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Abstract

A path following control strategy for nonlinear systems is introduced. This control strategy, which is
an extension of the work of Jankowski and Van Brussel [1], presents an alternative to input-output
linearization. The advantage of this strategy is that it can be applied to very complex nonlinear
systems as opposed to input-output linearization for which the required symbolic computation can be
prohibitive. A complete analysis of this controller in the linear case is presented and its application
is illustrated through a number of examples (linear an nonlinear).

Commande hybride boucle-ouverte, boucle-fermée
avec feedback préliminaire pour le suivi de trajectoires

Résumé

Comme une alternative a la linéarization entrée-sortie qui est souvent prohibitive pour des systéemes
complexes Jankowski et Van Brussel [1] ont développé une stratégie de commande pour le suivi
des trajectoires pour des systémes non linéaires. On présente une extension de ce travail avec une
analyse complete dans le cas linéaire. Son application est illustré a travers diverse exemples linéaires
et non linéaires.



1 Imtroduction

In this report, we consider the problem of path-following (tracking) for complex nonlinear systems. In
tracking control problems, the goal is to design a controllers such that the output of the system tracks
a given time dependent reference trajectory. Tracking problems arise in the design of controllers for
robot manipulators, mobile rol?ots, air-crafts, etc...

The solution to tracking problems can be found in nonlinear control theory as exact input-output
linearization [2]. Using this method, as long as the original system is minimum-phase, it is possible to
construct a stabilizing controller which achieves asymptotic tracking for any sufficiently differentiable
reference trajectory. The main drawback with this approach is its computational complexity. Even
for small nonlinear systems, the symbolic computation required for exact input-output linearization
can be prohibitive. In order to overcome this difficulty Jankowski and Van Brussel {1} have proposed
a new design methodology, closly related to predictive control. Their approach is in part open-loop
and in part closed-loop; they measure the state, compute an open-loop control which is applied
on a short time period and start over. They have successfully applied their method to a two-link
manipulator with flexible joints. We shall explain in detail this approach in Section 2.2. In the
sequel, we shall refer to this controller as hybrid open-loop closed-loop (HOC) control.

It turns out however that HOC control does not work systematically on arbitrary systems and
it is one of the objectives of this report to show why. But more importantly, the main objective of
this report is to show how this approach can be modified to work on a broader class of systems.
In particular, we show that one such modification is the addition of a preliminary feedback to the
system before the application of the HOC controller. Let us illustrate the idea through a very simple
example. Consider the following system

z = —azx+4u (1.1a)
z(0) = 20, (1.1b)

and suppose that we like to find a controller such that z(t) converges to (tracks) sin(t), i.e.,
sin(t) — z(t) — 0 as t — oo. A simplified HOC controller measures the state z at time ¢, finds
the open-loop control for ¢ to ¢t + At, applies this control and starts again at t + At. In the real
implementation of the HOC controller, the solution of (1.1) is computed using some numerical

integration method. But here because of simplicity of the system we can obtain a closed-form

solution which is
u(r) = cos(r) — asin(r), T €0, At] . (1.2)

Note that u(7) does not depend on z° and the HOC controller for this particularly simple example
is an open-loop controller. Applying this control to system (1.1) yields

z(t) = 2%~ ** +sin(2)
which does not converge to the desired trajectory as long as & < 0. In particular if &« = 0 we have

z(t) = z° +sin(t) .

Let us now apply a preliminary feedback
u=—kz+v

before applying the HOC controller. Then clearly as long as k + o« > 0, the HOC controller will
work. In this case the preliminary feedback does the job as long as it stabilizes the system, but in



general the construction of an adequate preliminary feedback is not as straightforward. We shall
present a detailed analysis in Section 4. The above example, even though it illustrates the idea of
preliminary feedback, it does not really show how HOC controllers work, because in this case the
HOC control reduces to an open-loop controller. As we shall see later, the reason for this is that the
solution of the DAE

X = —aX+U
sin{r) = X
X@©0) = 2°

is independent of the initial conditions z°, X(7) is discontinuous at 0. In general, the solution of
DAE’s that come up for the construction of the open-loop control u(t) depends on a part of z. It is
exactly this part of z° which the HOC controller uses for feedback.

The outline of the report is as follows. In Section 2.1, we review the classical tracking method
which is based on exact input-output linearization and the use of the structure algorithm. In Section
2.2, we explain the HOC controller proposed in [1]. In Section 3, we apply both of these methods
to an example. We show that the classical approach works fine but that the resulting controller
is very complex, on the other hand the HOC controller has less complexity but does not work! In
Section 4, we analyze conditions under which HOC controller works by considering the class of linear
systems and show how a preliminary feedback can be designed to make it work if the conditions
are not fulfilled. Section 5 is devoted to issues concerning actual implementation of the controller
and in particular the effects of discretization. Finally, the application of the HOC controller with
preliminary feedback is presented in Section 6 on the example of Section 3. We show in particular
that, with preliminary feedback, HOC does work.

2 Problem statement and existing solutions

Given a system of differential equations .
m
&= fz)+ ) gi(a)u (2.1a)
i=1

and the output vector function

y = h(z) (2.1b)
the objective is to find a stabilizing feedback control u(t, z), such that the output y follows a given
function of time £(t), i.e. that

e(t) = y(t) - &(t) (2.2)

converges to zero as t goes to infinity.

2.1 Exact input-output linearization

In this section, we review two solutions to this problem. The first solution uses exact input-output
linearization and is based on the structure algorithm. The second solution is the HOC controller
proposed in {1]. To see if there exists a linearizing controller and to design such a controller we can
use the structure algorithm as defined in [2], which is a nonlinear extension of an algorithm for linear
system inversion introduced by Silverman [3]. For clarity of presentation we first review Silverman’s
algorithm for linear system inversion and then give its nonlinear extension.



Silverman Structure-Algorithm for linear system inversion Let
2 = Az+Bu (2.3a)
vy = Cz (2.3b)

and suppose that m, the number of outputs y, equals the number of inputs u. The idea of the struc-
ture algorithm is to construct u in terms of z, y and its derivatives. This is done by differentiating
and applying linear transformations to (2.3b) until u appears with an invertible coefficient.

e Step 1: Let yo = y and differentiate (2.3b):
Y9o=CAz+CBu.

Let r; = rank(CB). Then there exists a nonsingular m x m matrix Vi row-compressing C B

_| D
wos=[2].

where Dy is ry x m and rank(D;) = ry. If r; = m the algorithm ends; if r; < m, define the
new outputs
vipn = Chiz+Diu (2.4)
iz = Ciez, (2.5)

where [ Cia ] =ViC A and [ Y11 ] = Vito.
Ci,2 Y1,2

¢ Step 1: Differentiate (2.5) but not (2.4):

¥i-11 = Cicigz+Diou
Yi-12 = Cic124z+Ci—12Bu.
Let r; = rank([ CDi_lB ]) Then there exists a nonsingular m x m matrix V; row-compressing
i-1,2 P
D;_, .
. We obtain
[ Ci-1,2B ]

V‘[cgif,;BF[Doi]'

where D; is r; x m and rank(D;) = r;. If r; = m or i = n, the algorithm ends. If i = n but
ri # m, there is no solution, i.e., system (2.3) is not invertible. If r; < m and ¢ # n, define the
new outputs.

vipn = Ciiz+ Diu
y,',z = C.',zx (2.6)
where [ g:’; ] =V [ CC::’;A ], [ i:; ] =V [ z::::; ] and continue.

