and TV is less precise and involves the constants (7i)s (qis) and
(yis); but the condition (7) allows us to find uniform upper bounds of these times,

Let us now show that the sequence (T'*)) converges to a finite limit and that the
sequences (agk)') and (a(zk)) converge to 1.

Lemma 3.3
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o The sequences (agk)) and (o) defined by:
a(lo) = ago) =0

(k+1) _ 1 —p2 (k1) _ 1 —p12
et N L S e 1
1 — paaay 1 = p12a)

are increasing, upper bounded by 1, and hence converging sequences. Furthermore
they both converge to 1 at geometric speed, that is: :

k 1 _
a>0/ (1-a) = "((1+a)k) , Jori=1,2.
o Let us denote:
® _ L=—pu—pnaf™ 41— pn — praal*™
vl - ) ‘!)2 = , k 2 1.
L=pu—pn 1—p2n —p12

The sequence (T*)) defined by:

TW >0
{ T4+ = max(v®, o{N)T®, £ >1

is an increasing, COnverging sequence.

Proof :

e It is easy to check that the sequences (a; (), i = 1,2, are increasing and bounded
above by 1. Fort=1,2,a >0, k€ N, let us denote:

5(a) = (1 + a)*(1 — a{).

We have:
(k+1) k p2(l — agk)) (k)
by " a) = (1 + a)**! & < (1 + a)b, (), and similarly:
1 — p12gy 1 - '

b£k+l)( ) < 1f2;22(1 +a)b(k)(a)

Then, for £k > 2,1 =1,2:

(*) (o P12p22 21 (k~2)
b(@) < s (1 + ' @)

It is time we used the extra stability condition, that is:

p1z + p22 < 1,
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which is equivalent to:
P12P22 <1

(1= p12)(1 = p22)

Hence there exists some a > 0 such that

(l—plg)(l-—m:)(l + a)2 < 1, a'nd then.'

b (a) — 0, which we aimed to prove.

e For k > 1, we have : TG+ < oMM TH) 5nd then:

k
T(k+1) < (H vfj)vgj)) T()

i=1

It is thus sufficient to show that: Y335 In v,(k) < 400, for 1 = 1 or 2; but this is an
easy consequence of (1 — agk)) = O((TF!W)’ for some a >0 and i =1,2.

0
The conclusion is as easy as in the FIFO case. The proof for general admissible disciplines
is complete.

4 Conclusion.

The method that we have just exposed in the particular case of Rybko and Stolyar’s
network, can be shown to apply very well to the Jackson networks and of course to all the
classical, multiclass networks (we employ the term “classical” to denote networks that are
staightforward to study even with general assumptions of stationarity and ergodicity on
the arrivals and services, like feedforward networks, or networks with IFBFS preemptive
resume discipline (cf. [13]); notice that the Jackson network under stationnary, ergodic
assumptions, was recently analyzed by Baccelli and Foss [2]). For a general multiclass
network with fixed customers routes, our method can be used to ontain sufficient con-
ditions of stability in terms of conditions of convergence to 1 (resp. to a finite limit) of
similar sequences of lower bounds (resp. of a similar sequence of times); we conjecture
that the sequence of times thus constructed always converges to a finite limit if the lower
bounds converge to 1. However, we have not been able to get the exact stability conditions
for complex networks; a deeper description of the interaction between different classes of
customers seems then to be necessary.

To conclude this paper, let us say a word about all the articles that appeared recently
about multiclass queueing networks. One of the most interesting papers is undoubtedly
Bramson’s one [4], where it is shown that a network with FIFO discipline can be transient
even if the usual conditions are satisfied. At the same time, Seidman proved a similar
result for a fluid model [15]. The network analyzed by Bramson was a re-entrant line
(that is a multiclass network with one fixed customer route, see [11]) with 2 queues and J
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feed-backs at the second queue. Bramson found particular values of the traffic intensities
satisfying the usual conditions but making the state process transient for a “big” J. We
will show in a future work ([8]) that the associated fluid model exhibits “unstable cycles”
similar to those identified by Seidman [15]) for J > 2 (and of course under the usual
conditions).

The fluid approach seems to be the most promising one to study networks that ex-
hibit this new kind of instability. In addition to [6] already cited, an interesting paper is
{5} in which Chen investigates different properties of fluid models and gives sufficient con-
ditions for stability. An open, significant problem remains: how to define fluid instability
so that it implies the transience of the original, stochastic model ?
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