If the algorithm ends at step v, we can solve for the control u as a function of y and its derivatives,
and z

v = —~(D)'Couz+(D) 'y
v—1
T Ko+ La® . (2.7)

i=0



To perform tracking now, we can consider replacing y in (2.7) by the reference trajectory £(¢) and
apply the control

v-1
u=Kz+) L&)V, (2.8)
i=1
in which case the modes of the resulting closed-loop system (eigenvalues of A+ BK) include the zero
dynamices of the original system (2.3) and a bunch of zeros due to differentiations in the structure
algorithm. Nothing can be done about the modes coming from the zero dynamics; if the system is
not minimum phase, the closed-loop system will be unstable. The zero modes introduced by the
structure algorithm however can be placed anywhere by a slight modification of the algorithm as
follows:

e Step 1*.: Differentiate (2.3b) and subtract from it (2.3b) pre-multiplied by T, where T, is
a stable matrix.
y-Tiy=(CA-T,C)z+CBu.

Continue as in the Step 1.

e Step i*.: Differentiate (2.5) and subtract from it (2.5) pre-muitiplied by T;, where T, is a
stable matrix:
Yicy,2— Tigicr,2 = (Cic1,24 = 1;C) 2+ Ci-y 2B u .

Continue as in the Step i.

With this version of the algorithm the applied control is still of the form (2.8), but the closed-loop
poles of the system will be at the zero dynamics of (2.3) and the eigenvalues of the T;’s. We will
refer to this modified version of the structure algorithm as stabilized structure algorithm.

Note that if we let H(s) = [C(sI — A)~!B] be the transfer-function associated with (2.3) the -
application of the algorithm can be interpreted as a left multiplication of H(s) by a polynomial
matrix T(s)

T(s)y = Y(s)[C(s] - A)"'Blu = (C(sI - A)"'B+D)u ~ (2.9)

s0 as to obtain an invertible D. The condition for D~ to exist is that H({(s) be invertible. Also note
that the algorithm generalizes trivially to the case where

y=Cz+ Du,
and to the case where z = Az + Bu + Jw(t) where w(t) is a known perturbation to be rejected.

Nonlinear Extension [2] Consider the nonlinear system

t = f(z)+G(z)u (2.10a)
y = hz) (2.10b)
z(0) = =2° (2.10c)

where G(z) = [g1(z),...,9m(z)), and f(z), gi(z) and h(z) are analytic vector fields. As in the
linear case we assume that the number m of inputs equals the number of outputs. For clarity of
presentation the differentiation of the output is written in the Lie derivative notation. Let

Oh(z)
) 4

L] h(z) =

where Q?,L:) is the Jacobian-matrix of h(x).



e Step 1: We proceed like in the linear case. Let yo = y and differentiate the output (2.10b) !

g = Lh(@)+ ) Loh(z)y;

i=1

Lyh(z) + Th(z)u,

where

Ti(z) = [ L, h(”) | L.ozh("") b | Ly, h("’) ] .
Clearly in the linear case Ti(z) would be C B. If rank of Ti(z) is fixed in a neighborhood
of 2o and equals the dimension of the vector field spanned by columns of T;(z) over the field
of real numbers denoted rank;(7;(z)), we can proceed. Otherwise the algorithm fails. If
r1 = ranky(T}(z)) = rank(T1(2°)) then there exists a nonsingular matrix V; row-compressing

Ti(z). W) = [ Sl(()z) ] _

If r, < m define the new output

Y1y = hia(z) + Si(z)
2 = hia(z) . (2.11)
h].)(z) —_— [ ylrl — ¥
where [ hya(z) | = ViLsh(z) and wa | = Wy.
e Step i: Differentiate the y;_;,2 and consider the new output -
Yi-11 = hic11+ Si—1(x)

m
Yi-1,2 = thi—l,2+ZLg,~hi—l,2uj
j=1
= Lphici2(z) + Ti(z)u

where .
Ti(@) = [ Lohic12(z) | Lghicip(z) | .o | Lo hicia(@) | -
If rank of [ 5'7:(1:1(:;:) ] is fixed in a neighborhood of z; and equals the dimension of the
L}
vector field spanned by columns of [ S;:_ (15)!7) over the field of real numbers, we can proceed.
L]

: (g0
Otherwise the algorithm fails. If rank,([ S&:’ES) ]) = ra.nk([ S;I:ES)) ]) = r; then there
$ 3

exists a nonsingular matrix V; row-compressing [ S;: (lg) ] such that
v Si—1(z) | _ | Si(=)
. Ti(z) |~ 0 ’

If »; = m or i = n the algorithm ends. For r; # m and i = n there is no solution, i.e., there
exists no exact input-output linearizing feedback. If r; < m and ¢ # n define the new output

vir = hi(z) + Si(z)u

Yiza = h,',g(z) (212)
hin(z) | _ [ hi—1) ] [ M ] o [ Yi-1,1 ] .
where [ hia(z) | = V; Lihicia |' | w2 | = Vi Y12 and continue.



If the algorithm gives a solution at step v we can solve for the control u as a function of y, 1, and .

u = (Su(@)  hoa(z) + (Su(2)) w,n

K(z)+ VZ_: L;(:c)y(‘)

Just as in the linear case, we can modify the algorithm to avoid introducing zero modes in the system
and finally tracking control is

u= K@)+ Y L) ,

i=0

where {(t) is the reference trajectory. This approach works if (2.10) is minimum phase.

2.2 HOC Controller

For many nonlinear problems the successive differentiation of the output-function results in huge
expressions, or worse, becomes impossible, as the size of the expressions exceeds any symbolic
calculation power available. In such cases it is desirable to interrupt the structure algorithm before
end and if possible replace the remaining steps by something else, such as a numerical method. The
HOC controller introduced in [1] does exactly that: first it applies the structure algorithm as much
as possible to reduce the “index” [5] of the system and then computes open-loop controls over short

intervals based on the value of the measured state vectors.
x(‘pol) x(t ,,,)

x{t)

x(t, )

u(t)
P:' p+l ‘; p+3
| "
]
/ | defines u(t) v ‘
1) ! . 3
on interval
»
xi ['pﬂ 'p+21
defines u(t)
: on interval
hpoz 'p¢3 !
€
’0‘
xi

01234567

j
Figure 2.1 Representation of the HOC control strategy proposed in [1]). z(t) represents
the state evolution of the controlled plant over time t. At each instant t,, the plant is sampled and
the vector z(t,) is used as initial value X{ for system (2.14). The plot X{, Uf represents the result
of the numerical integration of system (2.14) for j = 0 to j = k. The control value of u over the
interval t,4, 1o tp4o ts chosen to be UP. Clearly, to be implementable, the numerical integration of
the DAE has to be faster than real-time.

The steps in the design of the HOC controller in [1] are



o Application of a number of steps in the stabilized structure algorithm such that the new system

z = f(z) + G(z)u

o (2.13)
y=h(z)+ J(z)u
has low index (less than or equal 3*)
o Discretization of the DAE
X = f(X)+GX)U (2.14a)
€t) = R(X)+ J(X)U (2.14b)
X(t) = =(t,) (2.14c)

using an implicit discretization scheme (BDF)

Xu+d=xa+2—xm,

where ¢ is the discretization time interval. We note X§ = z(t,) the sampled state vector z at
instants t =¢,, p=1,2,:--, where t,41 =t,+6 and 6 > 0 is the sampling interval and let X?
the computed estimation for 2(t, + ¢j). The resulting discrete approximation of (2.13) is

Xi = X = el f(X71 + G(X70)Uf 0}

-~

E(ty +je) = M(XLyy) = T(X[4 1) Ufyy = 0 (2.15)

X5 =z(t,) .
We use uppercase letters for the to be numerically integrated DAE (2.14) as opposed to the
original system (2.10).

¢ Computation of the numerical solution of (2.15) over the time interval [t,,t,+7], wherer, = ke,
i.e., from j = 0 to j = k, where k is an integer to be chosen larger than the number of left out
steps in the structure algorithm. ’

o Application of a piecewise constant control u(t) to (2.1)

(

Uf for t,<t<t,+6  computed with initial value X{™' = z(t,-;)
u(t) =
UPt' for ty41 <t<tp41+8 computed with initial value X8 = z(t,)

\

where § > ¢ and ¢ is to be chosen such that 26 > ke > 6.

This procedure is illustrated in Figure 2.1.

Unlike the exact input-output linearization method, the application of of the HOC-controller to
a linear or non linear minimum phase system may result in an unstable closed-loop system. This
can be seen in the example presented in the next section

! This is necessary as we use numerical integration schemes to solve the DAE. These integration schemes may not
converge for indexes > 3.



3 Example: Wheel rolling on a plane

Modeling the dynamics of a wheel rolling on a plane requires at least a set of five variables:

e z,y coordinates of center of mass of the wheel
e ¢, 0, v Euler angles associated with the orientation of the wheel

-~ ¢ direction
— @ lean angle

— 9 roll angle

Figure 3.1 Paramelrization of the wheel rolling on a plane.
As control we introduce two external forces:

¢ u; steering torque. Torque u, is such that it is always normal to 8 and 11}

o uj pedalling torque. Torque in the direction of 1/}, normal to the wheel.
Finally we need to define the following constant parameters of the wheel:

e m mass of the wheel (= lkg)

r radius of the wheel (= 1m)
o I, radial moment of inertia (= 0.5kgm?)

I, normal moment of inertia (= 0.25kgm?)

10



The equations of motion are composed, first, of a set of equations independent of the position
qy = [z, y] and the absolute orientation ¢ of the wheel on the plane

¢ o .
M) | 6 | =FO.600)+50) [ 1 ] (3.1)
d) 2

or specifically

[ 1, sin(8)% + I, cos(8)* + mr? cos(h)? 0 I, cos(8) + m r? cos(8) §
0 I +mr? 0 ¢ | =
I,, cos(0) + mr? cos(0) 0 Iy +mr? [ ¥ ]
I 189 sin(0) +2 (mr? + I, — I,) ¢ 6 cos(8) sin(8) uy sin(6)
—(mr? + 1) 9 sin(8) — (mr? + I, — 1) $? cos(0) sin(8) — mgrcos(8) | +| 0 ,
i (2mr? + 1,) 60 sin(f) uz
(note that M(6) is nonsingular for all values of # except § = im, i = .. - 1,0,1,2..) and, second, of

two separate equations that can be used to compute the position of the center of mass q; = [z, 3}
on the plane. )
i ¢
HEDIRAE
U4

For a detailed development of the equations of motion see Appendix A.

Tracking objectives As output we take the lean-angle 8 and the roll angle of the wheel ¥. The
objective is to make # and ¢ follow reference trajectories 6,.7(t) and ¥r.;(t)

s

Explicit solution An application of the structure algorithm shows that we have to differentiate 8
three times and ¢ twice to obtain explicit expressions for u; and u; as functions of qy, q1 , frey ()

and v,.s(t) and their derivatives. The resulting expressions are valid for 0 < § < 7 and ¥ # 0. To
begin with, we compute the explicit system representation

z=f(z)+9(z)u,
wherez=[¢ 8 ¢ ¢ ¢ 1/:']a.nd

é 0
fz) = ; , o(z) = ¢
| (M(@)~' F(8,,6,9) (M(0))7* B(6)

After two differentiations of the 6utput the control variables u, and u; appear, i.e., for the first step
of the structure algorithm, we have V; = I and

Y2, = hai(z) = [ 3; ]

11



and y1,1 is empty.

Q :mmgo +!co'sgal( I, —r 2m +1, )+ b

g l(-rim — I, )sin(8)4)é — mg r cos(6))

e [ ¥ ] B A {lsin(8) cos(0)*(In 2 + r2m Iy — I In) — (2, r*m + I, I,) sin(6))$—
(I2 + In r?m) cos(0) sin(6)y0+
sin(8) cos(8)(In + r?m)u; — [(r? m + I, — I,) cos(8)? + I.] uz} ]

Ay = =1, sin(0)*(r*m + I,)

However in the matrix Lyhy1(z) has rank one for all z
(verifying r; = ranke(Lgh;,1(2)) = rank(L,hy,1(2°)) = 1). With

a= (1]
we compute
So(z) = [ sin(@)cos(8)(In + r’m) (r*m + In - I,) cos(6)? + I, |
hoy(z) = 7111-{(sin(e) cos(8)(In 2 +r2mln — I In) — (2L, v *m + I, I,,) sin(6)) ~

(I + I, r*m) cos(8)sin(8)y6

$2 sin(8) cos(6) 1

ha 2(z) vy (=In =r’m + L)+ m[(—rzm —I,) sin(8)yé — mgr cos(8))

-

In the third step we differentiate hj 2(z) and obtain
[ va]_[ ¢ ] = | h2(2) ] + [ Sa(z) u
¥2,2 8 Lyha,a(2) Lgh2(z) | | u2

Now we find that r3 = rank;([ L '5;122(:()1:) = rank([ LSI;Z(:(ZO) ] = 2 hence
gh2,

ha.l(z) =
[ z—[sm(O)cos(O)z(I2 +r2ml, + I. L) — (21, r2m + I, I,, )sin(6)}é— ]
(In2 + I, v2m) cos(#) sin(6) 16

(-A4(-L?+@r2mL —Inr®m - L,*+3L, I, — I, 2)cos(0)2
(21 241231, 1, =25, r%m + I, r2m) cos(8)* — r2m I, )¢%~
r(?([,,r m—-31,1, —I,r’m +21, 2)cos(ﬂ)3
(2[ r’m +3Ih, -1, -2L,2+r*ml,) cos(0))t/)¢—
I+ LrPm —I,r m)(cos(@)z—l):b2
—(—mr sin(6)I, cos(6)? + mr sin(8)1, ) g0

12



further that

hs» = empty
and
Ss3(z) =
% cos(6) sin(8)(In +r?m) A cos(0)*(fr —r?m — I,) - 7"';
—7’;(—2 I, cos(6)® + 21, cos(6) + cos(0)3!n— _ —a;(sin(9) ‘}03(0)2("2"‘ +1 - I)-
I, cos(8) — r? cos(f)m + cos(6)3r*m)é — ¢ sin(6) I, )¢ — 4-(sin(8) cos(0)(r*m — I )¥

As S3(x) is invertible the controller law for exact system-inversion is

u=S5"1(z)(y31 — h3,1(2)) . 3.2)

Then the structure of the controller for asymptotic tracking is

L] = s {{ mfzh@ ]+ ml oy

(120 = brey (1) (L36 - 62,(1))
*[(wi-wdm)]+[ i }

Ci 0
0 ¢
stability terms at the end; the result is of cause identical. In the following simulation the poles are
allways set to —5. To this end the ¢; ; are chosen as follows:

where = T;. Note that here we have used standard structure algorithm and added the

125 , C11
25 , Ci2

75 , C21 = 15, -
10

1))
Co2

i

HOC controller The discrete approximation of the equations of motion (3.1) and the path con-
straints 0 — 0,.7(t) =0 , ¥ — ¥res(t) = 0 results in the following DAE

bis1—¢j = ehip

Oi+1 — b5 by 41

i

Yisr—¥ = i

bis1 — 4 S (33)
M(@Bj41) | 541~ 6; = €F(0i41, 641,041, ¥541)
Yigr — ¥
+ €B(6j41)ujn
0 = 0j+.'— u/(t,, +j()+a1(éj+.~ —0.,-,]('!,,4-]'())
0 = Yj4i—Yres(t, +5€) + an(thjpi — !/;rey(ip + j¢))

13



with initial condition

é(tp) do
0(tp) bo
Y)Y
Xo=| 4t,) | = | 6o
Q(tp) 9_0
¥(tp) Yo

The system (3.3) can be solved numerically for j = 1, - -, k to compute u(k) = [u,(k), u2(k)}”. More
specifically, we find

bivi = [&e,(t,, + 5€) + a1 (Breg (tp + G€) + %")]
'/"j-{-i = '('fa_z [d’rel (tp + .76) + 02(1/.}“/ (tP + J‘) + '_l?)]
Viti = Yres(ty + je)

éj+l = %(01'+l - 6;)

Yinn = (i —-9).
With a; > 0 we apply one step of the stabilized structure algorithm. If 8;41 # ix fori = 0,1,.. ., to
compute @41, we have to solve the polynomial

—ay (ﬁj-{-l’j’jé-l sin(0,~+1) - az q;J?'H Sin(0j+1) COS(0j+1) — Q4 COS(aj.H) = as (¢j+‘€— ¢!)

for ¢;j 41, where

ay = mri4],
a; = mri+l, -1, .
a4 = mgr
as = mre 41, .
With .

by = (mr?+ I, — I;)sin(6j41)cos(6;4+1)

by = (mri41)— edjp(mr?+ I,)sin(6j41)

bo = (mri+1)—emgr cos(fi41)

the polynomial can be expressed as

bl . bo
2 ' —_
i+l €b2¢j+l Cbz =0

and admits two solutions as long 041 # 3:

;o _ b + , babo ;
¢J+1 = 2€b2{ 1 _ 1+4—b¥ ¢Jf } .

For small ¢ we can approximate /1 —zx 1 — %z and obtain
. b + bs bo ;
$i+1= 2€b2{ 1 _ (1+2 5 $ie) | ¢ -
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Taking the solution (4) we get
. bo -
i1 = Eti’j ,

but this is exactly the solution we find for the excluded case ;41 = %, since there by = 0. As a
consequence, solution (—) is not valid. To compute u;,,, and uz,,, we use simply the forth and
six rows of (3.3). Again, as for the explicit solution of the control {u,, us] discussed in the previous
paragraph, the solution of u, is not defined for 8;4, € {0, 7} since in the expression for u, there is a
division by sin(6;41) Note that instead of solving the DAE explicitly, one could wish to use iterative
methods to compute X? However, if the solution of the DAE is not unique, as in the present

j+1° . .
case, the iterative method might converge to the wrong solution, and special care must be taken.

Simulations The following plots show first a simulation result using a controller, obtained by
exact input-output linearization and discretization (Figure 3.2). Then, the simulation result of the
same system with HOC controller is shown in Figure 3.3 with zero steps of the stabilized structure
algorithm (ay = a3 = 0) and in Figure 3.4 with one step of the stabilized structure algorithm on @
(tn = %,az = 0)

In the simulation we have chosen the following reference functions for the output y = [8, ¢]7.

Yres(t) = —9t+2 (t—5)atan(t —5) —In(1 + (¢t - 5)%)

Yres(t) -9 + 2atan(t — 5)
0,,,(t)

fres(t) = 0.3cos(t)

£ 4 0.3sin(t)

15
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In order to get more insight into how HOC control works and where are its limits we present here
an analysis in the linear case.

4 Tracking controller for linear systems

In this section, we constder the HOC controller for linear systems. Consider the linear system

t = Az+ Bu (4.1a)
= Czr+Du. (4.1b)

The dimension of the state z is n, the dimensions of y and u are are both m. The goal is to find a
stabilizing control.

u = F(z,£(t),4(2),...,£°(1)) (4.2)
such that y(t) converges exponentially to £(2), the reference trajectory. We shall assume that system

(4.1) is invertible and minimum phase.

The standard solution of this problem is given by the structure algorithm presented in Section 2.1.
From equation (2.9) follows the controller

w=D '[Cz- T(d—dt)f(t)] . (4.3)

If we denote the transfer-function of (4.1) by H(s) (i.e.,y(s) = H(s)u(s)), the polynomial-matrix
R(s) = D' T(s) and the feedback matrix K, satisfy

K, =-5_16 , (4-4),

Hy(s)R(s) = [(C + DK,)(s I = (A+ BK,))"'B+ D|D 'T(s) = I, (4.5)
where Hy(s) is the transfer-function of the closed-loop system. The closed loop system is stable
(remember that (4.1) is minimum phase).

4.1 HOC controller for linear systems

To analyze the properties of the HOC controller applied to system (4.1), we are going to make a few
simplifying assumptions. The first assumption is that the solution of the DAE (2.14) is constructed
without any error, the second assumption is that we consider the case where € and é are very small
so that we can consider the limiting behavior as € and é go to zero. For the sake of simplicity we shall
assume that (4.1) represents the system after the application of the steps of the stabilized structure
algorithm, if any, that may be required in the implementation of the HOC controller.

A key result which is needed in our analysis is how to construct the solution of a linear DAE.

Solution of a linear DAE Consider the linear DAE.

X = AX+BU (4.6a)
£t) = CX+DU (4.6b)
X(t,) = =z(t,), (4.6¢)
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where z(t,) is known and £(t) is a given time function. Clearly (4.6) is the linear version of (2.14)
for. The solution U(?) of (4.6) can be constructed by noting that system (4.6) can be expressed, in
transfer domain, as

-sI+A B X1 _1 0
et BTl ] &
The row-compression of [ g ] by the matrix .
IRZERZ
V= [ Vs Vy ]
puts the system pencil in (4.7) to
-sVi + ViA+VoC WVVB+ VoD _ | =Es+F 0 48
—sVs+V3A+V4C VsB+VyD | | ~Hs+J I (48)

so that we get
—Es+F 01[ X7 _[ Vatt) ‘s
~Hs+J 1) U || viey) | - (4.9)
Since the pencil {E, F'} is regular (thanks to invertibility assumption on (4.1)) there exist two
matrices M and @ such that

—I$+A1 0 ] (4.10)

M(‘EHF)Q:[ 0  —sN+1I

is in Kronecker normal form (N is a nilpotent matrix). The right multiplication by @ implies a
change of variable Z = Q~!X. Obviously, the transformation into Kronecker normal form separates
the new state Z in a continuous part Z; and a discontinuous or impulsive part Z,. In the sequel we
note 2, = PTZ and Z, = PT Z, where PT = [I 0] and Py = [0 I]. PT determines the projection
of X which is continuous at 0, and more importantly the projection of z(¢,) which contributes to
the solution of (4.6)2.

g

Now (4.9) can be rewritten as
M 0][-Es+F 0][Q o0][@* o][ x1_[ Mvew) Al
0 I||<Hs+s 1|0 1] 0o 1]{U|T| v (4.11)
or, equivalently
—sI + A 0 0 VA 71
& 0 ~sN +1 of{lzl=| » |, (4.12)
(-HQs+JQ)P1 (-HQs+JQ)P, I U Vié(t)

where 11 = PT MV2£(t) and v2 = PT MV,€(t). From (4.12) we obtain an expression for the control
at tf
P

(HQs — JQPZ(t}) + (HQ, ~ JQPZa(t}) + Vit
HQPZ\(t5) — JQ PiZy(t}) + HQ P 25(t}) — J Q PaZa(t]) + Va€(t,) - (4.13)

21t is exactly this projection that the HOC controller uses to generate the control. So that in some sense the
HOC controller can be thought of as an output feedback controller, the output being Plr:c. This projection may
be completely empty (as it was for the example given in the introduction), but each step of the structure algorithm
applied to the original system prior to the application of the numerical method, increases the size of this projection.
If the structure algorithm is carried through completely then, PlT = [ and (4.6} can be solved exactly by noting that
in this case D is invertible.

U(th

i
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We are only interested in the solution of U at t} even though what is really used in the HOC control
is U(t, + ke). But here we are studying the hmltmg case where € and thus ke — 0. Expression (4.13)
does not specify U(t}) yet because even though Z(t}) is known to be

Z\(th)y = 2:(t;) = Pl =z, ,

the quantities & Z1(t}) (ie., Zl(t+)) Zy(t}) and 4 Z2(t}) are not known. The first two block -rows
of (4.12) can be used to compute them. The first row gives Zl(t+)

SZ1 A1Z1
and
(=sN+1)Zy =7 .
Now N is nilpotent of index v so that (—s N + I)Z2 = vy, implies that

Zy =Y (sNV7
i=0

and
v

§Zy = Zs(sN)“yz .

i=0

Plugging back these expressions in (4.13) yields an equation depending exclusively on Z,(t}) =
PiQ~'z(t}), £(t) and its derivatives.

Uty = (HQPiA —JQPI)Zl(t,,)+Rg( )6( Heze,
= KoX(t) + R (5) €0, (414)
where ’
Ky =(HQP,A\PT —JQP PT)Q! (4.15)
and
Re(s) = Va-— (HQP1P1T - (sHQ - JQ)Py(D_(sN))P] )M V2

=0
= (Va—HQPPT —JQP,P])MV; +
(HQPP] — JQPyNP])MVys +
(HQP,NPT — JQP,N*PT\MVps® + - -
v+1

= ) Ris'. (4.16)
i=0
Following the HOC control procedure where § — 0 the control u(t) is chosen as

u(t) = Krz(t)+ R (%) £(t) (4.17)
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4.2 Stability analysis

The HOC controller (4.17) is stable if and only if the closed-loop system
¢=(A+BK))z (4.18)

is stable, which means that the eigenvalues of A + B K; have negative real parts. The stability
property clearly is independent of the choice of coordinate system. The control (4.17) i$ computed
from the system (4.1) after the application of some steps of the stabilized structure algorithm, but
is to be applied to the original system. However, the A, B matrices are the same for both systems.
Then in order to determine the stability properties of A + B K it suffices to see what happens if
(4.17) is fed back to system (4.1). For reasons that will become clear shortly, we consider analyzing
the stability of the system in the coordinate system

z=Q 'z,
where Q is defined as in the previous section. Let us suppose that in the z coordinate system (4.1)
can be expressed as
2 _ A A 2 B,
[5’2] - [Zs 74][12]+[§2]u (#.192)
v = [T 62][2]+m. (4.19b)

Theorem 4.1 Let K; and Q as defined in the previous section and let Kj = K;Q, then

a) The application of u = Kz sets Cy and Az to zero,i.e.,

A, A B 1+ 4, A
5 Z:]+[§;]K, = [f(‘) % J (4.20a)
[C. C:]+DK; = [0 (4.20b)

b) The eigenvalues 0]71 are the transmission zeros of (4.1).

c) The decomposition (z1,22) isolates the largest output-nulling (A, B)-invariant subspace V* of

(4.1).

Proof Note that the feedback matrix Ky = K;Q is nothing but the HOC feedback in the z-
coordinates, so that it has the following structure

K = [Kl 0] . (421)

a) Consider system (4.1) in the form

[ ]l

The change of coordinates with z = @~z implies that
-sI+A B Q0 z|_[0O
e B -0 (22
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The left multiplication by [ [g (I) ] and V yields

—sI+ Ay 0 0 2 PFMng

0 —sN+1 0 2 | = | PTMVay (4.23)
(-HQs+JQ)Ph (-HQs+JQ)P, [ u Vay

The substitution of u in (4.23) by U as defined in (4.14),i.e.,

u=(HQPA - JQP)z1 + Re(s)€ . (4.24)
yields
-sI+ A P{I‘Mv2y
0 —sN +1 [ = PTMVyy . (4.25)
HQP(-sI+A) (-HQs+JQ)P; Vay — Re(s)€(t)
0 0
By left multiplication of (4.25) with 0 I 0| we get
-HQP 0 I
-sI+ A
2l-
0] N I 2z -
N —s[HQP2]+[JQP2]
) (4.26)
Pf’Mng
[ PI MVay
(—H QP PiTM Vo + V4)y - R,z(s)){
Let L = [ Li Liz ] be an invertible matrix that row-compresses [ N . Then a pre-
Loy Lo HQP,

multiplication of (4.26) with [ é 2 ] puts equation (4.25) into the form

-sI+ A 0 . P MV,y
0 —si+ Ay [ z; ] = (LnPJMVz - L12(H QP P{I‘M Vo — V4))y - leRg(s)E(t) .
0 Cs (Loy PTMVy — Lao(H Q Py PTM Va — Vi))y — LaaRe(s)E(2)

p); X

(4.27)
The proceeding procedure might be done in one step: Let (A, B, C, D) the original system, K, the
computed feedback-matrix, and the pair (M, Q) defined in (4.10). Then

I 0 0 I 0 0 My M2 0O Qu G2 O
0 Ly L 0 I o My Mz 0|V ]| Qa Q22 O
0 Loy Loy -HQP, 0 I 0 0 I 0 0o I

-

T

[[Qn le]_l 0 ][—51+A+BKJ

Qa1 Q22 0 ]QZ—_—X
00 I C+DKs

~ o~

m{
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where

or equivalently
22=TEZz=yx.

To get more information about the particular structure of the matrix T consider just the coefficients
of the terms in s. :

T\ T, Ts1[1 0 10
Ta Ts Ts | |0 I |=]01]. (4.28)
T, Ts To || 0 0 00

From (4.28) it follows immediately that

1 0T
T=|0 1 Ts |,
00 Ty

where Ty is an invertible matrix. Now we find that

T T+ DR, A3z + B,K  + Ts(al + D-I_{.J) ~sI+ A4+ TsC,

—sI+Z+§—I?J ] _ l—sl+zl+§1?1+T3(61+D71) Zz-{-T;;Ez
Tg(al +.D?1) Tgaz

—sl+ Ay 0 0
= 0 ~slI+ A4 O
0 Cs 0

(4.29)
and since Ty is invertible we verify that

and consequently that _
A, = A+BK,

A = -T3C,
73 = 0
71.4 = A4-— Tséz

b) The pencil { £, F} in (4.9) contains all zeros (finite and infinite) of (4.7) (Note that det(—s E+
F)=c det ([ —el+A B ])) The zero-structure of a linear system is invariant with respect to

c D
the three algebraic operations on (4.7): change of variables, state-feedback and output-injection (we
can multiply matrix [ =F IC+ A g ] from the left and the right by invertible constant matrices

without changing the zero-structure}. (M, Q) puts (4.9) in Kronecker normal form, i.e., separates
finite and infinite zeros. By definition A; contains all finite zeros and (—s N +I) all zeros at infinity,

which proves b) since A, = A
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¢) The computations in paragraph a) showed that the feedback u = Ky z renders 2z; unobservable,
i.e., the first columns of @ span an output-nulling sub-space V and 2; € V. In b) we have seen that
Aj containes all finite zeros of (4.7). By assumption (4.7) is invertible and for this class of linear
system it is known that the dimension of the largest output-nulling subspace V*, which is uniquely
defined, is equal to the number of finite zeros, counting multiplicity [6]. This shows that V = V*. 0O

Note that stability of the closed-loop system depends on the stability of A4 (4, is stable under
the minimum phase assumption), which is unaffected by the HOC feedback. If A4 is not stable, the
HOC controller will produce an unstable system. But by construction, we know that (A4, By) is a
controllable pair, and thus there exists a matrix K> such that A4 + B3 K> is stable. If we apply a
preliminary feedback

u = Kzp+v

def 5=
= Knz+v

before we apply the HOC controller, then system (4.19) becomes

HEREEIFIEEAE i

[ T, C. ] [ 2 ] + Dv, (4.30b)

y

where 74 = A4 + B3K is stable. If we now apply HOC control to (4.30), we obtain a stable
closed-loop system!

To summerize the preliminary feedback procedure, we first have to find the coordinate transfor-
mation matrix @ as explained in Section 4.1 and the new representation (4.19). Test the stability
of A4, and construct K, if necessary such that A4 + By K2 is stable. Then let

Ko=[0 K, ] Q'
and apply to the original system (4.1) the prelfminary feedback
u=Kpz+v.
The HOC controller can now be applied to the new system

t = (A+BKp)z+Bv
y = (C+DKy)z+ Dv

with guaranteed success.

Of course the preliminary feedback and more generally the HOC control is not at all needed in
the case of linear systems since established alternatives exist. The above analysis is only presented to
illustrate the ideas behind these concepts. To apply the preliminary feedback idea in the nonlinear
case, a simple approach would be to construct the preliminary feedback based on the model of the
system linearized around some nominal operation point z°. Of course there is no guarantee that such
a preliminary feedback does the job in particular if the actual trajectory z(t) of the system does not
remain close to the nominal operating point 9. But if HOC does not work or has poor performance
such a preliminary feedback may improve the situation as we shall see later in an example.

There may be the other ways of constructing a preliminary feedback by taking into account the
nonlinearities of the system. This problem is currently under investigation.
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4.3 Tracking properties

Just as the stability analysis, we can study tracking properties in any coordinate system. Let us
consider the representation (4.20). It is clear that, after the application of the preliminary feedback
if needed, HOC controller yields the following output

y= (52(8 I- ?4)_152 + _D_)Rf(s)f + 52(8 I - 74)_122(0) .

Theorem 4.2 — — .
(Cz(s I- Aq)_le + D)Rf(s) =1 (431)

and since Aq is stable (by construction), e(t) = y(t) — £(t) converges exponentially to zero.

Proof The system representation (4.12) in Kronecker normal form is clearly nothing but another
representation of (4.1), to compute U we just replaced y(t) by £(¢). The unique transfer-matrix of
the closed loop system-representations (4.12) and (4.1) is Hy(s), as defined before. Since equation
(4.14) is computed using (4.12) the polynomial matrix R¢(s) is by construction the polynomial part
P(s) of the inverse of the transfer-matrix Hy(s)~' = P(s) + R(s), where R(s) is the rational part
of H(s). In fact, the polynomial part P(s) corresponds to the discontinuous part z, the rational
part R(s) to the continuous part z;. Since after application of the feedback-matrix K to (4.1) 2
is unobservable the inverse of Hy(s) is only polynomial and we have Hy(s)~! = R¢(s). o

Note that e(t) represents the tracking error for the system which is not the original system that
we had considered, but the system obtained from possible applications of few steps of the structure
algorithm to the original system. But as we have already seen, as long as we use the stabilized
version of the structure algorithm, if the tracking error of the resulting system converges to zero so
does that of the original system.

4.4 Simple Example

Let us consider the following example

zy, = z (4.32a)
o = 1+ cz2+4u (432b)
Yy = 21+ Az, (4320)

The transfer-matrix of (4.32) is clearly

1+ As
—c1 — ¢35+ 52

H(s) =

which is invertible and minimum phase as long as A > 0. Apply the procedure given in Section (4.1).

With
1 00
V=10 0 1
010
we obtain
—s 1 0 —S l O
Vile =st+e| |1 = =220 |2 =1 0ol @33
—t [ ~Hs+J 1 —_—| =
1 A 0 Cy Cc2— S8 1
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Case 1: X #0.

Then the pair
A 1 At 0
(M:Q)z([l 0],[_/\—2 /\—1])
s 1 ] in Kronecker normal-form.

1 A
=2 t_s 0
0 1]

i.e., the nilpotent matrix N = 0 and Ay = —=A"! and P, = [ (1) ], P = [

puts—Es+F:[

Now we compute the feedback-vector K; using (4.15)
Ky, = [ (/\_3 - 02/\-2— CI/\-]) 0 ]

and Re(s) using (4.16).
SA = Acg — 1

R((S) = 22

System (4.32) in z-coordinates takes the form
. —A-! 1 0

z = (=272 =c2A7 4+ 1) (c2+A7h) Tl |

vy = [0 1]z (4.34)

A trivial computation shows that BA; = A=2 4 coA~! — ¢; and that the transmission zero of (4.32)
are is —A™!'. For the closed loop system

z= (/—4-+ BK )z + By
we compute the transfer-function -

_ (s+/\"l)/\2
Hi(s) = (5+ A1) (sh=Aez = 1)

and we verify that Re(s) Hp(s) = 1.

The conditions for stability are first that A=' > 0, (i.e., that the original system is minimum
phase) and second ¢z < —A~!. If ¢ < —=A~! is not satisfied, we have to perform a preliminary
feedback

u=acy+v.

Case 2: A =0.

In this case

wa=([1 ][0 1))

—-s 1 .
] in Kronecker normal-form.
Cc2

puts the upper left sub-matrix—FEs + F = [ .
1



Here z; is empty, K is empty and P, = I. The polynomial matrix R¢(s) is
Re(s) = c1 + cps — 52

A preliminary feedback K, is to be chosen such that the system

am=([7 5] [5])

has stable poles.

4.5 Example

In this example we apply the method to the linearized model of the wheel. As the equations of
motion (3.1) are independent of the value of ¢ and the position of the center of mass (z,y), in the
linear model we keep just the variables z = [, ¢, 4,8, ¥]7. To compute the linear model we linearize
the non-linear system around the trajectory

3
-6t
zo(t) = 0
-0
-6
for t > 0 . Then the result is
0 00 1 O 00
0 00 0 1 00
z= 0 0 0 -3 0f{z+11 0}u
654 0 5 0 0 00
0 00 0 0 0 1 (4.35)

(=]
o
N
L]

{100
Y=0 100 0

The transfer matrix of (4.35) is

5
= 0
H(s):( 8.465+ s ) )
°

We observe that (4.35) has no transmission zeros, and that the linearized model is completely
decoupled (the nonlinear model is not !). We shall consider two controllers for this system. One
in which no step of the structure algorithm is applied and one where one step is performed. The
complete solution based on the structure algorithm requires 3 steps.

Case 1: O Step structure algorithm The application of the algorithm shows that A, is empty,
i.e., the whole state is discontinuous and we might pose z2 = z. To place all poles at —5 we apply
the preliminary-feedback u = K,z, where

K - (-1462 0 —15 -13.308 O
Tl 0 -2 0 0 -10/°
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The system-matrix after preliminary feedback A* = A+ BKj, is

0 0 0 1 0
0 0 0 0 1
A*'=] —-4462 0 -—-15 —-16.308 0
6.54 0 5 0 0
0 =25 0 0 -10
and the transfer-matrix is
1 0
H(s)‘ — 25 4+ 155 + 352 + 0.253 1
0 25 4+ 10s + 52
Then restart the algorithm. We compute
-1 0 0 0 0 00
0 0 01 0000
0 -1 0 0000
v=|10 0 00 010
0 0 0 0 0 01
0O 0 1 00 OO0
0 0 00100
and
07738 0 .0 0 0.2777
0 0 0 1 0
Q=1|1-10272 0 0 0 0.2092
0 1 0 0 0
0 0 -1 0 0
Further we have
A1 = empty
0 -0.1242 0 © 0
0.7738 0 0 0 0.2777 -
N = 0 0 0 -1 0
0 0 0 0 0
0 03460 0 O 0
J (—44.62 0 -15 -16.308 O )
- 0 -25 0 0 -10
00100
H - (0 0 00 1)
Re(s) = (25+ 155 + 352 + 0.25° 0 >
¢ - 0 25 + 10s + 52

Since As A; is empty K is empty also and it is easy to see that R¢(s) = H(s)".

Case 2: 1 Step structure algorithm In applying the first step of the stabilized structure
-5 0

algorithm with T; = 0 -5

we obtain the output

S_ (500 1 0}
Y=\0 5 0 0 1
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Clearly the transfer-function of the new system is H(s) = W(s)H(s) where W(s) = 0 54s

and the system has two transmission zeros at —5. The trajectories to be followed by this new system

. foy=w (;jfz) u)

Proceeding as before we find the same V as in Case 1, for

545 0 )

~0.4739 0 0 0 0
0 —0.5266 0 0 0
Q=] —-1.7498 0 1.093 0 -0.4108
2.3698 0 —-0.6619 0 -0.6767
0 2.6332 0 -1 0
and for the system in z—coordinates
-5 0 1.396 0 1.427 0 0
0 -5 0 1.898 0 0 ]
2= | -10.627819 0 2.097 0 5247 |2+ | 0.6701 0 ju
0 -13.166 0 5 0 0 -1
10.395 0 —5216 0 2902 ~0.6554 0 (4.36)
~ (0 0 -06619 0 -0.6767 ,
Y=oo o -1 0
Sub-matrix
_ 2.097 0 5.247
Ag = 0 5 0
-5H.216 0 2.902

is unstable since its eigenvalues are {5,2.5 + 5.216i}. To stabilize it we apply the preleminary-

feedback v = K, z, where

. = 0 0 -7545 0 15.169
"T\o 0 0 ~10 0
or in z—coordinates

K, =

-11.16 0 15 -13.308 O
0 =50 0 0 -10/"’
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and start again, We compute

A =

—0.0887 0 -0.0907
0 0 0

0.0867 0 0.0887

0 0100 (4.37)
0 0 0 01

54+254+02s2 0
0 5+s

J _ -11.16 0 -—-15 -16.308 O
- 0 =50 0 0  -10

15.858 0 0 0 0
0 —13.166 0 0 0

K, - (—3346 0 000
7= 0 2500 0/

the transformation-matrix Q is as above. Now the system in z—coordinates is

-9 0 1.396 0 1.427 0 0
0 -5 0 —1.898 0 0 0
=] -10.627 0 ~2.959 0 15413 |z+ | 06701 O Ju
0 13.166 0 -5 0 0 -1 (4.38)
10.395 0 -0.2701 0 —7.040 —0.6554 0 '

~_ (0 0 -0.6619 0 -06767)
¥=Ro o 0 -1 0

and its transfer-matrix is

25 + bs 0
. —4z. 2 3
H*(s) = 423+75;+15s +s 5s
50 + 10s + 82
and
54 25+ 0.25% 0 1 -33.46s — 167.3 0
. ~1 e
H*(s) _( 0 5+s)+25+10s+s2( 0 253+125)

The application of K; on (4.38) sets the sub-matrix

_ —10.627 0
A3 = 0 —13.166

10.395 0
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to zero and since sub-matrix C; = 0 the continuous part z; is rendered unobservable. The transfer-
function Hy(s) of the closed-loop system with preliminary feedback is

1
. 2
Hi(s) = 5+ 2s+0.2s

5+s
and it is easy to verify that Hy(s)™! is just the polynomial part of H*(s)~! and that Re(s) =
H(s) .

Here the application of either u = 712_ or u = K,z to system (4.36) results in an unstable
system. Only the application of u = (Kj + K}z on (4.36) results in a system with all poles stable,
i.e. the stabilization of the subsystem (A4, B2) in (4.19b) is an essential part in the synthesis of
feedback-control for tracking.

The resulting stable closed-loop system is

0 0 0 1 0 0 0
o 0 0 0 1 0 0
£=|-4462 0 —15 -16308 0 lz+ |1 0|R(L))
6.54 0 5 0 0 00
0 -2 0 0 -10 01

(500 10},
Yy=lo 5 0 0 1

5 HOC controller for linear system: discrete implementa-
tion

-,

In the previous analysis, we considered the case ¢ and § — 0. In this section we consider the case
where ¢ and § are not small.

Since the applied control by the HOC controller is piece-wise constant, we can study the exact
discretization of (4.1).

z(tpr1) = e*’z(t,)+ A" (e** - I)Buy, (5.1a)

y(t,) = Cz(t,)+Du, (5.1b)

z(tg) = =z (5.1¢)

where p = 0,1,..., t,41 = § +t, and u, is the constant value of the control between ¢, and t,41,

computed using the following system of equations:

Xin = X7 = e(AX],, +BUJL,)
y(t, +je) = CX[,,+DUf,, (5.2)
X;’ = z(t,),

for each p and u, = Uf where k is such that 26 < ke < 6. For simplicity we drop the suffix p in the
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following computations. System (5.2) can be explicitly solved for U,. We have

Xit1 = (I =€A)"YX; +eBUjp1)

£(tp + je) CXj41+ DUjyy

= C(-€¢A)"'X; + (eC(I —¢A)"'B + D)Uj 4
S Ujpt = (C(I = cA)" B+ D) HE(ty + je) = C(I - cA)71 X}

@ Xjp1 = (I-eA)"{I=-B[C(U-cA) "B+ L21-'Cc(1 - cA) '} X;

+(I = €A)"YBIC(I - eA)'B+ 2)="}e(t, 4 jo) .

By Reordering the last equations and by the introduction of new constants (.2, A) the expression
for U; and X; can be expressed in a more condensed form:

Uipi = A&, +je) = C(1 —cA) X}
XNjgr = QX;+AE(t, +j6)
which yields
k=2
N = A{y(i,,+k¢')—(_'-'(I—tA)“(ZS'Z“"""")A;/(!,,+(i+l)«))}
=0
~AC( —eA) Q=D N, (5.3)
where
A = (¢«C(I-cA) "B+ D)™!
Q = (I~eA)"HI-B[CU-eA) "B+ 2]7'C(1 —eA) '}

A (1 — eA)"Y{B[C(I - eA)~'B + 2]71) .
But Xy = z(¢,) and thus the feedback matrix is
Ky =AC( —eA) QY | (5.4)

If we plug back the control into (5.1) we see that the stability of this control scheme is equivalent
to the stability of the following system:

z(t,) = e*z(t,) + A7 (e** — )BK z(t,~y) (5.5)
or egujvalently the roots of
det(z2] — e*z — A~ (e?* — NBK;)=0.

This formula can be used to get an idea on how large § can be chosen without jeopardizing system
stability. Analysis presented in this section shows that the HOC controller is really of predictive
type. Notice that in (5.3) to compute u, k future values of the reference trajectory are used.
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6 Example: Wheel rolling on a plane with linear prelimi-
nary feedback

The linear analysis has shown that preliminary feedback may make the HOC strategy applicable to
the wheel example of Section 3 where we saw that HOC control without preliminary feedback does
not work. Here we use as preliminary feedback what we found in Section 4.4. Figures 6.1 and 6.2
show the simulation results with zero steps of the structure algorithm (Figure 6.1 for small 6§, Figure
6.2 for large §; for § > 0.2 the error does not converge any longer). Figure 6.3 shows simulation
results with one step of the structure algorithm on 8.

In each of the figures the first plot shows the iean angle 6 as a solid line and the reference function
0,c7(t) as dashed line. Next to it we have the error eg(t) = 8(t) — 6,.7(t). As we see eg(t) converges
to zero, i.e., the preliminary feedback stabilizes the HOC controller. The plots in the middle show
the rolling angular velocity ¢ (solid line), ¢,.s(t) (dashed line) and ey(t) = ¥(t) — ¥res(t). On the
bottom, we have the two control inputs: on the left side the “pedalling” torque, on the right, side
the steering torque.

In all three simulations preliminary feedback stabilizes the HOC controller. Clearly, for small 6
(see Figure 6.1) the result is the best since the estimation for u is more frequently updated as in
Figure 6.2 where 8 is set to its upper limit. The chattering in the steering torque u; of Figure 6.2 has
the frequence of the sampling frequence and is due to the linear continuous preliminary feedback.
Its amplitude grows with 6. '

By doing one step of the structure algorithm on 8 in Figure 6.3 we did not improve performance
considerably. We observe again chattering (Note that § = 0.05).

7 Conclusion

In this report, we have presented a hybrid open-loop closed-loop strategy based on a control strategy
introduced in [1]. In particular, we have shown that the controller in {1} can be applied to a much
broader class of systems if it is modified by a preliminary feedback. We have done a complete
analysis in the linear case and shown how such a preliminary feedback can be designed and how it
can be applied to nonlinear systems.

We have only considered preliminary feedback that are of static state feedback type. If the state
is only partially observable, it should be possible to design adequate dynamic preliminary feedbacks.
It may be also interesting to study nonlinear preliminary feedbacks.

The result of the paper can trivially be generalized to the case where system dynamics is per-
turbated by a known disturbance functions.

There are many similarities between HOC control and predictive control which are under inves-
tigation.
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A Model of the wheel rolling on a plane

The equations of motion can be obtained using the Lagrange method for nonholonomic systems [7].
Nonholonomic constraints result from the condition of rolling-without-slipping on the plane. If we
note by Av the difference between the velocities of the point of contact of the wheel with the ground
and the point of contact with the wheel on the ground, then the condition rolling-without-sliding is
written as .

Av = vy + w0y X ro) = 0 (A.1)

where w(g) is the angular velocity and r(g) the radius-vector of the wheel in the inertial coordinate
system (0) (see Figure 3.1). Denoting by the matrix A} a rotation of the angle ¢ around the z-axis

and by AZ' a rotation around the z'-axis after a rotation around the z-axis (that is why we write
z’ and not z) from the inertial coordinate system (0) to the rotated and moving coordinate system
(',¢/,2'), we find the following local representations for w(g) and r(oy :

0 é ) 0 0 cos(¢) + 1/} sin @ sin(¢)
wo) = ( 0 ) +(A;)T l:( 0 ) + (A2)T ( 0 )] = ( fsin(4) ~ 1 sin(6) cos(¢) ) ,
¢ 0 ¥ ¢ + 9 cos(f)

, 0 rcos(6) sin(¢)
To) = (A;)T(A: Y| —=r | = | —rcos(d)cos(g) ,
0/ —rsin(f)

where A} and Aj' are
cos(¢) sin(é) O ’ 1 0 0
Ai=| —sin(4) cos(4) 0 and A =| 0 cos(d) sin(6)
0 0 1 0 —sin(f) cos(8)

Then the nonholonomic constraints become

0 ] - [ z + ¢.S.r cos(8) cos(p) — ér sin(@)sin(f) + d._;r/cos(¢>)

Av = [ 0 ¥y + ¢rcos(f)sin(¢) + 6Orcos(¢)sin(f) + o rsin(¢) ] . (A2)

To write the Lagrangian we have to compute the difference between the kinetic energy T and
the potential energy U. Clearly, as the moving coordinate system is attached to the center of mass
of the wheel we have for the kinetic energy

. b 0 0
T==21 0 I, 0 |w
1) n (1)
2 0 0 I

where w(;) represents the angular velocity of the wheel in the moving coordinates (1).

e [E]o5[(£)-(2)]

9pos(¢) + és-sin(()) sin(y)
w) = '

or equivalently

~0 sin(1) + ¢ sin(6) cos(v)
¢ cos(0) + ¢
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The potential energy U is proportional to the hight of the center of mass of the wheel: U = zg .
Then the Lagrangian is simply L =T - U.

L= % (I, (02 + ¢? sin(0)2) +1, (dz cos(6) + 1/;)2 +m (a':z +9%+ (récos(&))z) ) —mgrsin(f) .

where we have substituted z by rsin(6). In q = [z, y, 4, 8, ¢] the equations of motion are given by

9L(q,q)  d L(q,q)

T
- A= .
dq di~ 0q +G(q) 0, (A3)
G(q)q=0 , (A4)
where G(q) = -%l‘—' and A = [Ay, A;] is the vector of Lagrange multipliers. The result is
'm0 0 0 0 ]
3

0 m 0 0 0 i

0 0 I, sin(6)? + I, cos(8)? 0 I, cos(8) qS =

0 0 0 mr? cos(8)? + I, 0 i
. 0 0 I cos(8) 0 I,
-~ 0 N - - 0 -

0 0
2(In — 1) ¢ 6 sin(8) cos(8) + 1,84 sin(6) + | uysin(8) | +

{(I, — I) $* + mr? 62} sin(0) cos(8) — I, ¢4 sin(f) — m g r cos(f) 0
i I 46 sin(6) 4L ouw
[ 1 0

0 1 3
r cos(f) cos(¢) r cos(8)sin(4) [ /\1 ] .
—r sin(¢)sin(d) r cos(4)sin(8) z
r cos(¢) r sin(@)

Since the Lagrangian is independent of the position (z,y) of the center of mass of the wheel,
we can find a more condensed form of the equations of motion, in particular the nonholonomic-
constraints can be eliminated using a modified version of the Euler-Lagrange-equations (A.3) ex-
ploiting (A.2).

Obviously, the constraints (A.2) can be rewritten in the form
i ;
¥

[ 3 } N B (¢ cos(8) cos(¢) — 8 sin(¢) sin(f) + ¥ cos(¢))
- (¢ cos(8) sin(8) + 0 cos() sin(8) + ¥ sin(qS))

or equivalently
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As the Lagrangian is independent of the position of the center of mass q2 = [z, 4] and depends only
on its derivatives g2 = [#,9y] and the angles q, = [4, 6, 9] and angular velocities q; = (¢, 8, ], the
solution of the DAE ((A.3),(A.4)) is equivalent to that of to

aL(qg‘zl,qz) _ %314((1(19;:1"12) _ %314(‘1:9’(;"‘*2)(2(%) =0, (A.5)
where
Q@ = Q(‘h)(ll',
Q2 = __aq(gle)ql +@1Q(a1)d: -

For a detailed explanation see [8] or the appendix of [9]. Now the equations of motion are composed,

first, of a set of equations independent of the position q; = [z, y] and the absolute orientation ¢ of
the wheel on the plane )
¢

M(8) { 6 | = F(6,6,6,9) + B(6) [ - ] (A.6)
14

or specifically

[ I, sin(8)? + I,, cos(8)? + m 2 cos(#)? 0 . Icos(8) + mr?cos(f) p
0 I, + mr? 0 [ 9 ] =
i I, cos(8) + mrZ cos(8) 0 In+mr? ¥
[ 1.6+ sin(8) +2 (mr? + I, — I.) $8 cos(6) sin(0) u; sin(8)
—(mr? 4+ 1,) ¢9 sin(8) — (mr? + I, — I,) $% cos(8)sin(8) — mgrcos(d) | + 0
L (2mr? + 1) 40 sin(8) | Uz

(Note that the matrix at the left side of the equation is nonsingular for all values of § except 8 = k7,
k=..-1,0,1,2..) and, second, of two separate equations which can be used to compute the position
of the center of mass q; = [z, y] on the plan.

[§]=Q(¢,9)[§}~
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